xref: /linux/fs/nfs/file.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/nfs_fs.h>
25 #include <linux/nfs_mount.h>
26 #include <linux/mm.h>
27 #include <linux/pagemap.h>
28 #include <linux/aio.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #define NFSDBG_FACILITY		NFSDBG_FILE
41 
42 static const struct vm_operations_struct nfs_file_vm_ops;
43 
44 const struct inode_operations nfs_file_inode_operations = {
45 	.permission	= nfs_permission,
46 	.getattr	= nfs_getattr,
47 	.setattr	= nfs_setattr,
48 };
49 
50 #ifdef CONFIG_NFS_V3
51 const struct inode_operations nfs3_file_inode_operations = {
52 	.permission	= nfs_permission,
53 	.getattr	= nfs_getattr,
54 	.setattr	= nfs_setattr,
55 	.listxattr	= nfs3_listxattr,
56 	.getxattr	= nfs3_getxattr,
57 	.setxattr	= nfs3_setxattr,
58 	.removexattr	= nfs3_removexattr,
59 };
60 #endif  /* CONFIG_NFS_v3 */
61 
62 /* Hack for future NFS swap support */
63 #ifndef IS_SWAPFILE
64 # define IS_SWAPFILE(inode)	(0)
65 #endif
66 
67 static int nfs_check_flags(int flags)
68 {
69 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
70 		return -EINVAL;
71 
72 	return 0;
73 }
74 
75 /*
76  * Open file
77  */
78 static int
79 nfs_file_open(struct inode *inode, struct file *filp)
80 {
81 	int res;
82 
83 	dprintk("NFS: open file(%s/%s)\n",
84 			filp->f_path.dentry->d_parent->d_name.name,
85 			filp->f_path.dentry->d_name.name);
86 
87 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
88 	res = nfs_check_flags(filp->f_flags);
89 	if (res)
90 		return res;
91 
92 	res = nfs_open(inode, filp);
93 	return res;
94 }
95 
96 static int
97 nfs_file_release(struct inode *inode, struct file *filp)
98 {
99 	dprintk("NFS: release(%s/%s)\n",
100 			filp->f_path.dentry->d_parent->d_name.name,
101 			filp->f_path.dentry->d_name.name);
102 
103 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
104 	return nfs_release(inode, filp);
105 }
106 
107 /**
108  * nfs_revalidate_size - Revalidate the file size
109  * @inode - pointer to inode struct
110  * @file - pointer to struct file
111  *
112  * Revalidates the file length. This is basically a wrapper around
113  * nfs_revalidate_inode() that takes into account the fact that we may
114  * have cached writes (in which case we don't care about the server's
115  * idea of what the file length is), or O_DIRECT (in which case we
116  * shouldn't trust the cache).
117  */
118 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
119 {
120 	struct nfs_server *server = NFS_SERVER(inode);
121 	struct nfs_inode *nfsi = NFS_I(inode);
122 
123 	if (nfs_have_delegated_attributes(inode))
124 		goto out_noreval;
125 
126 	if (filp->f_flags & O_DIRECT)
127 		goto force_reval;
128 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
129 		goto force_reval;
130 	if (nfs_attribute_timeout(inode))
131 		goto force_reval;
132 out_noreval:
133 	return 0;
134 force_reval:
135 	return __nfs_revalidate_inode(server, inode);
136 }
137 
138 static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
139 {
140 	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
141 			filp->f_path.dentry->d_parent->d_name.name,
142 			filp->f_path.dentry->d_name.name,
143 			offset, origin);
144 
145 	/*
146 	 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
147 	 * the cached file length
148 	 */
149 	if (origin != SEEK_SET && origin != SEEK_CUR) {
150 		struct inode *inode = filp->f_mapping->host;
151 
152 		int retval = nfs_revalidate_file_size(inode, filp);
153 		if (retval < 0)
154 			return (loff_t)retval;
155 	}
156 
157 	return generic_file_llseek(filp, offset, origin);
158 }
159 
160 /*
161  * Flush all dirty pages, and check for write errors.
