xref: /linux/fs/nfs/file.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	nfs_file_clear_open_context(filp);
86 	return 0;
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89 
90 /**
91  * nfs_revalidate_size - Revalidate the file size
92  * @inode - pointer to inode struct
93  * @file - pointer to struct file
94  *
95  * Revalidates the file length. This is basically a wrapper around
96  * nfs_revalidate_inode() that takes into account the fact that we may
97  * have cached writes (in which case we don't care about the server's
98  * idea of what the file length is), or O_DIRECT (in which case we
99  * shouldn't trust the cache).
100  */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 	struct nfs_server *server = NFS_SERVER(inode);
104 	struct nfs_inode *nfsi = NFS_I(inode);
105 	const unsigned long force_reval = NFS_INO_REVAL_PAGECACHE|NFS_INO_REVAL_FORCED;
106 	unsigned long cache_validity = nfsi->cache_validity;
107 
108 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ) &&
109 	    (cache_validity & force_reval) != force_reval)
110 		goto out_noreval;
111 
112 	if (filp->f_flags & O_DIRECT)
113 		goto force_reval;
114 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
115 		goto force_reval;
116 	if (nfs_attribute_timeout(inode))
117 		goto force_reval;
118 out_noreval:
119 	return 0;
120 force_reval:
121 	return __nfs_revalidate_inode(server, inode);
122 }
123 
124 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
125 {
126 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
127 			filp, offset, whence);
128 
129 	/*
130 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
131 	 * the cached file length
132 	 */
133 	if (whence != SEEK_SET && whence != SEEK_CUR) {
134 		struct inode *inode = filp->f_mapping->host;
135 
136 		int retval = nfs_revalidate_file_size(inode, filp);
137 		if (retval < 0)
138 			return (loff_t)retval;
139 	}
140 
141 	return generic_file_llseek(filp, offset, whence);
142 }
143 EXPORT_SYMBOL_GPL(nfs_file_llseek);
144 
145 /*
146  * Flush all dirty pages, and check for write errors.
147  */
148 static int
149 nfs_file_flush(struct file *file, fl_owner_t id)
150 {
151 	struct inode	*inode = file_inode(file);
152 
153 	dprintk("NFS: flush(%pD2)\n", file);
154 
155 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
156 	if ((file->f_mode & FMODE_WRITE) == 0)
157 		return 0;
158 
159 	/* Flush writes to the server and return any errors */
160 	return vfs_fsync(file, 0);
161 }
162 
163 ssize_t
164 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
165 {
166 	struct inode *inode = file_inode(iocb->ki_filp);
167 	ssize_t result;
168 
169 	if (iocb->ki_flags & IOCB_DIRECT)
170 		return nfs_file_direct_read(iocb, to);
171 
172 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
173 		iocb->ki_filp,
174 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
175 
176 	nfs_start_io_read(inode);
177 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
178 	if (!result) {
179 		result = generic_file_read_iter(iocb, to);
180 		if (result > 0)
181 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
182 	}
183 	nfs_end_io_read(inode);
184 	return result;
185 }
186 EXPORT_SYMBOL_GPL(nfs_file_read);
187 
188 int
189 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
190 {
191 	struct inode *inode = file_inode(file);
192 	int	status;
193 
194 	dprintk("NFS: mmap(%pD2)\n", file);
195 
196 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
197 	 *       so we call that before revalidating the mapping
198 	 */
199 	status = generic_file_mmap(file, vma);
200 	if (!status) {
201 		vma->vm_ops = &nfs_file_vm_ops;
202 		status = nfs_revalidate_mapping(inode, file->f_mapping);
203 	}
204 	return status;
205 }
206 EXPORT_SYMBOL_GPL(nfs_file_mmap);
207 
208 /*
209  * Flush any dirty pages for this process, and check for write errors.
210  * The return status from this call provides a reliable indication of
211  * whether any write errors occurred for this process.
212  *
213  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
214  * disk, but it retrieves and clears ctx->error after synching, despite
215  * the two being set at the same time in nfs_context_set_write_error().
