xref: /linux/fs/nfs/file.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32 
33 #include <asm/uaccess.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	return nfs_release(inode, filp);
86 }
87 EXPORT_SYMBOL_GPL(nfs_file_release);
88 
89 /**
90  * nfs_revalidate_size - Revalidate the file size
91  * @inode - pointer to inode struct
92  * @file - pointer to struct file
93  *
94  * Revalidates the file length. This is basically a wrapper around
95  * nfs_revalidate_inode() that takes into account the fact that we may
96  * have cached writes (in which case we don't care about the server's
97  * idea of what the file length is), or O_DIRECT (in which case we
98  * shouldn't trust the cache).
99  */
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101 {
102 	struct nfs_server *server = NFS_SERVER(inode);
103 	struct nfs_inode *nfsi = NFS_I(inode);
104 
105 	if (nfs_have_delegated_attributes(inode))
106 		goto out_noreval;
107 
108 	if (filp->f_flags & O_DIRECT)
109 		goto force_reval;
110 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111 		goto force_reval;
112 	if (nfs_attribute_timeout(inode))
113 		goto force_reval;
114 out_noreval:
115 	return 0;
116 force_reval:
117 	return __nfs_revalidate_inode(server, inode);
118 }
119 
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121 {
122 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 			filp, offset, whence);
124 
125 	/*
126 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 	 * the cached file length
128 	 */
129 	if (whence != SEEK_SET && whence != SEEK_CUR) {
130 		struct inode *inode = filp->f_mapping->host;
131 
132 		int retval = nfs_revalidate_file_size(inode, filp);
133 		if (retval < 0)
134 			return (loff_t)retval;
135 	}
136 
137 	return generic_file_llseek(filp, offset, whence);
138 }
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
140 
141 /*
142  * Flush all dirty pages, and check for write errors.
143  */
144 int
145 nfs_file_flush(struct file *file, fl_owner_t id)
146 {
147 	struct inode	*inode = file_inode(file);
148 
149 	dprintk("NFS: flush(%pD2)\n", file);
150 
151 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 	if ((file->f_mode & FMODE_WRITE) == 0)
153 		return 0;
154 
155 	/*
156 	 * If we're holding a write delegation, then just start the i/o
157 	 * but don't wait for completion (or send a commit).
158 	 */
159 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 		return filemap_fdatawrite(file->f_mapping);
161 
162 	/* Flush writes to the server and return any errors */
163 	return vfs_fsync(file, 0);
164 }
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
166 
167 ssize_t
168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
169 {
170 	struct inode *inode = file_inode(iocb->ki_filp);
171 	ssize_t result;
172 
173 	if (iocb->ki_filp->f_flags & O_DIRECT)
174 		return nfs_file_direct_read(iocb, to, iocb->ki_pos, true);
175 
176 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
177 		iocb->ki_filp,
178 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
179 
180 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
181 	if (!result) {
182 		result = generic_file_read_iter(iocb, to);
183 		if (result > 0)
184 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
185 	}
186 	return result;
187 }
188 EXPORT_SYMBOL_GPL(nfs_file_read);
189 
190 ssize_t
191 nfs_file_splice_read(struct file *filp, loff_t *ppos,
192 		     struct pipe_inode_info *pipe, size_t count,
193 		     unsigned int flags)
194 {
195 	struct inode *inode = file_inode(filp);
196 	ssize_t res;
197 
198 	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
199 		filp, (unsigned long) count, (unsigned long long) *ppos);
200 
201 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
202 	if (!res) {
203 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
204 		if (res > 0)
205 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
206 	}
207 	return res;
208 }
209 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
210 
211 int
212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
213 {
214 	struct inode *inode = file_inode(file);
215 	int	status;
216 
217 	dprintk("NFS: mmap(%pD2)\n", file);
218 
219 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
220 	 *       so we call that before revalidating the mapping
221 	 */
222 	status = generic_file_mmap(file, vma);
223 	if (!status) {
224 		vma->vm_ops = &nfs_file_vm_ops;
225 		status = nfs_revalidate_mapping(inode, file->f_mapping);
226 	}
227 	return status;
228 }
229 EXPORT_SYMBOL_GPL(nfs_file_mmap);
230 
231 /*
232  * Flush any dirty pages for this process, and check for write errors.
