xref: /linux/fs/nfs/file.c (revision 293d5b43948309434568f4dcbb36cce4c3c51bd5)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	nfs_file_clear_open_context(filp);
86 	return 0;
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89 
90 /**
91  * nfs_revalidate_size - Revalidate the file size
92  * @inode - pointer to inode struct
93  * @file - pointer to struct file
94  *
95  * Revalidates the file length. This is basically a wrapper around
96  * nfs_revalidate_inode() that takes into account the fact that we may
97  * have cached writes (in which case we don't care about the server's
98  * idea of what the file length is), or O_DIRECT (in which case we
99  * shouldn't trust the cache).
100  */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 	struct nfs_server *server = NFS_SERVER(inode);
104 	struct nfs_inode *nfsi = NFS_I(inode);
105 
106 	if (nfs_have_delegated_attributes(inode))
107 		goto out_noreval;
108 
109 	if (filp->f_flags & O_DIRECT)
110 		goto force_reval;
111 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112 		goto force_reval;
113 	if (nfs_attribute_timeout(inode))
114 		goto force_reval;
115 out_noreval:
116 	return 0;
117 force_reval:
118 	return __nfs_revalidate_inode(server, inode);
119 }
120 
121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122 {
123 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124 			filp, offset, whence);
125 
126 	/*
127 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128 	 * the cached file length
129 	 */
130 	if (whence != SEEK_SET && whence != SEEK_CUR) {
131 		struct inode *inode = filp->f_mapping->host;
132 
133 		int retval = nfs_revalidate_file_size(inode, filp);
134 		if (retval < 0)
135 			return (loff_t)retval;
136 	}
137 
138 	return generic_file_llseek(filp, offset, whence);
139 }
140 EXPORT_SYMBOL_GPL(nfs_file_llseek);
141 
142 /*
143  * Flush all dirty pages, and check for write errors.
144  */
145 static int
146 nfs_file_flush(struct file *file, fl_owner_t id)
147 {
148 	struct inode	*inode = file_inode(file);
149 
150 	dprintk("NFS: flush(%pD2)\n", file);
151 
152 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
153 	if ((file->f_mode & FMODE_WRITE) == 0)
154 		return 0;
155 
156 	/* Flush writes to the server and return any errors */
157 	return vfs_fsync(file, 0);
158 }
159 
160 ssize_t
161 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
162 {
163 	struct inode *inode = file_inode(iocb->ki_filp);
164 	ssize_t result;
165 
166 	if (iocb->ki_flags & IOCB_DIRECT)
167 		return nfs_file_direct_read(iocb, to);
168 
169 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
170 		iocb->ki_filp,
171 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
172 
173 	nfs_start_io_read(inode);
174 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
175 	if (!result) {
176 		result = generic_file_read_iter(iocb, to);
177 		if (result > 0)
178 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
179 	}
180 	nfs_end_io_read(inode);
181 	return result;
182 }
183 EXPORT_SYMBOL_GPL(nfs_file_read);
184 
185 ssize_t
186 nfs_file_splice_read(struct file *filp, loff_t *ppos,
187 		     struct pipe_inode_info *pipe, size_t count,
188 		     unsigned int flags)
189 {
190 	struct inode *inode = file_inode(filp);
191 	ssize_t res;
192 
193 	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
194 		filp, (unsigned long) count, (unsigned long long) *ppos);
195 
196 	nfs_start_io_read(inode);
197 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
198 	if (!res) {
199 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
200 		if (res > 0)
201 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
202 	}
203 	nfs_end_io_read(inode);
204 	return res;
205 }
206 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
207 
208 int
209 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
210 {
211 	struct inode *inode = file_inode(file);
212 	int	status;
213 
214 	dprintk("NFS: mmap(%pD2)\n", file);
215 
216 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
217 	 *       so we call that before revalidating the mapping
218 	 */
219 	status = generic_file_mmap(file, vma);
220 	if (!status) {
221 		vma->vm_ops = &nfs_file_vm_ops;
222 		status = nfs_revalidate_mapping(inode, file->f_mapping);
223 	}
224 	return status;
225 }
226 EXPORT_SYMBOL_GPL(nfs_file_mmap);
227 
228 /*
229  * Flush any dirty pages for this process, and check for write errors.
