xref: /linux/fs/nfs/file.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	nfs_file_clear_open_context(filp);
86 	return 0;
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89 
90 /**
91  * nfs_revalidate_size - Revalidate the file size
92  * @inode - pointer to inode struct
93  * @file - pointer to struct file
94  *
95  * Revalidates the file length. This is basically a wrapper around
96  * nfs_revalidate_inode() that takes into account the fact that we may
97  * have cached writes (in which case we don't care about the server's
98  * idea of what the file length is), or O_DIRECT (in which case we
99  * shouldn't trust the cache).
100  */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 	struct nfs_server *server = NFS_SERVER(inode);
104 	struct nfs_inode *nfsi = NFS_I(inode);
105 
106 	if (nfs_have_delegated_attributes(inode))
107 		goto out_noreval;
108 
109 	if (filp->f_flags & O_DIRECT)
110 		goto force_reval;
111 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112 		goto force_reval;
113 	if (nfs_attribute_timeout(inode))
114 		goto force_reval;
115 out_noreval:
116 	return 0;
117 force_reval:
118 	return __nfs_revalidate_inode(server, inode);
119 }
120 
121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122 {
123 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124 			filp, offset, whence);
125 
126 	/*
127 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128 	 * the cached file length
129 	 */
130 	if (whence != SEEK_SET && whence != SEEK_CUR) {
131 		struct inode *inode = filp->f_mapping->host;
132 
133 		int retval = nfs_revalidate_file_size(inode, filp);
134 		if (retval < 0)
135 			return (loff_t)retval;
136 	}
137 
138 	return generic_file_llseek(filp, offset, whence);
139 }
140 EXPORT_SYMBOL_GPL(nfs_file_llseek);
141 
142 /*
143  * Flush all dirty pages, and check for write errors.
144  */
145 static int
146 nfs_file_flush(struct file *file, fl_owner_t id)
147 {
148 	struct inode	*inode = file_inode(file);
149 
150 	dprintk("NFS: flush(%pD2)\n", file);
151 
152 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
153 	if ((file->f_mode & FMODE_WRITE) == 0)
154 		return 0;
155 
156 	/* Flush writes to the server and return any errors */
157 	return vfs_fsync(file, 0);
158 }
159 
160 ssize_t
161 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
162 {
163 	struct inode *inode = file_inode(iocb->ki_filp);
164 	ssize_t result;
165 
166 	if (iocb->ki_flags & IOCB_DIRECT)
167 		return nfs_file_direct_read(iocb, to);
168 
169 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
170 		iocb->ki_filp,
171 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
172 
173 	result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
174 	if (!result) {
175 		result = generic_file_read_iter(iocb, to);
176 		if (result > 0)
177 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
178 	}
179 	return result;
180 }
181 EXPORT_SYMBOL_GPL(nfs_file_read);
182 
183 ssize_t
184 nfs_file_splice_read(struct file *filp, loff_t *ppos,
185 		     struct pipe_inode_info *pipe, size_t count,
186 		     unsigned int flags)
187 {
188 	struct inode *inode = file_inode(filp);
189 	ssize_t res;
190 
191 	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
192 		filp, (unsigned long) count, (unsigned long long) *ppos);
193 
194 	res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
195 	if (!res) {
196 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
197 		if (res > 0)
198 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
199 	}
200 	return res;
201 }
202 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
203 
204 int
205 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
206 {
207 	struct inode *inode = file_inode(file);
208 	int	status;
209 
210 	dprintk("NFS: mmap(%pD2)\n", file);
211 
212 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
213 	 *       so we call that before revalidating the mapping
214 	 */
215 	status = generic_file_mmap(file, vma);
216 	if (!status) {
217 		vma->vm_ops = &nfs_file_vm_ops;
218 		status = nfs_revalidate_mapping(inode, file->f_mapping);
219 	}
220 	return status;
221 }
222 EXPORT_SYMBOL_GPL(nfs_file_mmap);
223 
224 /*
225  * Flush any dirty pages for this process, and check for write errors.
226  * The return status from this call provides a reliable indication of
227  * whether any write errors occurred for this process.
228  *
229  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
230  * disk, but it retrieves and clears ctx->error after synching, despite
231  * the two being set at the same time in nfs_context_set_write_error().