233  * The return status from this call provides a reliable indication of
234  * whether any write errors occurred for this process.
235  *
236  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
237  * disk, but it retrieves and clears ctx->error after synching, despite
238  * the two being set at the same time in nfs_context_set_write_error().
239  * This is because the former is used to notify the _next_ call to
240  * nfs_file_write() that a write error occurred, and hence cause it to
241  * fall back to doing a synchronous write.
242  */
243 int
244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
245 {
246 	struct nfs_open_context *ctx = nfs_file_open_context(file);
247 	struct inode *inode = file_inode(file);
248 	int have_error, do_resend, status;
249 	int ret = 0;
250 
251 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
252 
253 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
254 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
255 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
256 	status = nfs_commit_inode(inode, FLUSH_SYNC);
257 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
258 	if (have_error) {
259 		ret = xchg(&ctx->error, 0);
260 		if (ret)
261 			goto out;
262 	}
263 	if (status < 0) {
264 		ret = status;
265 		goto out;
266 	}
267 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
268 	if (do_resend)
269 		ret = -EAGAIN;
270 out:
271 	return ret;
272 }
273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
274 
275 static int
276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
277 {
278 	int ret;
279 	struct inode *inode = file_inode(file);
280 
281 	trace_nfs_fsync_enter(inode);
282 
283 	do {
284 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
285 		if (ret != 0)
286 			break;
287 		mutex_lock(&inode->i_mutex);
288 		ret = nfs_file_fsync_commit(file, start, end, datasync);
289 		mutex_unlock(&inode->i_mutex);
290 		/*
291 		 * If nfs_file_fsync_commit detected a server reboot, then
292 		 * resend all dirty pages that might have been covered by
293 		 * the NFS_CONTEXT_RESEND_WRITES flag
294 		 */
295 		start = 0;
296 		end = LLONG_MAX;
297 	} while (ret == -EAGAIN);
298 
299 	trace_nfs_fsync_exit(inode, ret);
300 	return ret;
301 }
302 
303 /*
304  * Decide whether a read/modify/write cycle may be more efficient
305  * then a modify/write/read cycle when writing to a page in the
306  * page cache.
307  *
308  * The modify/write/read cycle may occur if a page is read before
309  * being completely filled by the writer.  In this situation, the
310  * page must be completely written to stable storage on the server
311  * before it can be refilled by reading in the page from the server.
312  * This can lead to expensive, small, FILE_SYNC mode writes being
313  * done.
314  *
315  * It may be more efficient to read the page first if the file is
316  * open for reading in addition to writing, the page is not marked
317  * as Uptodate, it is not dirty or waiting to be committed,
318  * indicating that it was previously allocated and then modified,
319  * that there were valid bytes of data in that range of the file,
320  * and that the new data won't completely replace the old data in
321  * that range of the file.
322  */
323 static int nfs_want_read_modify_write(struct file *file, struct page *page,
324 			loff_t pos, unsigned len)
325 {
326 	unsigned int pglen = nfs_page_length(page);
327 	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
328 	unsigned int end = offset + len;
329 
330 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
331 	    !PageUptodate(page) &&		/* Uptodate? */
332 	    !PagePrivate(page) &&		/* i/o request already? */
333 	    pglen &&				/* valid bytes of file? */
334 	    (end < pglen || offset))		/* replace all valid bytes? */
335 		return 1;
336 	return 0;
337 }
338 
339 /*
340  * This does the "real" work of the write. We must allocate and lock the
341  * page to be sent back to the generic routine, which then copies the
342  * data from user space.
343  *
344  * If the writer ends up delaying the write, the writer needs to
345  * increment the page use counts until he is done with the page.