162  */
163 static int
164 nfs_file_flush(struct file *file, fl_owner_t id)
165 {
166 	struct dentry	*dentry = file->f_path.dentry;
167 	struct inode	*inode = dentry->d_inode;
168 
169 	dprintk("NFS: flush(%s/%s)\n",
170 			dentry->d_parent->d_name.name,
171 			dentry->d_name.name);
172 
173 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
174 	if ((file->f_mode & FMODE_WRITE) == 0)
175 		return 0;
176 
177 	/*
178 	 * If we're holding a write delegation, then just start the i/o
179 	 * but don't wait for completion (or send a commit).
180 	 */
181 	if (nfs_have_delegation(inode, FMODE_WRITE))
182 		return filemap_fdatawrite(file->f_mapping);
183 
184 	/* Flush writes to the server and return any errors */
185 	return vfs_fsync(file, 0);
186 }
187 
188 static ssize_t
189 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
190 		unsigned long nr_segs, loff_t pos)
191 {
192 	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
193 	struct inode * inode = dentry->d_inode;
194 	ssize_t result;
195 
196 	if (iocb->ki_filp->f_flags & O_DIRECT)
197 		return nfs_file_direct_read(iocb, iov, nr_segs, pos);
198 
199 	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
200 		dentry->d_parent->d_name.name, dentry->d_name.name,
201 		(unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
202 
203 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
204 	if (!result) {
205 		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
206 		if (result > 0)
207 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
208 	}
209 	return result;
210 }
211 
212 static ssize_t
213 nfs_file_splice_read(struct file *filp, loff_t *ppos,
214 		     struct pipe_inode_info *pipe, size_t count,
215 		     unsigned int flags)
216 {
217 	struct dentry *dentry = filp->f_path.dentry;
218 	struct inode *inode = dentry->d_inode;
219 	ssize_t res;
220 
221 	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
222 		dentry->d_parent->d_name.name, dentry->d_name.name,
223 		(unsigned long) count, (unsigned long long) *ppos);
224 
225 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
226 	if (!res) {
227 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
228 		if (res > 0)
229 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
230 	}
231 	return res;
232 }
233 
234 static int
235 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
236 {
237 	struct dentry *dentry = file->f_path.dentry;
238 	struct inode *inode = dentry->d_inode;
239 	int	status;
240 
241 	dprintk("NFS: mmap(%s/%s)\n",
242 		dentry->d_parent->d_name.name, dentry->d_name.name);
243 
244 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
245 	 *       so we call that before revalidating the mapping
246 	 */
247 	status = generic_file_mmap(file, vma);
248 	if (!status) {
249 		vma->vm_ops = &nfs_file_vm_ops;
250 		status = nfs_revalidate_mapping(inode, file->f_mapping);
251 	}
252 	return status;
253 }
254 
255 /*
256  * Flush any dirty pages for this process, and check for write errors.
257  * The return status from this call provides a reliable indication of
258  * whether any write errors occurred for this process.
259  *
260  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
261  * disk, but it retrieves and clears ctx->error after synching, despite
262  * the two being set at the same time in nfs_context_set_write_error().
263  * This is because the former is used to notify the _next_ call to
264  * nfs_file_write() that a write error occurred, and hence cause it to
265  * fall back to doing a synchronous write.
266  */
267 static int
268 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
269 {
270 	struct dentry *dentry = file->f_path.dentry;
271 	struct nfs_open_context *ctx = nfs_file_open_context(file);
272 	struct inode *inode = dentry->d_inode;
273 	int have_error, status;
274 	int ret = 0;
275 
276 	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
277 			dentry->d_parent->d_name.name, dentry->d_name.name,
278 			datasync);
279 
280 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
281 	mutex_lock(&inode->i_mutex);
282 
283 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
284 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
285 	status = nfs_commit_inode(inode, FLUSH_SYNC);
286 	if (status >= 0 && ret < 0)
287 		status = ret;
288 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
289 	if (have_error)
290 		ret = xchg(&ctx->error, 0);
291 	if (!ret && status < 0)
292 		ret = status;
293 	if (!ret && !datasync)
294 		/* application has asked for meta-data sync */
295 		ret = pnfs_layoutcommit_inode(inode, true);
296 	mutex_unlock(&inode->i_mutex);
297 	return ret;
298 }
299 
300 /*
301  * Decide whether a read/modify/write cycle may be more efficient
302  * then a modify/write/read cycle when writing to a page in the
303  * page cache.