232  * This is because the former is used to notify the _next_ call to
233  * nfs_file_write() that a write error occurred, and hence cause it to
234  * fall back to doing a synchronous write.
235  */
236 static int
237 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
238 {
239 	struct nfs_open_context *ctx = nfs_file_open_context(file);
240 	struct inode *inode = file_inode(file);
241 	int have_error, do_resend, status;
242 	int ret = 0;
243 
244 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
245 
246 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
247 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
248 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
249 	status = nfs_commit_inode(inode, FLUSH_SYNC);
250 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
251 	if (have_error) {
252 		ret = xchg(&ctx->error, 0);
253 		if (ret)
254 			goto out;
255 	}
256 	if (status < 0) {
257 		ret = status;
258 		goto out;
259 	}
260 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
261 	if (do_resend)
262 		ret = -EAGAIN;
263 out:
264 	return ret;
265 }
266 
267 int
268 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
269 {
270 	int ret;
271 	struct inode *inode = file_inode(file);
272 
273 	trace_nfs_fsync_enter(inode);
274 
275 	inode_dio_wait(inode);
276 	do {
277 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
278 		if (ret != 0)
279 			break;
280 		inode_lock(inode);
281 		ret = nfs_file_fsync_commit(file, start, end, datasync);
282 		if (!ret)
283 			ret = pnfs_sync_inode(inode, !!datasync);
284 		inode_unlock(inode);
285 		/*
286 		 * If nfs_file_fsync_commit detected a server reboot, then
287 		 * resend all dirty pages that might have been covered by
288 		 * the NFS_CONTEXT_RESEND_WRITES flag
289 		 */
290 		start = 0;
291 		end = LLONG_MAX;
292 	} while (ret == -EAGAIN);
293 
294 	trace_nfs_fsync_exit(inode, ret);
295 	return ret;
296 }
297 EXPORT_SYMBOL_GPL(nfs_file_fsync);
298 
299 /*
300  * Decide whether a read/modify/write cycle may be more efficient
301  * then a modify/write/read cycle when writing to a page in the
302  * page cache.
303  *
304  * The modify/write/read cycle may occur if a page is read before
305  * being completely filled by the writer.  In this situation, the
306  * page must be completely written to stable storage on the server
307  * before it can be refilled by reading in the page from the server.
308  * This can lead to expensive, small, FILE_SYNC mode writes being
309  * done.
310  *
311  * It may be more efficient to read the page first if the file is
312  * open for reading in addition to writing, the page is not marked
313  * as Uptodate, it is not dirty or waiting to be committed,
314  * indicating that it was previously allocated and then modified,
315  * that there were valid bytes of data in that range of the file,
316  * and that the new data won't completely replace the old data in
317  * that range of the file.
318  */
319 static int nfs_want_read_modify_write(struct file *file, struct page *page,
320 			loff_t pos, unsigned len)
321 {
322 	unsigned int pglen = nfs_page_length(page);
323 	unsigned int offset = pos & (PAGE_SIZE - 1);
324 	unsigned int end = offset + len;
325 
326 	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
327 		if (!PageUptodate(page))
328 			return 1;
329 		return 0;
330 	}
331 
332 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
333 	    !PageUptodate(page) &&		/* Uptodate? */
334 	    !PagePrivate(page) &&		/* i/o request already? */
335 	    pglen &&				/* valid bytes of file? */
336 	    (end < pglen || offset))		/* replace all valid bytes? */
337 		return 1;
338 	return 0;
339 }
340 
341 /*
342  * This does the "real" work of the write. We must allocate and lock the
343  * page to be sent back to the generic routine, which then copies the
344  * data from user space.
345  *
346  * If the writer ends up delaying the write, the writer needs to
347  * increment the page use counts until he is done with the page.
