1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/gfp.h> 30 #include <linux/swap.h> 31 32 #include <asm/uaccess.h> 33 34 #include "delegation.h" 35 #include "internal.h" 36 #include "iostat.h" 37 #include "fscache.h" 38 #include "pnfs.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 nfs_file_clear_open_context(filp); 86 return 0; 87 } 88 EXPORT_SYMBOL_GPL(nfs_file_release); 89 90 /** 91 * nfs_revalidate_size - Revalidate the file size 92 * @inode - pointer to inode struct 93 * @file - pointer to struct file 94 * 95 * Revalidates the file length. This is basically a wrapper around 96 * nfs_revalidate_inode() that takes into account the fact that we may 97 * have cached writes (in which case we don't care about the server's 98 * idea of what the file length is), or O_DIRECT (in which case we 99 * shouldn't trust the cache). 100 */ 101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 102 { 103 struct nfs_server *server = NFS_SERVER(inode); 104 struct nfs_inode *nfsi = NFS_I(inode); 105 106 if (nfs_have_delegated_attributes(inode)) 107 goto out_noreval; 108 109 if (filp->f_flags & O_DIRECT) 110 goto force_reval; 111 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 112 goto force_reval; 113 if (nfs_attribute_timeout(inode)) 114 goto force_reval; 115 out_noreval: 116 return 0; 117 force_reval: 118 return __nfs_revalidate_inode(server, inode); 119 } 120 121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 122 { 123 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 124 filp, offset, whence); 125 126 /* 127 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 128 * the cached file length 129 */ 130 if (whence != SEEK_SET && whence != SEEK_CUR) { 131 struct inode *inode = filp->f_mapping->host; 132 133 int retval = nfs_revalidate_file_size(inode, filp); 134 if (retval < 0) 135 return (loff_t)retval; 136 } 137 138 return generic_file_llseek(filp, offset, whence); 139 } 140 EXPORT_SYMBOL_GPL(nfs_file_llseek); 141 142 /* 143 * Flush all dirty pages, and check for write errors. 144 */ 145 static int 146 nfs_file_flush(struct file *file, fl_owner_t id) 147 { 148 struct inode *inode = file_inode(file); 149 150 dprintk("NFS: flush(%pD2)\n", file); 151 152 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 153 if ((file->f_mode & FMODE_WRITE) == 0) 154 return 0; 155 156 /* Flush writes to the server and return any errors */ 157 return vfs_fsync(file, 0); 158 } 159 160 ssize_t 161 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 162 { 163 struct inode *inode = file_inode(iocb->ki_filp); 164 ssize_t result; 165 166 if (iocb->ki_flags & IOCB_DIRECT) 167 return nfs_file_direct_read(iocb, to); 168 169 dprintk("NFS: read(%pD2, %zu@%lu)\n", 170 iocb->ki_filp, 171 iov_iter_count(to), (unsigned long) iocb->ki_pos); 172 173 nfs_start_io_read(inode); 174 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 175 if (!result) { 176 result = generic_file_read_iter(iocb, to); 177 if (result > 0) 178 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 179 } 180 nfs_end_io_read(inode); 181 return result; 182 } 183 EXPORT_SYMBOL_GPL(nfs_file_read); 184 185 ssize_t 186 nfs_file_splice_read(struct file *filp, loff_t *ppos, 187 struct pipe_inode_info *pipe, size_t count, 188 unsigned int flags) 189 { 190 struct inode *inode = file_inode(filp); 191 ssize_t res; 192 193 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n", 194 filp, (unsigned long) count, (unsigned long long) *ppos); 195 196 nfs_start_io_read(inode); 197 res = nfs_revalidate_mapping(inode, filp->f_mapping); 198 if (!res) { 199 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 200 if (res > 0) 201 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 202 } 203 nfs_end_io_read(inode); 204 return res; 205 } 206 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 207 208 int 209 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 210 { 211 struct inode *inode = file_inode(file); 212 int status; 213 214 dprintk("NFS: mmap(%pD2)\n", file); 215 216 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 217 * so we call that before revalidating the mapping 218 */ 219 status = generic_file_mmap(file, vma); 220 if (!status) { 221 vma->vm_ops = &nfs_file_vm_ops; 222 status = nfs_revalidate_mapping(inode, file->f_mapping); 223 } 224 return status; 225 } 226 EXPORT_SYMBOL_GPL(nfs_file_mmap); 227 228 /* 229 * Flush any dirty pages for this process, and check for write errors. 