304  *
305  * The modify/write/read cycle may occur if a page is read before
306  * being completely filled by the writer.  In this situation, the
307  * page must be completely written to stable storage on the server
308  * before it can be refilled by reading in the page from the server.
309  * This can lead to expensive, small, FILE_SYNC mode writes being
310  * done.
311  *
312  * It may be more efficient to read the page first if the file is
313  * open for reading in addition to writing, the page is not marked
314  * as Uptodate, it is not dirty or waiting to be committed,
315  * indicating that it was previously allocated and then modified,
316  * that there were valid bytes of data in that range of the file,
317  * and that the new data won't completely replace the old data in
318  * that range of the file.
319  */
320 static int nfs_want_read_modify_write(struct file *file, struct page *page,
321 			loff_t pos, unsigned len)
322 {
323 	unsigned int pglen = nfs_page_length(page);
324 	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
325 	unsigned int end = offset + len;
326 
327 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
328 	    !PageUptodate(page) &&		/* Uptodate? */
329 	    !PagePrivate(page) &&		/* i/o request already? */
330 	    pglen &&				/* valid bytes of file? */
331 	    (end < pglen || offset))		/* replace all valid bytes? */
332 		return 1;
333 	return 0;
334 }
335 
336 /*
337  * This does the "real" work of the write. We must allocate and lock the
338  * page to be sent back to the generic routine, which then copies the
339  * data from user space.
340  *
341  * If the writer ends up delaying the write, the writer needs to
342  * increment the page use counts until he is done with the page.
343  */
344 static int nfs_write_begin(struct file *file, struct address_space *mapping,
345 			loff_t pos, unsigned len, unsigned flags,
346 			struct page **pagep, void **fsdata)
347 {
348 	int ret;
349 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
350 	struct page *page;
351 	int once_thru = 0;
352 
353 	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
354 		file->f_path.dentry->d_parent->d_name.name,
355 		file->f_path.dentry->d_name.name,
356 		mapping->host->i_ino, len, (long long) pos);
357 
358 start:
359 	/*
360 	 * Prevent starvation issues if someone is doing a consistency
361 	 * sync-to-disk
362 	 */
363 	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
364 			nfs_wait_bit_killable, TASK_KILLABLE);
365 	if (ret)
366 		return ret;
367 
368 	page = grab_cache_page_write_begin(mapping, index, flags);
369 	if (!page)
370 		return -ENOMEM;
371 	*pagep = page;
372 
373 	ret = nfs_flush_incompatible(file, page);
374 	if (ret) {
375 		unlock_page(page);
376 		page_cache_release(page);
377 	} else if (!once_thru &&
378 		   nfs_want_read_modify_write(file, page, pos, len)) {
379 		once_thru = 1;
380 		ret = nfs_readpage(file, page);
381 		page_cache_release(page);
382 		if (!ret)
383 			goto start;
384 	}
385 	return ret;
386 }
387 
388 static int nfs_write_end(struct file *file, struct address_space *mapping,
389 			loff_t pos, unsigned len, unsigned copied,
390 			struct page *page, void *fsdata)
391 {
392 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
393 	int status;
394 
395 	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
396 		file->f_path.dentry->d_parent->d_name.name,
397 		file->f_path.dentry->d_name.name,
398 		mapping->host->i_ino, len, (long long) pos);
399 
400 	/*
401 	 * Zero any uninitialised parts of the page, and then mark the page
402 	 * as up to date if it turns out that we're extending the file.