348  */
349 static int nfs_write_begin(struct file *file, struct address_space *mapping,
350 			loff_t pos, unsigned len, unsigned flags,
351 			struct page **pagep, void **fsdata)
352 {
353 	int ret;
354 	pgoff_t index = pos >> PAGE_SHIFT;
355 	struct page *page;
356 	int once_thru = 0;
357 
358 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
359 		file, mapping->host->i_ino, len, (long long) pos);
360 
361 start:
362 	/*
363 	 * Prevent starvation issues if someone is doing a consistency
364 	 * sync-to-disk
365 	 */
366 	ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
367 				 nfs_wait_bit_killable, TASK_KILLABLE);
368 	if (ret)
369 		return ret;
370 	/*
371 	 * Wait for O_DIRECT to complete
372 	 */
373 	inode_dio_wait(mapping->host);
374 
375 	page = grab_cache_page_write_begin(mapping, index, flags);
376 	if (!page)
377 		return -ENOMEM;
378 	*pagep = page;
379 
380 	ret = nfs_flush_incompatible(file, page);
381 	if (ret) {
382 		unlock_page(page);
383 		put_page(page);
384 	} else if (!once_thru &&
385 		   nfs_want_read_modify_write(file, page, pos, len)) {
386 		once_thru = 1;
387 		ret = nfs_readpage(file, page);
388 		put_page(page);
389 		if (!ret)
390 			goto start;
391 	}
392 	return ret;
393 }
394 
395 static int nfs_write_end(struct file *file, struct address_space *mapping,
396 			loff_t pos, unsigned len, unsigned copied,
397 			struct page *page, void *fsdata)
398 {
399 	unsigned offset = pos & (PAGE_SIZE - 1);
400 	struct nfs_open_context *ctx = nfs_file_open_context(file);
401 	int status;
402 
403 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
404 		file, mapping->host->i_ino, len, (long long) pos);
405 
406 	/*
407 	 * Zero any uninitialised parts of the page, and then mark the page
408 	 * as up to date if it turns out that we're extending the file.
409 	 */
410 	if (!PageUptodate(page)) {
411 		unsigned pglen = nfs_page_length(page);
412 		unsigned end = offset + len;
413 
414 		if (pglen == 0) {
415 			zero_user_segments(page, 0, offset,
416 					end, PAGE_SIZE);
417 			SetPageUptodate(page);
418 		} else if (end >= pglen) {
419 			zero_user_segment(page, end, PAGE_SIZE);
420 			if (offset == 0)
421 				SetPageUptodate(page);
422 		} else
423 			zero_user_segment(page, pglen, PAGE_SIZE);
424 	}
425 
426 	status = nfs_updatepage(file, page, offset, copied);
427 
428 	unlock_page(page);
429 	put_page(page);
430 
431 	if (status < 0)
432 		return status;
433 	NFS_I(mapping->host)->write_io += copied;
434 
435 	if (nfs_ctx_key_to_expire(ctx)) {
436 		status = nfs_wb_all(mapping->host);
437 		if (status < 0)
438 			return status;
439 	}
440 
441 	return copied;
442 }
443 
444 /*
445  * Partially or wholly invalidate a page
446  * - Release the private state associated with a page if undergoing complete
447  *   page invalidation
448  * - Called if either PG_private or PG_fscache is set on the page
449  * - Caller holds page lock
450  */
451 static void nfs_invalidate_page(struct page *page, unsigned int offset,
452 				unsigned int length)
453 {
454 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
455 		 page, offset, length);
456 
457 	if (offset != 0 || length < PAGE_SIZE)
458 		return;
459 	/* Cancel any unstarted writes on this page */
460 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
461 
462 	nfs_fscache_invalidate_page(page, page->mapping->host);
463 }
464 
465 /*
466  * Attempt to release the private state associated with a page
467  * - Called if either PG_private or PG_fscache is set on the page
468  * - Caller holds page lock
469  * - Return true (may release page) or false (may not)
470  */
471 static int nfs_release_page(struct page *page, gfp_t gfp)
472 {
473 	struct address_space *mapping = page->mapping;
474 
475 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
476 
477 	/* Always try to initiate a 'commit' if relevant, but only
478 	 * wait for it if the caller allows blocking.  Even then,
479 	 * only wait 1 second and only if the 'bdi' is not congested.
480 	 * Waiting indefinitely can cause deadlocks when the NFS
481 	 * server is on this machine, when a new TCP connection is
482 	 * needed and in other rare cases.  There is no particular
483 	 * need to wait extensively here.  A short wait has the
484 	 * benefit that someone else can worry about the freezer.