230  * The return status from this call provides a reliable indication of
231  * whether any write errors occurred for this process.
232  *
233  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
234  * disk, but it retrieves and clears ctx->error after synching, despite
235  * the two being set at the same time in nfs_context_set_write_error().
236  * This is because the former is used to notify the _next_ call to
237  * nfs_file_write() that a write error occurred, and hence cause it to
238  * fall back to doing a synchronous write.
239  */
240 static int
241 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
242 {
243 	struct nfs_open_context *ctx = nfs_file_open_context(file);
244 	struct inode *inode = file_inode(file);
245 	int have_error, do_resend, status;
246 	int ret = 0;
247 
248 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
249 
250 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
251 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
252 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
253 	status = nfs_commit_inode(inode, FLUSH_SYNC);
254 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
255 	if (have_error) {
256 		ret = xchg(&ctx->error, 0);
257 		if (ret)
258 			goto out;
259 	}
260 	if (status < 0) {
261 		ret = status;
262 		goto out;
263 	}
264 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
265 	if (do_resend)
266 		ret = -EAGAIN;
267 out:
268 	return ret;
269 }
270 
271 int
272 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
273 {
274 	int ret;
275 	struct inode *inode = file_inode(file);
276 
277 	trace_nfs_fsync_enter(inode);
278 
279 	do {
280 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
281 		if (ret != 0)
282 			break;
283 		ret = nfs_file_fsync_commit(file, start, end, datasync);
284 		if (!ret)
285 			ret = pnfs_sync_inode(inode, !!datasync);
286 		/*
287 		 * If nfs_file_fsync_commit detected a server reboot, then
288 		 * resend all dirty pages that might have been covered by
289 		 * the NFS_CONTEXT_RESEND_WRITES flag
290 		 */
291 		start = 0;
292 		end = LLONG_MAX;
293 	} while (ret == -EAGAIN);
294 
295 	trace_nfs_fsync_exit(inode, ret);
296 	return ret;
297 }
298 EXPORT_SYMBOL_GPL(nfs_file_fsync);
299 
300 /*
301  * Decide whether a read/modify/write cycle may be more efficient
302  * then a modify/write/read cycle when writing to a page in the
303  * page cache.
304  *
305  * The modify/write/read cycle may occur if a page is read before
306  * being completely filled by the writer.  In this situation, the
307  * page must be completely written to stable storage on the server
308  * before it can be refilled by reading in the page from the server.
309  * This can lead to expensive, small, FILE_SYNC mode writes being
310  * done.
311  *
312  * It may be more efficient to read the page first if the file is
313  * open for reading in addition to writing, the page is not marked
314  * as Uptodate, it is not dirty or waiting to be committed,
315  * indicating that it was previously allocated and then modified,
316  * that there were valid bytes of data in that range of the file,
317  * and that the new data won't completely replace the old data in
318  * that range of the file.
319  */
320 static int nfs_want_read_modify_write(struct file *file, struct page *page,
321 			loff_t pos, unsigned len)
322 {
323 	unsigned int pglen = nfs_page_length(page);
324 	unsigned int offset = pos & (PAGE_SIZE - 1);
325 	unsigned int end = offset + len;
326 
327 	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
328 		if (!PageUptodate(page))
329 			return 1;
330 		return 0;
331 	}
332 
333 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
334 	    !PageUptodate(page) &&		/* Uptodate? */
335 	    !PagePrivate(page) &&		/* i/o request already? */
336 	    pglen &&				/* valid bytes of file? */
337 	    (end < pglen || offset))		/* replace all valid bytes? */
338 		return 1;
339 	return 0;
340 }
341 
342 /*
343  * This does the "real" work of the write. We must allocate and lock the
344  * page to be sent back to the generic routine, which then copies the
345  * data from user space.
346  *
347  * If the writer ends up delaying the write, the writer needs to
348  * increment the page use counts until he is done with the page.