403 	 */
404 	if (!PageUptodate(page)) {
405 		unsigned pglen = nfs_page_length(page);
406 		unsigned end = offset + len;
407 
408 		if (pglen == 0) {
409 			zero_user_segments(page, 0, offset,
410 					end, PAGE_CACHE_SIZE);
411 			SetPageUptodate(page);
412 		} else if (end >= pglen) {
413 			zero_user_segment(page, end, PAGE_CACHE_SIZE);
414 			if (offset == 0)
415 				SetPageUptodate(page);
416 		} else
417 			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
418 	}
419 
420 	status = nfs_updatepage(file, page, offset, copied);
421 
422 	unlock_page(page);
423 	page_cache_release(page);
424 
425 	if (status < 0)
426 		return status;
427 	NFS_I(mapping->host)->write_io += copied;
428 	return copied;
429 }
430 
431 /*
432  * Partially or wholly invalidate a page
433  * - Release the private state associated with a page if undergoing complete
434  *   page invalidation
435  * - Called if either PG_private or PG_fscache is set on the page
436  * - Caller holds page lock
437  */
438 static void nfs_invalidate_page(struct page *page, unsigned long offset)
439 {
440 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
441 
442 	if (offset != 0)
443 		return;
444 	/* Cancel any unstarted writes on this page */
445 	nfs_wb_page_cancel(page->mapping->host, page);
446 
447 	nfs_fscache_invalidate_page(page, page->mapping->host);
448 }
449 
450 /*
451  * Attempt to release the private state associated with a page
452  * - Called if either PG_private or PG_fscache is set on the page
453  * - Caller holds page lock
454  * - Return true (may release page) or false (may not)
455  */
456 static int nfs_release_page(struct page *page, gfp_t gfp)
457 {
458 	struct address_space *mapping = page->mapping;
459 
460 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
461 
462 	/* Only do I/O if gfp is a superset of GFP_KERNEL */
463 	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL) {
464 		int how = FLUSH_SYNC;
465 
466 		/* Don't let kswapd deadlock waiting for OOM RPC calls */
467 		if (current_is_kswapd())
468 			how = 0;
469 		nfs_commit_inode(mapping->host, how);
470 	}
471 	/* If PagePrivate() is set, then the page is not freeable */
472 	if (PagePrivate(page))
473 		return 0;
474 	return nfs_fscache_release_page(page, gfp);
475 }
476 
477 /*
478  * Attempt to clear the private state associated with a page when an error
479  * occurs that requires the cached contents of an inode to be written back or
480  * destroyed
481  * - Called if either PG_private or fscache is set on the page
482  * - Caller holds page lock
483  * - Return 0 if successful, -error otherwise
484  */
485 static int nfs_launder_page(struct page *page)
486 {
487 	struct inode *inode = page->mapping->host;
488 	struct nfs_inode *nfsi = NFS_I(inode);
489 
490 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
491 		inode->i_ino, (long long)page_offset(page));
492 
493 	nfs_fscache_wait_on_page_write(nfsi, page);
494 	return nfs_wb_page(inode, page);
495 }
496 
497 const struct address_space_operations nfs_file_aops = {
498 	.readpage = nfs_readpage,
499 	.readpages = nfs_readpages,
500 	.set_page_dirty = __set_page_dirty_nobuffers,
501 	.writepage = nfs_writepage,
502 	.writepages = nfs_writepages,
503 	.write_begin = nfs_write_begin,
504 	.write_end = nfs_write_end,
505 	.invalidatepage = nfs_invalidate_page,
506 	.releasepage = nfs_release_page,
507 	.direct_IO = nfs_direct_IO,
508 	.migratepage = nfs_migrate_page,
509 	.launder_page = nfs_launder_page,
510 	.error_remove_page = generic_error_remove_page,
511 };
512 
513 /*
514  * Notification that a PTE pointing to an NFS page is about to be made
515  * writable, implying that someone is about to modify the page through a
516  * shared-writable mapping
517  */
518 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
519 {
520 	struct page *page = vmf->page;
521 	struct file *filp = vma->vm_file;
522 	struct dentry *dentry = filp->f_path.dentry;
523 	unsigned pagelen;
524 	int ret = VM_FAULT_NOPAGE;
525 	struct address_space *mapping;
526 
527 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
528 		dentry->d_parent->d_name.name, dentry->d_name.name,
529 		filp->f_mapping->host->i_ino,
530 		(long long)page_offset(page));
531 
532 	/* make sure the cache has finished storing the page */
533 	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
534 
535 	lock_page(page);
536 	mapping = page->mapping;
537 	if (mapping != dentry->d_inode->i_mapping)
538 		goto out_unlock;
539 
540 	wait_on_page_writeback(page);
541 