216  * This is because the former is used to notify the _next_ call to
217  * nfs_file_write() that a write error occurred, and hence cause it to
218  * fall back to doing a synchronous write.
219  */
220 static int
221 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
222 {
223 	struct nfs_open_context *ctx = nfs_file_open_context(file);
224 	struct inode *inode = file_inode(file);
225 	int have_error, do_resend, status;
226 	int ret = 0;
227 
228 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
229 
230 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
231 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
232 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
233 	status = nfs_commit_inode(inode, FLUSH_SYNC);
234 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
235 	if (have_error) {
236 		ret = xchg(&ctx->error, 0);
237 		if (ret)
238 			goto out;
239 	}
240 	if (status < 0) {
241 		ret = status;
242 		goto out;
243 	}
244 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
245 	if (do_resend)
246 		ret = -EAGAIN;
247 out:
248 	return ret;
249 }
250 
251 int
252 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
253 {
254 	int ret;
255 	struct inode *inode = file_inode(file);
256 
257 	trace_nfs_fsync_enter(inode);
258 
259 	do {
260 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
261 		if (ret != 0)
262 			break;
263 		ret = nfs_file_fsync_commit(file, start, end, datasync);
264 		if (!ret)
265 			ret = pnfs_sync_inode(inode, !!datasync);
266 		/*
267 		 * If nfs_file_fsync_commit detected a server reboot, then
268 		 * resend all dirty pages that might have been covered by
269 		 * the NFS_CONTEXT_RESEND_WRITES flag
270 		 */
271 		start = 0;
272 		end = LLONG_MAX;
273 	} while (ret == -EAGAIN);
274 
275 	trace_nfs_fsync_exit(inode, ret);
276 	return ret;
277 }
278 EXPORT_SYMBOL_GPL(nfs_file_fsync);
279 
280 /*
281  * Decide whether a read/modify/write cycle may be more efficient
282  * then a modify/write/read cycle when writing to a page in the
283  * page cache.
284  *
285  * The modify/write/read cycle may occur if a page is read before
286  * being completely filled by the writer.  In this situation, the
287  * page must be completely written to stable storage on the server
288  * before it can be refilled by reading in the page from the server.
289  * This can lead to expensive, small, FILE_SYNC mode writes being
290  * done.
291  *
292  * It may be more efficient to read the page first if the file is
293  * open for reading in addition to writing, the page is not marked
294  * as Uptodate, it is not dirty or waiting to be committed,
295  * indicating that it was previously allocated and then modified,
296  * that there were valid bytes of data in that range of the file,
297  * and that the new data won't completely replace the old data in
298  * that range of the file.
299  */
300 static int nfs_want_read_modify_write(struct file *file, struct page *page,
301 			loff_t pos, unsigned len)
302 {
303 	unsigned int pglen = nfs_page_length(page);
304 	unsigned int offset = pos & (PAGE_SIZE - 1);
305 	unsigned int end = offset + len;
306 
307 	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
308 		if (!PageUptodate(page))
309 			return 1;
310 		return 0;
311 	}
312 
313 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
314 	    !PageUptodate(page) &&		/* Uptodate? */
315 	    !PagePrivate(page) &&		/* i/o request already? */
316 	    pglen &&				/* valid bytes of file? */
317 	    (end < pglen || offset))		/* replace all valid bytes? */
318 		return 1;
319 	return 0;
320 }
321 
322 /*
323  * This does the "real" work of the write. We must allocate and lock the
324  * page to be sent back to the generic routine, which then copies the
325  * data from user space.
326  *
327  * If the writer ends up delaying the write, the writer needs to
328  * increment the page use counts until he is done with the page.