346  */
347 static int nfs_write_begin(struct file *file, struct address_space *mapping,
348 			loff_t pos, unsigned len, unsigned flags,
349 			struct page **pagep, void **fsdata)
350 {
351 	int ret;
352 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
353 	struct page *page;
354 	int once_thru = 0;
355 
356 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
357 		file, mapping->host->i_ino, len, (long long) pos);
358 
359 start:
360 	/*
361 	 * Prevent starvation issues if someone is doing a consistency
362 	 * sync-to-disk
363 	 */
364 	ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
365 				 nfs_wait_bit_killable, TASK_KILLABLE);
366 	if (ret)
367 		return ret;
368 
369 	page = grab_cache_page_write_begin(mapping, index, flags);
370 	if (!page)
371 		return -ENOMEM;
372 	*pagep = page;
373 
374 	ret = nfs_flush_incompatible(file, page);
375 	if (ret) {
376 		unlock_page(page);
377 		page_cache_release(page);
378 	} else if (!once_thru &&
379 		   nfs_want_read_modify_write(file, page, pos, len)) {
380 		once_thru = 1;
381 		ret = nfs_readpage(file, page);
382 		page_cache_release(page);
383 		if (!ret)
384 			goto start;
385 	}
386 	return ret;
387 }
388 
389 static int nfs_write_end(struct file *file, struct address_space *mapping,
390 			loff_t pos, unsigned len, unsigned copied,
391 			struct page *page, void *fsdata)
392 {
393 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
394 	struct nfs_open_context *ctx = nfs_file_open_context(file);
395 	int status;
396 
397 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
398 		file, mapping->host->i_ino, len, (long long) pos);
399 
400 	/*
401 	 * Zero any uninitialised parts of the page, and then mark the page
402 	 * as up to date if it turns out that we're extending the file.
403 	 */
404 	if (!PageUptodate(page)) {
405 		unsigned pglen = nfs_page_length(page);
406 		unsigned end = offset + len;
407 
408 		if (pglen == 0) {
409 			zero_user_segments(page, 0, offset,
410 					end, PAGE_CACHE_SIZE);
411 			SetPageUptodate(page);
412 		} else if (end >= pglen) {
413 			zero_user_segment(page, end, PAGE_CACHE_SIZE);
414 			if (offset == 0)
415 				SetPageUptodate(page);
416 		} else
417 			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
418 	}
419 
420 	status = nfs_updatepage(file, page, offset, copied);
421 
422 	unlock_page(page);
423 	page_cache_release(page);
424 
425 	if (status < 0)
426 		return status;
427 	NFS_I(mapping->host)->write_io += copied;
428 
429 	if (nfs_ctx_key_to_expire(ctx)) {
430 		status = nfs_wb_all(mapping->host);
431 		if (status < 0)
432 			return status;
433 	}
434 
435 	return copied;
436 }
437 
438 /*
439  * Partially or wholly invalidate a page
440  * - Release the private state associated with a page if undergoing complete
441  *   page invalidation
442  * - Called if either PG_private or PG_fscache is set on the page
443  * - Caller holds page lock
444  */
445 static void nfs_invalidate_page(struct page *page, unsigned int offset,
446 				unsigned int length)
447 {
448 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
449 		 page, offset, length);
450 
451 	if (offset != 0 || length < PAGE_CACHE_SIZE)
452 		return;
453 	/* Cancel any unstarted writes on this page */
454 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
455 
456 	nfs_fscache_invalidate_page(page, page->mapping->host);
457 }
458 
459 /*
460  * Attempt to release the private state associated with a page
461  * - Called if either PG_private or PG_fscache is set on the page
462  * - Caller holds page lock
463  * - Return true (may release page) or false (may not)
464  */
465 static int nfs_release_page(struct page *page, gfp_t gfp)
466 {
467 	struct address_space *mapping = page->mapping;
468 
469 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
470 
471 	/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
472 	 * doing this memory reclaim for a fs-related allocation.
473 	 */
474 	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
475 	    !(current->flags & PF_FSTRANS)) {
476 		int how = FLUSH_SYNC;
477 
478 		/* Don't let kswapd deadlock waiting for OOM RPC calls */
479 		if (current_is_kswapd())
480 			how = 0;
481 		nfs_commit_inode(mapping->host, how);
482 	}
483 	/* If PagePrivate() is set, then the page is not freeable */
484 	if (PagePrivate(page))
485 		return 0;
486 	return nfs_fscache_release_page(page, gfp);
487 }
488 
489 static void nfs_check_dirty_writeback(struct page *page,
490 				bool *dirty, bool *writeback)
491 {
492 	struct nfs_inode *nfsi;
493 	struct address_space *mapping = page_file_mapping(page);
494 
495 	if (!mapping || PageSwapCache(page))
496 		return;
497 
498 	/*
499 	 * Check if an unstable page is currently being committed and
500 	 * if so, have the VM treat it as if the page is under writeback
501 	 * so it will not block due to pages that will shortly be freeable.