485 	 */
486 	if (mapping) {
487 		struct nfs_server *nfss = NFS_SERVER(mapping->host);
488 		nfs_commit_inode(mapping->host, 0);
489 		if (gfpflags_allow_blocking(gfp) &&
490 		    !bdi_write_congested(&nfss->backing_dev_info)) {
491 			wait_on_page_bit_killable_timeout(page, PG_private,
492 							  HZ);
493 			if (PagePrivate(page))
494 				set_bdi_congested(&nfss->backing_dev_info,
495 						  BLK_RW_ASYNC);
496 		}
497 	}
498 	/* If PagePrivate() is set, then the page is not freeable */
499 	if (PagePrivate(page))
500 		return 0;
501 	return nfs_fscache_release_page(page, gfp);
502 }
503 
504 static void nfs_check_dirty_writeback(struct page *page,
505 				bool *dirty, bool *writeback)
506 {
507 	struct nfs_inode *nfsi;
508 	struct address_space *mapping = page_file_mapping(page);
509 
510 	if (!mapping || PageSwapCache(page))
511 		return;
512 
513 	/*
514 	 * Check if an unstable page is currently being committed and
515 	 * if so, have the VM treat it as if the page is under writeback
516 	 * so it will not block due to pages that will shortly be freeable.
517 	 */
518 	nfsi = NFS_I(mapping->host);
519 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
520 		*writeback = true;
521 		return;
522 	}
523 
524 	/*
525 	 * If PagePrivate() is set, then the page is not freeable and as the
526 	 * inode is not being committed, it's not going to be cleaned in the
527 	 * near future so treat it as dirty
528 	 */
529 	if (PagePrivate(page))
530 		*dirty = true;
531 }
532 
533 /*
534  * Attempt to clear the private state associated with a page when an error
535  * occurs that requires the cached contents of an inode to be written back or
536  * destroyed
537  * - Called if either PG_private or fscache is set on the page
538  * - Caller holds page lock
539  * - Return 0 if successful, -error otherwise
540  */
541 static int nfs_launder_page(struct page *page)
542 {
543 	struct inode *inode = page_file_mapping(page)->host;
544 	struct nfs_inode *nfsi = NFS_I(inode);
545 
546 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
547 		inode->i_ino, (long long)page_offset(page));
548 
549 	nfs_fscache_wait_on_page_write(nfsi, page);
550 	return nfs_wb_launder_page(inode, page);
551 }
552 
553 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
554 						sector_t *span)
555 {
556 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
557 
558 	*span = sis->pages;
559 
560 	return rpc_clnt_swap_activate(clnt);
561 }
562 
563 static void nfs_swap_deactivate(struct file *file)
564 {
565 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
566 
567 	rpc_clnt_swap_deactivate(clnt);
568 }
569 
570 const struct address_space_operations nfs_file_aops = {
571 	.readpage = nfs_readpage,
572 	.readpages = nfs_readpages,
573 	.set_page_dirty = __set_page_dirty_nobuffers,
574 	.writepage = nfs_writepage,
575 	.writepages = nfs_writepages,
576 	.write_begin = nfs_write_begin,
577 	.write_end = nfs_write_end,
578 	.invalidatepage = nfs_invalidate_page,
579 	.releasepage = nfs_release_page,
580 	.direct_IO = nfs_direct_IO,
581 	.migratepage = nfs_migrate_page,
582 	.launder_page = nfs_launder_page,
583 	.is_dirty_writeback = nfs_check_dirty_writeback,
584 	.error_remove_page = generic_error_remove_page,
585 	.swap_activate = nfs_swap_activate,
586 	.swap_deactivate = nfs_swap_deactivate,
587 };
588 
589 /*
590  * Notification that a PTE pointing to an NFS page is about to be made
591  * writable, implying that someone is about to modify the page through a
592  * shared-writable mapping
593  */
594 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
595 {
596 	struct page *page = vmf->page;
597 	struct file *filp = vma->vm_file;
598 	struct inode *inode = file_inode(filp);
599 	unsigned pagelen;
600 	int ret = VM_FAULT_NOPAGE;
601 	struct address_space *mapping;
602 
603 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
604 		filp, filp->f_mapping->host->i_ino,
605 		(long long)page_offset(page));
606 
607 	/* make sure the cache has finished storing the page */
608 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
609 