542 	pagelen = nfs_page_length(page);
543 	if (pagelen == 0)
544 		goto out_unlock;
545 
546 	ret = VM_FAULT_LOCKED;
547 	if (nfs_flush_incompatible(filp, page) == 0 &&
548 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
549 		goto out;
550 
551 	ret = VM_FAULT_SIGBUS;
552 out_unlock:
553 	unlock_page(page);
554 out:
555 	return ret;
556 }
557 
558 static const struct vm_operations_struct nfs_file_vm_ops = {
559 	.fault = filemap_fault,
560 	.page_mkwrite = nfs_vm_page_mkwrite,
561 };
562 
563 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
564 {
565 	struct nfs_open_context *ctx;
566 
567 	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
568 		return 1;
569 	ctx = nfs_file_open_context(filp);
570 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
571 		return 1;
572 	return 0;
573 }
574 
575 static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
576 				unsigned long nr_segs, loff_t pos)
577 {
578 	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
579 	struct inode * inode = dentry->d_inode;
580 	unsigned long written = 0;
581 	ssize_t result;
582 	size_t count = iov_length(iov, nr_segs);
583 
584 	if (iocb->ki_filp->f_flags & O_DIRECT)
585 		return nfs_file_direct_write(iocb, iov, nr_segs, pos);
586 
587 	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
588 		dentry->d_parent->d_name.name, dentry->d_name.name,
589 		(unsigned long) count, (long long) pos);
590 
591 	result = -EBUSY;
592 	if (IS_SWAPFILE(inode))
593 		goto out_swapfile;
594 	/*
595 	 * O_APPEND implies that we must revalidate the file length.
596 	 */
597 	if (iocb->ki_filp->f_flags & O_APPEND) {
598 		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
599 		if (result)
600 			goto out;
601 	}
602 
603 	result = count;
604 	if (!count)
605 		goto out;
606 
607 	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
608 	if (result > 0)
609 		written = result;
610 
611 	/* Return error values for O_DSYNC and IS_SYNC() */
612 	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
613 		int err = vfs_fsync(iocb->ki_filp, 0);
614 		if (err < 0)
615 			result = err;
616 	}
617 	if (result > 0)
618 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
619 out:
620 	return result;
621 
622 out_swapfile:
623 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
624 	goto out;
625 }
626 
627 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
628 				     struct file *filp, loff_t *ppos,
629 				     size_t count, unsigned int flags)
630 {
631 	struct dentry *dentry = filp->f_path.dentry;
632 	struct inode *inode = dentry->d_inode;
633 	unsigned long written = 0;
634 	ssize_t ret;
635 
636 	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
637 		dentry->d_parent->d_name.name, dentry->d_name.name,
638 		(unsigned long) count, (unsigned long long) *ppos);
639 
640 	/*
641 	 * The combination of splice and an O_APPEND destination is disallowed.
642 	 */
643 
644 	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
645 	if (ret > 0)
646 		written = ret;
647 
648 	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
649 		int err = vfs_fsync(filp, 0);
650 		if (err < 0)
651 			ret = err;
652 	}
653 	if (ret > 0)
654 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
655 	return ret;
656 }
657 
658 static int
659 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
660 {
661 	struct inode *inode = filp->f_mapping->host;
662 	int status = 0;
663 	unsigned int saved_type = fl->fl_type;
664 
665 	/* Try local locking first */
666 	posix_test_lock(filp, fl);
667 	if (fl->fl_type != F_UNLCK) {
668 		/* found a conflict */
669 		goto out;
670 	}
671 	fl->fl_type = saved_type;
672 
673 	if (nfs_have_delegation(inode, FMODE_READ))
674 		goto out_noconflict;
675 
676 	if (is_local)
677 		goto out_noconflict;
678 
679 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
680 out:
681 	return status;
682 out_noconflict:
683 	fl->fl_type = F_UNLCK;
684 	goto out;
685 }
686 
687 static int do_vfs_lock(struct file *file, struct file_lock *fl)
688 {
689 	int res = 0;
690 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
691 		case FL_POSIX:
692 			res = posix_lock_file_wait(file, fl);
693 			break;
694 		case FL_FLOCK:
695 			res = flock_lock_file_wait(file, fl);
696 			break;
697 		default:
698 			BUG();
699 	}
700 	return res;
701 }
702 
703 static int
704 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
705 {
706 	struct inode *inode = filp->f_mapping->host;
707 	int status;
708 
709 	/*
710 	 * Flush all pending writes before doing anything
711 	 * with locks..