329  */
330 static int nfs_write_begin(struct file *file, struct address_space *mapping,
331 			loff_t pos, unsigned len, unsigned flags,
332 			struct page **pagep, void **fsdata)
333 {
334 	int ret;
335 	pgoff_t index = pos >> PAGE_SHIFT;
336 	struct page *page;
337 	int once_thru = 0;
338 
339 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
340 		file, mapping->host->i_ino, len, (long long) pos);
341 
342 start:
343 	page = grab_cache_page_write_begin(mapping, index, flags);
344 	if (!page)
345 		return -ENOMEM;
346 	*pagep = page;
347 
348 	ret = nfs_flush_incompatible(file, page);
349 	if (ret) {
350 		unlock_page(page);
351 		put_page(page);
352 	} else if (!once_thru &&
353 		   nfs_want_read_modify_write(file, page, pos, len)) {
354 		once_thru = 1;
355 		ret = nfs_readpage(file, page);
356 		put_page(page);
357 		if (!ret)
358 			goto start;
359 	}
360 	return ret;
361 }
362 
363 static int nfs_write_end(struct file *file, struct address_space *mapping,
364 			loff_t pos, unsigned len, unsigned copied,
365 			struct page *page, void *fsdata)
366 {
367 	unsigned offset = pos & (PAGE_SIZE - 1);
368 	struct nfs_open_context *ctx = nfs_file_open_context(file);
369 	int status;
370 
371 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
372 		file, mapping->host->i_ino, len, (long long) pos);
373 
374 	/*
375 	 * Zero any uninitialised parts of the page, and then mark the page
376 	 * as up to date if it turns out that we're extending the file.
377 	 */
378 	if (!PageUptodate(page)) {
379 		unsigned pglen = nfs_page_length(page);
380 		unsigned end = offset + copied;
381 
382 		if (pglen == 0) {
383 			zero_user_segments(page, 0, offset,
384 					end, PAGE_SIZE);
385 			SetPageUptodate(page);
386 		} else if (end >= pglen) {
387 			zero_user_segment(page, end, PAGE_SIZE);
388 			if (offset == 0)
389 				SetPageUptodate(page);
390 		} else
391 			zero_user_segment(page, pglen, PAGE_SIZE);
392 	}
393 
394 	status = nfs_updatepage(file, page, offset, copied);
395 
396 	unlock_page(page);
397 	put_page(page);
398 
399 	if (status < 0)
400 		return status;
401 	NFS_I(mapping->host)->write_io += copied;
402 
403 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
404 		status = nfs_wb_all(mapping->host);
405 		if (status < 0)
406 			return status;
407 	}
408 
409 	return copied;
410 }
411 
412 /*
413  * Partially or wholly invalidate a page
414  * - Release the private state associated with a page if undergoing complete
415  *   page invalidation
416  * - Called if either PG_private or PG_fscache is set on the page
417  * - Caller holds page lock
418  */
419 static void nfs_invalidate_page(struct page *page, unsigned int offset,
420 				unsigned int length)
421 {
422 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
423 		 page, offset, length);
424 
425 	if (offset != 0 || length < PAGE_SIZE)
426 		return;
427 	/* Cancel any unstarted writes on this page */
428 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
429 
430 	nfs_fscache_invalidate_page(page, page->mapping->host);
431 }
432 
433 /*
434  * Attempt to release the private state associated with a page
435  * - Called if either PG_private or PG_fscache is set on the page
436  * - Caller holds page lock
437  * - Return true (may release page) or false (may not)
438  */
439 static int nfs_release_page(struct page *page, gfp_t gfp)
440 {
441 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
442 
443 	/* If PagePrivate() is set, then the page is not freeable */
444 	if (PagePrivate(page))
445 		return 0;
446 	return nfs_fscache_release_page(page, gfp);
447 }
448 
449 static void nfs_check_dirty_writeback(struct page *page,
450 				bool *dirty, bool *writeback)
451 {
452 	struct nfs_inode *nfsi;
453 	struct address_space *mapping = page_file_mapping(page);
454 
455 	if (!mapping || PageSwapCache(page))
456 		return;
457 
458 	/*
459 	 * Check if an unstable page is currently being committed and
460 	 * if so, have the VM treat it as if the page is under writeback
461 	 * so it will not block due to pages that will shortly be freeable.