610 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
611 			nfs_wait_bit_killable, TASK_KILLABLE);
612 
613 	lock_page(page);
614 	mapping = page_file_mapping(page);
615 	if (mapping != inode->i_mapping)
616 		goto out_unlock;
617 
618 	wait_on_page_writeback(page);
619 
620 	pagelen = nfs_page_length(page);
621 	if (pagelen == 0)
622 		goto out_unlock;
623 
624 	ret = VM_FAULT_LOCKED;
625 	if (nfs_flush_incompatible(filp, page) == 0 &&
626 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
627 		goto out;
628 
629 	ret = VM_FAULT_SIGBUS;
630 out_unlock:
631 	unlock_page(page);
632 out:
633 	return ret;
634 }
635 
636 static const struct vm_operations_struct nfs_file_vm_ops = {
637 	.fault = filemap_fault,
638 	.map_pages = filemap_map_pages,
639 	.page_mkwrite = nfs_vm_page_mkwrite,
640 };
641 
642 static int nfs_need_check_write(struct file *filp, struct inode *inode)
643 {
644 	struct nfs_open_context *ctx;
645 
646 	ctx = nfs_file_open_context(filp);
647 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
648 	    nfs_ctx_key_to_expire(ctx))
649 		return 1;
650 	return 0;
651 }
652 
653 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
654 {
655 	struct file *file = iocb->ki_filp;
656 	struct inode *inode = file_inode(file);
657 	unsigned long written = 0;
658 	ssize_t result;
659 	size_t count = iov_iter_count(from);
660 
661 	result = nfs_key_timeout_notify(file, inode);
662 	if (result)
663 		return result;
664 
665 	if (iocb->ki_flags & IOCB_DIRECT) {
666 		result = generic_write_checks(iocb, from);
667 		if (result <= 0)
668 			return result;
669 		return nfs_file_direct_write(iocb, from);
670 	}
671 
672 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
673 		file, count, (long long) iocb->ki_pos);
674 
675 	result = -EBUSY;
676 	if (IS_SWAPFILE(inode))
677 		goto out_swapfile;
678 	/*
679 	 * O_APPEND implies that we must revalidate the file length.
680 	 */
681 	if (iocb->ki_flags & IOCB_APPEND) {
682 		result = nfs_revalidate_file_size(inode, file);
683 		if (result)
684 			goto out;
685 	}
686 
687 	result = count;
688 	if (!count)
689 		goto out;
690 
691 	result = generic_file_write_iter(iocb, from);
692 	if (result > 0)
693 		written = result;
694 
695 	/* Return error values */
696 	if (result >= 0 && nfs_need_check_write(file, inode)) {
697 		int err = vfs_fsync(file, 0);
698 		if (err < 0)
699 			result = err;
700 	}
701 	if (result > 0)
702 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
703 out:
704 	return result;
705 
706 out_swapfile:
707 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
708 	goto out;
709 }
710 EXPORT_SYMBOL_GPL(nfs_file_write);
711 
712 static int
713 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
714 {
715 	struct inode *inode = filp->f_mapping->host;
716 	int status = 0;
717 	unsigned int saved_type = fl->fl_type;
718 
719 	/* Try local locking first */
720 	posix_test_lock(filp, fl);
721 	if (fl->fl_type != F_UNLCK) {
722 		/* found a conflict */
723 		goto out;
724 	}
725 	fl->fl_type = saved_type;
726 
727 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
728 		goto out_noconflict;
729 
730 	if (is_local)
731 		goto out_noconflict;
732 
733 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
734 out:
735 	return status;
736 out_noconflict:
737 	fl->fl_type = F_UNLCK;
738 	goto out;
739 }
740 
741 static int do_vfs_lock(struct file *file, struct file_lock *fl)
742 {
743 	return locks_lock_file_wait(file, fl);
744 }
745 
746 static int
747 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
748 {
749 	struct inode *inode = filp->f_mapping->host;
750 	struct nfs_lock_context *l_ctx;
751 	int status;
752 
753 	/*
754 	 * Flush all pending writes before doing anything
755 	 * with locks..
756 	 */
757 	vfs_fsync(filp, 0);
758 
759 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
760 	if (!IS_ERR(l_ctx)) {
761 		status = nfs_iocounter_wait(l_ctx);
762 		nfs_put_lock_context(l_ctx);
763 		if (status < 0)
764 			return status;
765 	}
766 
767 	/* NOTE: special case
768 	 * 	If we're signalled while cleaning up locks on process exit, we
769 	 * 	still need to complete the unlock.