712 	 */
713 	nfs_sync_mapping(filp->f_mapping);
714 
715 	/* NOTE: special case
716 	 * 	If we're signalled while cleaning up locks on process exit, we
717 	 * 	still need to complete the unlock.
718 	 */
719 	/*
720 	 * Use local locking if mounted with "-onolock" or with appropriate
721 	 * "-olocal_lock="
722 	 */
723 	if (!is_local)
724 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
725 	else
726 		status = do_vfs_lock(filp, fl);
727 	return status;
728 }
729 
730 static int
731 is_time_granular(struct timespec *ts) {
732 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
733 }
734 
735 static int
736 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
737 {
738 	struct inode *inode = filp->f_mapping->host;
739 	int status;
740 
741 	/*
742 	 * Flush all pending writes before doing anything
743 	 * with locks..
744 	 */
745 	status = nfs_sync_mapping(filp->f_mapping);
746 	if (status != 0)
747 		goto out;
748 
749 	/*
750 	 * Use local locking if mounted with "-onolock" or with appropriate
751 	 * "-olocal_lock="
752 	 */
753 	if (!is_local)
754 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
755 	else
756 		status = do_vfs_lock(filp, fl);
757 	if (status < 0)
758 		goto out;
759 
760 	/*
761 	 * Revalidate the cache if the server has time stamps granular
762 	 * enough to detect subsecond changes.  Otherwise, clear the
763 	 * cache to prevent missing any changes.
764 	 *
765 	 * This makes locking act as a cache coherency point.
766 	 */
767 	nfs_sync_mapping(filp->f_mapping);
768 	if (!nfs_have_delegation(inode, FMODE_READ)) {
769 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
770 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
771 		else
772 			nfs_zap_caches(inode);
773 	}
774 out:
775 	return status;
776 }
777 
778 /*
779  * Lock a (portion of) a file
780  */
781 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
782 {
783 	struct inode *inode = filp->f_mapping->host;
784 	int ret = -ENOLCK;
785 	int is_local = 0;
786 
787 	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
788 			filp->f_path.dentry->d_parent->d_name.name,
789 			filp->f_path.dentry->d_name.name,
790 			fl->fl_type, fl->fl_flags,
791 			(long long)fl->fl_start, (long long)fl->fl_end);
792 
793 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
794 
795 	/* No mandatory locks over NFS */
796 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
797 		goto out_err;
798 
799 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
800 		is_local = 1;
801 
802 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
803 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
804 		if (ret < 0)
805 			goto out_err;
806 	}
807 
808 	if (IS_GETLK(cmd))
809 		ret = do_getlk(filp, cmd, fl, is_local);
810 	else if (fl->fl_type == F_UNLCK)
811 		ret = do_unlk(filp, cmd, fl, is_local);
812 	else
813 		ret = do_setlk(filp, cmd, fl, is_local);
814 out_err:
815 	return ret;
816 }
817 
818 /*
819  * Lock a (portion of) a file
820  */
821 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
822 {
823 	struct inode *inode = filp->f_mapping->host;
824 	int is_local = 0;
825 
826 	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
827 			filp->f_path.dentry->d_parent->d_name.name,
828 			filp->f_path.dentry->d_name.name,
829 			fl->fl_type, fl->fl_flags);
830 
831 	if (!(fl->fl_flags & FL_FLOCK))
832 		return -ENOLCK;
833 
834 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
835 		is_local = 1;
836 
837 	/* We're simulating flock() locks using posix locks on the server */
838 	fl->fl_owner = (fl_owner_t)filp;
839 	fl->fl_start = 0;
840 	fl->fl_end = OFFSET_MAX;
841 
842 	if (fl->fl_type == F_UNLCK)
843 		return do_unlk(filp, cmd, fl, is_local);
844 	return do_setlk(filp, cmd, fl, is_local);
845 }
846 
847 /*
848  * There is no protocol support for leases, so we have no way to implement
849  * them correctly in the face of opens by other clients.