502 	 */
503 	nfsi = NFS_I(mapping->host);
504 	if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
505 		*writeback = true;
506 		return;
507 	}
508 
509 	/*
510 	 * If PagePrivate() is set, then the page is not freeable and as the
511 	 * inode is not being committed, it's not going to be cleaned in the
512 	 * near future so treat it as dirty
513 	 */
514 	if (PagePrivate(page))
515 		*dirty = true;
516 }
517 
518 /*
519  * Attempt to clear the private state associated with a page when an error
520  * occurs that requires the cached contents of an inode to be written back or
521  * destroyed
522  * - Called if either PG_private or fscache is set on the page
523  * - Caller holds page lock
524  * - Return 0 if successful, -error otherwise
525  */
526 static int nfs_launder_page(struct page *page)
527 {
528 	struct inode *inode = page_file_mapping(page)->host;
529 	struct nfs_inode *nfsi = NFS_I(inode);
530 
531 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
532 		inode->i_ino, (long long)page_offset(page));
533 
534 	nfs_fscache_wait_on_page_write(nfsi, page);
535 	return nfs_wb_page(inode, page);
536 }
537 
538 #ifdef CONFIG_NFS_SWAP
539 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
540 						sector_t *span)
541 {
542 	*span = sis->pages;
543 	return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
544 }
545 
546 static void nfs_swap_deactivate(struct file *file)
547 {
548 	xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
549 }
550 #endif
551 
552 const struct address_space_operations nfs_file_aops = {
553 	.readpage = nfs_readpage,
554 	.readpages = nfs_readpages,
555 	.set_page_dirty = __set_page_dirty_nobuffers,
556 	.writepage = nfs_writepage,
557 	.writepages = nfs_writepages,
558 	.write_begin = nfs_write_begin,
559 	.write_end = nfs_write_end,
560 	.invalidatepage = nfs_invalidate_page,
561 	.releasepage = nfs_release_page,
562 	.direct_IO = nfs_direct_IO,
563 	.migratepage = nfs_migrate_page,
564 	.launder_page = nfs_launder_page,
565 	.is_dirty_writeback = nfs_check_dirty_writeback,
566 	.error_remove_page = generic_error_remove_page,
567 #ifdef CONFIG_NFS_SWAP
568 	.swap_activate = nfs_swap_activate,
569 	.swap_deactivate = nfs_swap_deactivate,
570 #endif
571 };
572 
573 /*
574  * Notification that a PTE pointing to an NFS page is about to be made
575  * writable, implying that someone is about to modify the page through a
576  * shared-writable mapping
577  */
578 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
579 {
580 	struct page *page = vmf->page;
581 	struct file *filp = vma->vm_file;
582 	struct inode *inode = file_inode(filp);
583 	unsigned pagelen;
584 	int ret = VM_FAULT_NOPAGE;
585 	struct address_space *mapping;
586 
587 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
588 		filp, filp->f_mapping->host->i_ino,
589 		(long long)page_offset(page));
590 
591 	/* make sure the cache has finished storing the page */
592 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
593 
594 	lock_page(page);
595 	mapping = page_file_mapping(page);
596 	if (mapping != inode->i_mapping)
597 		goto out_unlock;
598 
599 	wait_on_page_writeback(page);
600 
601 	pagelen = nfs_page_length(page);
602 	if (pagelen == 0)
603 		goto out_unlock;
604 
605 	ret = VM_FAULT_LOCKED;
606 	if (nfs_flush_incompatible(filp, page) == 0 &&
607 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
608 		goto out;
609 
610 	ret = VM_FAULT_SIGBUS;
611 out_unlock:
612 	unlock_page(page);
613 out:
614 	return ret;
615 }
616 
617 static const struct vm_operations_struct nfs_file_vm_ops = {
618 	.fault = filemap_fault,
619 	.map_pages = filemap_map_pages,
620 	.page_mkwrite = nfs_vm_page_mkwrite,
621 	.remap_pages = generic_file_remap_pages,
622 };
623 
624 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
625 {
626 	struct nfs_open_context *ctx;
627 
628 	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
629 		return 1;
630 	ctx = nfs_file_open_context(filp);
631 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
632 	    nfs_ctx_key_to_expire(ctx))
633 		return 1;
634 	return 0;
635 }
636 
637 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
638 {
639 	struct file *file = iocb->ki_filp;
640 	struct inode *inode = file_inode(file);
641 	unsigned long written = 0;
642 	ssize_t result;
643 	size_t count = iov_iter_count(from);
644 	loff_t pos = iocb->ki_pos;
645 
646 	result = nfs_key_timeout_notify(file, inode);
647 	if (result)
648 		return result;
649 
650 	if (file->f_flags & O_DIRECT)
651 		return nfs_file_direct_write(iocb, from, pos, true);
652 
653 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
654 		file, count, (long long) pos);
655 
656 	result = -EBUSY;
657 	if (IS_SWAPFILE(inode))
658 		goto out_swapfile;
659 	/*
660 	 * O_APPEND implies that we must revalidate the file length.