230 * The return status from this call provides a reliable indication of 231 * whether any write errors occurred for this process. 232 * 233 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 234 * disk, but it retrieves and clears ctx->error after synching, despite 235 * the two being set at the same time in nfs_context_set_write_error(). 236 * This is because the former is used to notify the _next_ call to 237 * nfs_file_write() that a write error occurred, and hence cause it to 238 * fall back to doing a synchronous write. 239 */ 240 static int 241 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 242 { 243 struct nfs_open_context *ctx = nfs_file_open_context(file); 244 struct inode *inode = file_inode(file); 245 int have_error, do_resend, status; 246 int ret = 0; 247 248 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 249 250 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 251 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 252 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 253 status = nfs_commit_inode(inode, FLUSH_SYNC); 254 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 255 if (have_error) { 256 ret = xchg(&ctx->error, 0); 257 if (ret) 258 goto out; 259 } 260 if (status < 0) { 261 ret = status; 262 goto out; 263 } 264 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 265 if (do_resend) 266 ret = -EAGAIN; 267 out: 268 return ret; 269 } 270 271 int 272 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 273 { 274 int ret; 275 struct inode *inode = file_inode(file); 276 277 trace_nfs_fsync_enter(inode); 278 279 do { 280 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 281 if (ret != 0) 282 break; 283 ret = nfs_file_fsync_commit(file, start, end, datasync); 284 if (!ret) 285 ret = pnfs_sync_inode(inode, !!datasync); 286 /* 287 * If nfs_file_fsync_commit detected a server reboot, then 288 * resend all dirty pages that might have been covered by 289 * the NFS_CONTEXT_RESEND_WRITES flag 290 */ 291 start = 0; 292 end = LLONG_MAX; 293 } while (ret == -EAGAIN); 294 295 trace_nfs_fsync_exit(inode, ret); 296 return ret; 297 } 298 EXPORT_SYMBOL_GPL(nfs_file_fsync); 299 300 /* 301 * Decide whether a read/modify/write cycle may be more efficient 302 * then a modify/write/read cycle when writing to a page in the 303 * page cache. 304 * 305 * The modify/write/read cycle may occur if a page is read before 306 * being completely filled by the writer. In this situation, the 307 * page must be completely written to stable storage on the server 308 * before it can be refilled by reading in the page from the server. 309 * This can lead to expensive, small, FILE_SYNC mode writes being 310 * done. 311 * 312 * It may be more efficient to read the page first if the file is 313 * open for reading in addition to writing, the page is not marked 314 * as Uptodate, it is not dirty or waiting to be committed, 315 * indicating that it was previously allocated and then modified, 316 * that there were valid bytes of data in that range of the file, 317 * and that the new data won't completely replace the old data in 318 * that range of the file. 319 */ 320 static int nfs_want_read_modify_write(struct file *file, struct page *page, 321 loff_t pos, unsigned len) 322 { 323 unsigned int pglen = nfs_page_length(page); 324 unsigned int offset = pos & (PAGE_SIZE - 1); 325 unsigned int end = offset + len; 326 327 if (pnfs_ld_read_whole_page(file->f_mapping->host)) { 328 if (!PageUptodate(page)) 329 return 1; 330 return 0; 331 } 332 333 if ((file->f_mode & FMODE_READ) && /* open for read? */ 334 !PageUptodate(page) && /* Uptodate? */ 335 !PagePrivate(page) && /* i/o request already? */ 336 pglen && /* valid bytes of file? */ 337 (end < pglen || offset)) /* replace all valid bytes? */ 338 return 1; 339 return 0; 340 } 341 342 /* 343 * This does the "real" work of the write. We must allocate and lock the 344 * page to be sent back to the generic routine, which then copies the 345 * data from user space. 346 * 347 * If the writer ends up delaying the write, the writer needs to 348 * increment the page use counts until he is done with the page. 349 */ 350 static int nfs_write_begin(struct file *file, struct address_space *mapping, 351 loff_t pos, unsigned len, unsigned flags, 352 struct page **pagep, void **fsdata) 353 { 354 int ret; 355 pgoff_t index = pos >> PAGE_SHIFT; 356 struct page *page; 357 int once_thru = 0; 358 359 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 360 file, mapping->host->i_ino, len, (long long) pos); 361 362 start: 363 page = grab_cache_page_write_begin(mapping, index, flags); 364 if (!page) 365 return -ENOMEM; 366 *pagep = page; 367 368 ret = nfs_flush_incompatible(file, page); 369 if (ret) { 370 unlock_page(page); 371 put_page(page); 372 } else if (!once_thru && 373 nfs_want_read_modify_write(file, page, pos, len)) { 374 once_thru = 1; 375 ret = nfs_readpage(file, page); 376 put_page(page); 377 if (!ret) 378 goto start; 379 } 380 return ret; 381 } 382 383 static int nfs_write_end(struct file *file, struct address_space *mapping, 384 loff_t pos, unsigned len, unsigned copied, 385 struct page *page, void *fsdata) 386 { 387 unsigned offset = pos & (PAGE_SIZE - 1); 388 struct nfs_open_context *ctx = nfs_file_open_context(file); 389 int status; 390 391 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 392 file, mapping->host->i_ino, len, (long long) pos); 393 394 /* 395 * Zero any uninitialised parts of the page, and then mark the page 396 * as up to date if it turns out that we're extending the file. 397 */ 398 if (!PageUptodate(page)) { 399 unsigned pglen = nfs_page_length(page); 400 unsigned end = offset + len; 401 402 if (pglen == 0) { 403 zero_user_segments(page, 0, offset, 404 end, PAGE_SIZE); 405 SetPageUptodate(page); 406 } else if (end >= pglen) { 407 zero_user_segment(page, end, PAGE_SIZE); 408 if (offset == 0) 409 SetPageUptodate(page); 410 } else 411 zero_user_segment(page, pglen, PAGE_SIZE); 412 } 413 414 status = nfs_updatepage(file, page, offset, copied); 415 416 unlock_page(page); 417 put_page(page); 418 419 if (status < 0) 420 return status; 421 NFS_I(mapping->host)->write_io += copied; 422 423 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 424 status = nfs_wb_all(mapping->host); 425 if (status < 0) 426 return status; 427 } 428 429 return copied; 430 } 431 432 /* 433 * Partially or wholly invalidate a page 434 * - Release the private state associated with a page if undergoing complete 435 * page invalidation 436 * - Called if either PG_private or PG_fscache is set on the page 437 * - Caller holds page lock 438 */ 439 static void nfs_invalidate_page(struct page *page, unsigned int offset, 440 unsigned int length) 441 { 442 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 443 page, offset, length); 444 445 if (offset != 0 || length < PAGE_SIZE) 446 return; 447 /* Cancel any unstarted writes on this page */ 448 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 449 450 nfs_fscache_invalidate_page(page, page->mapping->host); 451 } 452 453 /* 454 * Attempt to release the private state associated with a page 455 * - Called if either PG_private or PG_fscache is set on the page 456 * - Caller holds page lock 457 * - Return true (may release page) or false (may