462 	 */
463 	nfsi = NFS_I(mapping->host);
464 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
465 		*writeback = true;
466 		return;
467 	}
468 
469 	/*
470 	 * If PagePrivate() is set, then the page is not freeable and as the
471 	 * inode is not being committed, it's not going to be cleaned in the
472 	 * near future so treat it as dirty
473 	 */
474 	if (PagePrivate(page))
475 		*dirty = true;
476 }
477 
478 /*
479  * Attempt to clear the private state associated with a page when an error
480  * occurs that requires the cached contents of an inode to be written back or
481  * destroyed
482  * - Called if either PG_private or fscache is set on the page
483  * - Caller holds page lock
484  * - Return 0 if successful, -error otherwise
485  */
486 static int nfs_launder_page(struct page *page)
487 {
488 	struct inode *inode = page_file_mapping(page)->host;
489 	struct nfs_inode *nfsi = NFS_I(inode);
490 
491 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
492 		inode->i_ino, (long long)page_offset(page));
493 
494 	nfs_fscache_wait_on_page_write(nfsi, page);
495 	return nfs_wb_launder_page(inode, page);
496 }
497 
498 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
499 						sector_t *span)
500 {
501 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
502 
503 	*span = sis->pages;
504 
505 	return rpc_clnt_swap_activate(clnt);
506 }
507 
508 static void nfs_swap_deactivate(struct file *file)
509 {
510 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
511 
512 	rpc_clnt_swap_deactivate(clnt);
513 }
514 
515 const struct address_space_operations nfs_file_aops = {
516 	.readpage = nfs_readpage,
517 	.readpages = nfs_readpages,
518 	.set_page_dirty = __set_page_dirty_nobuffers,
519 	.writepage = nfs_writepage,
520 	.writepages = nfs_writepages,
521 	.write_begin = nfs_write_begin,
522 	.write_end = nfs_write_end,
523 	.invalidatepage = nfs_invalidate_page,
524 	.releasepage = nfs_release_page,
525 	.direct_IO = nfs_direct_IO,
526 #ifdef CONFIG_MIGRATION
527 	.migratepage = nfs_migrate_page,
528 #endif
529 	.launder_page = nfs_launder_page,
530 	.is_dirty_writeback = nfs_check_dirty_writeback,
531 	.error_remove_page = generic_error_remove_page,
532 	.swap_activate = nfs_swap_activate,
533 	.swap_deactivate = nfs_swap_deactivate,
534 };
535 
536 /*
537  * Notification that a PTE pointing to an NFS page is about to be made
538  * writable, implying that someone is about to modify the page through a
539  * shared-writable mapping
540  */
541 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
542 {
543 	struct page *page = vmf->page;
544 	struct file *filp = vma->vm_file;
545 	struct inode *inode = file_inode(filp);
546 	unsigned pagelen;
547 	int ret = VM_FAULT_NOPAGE;
548 	struct address_space *mapping;
549 
550 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
551 		filp, filp->f_mapping->host->i_ino,
552 		(long long)page_offset(page));
553 
554 	sb_start_pagefault(inode->i_sb);
555 
556 	/* make sure the cache has finished storing the page */
557 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
558 
559 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
560 			nfs_wait_bit_killable, TASK_KILLABLE);
561 
562 	lock_page(page);
563 	mapping = page_file_mapping(page);
564 	if (mapping != inode->i_mapping)
565 		goto out_unlock;
566 
567 	wait_on_page_writeback(page);
568 
569 	pagelen = nfs_page_length(page);
570 	if (pagelen == 0)
571 		goto out_unlock;
572 
573 	ret = VM_FAULT_LOCKED;
574 	if (nfs_flush_incompatible(filp, page) == 0 &&
575 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
576 		goto out;
577 
578 	ret = VM_FAULT_SIGBUS;
579 out_unlock:
580 	unlock_page(page);
581 out:
582 	sb_end_pagefault(inode->i_sb);
583 	return ret;
584 }
585 
586 static const struct vm_operations_struct nfs_file_vm_ops = {
587 	.fault = filemap_fault,
588 	.map_pages = filemap_map_pages,
589 	.page_mkwrite = nfs_vm_page_mkwrite,
590 };
591 
592 static int nfs_need_check_write(struct file *filp, struct inode *inode)
593 {
594 	struct nfs_open_context *ctx;
595 
596 	ctx = nfs_file_open_context(filp);
597 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
598 	    nfs_ctx_key_to_expire(ctx, inode))
599 		return 1;
600 	return 0;
601 }
602 
603 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
604 {
605 	struct file *file = iocb->ki_filp;
606 	struct inode *inode = file_inode(file);
607 	unsigned long written = 0;
608 	ssize_t result;
609 
610 	result = nfs_key_timeout_notify(file, inode);
611 	if (result)
612 		return result;
613 
614 	if (iocb->ki_flags & IOCB_DIRECT)
615 		return nfs_file_direct_write(iocb, from);
616 
617 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
618 		file, iov_iter_count(from), (long long) iocb->ki_pos);
619 
620 	if (IS_SWAPFILE(inode))
621 		goto out_swapfile;
622 	/*
623 	 * O_APPEND implies that we must revalidate the file length.