661 	 */
662 	if (file->f_flags & O_APPEND) {
663 		result = nfs_revalidate_file_size(inode, file);
664 		if (result)
665 			goto out;
666 	}
667 
668 	result = count;
669 	if (!count)
670 		goto out;
671 
672 	result = generic_file_write_iter(iocb, from);
673 	if (result > 0)
674 		written = result;
675 
676 	/* Return error values for O_DSYNC and IS_SYNC() */
677 	if (result >= 0 && nfs_need_sync_write(file, inode)) {
678 		int err = vfs_fsync(file, 0);
679 		if (err < 0)
680 			result = err;
681 	}
682 	if (result > 0)
683 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
684 out:
685 	return result;
686 
687 out_swapfile:
688 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
689 	goto out;
690 }
691 EXPORT_SYMBOL_GPL(nfs_file_write);
692 
693 static int
694 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
695 {
696 	struct inode *inode = filp->f_mapping->host;
697 	int status = 0;
698 	unsigned int saved_type = fl->fl_type;
699 
700 	/* Try local locking first */
701 	posix_test_lock(filp, fl);
702 	if (fl->fl_type != F_UNLCK) {
703 		/* found a conflict */
704 		goto out;
705 	}
706 	fl->fl_type = saved_type;
707 
708 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
709 		goto out_noconflict;
710 
711 	if (is_local)
712 		goto out_noconflict;
713 
714 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
715 out:
716 	return status;
717 out_noconflict:
718 	fl->fl_type = F_UNLCK;
719 	goto out;
720 }
721 
722 static int do_vfs_lock(struct file *file, struct file_lock *fl)
723 {
724 	int res = 0;
725 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
726 		case FL_POSIX:
727 			res = posix_lock_file_wait(file, fl);
728 			break;
729 		case FL_FLOCK:
730 			res = flock_lock_file_wait(file, fl);
731 			break;
732 		default:
733 			BUG();
734 	}
735 	return res;
736 }
737 
738 static int
739 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
740 {
741 	struct inode *inode = filp->f_mapping->host;
742 	struct nfs_lock_context *l_ctx;
743 	int status;
744 
745 	/*
746 	 * Flush all pending writes before doing anything
747 	 * with locks..
748 	 */
749 	nfs_sync_mapping(filp->f_mapping);
750 
751 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
752 	if (!IS_ERR(l_ctx)) {
753 		status = nfs_iocounter_wait(&l_ctx->io_count);
754 		nfs_put_lock_context(l_ctx);
755 		if (status < 0)
756 			return status;
757 	}
758 
759 	/* NOTE: special case
760 	 * 	If we're signalled while cleaning up locks on process exit, we
761 	 * 	still need to complete the unlock.
762 	 */
763 	/*
764 	 * Use local locking if mounted with "-onolock" or with appropriate
765 	 * "-olocal_lock="
766 	 */
767 	if (!is_local)
768 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
769 	else
770 		status = do_vfs_lock(filp, fl);
771 	return status;
772 }
773 
774 static int
775 is_time_granular(struct timespec *ts) {
776 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
777 }
778 
779 static int
780 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
781 {
782 	struct inode *inode = filp->f_mapping->host;
783 	int status;
784 
785 	/*
786 	 * Flush all pending writes before doing anything
787 	 * with locks..