850  */
851 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
852 {
853 	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
854 			file->f_path.dentry->d_parent->d_name.name,
855 			file->f_path.dentry->d_name.name, arg);
856 	return -EINVAL;
857 }
858 
859 const struct file_operations nfs_file_operations = {
860 	.llseek		= nfs_file_llseek,
861 	.read		= do_sync_read,
862 	.write		= do_sync_write,
863 	.aio_read	= nfs_file_read,
864 	.aio_write	= nfs_file_write,
865 	.mmap		= nfs_file_mmap,
866 	.open		= nfs_file_open,
867 	.flush		= nfs_file_flush,
868 	.release	= nfs_file_release,
869 	.fsync		= nfs_file_fsync,
870 	.lock		= nfs_lock,
871 	.flock		= nfs_flock,
872 	.splice_read	= nfs_file_splice_read,
873 	.splice_write	= nfs_file_splice_write,
874 	.check_flags	= nfs_check_flags,
875 	.setlease	= nfs_setlease,
876 };
877 
878 #ifdef CONFIG_NFS_V4
879 static int
880 nfs4_file_open(struct inode *inode, struct file *filp)
881 {
882 	struct nfs_open_context *ctx;
883 	struct dentry *dentry = filp->f_path.dentry;
884 	struct dentry *parent = NULL;
885 	struct inode *dir;
886 	unsigned openflags = filp->f_flags;
887 	struct iattr attr;
888 	int err;
889 
890 	BUG_ON(inode != dentry->d_inode);
891 	/*
892 	 * If no cached dentry exists or if it's negative, NFSv4 handled the
893 	 * opens in ->lookup() or ->create().
894 	 *
895 	 * We only get this far for a cached positive dentry.  We skipped
896 	 * revalidation, so handle it here by dropping the dentry and returning
897 	 * -EOPENSTALE.  The VFS will retry the lookup/create/open.
898 	 */
899 
900 	dprintk("NFS: open file(%s/%s)\n",
901 		dentry->d_parent->d_name.name,
902 		dentry->d_name.name);
903 
904 	if ((openflags & O_ACCMODE) == 3)
905 		openflags--;
906 
907 	/* We can't create new files here */
908 	openflags &= ~(O_CREAT|O_EXCL);
909 
910 	parent = dget_parent(dentry);
911 	dir = parent->d_inode;
912 
913 	ctx = alloc_nfs_open_context(filp->f_path.dentry, filp->f_mode);
914 	err = PTR_ERR(ctx);
915 	if (IS_ERR(ctx))
916 		goto out;
917 
918 	attr.ia_valid = ATTR_OPEN;
919 	if (openflags & O_TRUNC) {
920 		attr.ia_valid |= ATTR_SIZE;
921 		attr.ia_size = 0;
922 		nfs_wb_all(inode);
923 	}
924 
925 	inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr);
926 	if (IS_ERR(inode)) {
927 		err = PTR_ERR(inode);
928 		switch (err) {
929 		case -EPERM:
930 		case -EACCES:
931 		case -EDQUOT:
932 		case -ENOSPC:
933 		case -EROFS:
934 			goto out_put_ctx;
935 		default:
936 			goto out_drop;
937 		}
938 	}
939 	iput(inode);
940 	if (inode != dentry->d_inode)
941 		goto out_drop;
942 
943 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
944 	nfs_file_set_open_context(filp, ctx);
945 	err = 0;
946 
947 out_put_ctx:
948 	put_nfs_open_context(ctx);
949 out:
950 	dput(parent);
951 	return err;
952 
953 out_drop:
954 	d_drop(dentry);
955 	err = -EOPENSTALE;
956 	goto out_put_ctx;
957 }
958 
959 const struct file_operations nfs4_file_operations = {
960 	.llseek		= nfs_file_llseek,
961 	.read		= do_sync_read,
962 	.write		= do_sync_write,
963 	.aio_read	= nfs_file_read,
964 	.aio_write	= nfs_file_write,
965 	.mmap		= nfs_file_mmap,
966 	.open		= nfs4_file_open,
967 	.flush		= nfs_file_flush,
968 	.release	= nfs_file_release,
969 	.fsync		= nfs_file_fsync,
970 	.lock		= nfs_lock,
971 	.flock		= nfs_flock,
972 	.splice_read	= nfs_file_splice_read,
973 	.splice_write	= nfs_file_splice_write,
974 	.check_flags	= nfs_check_flags,
975 	.setlease	= nfs_setlease,
976 };
977 #endif /* CONFIG_NFS_V4 */
978