349  */
350 static int nfs_write_begin(struct file *file, struct address_space *mapping,
351 			loff_t pos, unsigned len, unsigned flags,
352 			struct page **pagep, void **fsdata)
353 {
354 	int ret;
355 	pgoff_t index = pos >> PAGE_SHIFT;
356 	struct page *page;
357 	int once_thru = 0;
358 
359 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
360 		file, mapping->host->i_ino, len, (long long) pos);
361 
362 start:
363 	page = grab_cache_page_write_begin(mapping, index, flags);
364 	if (!page)
365 		return -ENOMEM;
366 	*pagep = page;
367 
368 	ret = nfs_flush_incompatible(file, page);
369 	if (ret) {
370 		unlock_page(page);
371 		put_page(page);
372 	} else if (!once_thru &&
373 		   nfs_want_read_modify_write(file, page, pos, len)) {
374 		once_thru = 1;
375 		ret = nfs_readpage(file, page);
376 		put_page(page);
377 		if (!ret)
378 			goto start;
379 	}
380 	return ret;
381 }
382 
383 static int nfs_write_end(struct file *file, struct address_space *mapping,
384 			loff_t pos, unsigned len, unsigned copied,
385 			struct page *page, void *fsdata)
386 {
387 	unsigned offset = pos & (PAGE_SIZE - 1);
388 	struct nfs_open_context *ctx = nfs_file_open_context(file);
389 	int status;
390 
391 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
392 		file, mapping->host->i_ino, len, (long long) pos);
393 
394 	/*
395 	 * Zero any uninitialised parts of the page, and then mark the page
396 	 * as up to date if it turns out that we're extending the file.
397 	 */
398 	if (!PageUptodate(page)) {
399 		unsigned pglen = nfs_page_length(page);
400 		unsigned end = offset + len;
401 
402 		if (pglen == 0) {
403 			zero_user_segments(page, 0, offset,
404 					end, PAGE_SIZE);
405 			SetPageUptodate(page);
406 		} else if (end >= pglen) {
407 			zero_user_segment(page, end, PAGE_SIZE);
408 			if (offset == 0)
409 				SetPageUptodate(page);
410 		} else
411 			zero_user_segment(page, pglen, PAGE_SIZE);
412 	}
413 
414 	status = nfs_updatepage(file, page, offset, copied);
415 
416 	unlock_page(page);
417 	put_page(page);
418 
419 	if (status < 0)
420 		return status;
421 	NFS_I(mapping->host)->write_io += copied;
422 
423 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
424 		status = nfs_wb_all(mapping->host);
425 		if (status < 0)
426 			return status;
427 	}
428 
429 	return copied;
430 }
431 
432 /*
433  * Partially or wholly invalidate a page
434  * - Release the private state associated with a page if undergoing complete
435  *   page invalidation
436  * - Called if either PG_private or PG_fscache is set on the page
437  * - Caller holds page lock
438  */
439 static void nfs_invalidate_page(struct page *page, unsigned int offset,
440 				unsigned int length)
441 {
442 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
443 		 page, offset, length);
444 
445 	if (offset != 0 || length < PAGE_SIZE)
446 		return;
447 	/* Cancel any unstarted writes on this page */
448 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
449 
450 	nfs_fscache_invalidate_page(page, page->mapping->host);
451 }
452 
453 /*
454  * Attempt to release the private state associated with a page
455  * - Called if either PG_private or PG_fscache is set on the page
456  * - Caller holds page lock
457  * - Return true (may release page) or false (may not)
458  */
459 static int nfs_release_page(struct page *page, gfp_t gfp)
460 {
461 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
462 
463 	/* If PagePrivate() is set, then the page is not freeable */
464 	if (PagePrivate(page))
465 		return 0;
466 	return nfs_fscache_release_page(page, gfp);
467 }
468 
469 static void nfs_check_dirty_writeback(struct page *page,
470 				bool *dirty, bool *writeback)
471 {
472 	struct nfs_inode *nfsi;
473 	struct address_space *mapping = page_file_mapping(page);
474 
475 	if (!mapping || PageSwapCache(page))
476 		return;
477 
478 	/*
479 	 * Check if an unstable page is currently being committed and
480 	 * if so, have the VM treat it as if the page is under writeback
481 	 * so it will not block due to pages that will shortly be freeable.