788 	 */
789 	status = nfs_sync_mapping(filp->f_mapping);
790 	if (status != 0)
791 		goto out;
792 
793 	/*
794 	 * Use local locking if mounted with "-onolock" or with appropriate
795 	 * "-olocal_lock="
796 	 */
797 	if (!is_local)
798 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
799 	else
800 		status = do_vfs_lock(filp, fl);
801 	if (status < 0)
802 		goto out;
803 
804 	/*
805 	 * Revalidate the cache if the server has time stamps granular
806 	 * enough to detect subsecond changes.  Otherwise, clear the
807 	 * cache to prevent missing any changes.
808 	 *
809 	 * This makes locking act as a cache coherency point.
810 	 */
811 	nfs_sync_mapping(filp->f_mapping);
812 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
813 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
814 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
815 		else
816 			nfs_zap_caches(inode);
817 	}
818 out:
819 	return status;
820 }
821 
822 /*
823  * Lock a (portion of) a file
824  */
825 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
826 {
827 	struct inode *inode = filp->f_mapping->host;
828 	int ret = -ENOLCK;
829 	int is_local = 0;
830 
831 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
832 			filp, fl->fl_type, fl->fl_flags,
833 			(long long)fl->fl_start, (long long)fl->fl_end);
834 
835 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
836 
837 	/* No mandatory locks over NFS */
838 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
839 		goto out_err;
840 
841 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
842 		is_local = 1;
843 
844 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
845 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
846 		if (ret < 0)
847 			goto out_err;
848 	}
849 
850 	if (IS_GETLK(cmd))
851 		ret = do_getlk(filp, cmd, fl, is_local);
852 	else if (fl->fl_type == F_UNLCK)
853 		ret = do_unlk(filp, cmd, fl, is_local);
854 	else
855 		ret = do_setlk(filp, cmd, fl, is_local);
856 out_err:
857 	return ret;
858 }
859 EXPORT_SYMBOL_GPL(nfs_lock);
860 
861 /*
862  * Lock a (portion of) a file
863  */
864 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
865 {
866 	struct inode *inode = filp->f_mapping->host;
867 	int is_local = 0;
868 
869 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
870 			filp, fl->fl_type, fl->fl_flags);
871 
872 	if (!(fl->fl_flags & FL_FLOCK))
873 		return -ENOLCK;
874 
875 	/*
876 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
877 	 * any standard. In principle we might be able to support LOCK_MAND
878 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
879 	 * NFS code is not set up for it.
880 	 */
881 	if (fl->fl_type & LOCK_MAND)
882 		return -EINVAL;
883 
884 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
885 		is_local = 1;
886 
887 	/* We're simulating flock() locks using posix locks on the server */
888 	if (fl->fl_type == F_UNLCK)
889 		return do_unlk(filp, cmd, fl, is_local);
890 	return do_setlk(filp, cmd, fl, is_local);
891 }
892 EXPORT_SYMBOL_GPL(nfs_flock);
893 
894 /*
895  * There is no protocol support for leases, so we have no way to implement
896  * them correctly in the face of opens by other clients.
897  */
898 int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
899 {
900 	dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg);
901 	return -EINVAL;
902 }
903 EXPORT_SYMBOL_GPL(nfs_setlease);
904 
905 const struct file_operations nfs_file_operations = {
906 	.llseek		= nfs_file_llseek,
907 	.read		= new_sync_read,
908 	.write		= new_sync_write,
909 	.read_iter	= nfs_file_read,
910 	.write_iter	= nfs_file_write,
911 	.mmap		= nfs_file_mmap,
912 	.open		= nfs_file_open,
913 	.flush		= nfs_file_flush,
914 	.release	= nfs_file_release,
915 	.fsync		= nfs_file_fsync,
916 	.lock		= nfs_lock,
917 	.flock		= nfs_flock,
918 	.splice_read	= nfs_file_splice_read,
919 	.splice_write	= iter_file_splice_write,
920 	.check_flags	= nfs_check_flags,
921 	.setlease	= nfs_setlease,
922 };
923 EXPORT_SYMBOL_GPL(nfs_file_operations);
924