not) 458 */ 459 static int nfs_release_page(struct page *page, gfp_t gfp) 460 { 461 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 462 463 /* If PagePrivate() is set, then the page is not freeable */ 464 if (PagePrivate(page)) 465 return 0; 466 return nfs_fscache_release_page(page, gfp); 467 } 468 469 static void nfs_check_dirty_writeback(struct page *page, 470 bool *dirty, bool *writeback) 471 { 472 struct nfs_inode *nfsi; 473 struct address_space *mapping = page_file_mapping(page); 474 475 if (!mapping || PageSwapCache(page)) 476 return; 477 478 /* 479 * Check if an unstable page is currently being committed and 480 * if so, have the VM treat it as if the page is under writeback 481 * so it will not block due to pages that will shortly be freeable. 482 */ 483 nfsi = NFS_I(mapping->host); 484 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 485 *writeback = true; 486 return; 487 } 488 489 /* 490 * If PagePrivate() is set, then the page is not freeable and as the 491 * inode is not being committed, it's not going to be cleaned in the 492 * near future so treat it as dirty 493 */ 494 if (PagePrivate(page)) 495 *dirty = true; 496 } 497 498 /* 499 * Attempt to clear the private state associated with a page when an error 500 * occurs that requires the cached contents of an inode to be written back or 501 * destroyed 502 * - Called if either PG_private or fscache is set on the page 503 * - Caller holds page lock 504 * - Return 0 if successful, -error otherwise 505 */ 506 static int nfs_launder_page(struct page *page) 507 { 508 struct inode *inode = page_file_mapping(page)->host; 509 struct nfs_inode *nfsi = NFS_I(inode); 510 511 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 512 inode->i_ino, (long long)page_offset(page)); 513 514 nfs_fscache_wait_on_page_write(nfsi, page); 515 return nfs_wb_launder_page(inode, page); 516 } 517 518 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 519 sector_t *span) 520 { 521 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 522 523 *span = sis->pages; 524 525 return rpc_clnt_swap_activate(clnt); 526 } 527 528 static void nfs_swap_deactivate(struct file *file) 529 { 530 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 531 532 rpc_clnt_swap_deactivate(clnt); 533 } 534 535 const struct address_space_operations nfs_file_aops = { 536 .readpage = nfs_readpage, 537 .readpages = nfs_readpages, 538 .set_page_dirty = __set_page_dirty_nobuffers, 539 .writepage = nfs_writepage, 540 .writepages = nfs_writepages, 541 .write_begin = nfs_write_begin, 542 .write_end = nfs_write_end, 543 .invalidatepage = nfs_invalidate_page, 544 .releasepage = nfs_release_page, 545 .direct_IO = nfs_direct_IO, 546 .migratepage = nfs_migrate_page, 547 .launder_page = nfs_launder_page, 548 .is_dirty_writeback = nfs_check_dirty_writeback, 549 .error_remove_page = generic_error_remove_page, 550 .swap_activate = nfs_swap_activate, 551 .swap_deactivate = nfs_swap_deactivate, 552 }; 553 554 /* 555 * Notification that a PTE pointing to an NFS page is about to be made 556 * writable, implying that someone is about to modify the page through a 557 * shared-writable mapping 558 */ 559 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 560 { 561 struct page *page = vmf->page; 562 struct file *filp = vma->vm_file; 563 struct inode *inode = file_inode(filp); 564 unsigned pagelen; 565 int ret = VM_FAULT_NOPAGE; 566 struct address_space *mapping; 567 568 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 569 filp, filp->f_mapping->host->i_ino, 570 (long long)page_offset(page)); 571 572 sb_start_pagefault(inode->i_sb); 573 574 /* make sure the cache has finished storing the page */ 575 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 576 577 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 578 nfs_wait_bit_killable, TASK_KILLABLE); 579 580 lock_page(page); 581 mapping = page_file_mapping(page); 