482 	 */
483 	nfsi = NFS_I(mapping->host);
484 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
485 		*writeback = true;
486 		return;
487 	}
488 
489 	/*
490 	 * If PagePrivate() is set, then the page is not freeable and as the
491 	 * inode is not being committed, it's not going to be cleaned in the
492 	 * near future so treat it as dirty
493 	 */
494 	if (PagePrivate(page))
495 		*dirty = true;
496 }
497 
498 /*
499  * Attempt to clear the private state associated with a page when an error
500  * occurs that requires the cached contents of an inode to be written back or
501  * destroyed
502  * - Called if either PG_private or fscache is set on the page
503  * - Caller holds page lock
504  * - Return 0 if successful, -error otherwise
505  */
506 static int nfs_launder_page(struct page *page)
507 {
508 	struct inode *inode = page_file_mapping(page)->host;
509 	struct nfs_inode *nfsi = NFS_I(inode);
510 
511 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
512 		inode->i_ino, (long long)page_offset(page));
513 
514 	nfs_fscache_wait_on_page_write(nfsi, page);
515 	return nfs_wb_launder_page(inode, page);
516 }
517 
518 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
519 						sector_t *span)
520 {
521 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
522 
523 	*span = sis->pages;
524 
525 	return rpc_clnt_swap_activate(clnt);
526 }
527 
528 static void nfs_swap_deactivate(struct file *file)
529 {
530 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
531 
532 	rpc_clnt_swap_deactivate(clnt);
533 }
534 
535 const struct address_space_operations nfs_file_aops = {
536 	.readpage = nfs_readpage,
537 	.readpages = nfs_readpages,
538 	.set_page_dirty = __set_page_dirty_nobuffers,
539 	.writepage = nfs_writepage,
540 	.writepages = nfs_writepages,
541 	.write_begin = nfs_write_begin,
542 	.write_end = nfs_write_end,
543 	.invalidatepage = nfs_invalidate_page,
544 	.releasepage = nfs_release_page,
545 	.direct_IO = nfs_direct_IO,
546 	.migratepage = nfs_migrate_page,
547 	.launder_page = nfs_launder_page,
548 	.is_dirty_writeback = nfs_check_dirty_writeback,
549 	.error_remove_page = generic_error_remove_page,
550 	.swap_activate = nfs_swap_activate,
551 	.swap_deactivate = nfs_swap_deactivate,
552 };
553 
554 /*
555  * Notification that a PTE pointing to an NFS page is about to be made
556  * writable, implying that someone is about to modify the page through a
557  * shared-writable mapping
558  */
559 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
560 {
561 	struct page *page = vmf->page;
562 	struct file *filp = vma->vm_file;
563 	struct inode *inode = file_inode(filp);
564 	unsigned pagelen;
565 	int ret = VM_FAULT_NOPAGE;
566 	struct address_space *mapping;
567 
568 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
569 		filp, filp->f_mapping->host->i_ino,
570 		(long long)page_offset(page));
571 
572 	sb_start_pagefault(inode->i_sb);
573 
574 	/* make sure the cache has finished storing the page */
575 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
576 
577 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
578 			nfs_wait_bit_killable, TASK_KILLABLE);
579 
580 	lock_page(page);
581 	mapping = page_file_mapping(page);
582 	if (mapping != inode->i_mapping)
583 		goto out_unlock;
584 
585 	wait_on_page_writeback(page);
586 
587 	pagelen = nfs_page_length(page);
588 	if (pagelen == 0)
589 		goto out_unlock;
590 
591 	ret = VM_FAULT_LOCKED;
592 	if (nfs_flush_incompatible(filp, page) == 0 &&
593 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
594 		goto out;
595 
596 	ret = VM_FAULT_SIGBUS;
597 out_unlock:
598 	unlock_page(page);
599 out:
600 	sb_end_pagefault(inode->i_sb);
601 	return ret;
602 }
603 
604 static const struct vm_operations_struct nfs_file_vm_ops = {
605 	.fault = filemap_fault,
606 	.map_pages = filemap_map_pages,
607 	.page_mkwrite = nfs_vm_page_mkwrite,
608 };
609 
610 static int nfs_need_check_write(struct file *filp, struct inode *inode)
611 {
612 	struct nfs_open_context *ctx;
613 
614 	ctx = nfs_file_open_context(filp);
615 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
616 	    nfs_ctx_key_to_expire(ctx, inode))
617 		return 1;
618 	return 0;
619 }
620 
621 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
622 {
623 	struct file *file = iocb->ki_filp;
624 	struct inode *inode = file_inode(file);
625 	unsigned long written = 0;
626 	ssize_t result;
627 
628 	result = nfs_key_timeout_notify(file, inode);
629 	if (result)
630 		return result;
631 
632 	if (iocb->ki_flags & IOCB_DIRECT)
633 		return nfs_file_direct_write(iocb, from);
634 
635 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
636 		file, iov_iter_count(from), (long long) iocb->ki_pos);
637 
638 	if (IS_SWAPFILE(inode))
639 		goto out_swapfile;
640 	/*
641 	 * O_APPEND implies that we must revalidate the file length.
642 	 */
643 	if (iocb->ki_flags & IOCB_APPEND) {
644 		result = nfs_revalidate_file_size(inode, file);
645 		if (result)
646 			goto out;
647 	}
648 
649 	nfs_start_io_write(inode);
650 	result = generic_write_checks(iocb, from);
651 	if (result > 0) {
652 		current->backing_dev_info = inode_to_bdi(inode);
653 		result = generic_perform_write(file, from, iocb->ki_pos);
654 		current->backing_dev_info = NULL;
655 	}
656 	nfs_end_io_write(inode);
657 	if (result <= 0)
658 		goto out;
659 
660 	written = generic_write_sync(iocb, result);
661 	iocb->ki_pos += written;
662 
663 	/* Return error values */
664 	if (nfs_need_check_write(file, inode)) {
665 		int err = vfs_fsync(file, 0);
666 		if (err < 0)
667 			result = err;
668 	}
669 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
670 out:
671 	return result;
672 
673 out_swapfile:
674 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
675 	return -EBUSY;
676 }
677 EXPORT_SYMBOL_GPL(nfs_file_write);
678 
679 static int
680 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
681 {
682 	struct inode *inode = filp->f_mapping->host;
683 	int status = 0;
684 	unsigned int saved_type = fl->fl_type;
685 
686 	/* Try local locking first */
687 	posix_test_lock(filp, fl);
688 	if (fl->fl_type != F_UNLCK) {
689 		/* found a conflict */
690 		goto out;
691 	}
692 	fl->fl_type = saved_type;
693 
694 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
695 		goto out_noconflict;
696 
697 	if (is_local)
698 		goto out_noconflict;
699 
700 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
701 out:
702 	return status;
703 out_noconflict:
704 	fl->fl_type = F_UNLCK;
705 	goto out;
706 }
707 
708 static int do_vfs_lock(struct file *file, struct file_lock *fl)
709 {
710 	return locks_lock_file_wait(file, fl);
711 }
712 
713 static int
714 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
715 {
716 	struct inode *inode = filp->f_mapping->host;
717 	struct nfs_lock_context *l_ctx;
718 	int status;
719 
720 	/*
721 	 * Flush all pending writes before doing anything
722 	 * with locks..
723 	 */
724 	vfs_fsync(filp, 0);
725 
726 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
727 	if (!IS_ERR(l_ctx)) {
728 		status = nfs_iocounter_wait(l_ctx);
729 		nfs_put_lock_context(l_ctx);
730 		if (status < 0)
731 			return status;
732 	}
733 
734 	/* NOTE: special case
735 	 * 	If we're signalled while cleaning up locks on process exit, we
736 	 * 	still need to complete the unlock.