624 	 */
625 	if (iocb->ki_flags & IOCB_APPEND) {
626 		result = nfs_revalidate_file_size(inode, file);
627 		if (result)
628 			goto out;
629 	}
630 
631 	nfs_start_io_write(inode);
632 	result = generic_write_checks(iocb, from);
633 	if (result > 0) {
634 		current->backing_dev_info = inode_to_bdi(inode);
635 		result = generic_perform_write(file, from, iocb->ki_pos);
636 		current->backing_dev_info = NULL;
637 	}
638 	nfs_end_io_write(inode);
639 	if (result <= 0)
640 		goto out;
641 
642 	result = generic_write_sync(iocb, result);
643 	if (result < 0)
644 		goto out;
645 	written = result;
646 	iocb->ki_pos += written;
647 
648 	/* Return error values */
649 	if (nfs_need_check_write(file, inode)) {
650 		int err = vfs_fsync(file, 0);
651 		if (err < 0)
652 			result = err;
653 	}
654 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
655 out:
656 	return result;
657 
658 out_swapfile:
659 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
660 	return -EBUSY;
661 }
662 EXPORT_SYMBOL_GPL(nfs_file_write);
663 
664 static int
665 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
666 {
667 	struct inode *inode = filp->f_mapping->host;
668 	int status = 0;
669 	unsigned int saved_type = fl->fl_type;
670 
671 	/* Try local locking first */
672 	posix_test_lock(filp, fl);
673 	if (fl->fl_type != F_UNLCK) {
674 		/* found a conflict */
675 		goto out;
676 	}
677 	fl->fl_type = saved_type;
678 
679 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
680 		goto out_noconflict;
681 
682 	if (is_local)
683 		goto out_noconflict;
684 
685 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
686 out:
687 	return status;
688 out_noconflict:
689 	fl->fl_type = F_UNLCK;
690 	goto out;
691 }
692 
693 static int
694 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
695 {
696 	struct inode *inode = filp->f_mapping->host;
697 	struct nfs_lock_context *l_ctx;
698 	int status;
699 
700 	/*
701 	 * Flush all pending writes before doing anything
702 	 * with locks..
703 	 */
704 	vfs_fsync(filp, 0);
705 
706 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
707 	if (!IS_ERR(l_ctx)) {
708 		status = nfs_iocounter_wait(l_ctx);
709 		nfs_put_lock_context(l_ctx);
710 		if (status < 0)
711 			return status;
712 	}
713 
714 	/* NOTE: special case
715 	 * 	If we're signalled while cleaning up locks on process exit, we
716 	 * 	still need to complete the unlock.