582 if (mapping != inode->i_mapping) 583 goto out_unlock; 584 585 wait_on_page_writeback(page); 586 587 pagelen = nfs_page_length(page); 588 if (pagelen == 0) 589 goto out_unlock; 590 591 ret = VM_FAULT_LOCKED; 592 if (nfs_flush_incompatible(filp, page) == 0 && 593 nfs_updatepage(filp, page, 0, pagelen) == 0) 594 goto out; 595 596 ret = VM_FAULT_SIGBUS; 597 out_unlock: 598 unlock_page(page); 599 out: 600 sb_end_pagefault(inode->i_sb); 601 return ret; 602 } 603 604 static const struct vm_operations_struct nfs_file_vm_ops = { 605 .fault = filemap_fault, 606 .map_pages = filemap_map_pages, 607 .page_mkwrite = nfs_vm_page_mkwrite, 608 }; 609 610 static int nfs_need_check_write(struct file *filp, struct inode *inode) 611 { 612 struct nfs_open_context *ctx; 613 614 ctx = nfs_file_open_context(filp); 615 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 616 nfs_ctx_key_to_expire(ctx, inode)) 617 return 1; 618 return 0; 619 } 620 621 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 622 { 623 struct file *file = iocb->ki_filp; 624 struct inode *inode = file_inode(file); 625 unsigned long written = 0; 626 ssize_t result; 627 628 result = nfs_key_timeout_notify(file, inode); 629 if (result) 630 return result; 631 632 if (iocb->ki_flags & IOCB_DIRECT) 633 return nfs_file_direct_write(iocb, from); 634 635 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 636 file, iov_iter_count(from), (long long) iocb->ki_pos); 637 638 if (IS_SWAPFILE(inode)) 639 goto out_swapfile; 640 /* 641 * O_APPEND implies that we must revalidate the file length. 642 */ 643 if (iocb->ki_flags & IOCB_APPEND) { 644 result = nfs_revalidate_file_size(inode, file); 645 if (result) 646 goto out; 647 } 648 649 nfs_start_io_write(inode); 650 result = generic_write_checks(iocb, from); 651 if (result > 0) { 652 current->backing_dev_info = inode_to_bdi(inode); 653 result = generic_perform_write(file, from, iocb->ki_pos); 654 current->backing_dev_info = NULL; 655 } 656 nfs_end_io_write(inode); 657 if (result <= 0) 658 goto out; 659 660 written = generic_write_sync(iocb, result); 661 iocb->ki_pos += written; 662 663 /* Return error values */ 664 if (nfs_need_check_write(file, inode)) { 665 int err = vfs_fsync(file, 0); 666 if (err < 0) 667 result = err; 668 } 669 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 670 out: 671 return result; 672 673 out_swapfile: 674 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 675 return -EBUSY; 676 } 677 EXPORT_SYMBOL_GPL(nfs_file_write); 678 679 static int 680 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 681 { 682 struct inode *inode = filp->f_mapping->host; 683 int status = 0; 684 unsigned int saved_type = fl->fl_type; 685 686 /* Try local locking first */ 687 posix_test_lock(filp, fl); 688 if (fl->fl_type != F_UNLCK) { 689 /* found a conflict */ 690 goto out; 691 } 692 fl->fl_type = saved_type; 693 694 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 695 goto out_noconflict; 696 697 if (is_local) 698 goto out_noconflict; 699 700 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 701 out: 702 return status; 703 out_noconflict: 704 fl->fl_type = F_UNLCK; 705 goto out; 706 } 707 708 static int do_vfs_lock(struct file *file, struct file_lock *fl) 709 { 710 return locks_lock_file_wait(file, fl); 711 } 712 713 static int 714 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 715 { 716 struct inode *inode = filp->f_mapping->host; 717 struct nfs_lock_context *l_ctx; 718 int status; 719 720 /* 721 * Flush all pending writes before doing anything 722 * with locks.. 723 */ 724 vfs_fsync(filp, 0); 725 726 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 727 if (!IS_ERR(l_ctx)) { 728 status = nfs_iocounter_wait(l_ctx); 729 nfs_put_lock_context(l_ctx); 730 if (status < 0) 731 return status; 732 } 733 734 /* NOTE: special case 735 * If we're signalled while cleaning up locks on process exit, we 736 * still need to complete the unlock. 