737 	 */
738 	/*
739 	 * Use local locking if mounted with "-onolock" or with appropriate
740 	 * "-olocal_lock="
741 	 */
742 	if (!is_local)
743 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
744 	else
745 		status = do_vfs_lock(filp, fl);
746 	return status;
747 }
748 
749 static int
750 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
751 {
752 	struct inode *inode = filp->f_mapping->host;
753 	int status;
754 
755 	/*
756 	 * Flush all pending writes before doing anything
757 	 * with locks..
758 	 */
759 	status = nfs_sync_mapping(filp->f_mapping);
760 	if (status != 0)
761 		goto out;
762 
763 	/*
764 	 * Use local locking if mounted with "-onolock" or with appropriate
765 	 * "-olocal_lock="
766 	 */
767 	if (!is_local)
768 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
769 	else
770 		status = do_vfs_lock(filp, fl);
771 	if (status < 0)
772 		goto out;
773 
774 	/*
775 	 * Revalidate the cache if the server has time stamps granular
776 	 * enough to detect subsecond changes.  Otherwise, clear the
777 	 * cache to prevent missing any changes.
778 	 *
779 	 * This makes locking act as a cache coherency point.
780 	 */
781 	nfs_sync_mapping(filp->f_mapping);
782 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
783 		nfs_zap_mapping(inode, filp->f_mapping);
784 out:
785 	return status;
786 }
787 
788 /*
789  * Lock a (portion of) a file
790  */
791 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
792 {
793 	struct inode *inode = filp->f_mapping->host;
794 	int ret = -ENOLCK;
795 	int is_local = 0;
796 
797 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
798 			filp, fl->fl_type, fl->fl_flags,
799 			(long long)fl->fl_start, (long long)fl->fl_end);
800 
801 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
802 
803 	/* No mandatory locks over NFS */
804 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
805 		goto out_err;
806 
807 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
808 		is_local = 1;
809 
810 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
811 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
812 		if (ret < 0)
813 			goto out_err;
814 	}
815 
816 	if (IS_GETLK(cmd))
817 		ret = do_getlk(filp, cmd, fl, is_local);
818 	else if (fl->fl_type == F_UNLCK)
819 		ret = do_unlk(filp, cmd, fl, is_local);
820 	else
821 		ret = do_setlk(filp, cmd, fl, is_local);
822 out_err:
823 	return ret;
824 }
825 EXPORT_SYMBOL_GPL(nfs_lock);
826 
827 /*
828  * Lock a (portion of) a file
829  */
830 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
831 {
832 	struct inode *inode = filp->f_mapping->host;
833 	int is_local = 0;
834 
835 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
836 			filp, fl->fl_type, fl->fl_flags);
837 
838 	if (!(fl->fl_flags & FL_FLOCK))
839 		return -ENOLCK;
840 
841 	/*
842 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
843 	 * any standard. In principle we might be able to support LOCK_MAND
844 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
845 	 * NFS code is not set up for it.
846 	 */
847 	if (fl->fl_type & LOCK_MAND)
848 		return -EINVAL;
849 
850 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
851 		is_local = 1;
852 
853 	/* We're simulating flock() locks using posix locks on the server */
854 	if (fl->fl_type == F_UNLCK)
855 		return do_unlk(filp, cmd, fl, is_local);
856 	return do_setlk(filp, cmd, fl, is_local);
857 }
858 EXPORT_SYMBOL_GPL(nfs_flock);
859 
860 const struct file_operations nfs_file_operations = {
861 	.llseek		= nfs_file_llseek,
862 	.read_iter	= nfs_file_read,
863 	.write_iter	= nfs_file_write,
864 	.mmap		= nfs_file_mmap,
865 	.open		= nfs_file_open,
866 	.flush		= nfs_file_flush,
867 	.release	= nfs_file_release,
868 	.fsync		= nfs_file_fsync,
869 	.lock		= nfs_lock,
870 	.flock		= nfs_flock,
871 	.splice_read	= nfs_file_splice_read,
872 	.splice_write	= iter_file_splice_write,
873 	.check_flags	= nfs_check_flags,
874 	.setlease	= simple_nosetlease,
875 };
876 EXPORT_SYMBOL_GPL(nfs_file_operations);
877