717 	 */
718 	/*
719 	 * Use local locking if mounted with "-onolock" or with appropriate
720 	 * "-olocal_lock="
721 	 */
722 	if (!is_local)
723 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
724 	else
725 		status = locks_lock_file_wait(filp, fl);
726 	return status;
727 }
728 
729 static int
730 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
731 {
732 	struct inode *inode = filp->f_mapping->host;
733 	int status;
734 
735 	/*
736 	 * Flush all pending writes before doing anything
737 	 * with locks..
738 	 */
739 	status = nfs_sync_mapping(filp->f_mapping);
740 	if (status != 0)
741 		goto out;
742 
743 	/*
744 	 * Use local locking if mounted with "-onolock" or with appropriate
745 	 * "-olocal_lock="
746 	 */
747 	if (!is_local)
748 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
749 	else
750 		status = locks_lock_file_wait(filp, fl);
751 	if (status < 0)
752 		goto out;
753 
754 	/*
755 	 * Revalidate the cache if the server has time stamps granular
756 	 * enough to detect subsecond changes.  Otherwise, clear the
757 	 * cache to prevent missing any changes.
758 	 *
759 	 * This makes locking act as a cache coherency point.
760 	 */
761 	nfs_sync_mapping(filp->f_mapping);
762 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
763 		nfs_zap_mapping(inode, filp->f_mapping);
764 out:
765 	return status;
766 }
767 
768 /*
769  * Lock a (portion of) a file
770  */
771 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
772 {
773 	struct inode *inode = filp->f_mapping->host;
774 	int ret = -ENOLCK;
775 	int is_local = 0;
776 
777 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
778 			filp, fl->fl_type, fl->fl_flags,
779 			(long long)fl->fl_start, (long long)fl->fl_end);
780 
781 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
782 
783 	/* No mandatory locks over NFS */
784 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
785 		goto out_err;
786 
787 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
788 		is_local = 1;
789 
790 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
791 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
792 		if (ret < 0)
793 			goto out_err;
794 	}
795 
796 	if (IS_GETLK(cmd))
797 		ret = do_getlk(filp, cmd, fl, is_local);
798 	else if (fl->fl_type == F_UNLCK)
799 		ret = do_unlk(filp, cmd, fl, is_local);
800 	else
801 		ret = do_setlk(filp, cmd, fl, is_local);
802 out_err:
803 	return ret;
804 }
805 EXPORT_SYMBOL_GPL(nfs_lock);
806 
807 /*
808  * Lock a (portion of) a file
809  */
810 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
811 {
812 	struct inode *inode = filp->f_mapping->host;
813 	int is_local = 0;
814 
815 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
816 			filp, fl->fl_type, fl->fl_flags);
817 
818 	if (!(fl->fl_flags & FL_FLOCK))
819 		return -ENOLCK;
820 
821 	/*
822 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
823 	 * any standard. In principle we might be able to support LOCK_MAND
824 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
825 	 * NFS code is not set up for it.
826 	 */
827 	if (fl->fl_type & LOCK_MAND)
828 		return -EINVAL;
829 
830 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
831 		is_local = 1;
832 
833 	/* We're simulating flock() locks using posix locks on the server */
834 	if (fl->fl_type == F_UNLCK)
835 		return do_unlk(filp, cmd, fl, is_local);
836 	return do_setlk(filp, cmd, fl, is_local);
837 }
838 EXPORT_SYMBOL_GPL(nfs_flock);
839 
840 const struct file_operations nfs_file_operations = {
841 	.llseek		= nfs_file_llseek,
842 	.read_iter	= nfs_file_read,
843 	.write_iter	= nfs_file_write,
844 	.mmap		= nfs_file_mmap,
845 	.open		= nfs_file_open,
846 	.flush		= nfs_file_flush,
847 	.release	= nfs_file_release,
848 	.fsync		= nfs_file_fsync,
849 	.lock		= nfs_lock,
850 	.flock		= nfs_flock,
851 	.splice_read	= generic_file_splice_read,
852 	.splice_write	= iter_file_splice_write,
853 	.check_flags	= nfs_check_flags,
854 	.setlease	= simple_nosetlease,
855 };
856 EXPORT_SYMBOL_GPL(nfs_file_operations);
857