770 	 */
771 	/*
772 	 * Use local locking if mounted with "-onolock" or with appropriate
773 	 * "-olocal_lock="
774 	 */
775 	if (!is_local)
776 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
777 	else
778 		status = do_vfs_lock(filp, fl);
779 	return status;
780 }
781 
782 static int
783 is_time_granular(struct timespec *ts) {
784 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
785 }
786 
787 static int
788 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
789 {
790 	struct inode *inode = filp->f_mapping->host;
791 	int status;
792 
793 	/*
794 	 * Flush all pending writes before doing anything
795 	 * with locks..
796 	 */
797 	status = nfs_sync_mapping(filp->f_mapping);
798 	if (status != 0)
799 		goto out;
800 
801 	/*
802 	 * Use local locking if mounted with "-onolock" or with appropriate
803 	 * "-olocal_lock="
804 	 */
805 	if (!is_local)
806 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
807 	else
808 		status = do_vfs_lock(filp, fl);
809 	if (status < 0)
810 		goto out;
811 
812 	/*
813 	 * Revalidate the cache if the server has time stamps granular
814 	 * enough to detect subsecond changes.  Otherwise, clear the
815 	 * cache to prevent missing any changes.
816 	 *
817 	 * This makes locking act as a cache coherency point.
818 	 */
819 	nfs_sync_mapping(filp->f_mapping);
820 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
821 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
822 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
823 		else
824 			nfs_zap_caches(inode);
825 	}
826 out:
827 	return status;
828 }
829 
830 /*
831  * Lock a (portion of) a file
832  */
833 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
834 {
835 	struct inode *inode = filp->f_mapping->host;
836 	int ret = -ENOLCK;
837 	int is_local = 0;
838 
839 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
840 			filp, fl->fl_type, fl->fl_flags,
841 			(long long)fl->fl_start, (long long)fl->fl_end);
842 
843 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
844 
845 	/* No mandatory locks over NFS */
846 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
847 		goto out_err;
848 
849 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
850 		is_local = 1;
851 
852 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
853 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
854 		if (ret < 0)
855 			goto out_err;
856 	}
857 
858 	if (IS_GETLK(cmd))
859 		ret = do_getlk(filp, cmd, fl, is_local);
860 	else if (fl->fl_type == F_UNLCK)
861 		ret = do_unlk(filp, cmd, fl, is_local);
862 	else
863 		ret = do_setlk(filp, cmd, fl, is_local);
864 out_err:
865 	return ret;
866 }
867 EXPORT_SYMBOL_GPL(nfs_lock);
868 
869 /*
870  * Lock a (portion of) a file
871  */
872 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
873 {
874 	struct inode *inode = filp->f_mapping->host;
875 	int is_local = 0;
876 
877 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
878 			filp, fl->fl_type, fl->fl_flags);
879 
880 	if (!(fl->fl_flags & FL_FLOCK))
881 		return -ENOLCK;
882 
883 	/*
884 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
885 	 * any standard. In principle we might be able to support LOCK_MAND
886 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
887 	 * NFS code is not set up for it.
888 	 */
889 	if (fl->fl_type & LOCK_MAND)
890 		return -EINVAL;
891 
892 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
893 		is_local = 1;
894 
895 	/* We're simulating flock() locks using posix locks on the server */
896 	if (fl->fl_type == F_UNLCK)
897 		return do_unlk(filp, cmd, fl, is_local);
898 	return do_setlk(filp, cmd, fl, is_local);
899 }
900 EXPORT_SYMBOL_GPL(nfs_flock);
901 
902 const struct file_operations nfs_file_operations = {
903 	.llseek		= nfs_file_llseek,
904 	.read_iter	= nfs_file_read,
905 	.write_iter	= nfs_file_write,
906 	.mmap		= nfs_file_mmap,
907 	.open		= nfs_file_open,
908 	.flush		= nfs_file_flush,
909 	.release	= nfs_file_release,
910 	.fsync		= nfs_file_fsync,
911 	.lock		= nfs_lock,
912 	.flock		= nfs_flock,
913 	.splice_read	= nfs_file_splice_read,
914 	.splice_write	= iter_file_splice_write,
915 	.check_flags	= nfs_check_flags,
916 	.setlease	= simple_nosetlease,
917 };
918 EXPORT_SYMBOL_GPL(nfs_file_operations);
919