737 */ 738 /* 739 * Use local locking if mounted with "-onolock" or with appropriate 740 * "-olocal_lock=" 741 */ 742 if (!is_local) 743 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 744 else 745 status = do_vfs_lock(filp, fl); 746 return status; 747 } 748 749 static int 750 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 751 { 752 struct inode *inode = filp->f_mapping->host; 753 int status; 754 755 /* 756 * Flush all pending writes before doing anything 757 * with locks.. 758 */ 759 status = nfs_sync_mapping(filp->f_mapping); 760 if (status != 0) 761 goto out; 762 763 /* 764 * Use local locking if mounted with "-onolock" or with appropriate 765 * "-olocal_lock=" 766 */ 767 if (!is_local) 768 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 769 else 770 status = do_vfs_lock(filp, fl); 771 if (status < 0) 772 goto out; 773 774 /* 775 * Revalidate the cache if the server has time stamps granular 776 * enough to detect subsecond changes. Otherwise, clear the 777 * cache to prevent missing any changes. 778 * 779 * This makes locking act as a cache coherency point. 780 */ 781 nfs_sync_mapping(filp->f_mapping); 782 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 783 nfs_zap_mapping(inode, filp->f_mapping); 784 out: 785 return status; 786 } 787 788 /* 789 * Lock a (portion of) a file 790 */ 791 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 792 { 793 struct inode *inode = filp->f_mapping->host; 794 int ret = -ENOLCK; 795 int is_local = 0; 796 797 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 798 filp, fl->fl_type, fl->fl_flags, 799 (long long)fl->fl_start, (long long)fl->fl_end); 800 801 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 802 803 /* No mandatory locks over NFS */ 804 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 805 goto out_err; 806 807 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 808 is_local = 1; 809 810 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 811 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 812 if (ret < 0) 813 goto out_err; 814 } 815 816 if (IS_GETLK(cmd)) 817 ret = do_getlk(filp, cmd, fl, is_local); 818 else if (fl->fl_type == F_UNLCK) 819 ret = do_unlk(filp, cmd, fl, is_local); 820 else 821 ret = do_setlk(filp, cmd, fl, is_local); 822 out_err: 823 return ret; 824 } 825 EXPORT_SYMBOL_GPL(nfs_lock); 826 827 /* 828 * Lock a (portion of) a file 829 */ 830 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 831 { 832 struct inode *inode = filp->f_mapping->host; 833 int is_local = 0; 834 835 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 836 filp, fl->fl_type, fl->fl_flags); 837 838 if (!(fl->fl_flags & FL_FLOCK)) 839 return -ENOLCK; 840 841 /* 842 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 843 * any standard. In principle we might be able to support LOCK_MAND 844 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 845 * NFS code is not set up for it. 846 */ 847 if (fl->fl_type & LOCK_MAND) 848 return -EINVAL; 849 850 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 851 is_local = 1; 852 853 /* We're simulating flock() locks using posix locks on the server */ 854 if (fl->fl_type == F_UNLCK) 855 return do_unlk(filp, cmd, fl, is_local); 856 return do_setlk(filp, cmd, fl, is_local); 857 } 858 EXPORT_SYMBOL_GPL(nfs_flock); 859 860 const struct file_operations nfs_file_operations = { 861 .llseek = nfs_file_llseek, 862 .read_iter = nfs_file_read, 863 .write_iter = nfs_file_write, 864 .mmap = nfs_file_mmap, 865 .open = nfs_file_open, 866 .flush = nfs_file_flush, 867 .release = nfs_file_release, 868 .fsync = nfs_file_fsync, 869 .lock = nfs_lock, 870 .flock = nfs_flock, 871 .splice_read = nfs_file_splice_read, 872 .splice_write = iter_file_splice_write, 873 .check_flags = nfs_check_flags, 874 .setlease = simple_nosetlease, 875 }; 876 EXPORT_SYMBOL_GPL(nfs_file_operations); 877