xref: /linux/fs/nfs/file.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	return nfs_release(inode, filp);
86 }
87 EXPORT_SYMBOL_GPL(nfs_file_release);
88 
89 /**
90  * nfs_revalidate_size - Revalidate the file size
91  * @inode - pointer to inode struct
92  * @file - pointer to struct file
93  *
94  * Revalidates the file length. This is basically a wrapper around
95  * nfs_revalidate_inode() that takes into account the fact that we may
96  * have cached writes (in which case we don't care about the server's
97  * idea of what the file length is), or O_DIRECT (in which case we
98  * shouldn't trust the cache).
99  */
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101 {
102 	struct nfs_server *server = NFS_SERVER(inode);
103 	struct nfs_inode *nfsi = NFS_I(inode);
104 
105 	if (nfs_have_delegated_attributes(inode))
106 		goto out_noreval;
107 
108 	if (filp->f_flags & O_DIRECT)
109 		goto force_reval;
110 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111 		goto force_reval;
112 	if (nfs_attribute_timeout(inode))
113 		goto force_reval;
114 out_noreval:
115 	return 0;
116 force_reval:
117 	return __nfs_revalidate_inode(server, inode);
118 }
119 
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121 {
122 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 			filp, offset, whence);
124 
125 	/*
126 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 	 * the cached file length
128 	 */
129 	if (whence != SEEK_SET && whence != SEEK_CUR) {
130 		struct inode *inode = filp->f_mapping->host;
131 
132 		int retval = nfs_revalidate_file_size(inode, filp);
133 		if (retval < 0)
134 			return (loff_t)retval;
135 	}
136 
137 	return generic_file_llseek(filp, offset, whence);
138 }
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
140 
141 /*
142  * Flush all dirty pages, and check for write errors.
143  */
144 int
145 nfs_file_flush(struct file *file, fl_owner_t id)
146 {
147 	struct inode	*inode = file_inode(file);
148 
149 	dprintk("NFS: flush(%pD2)\n", file);
150 
151 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 	if ((file->f_mode & FMODE_WRITE) == 0)
153 		return 0;
154 
155 	/*
156 	 * If we're holding a write delegation, then just start the i/o
157 	 * but don't wait for completion (or send a commit).
158 	 */
159 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 		return filemap_fdatawrite(file->f_mapping);
161 
162 	/* Flush writes to the server and return any errors */
163 	return vfs_fsync(file, 0);
164 }
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
166 
167 ssize_t
168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
169 {
170 	struct inode *inode = file_inode(iocb->ki_filp);
171 	ssize_t result;
172 
173 	if (iocb->ki_flags & IOCB_DIRECT)
174 		return nfs_file_direct_read(iocb, to, iocb->ki_pos);
175 
176 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
177 		iocb->ki_filp,
178 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
179 
180 	result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
181 	if (!result) {
182 		result = generic_file_read_iter(iocb, to);
183 		if (result > 0)
184 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
185 	}
186 	return result;
187 }
188 EXPORT_SYMBOL_GPL(nfs_file_read);
189 
190 ssize_t
191 nfs_file_splice_read(struct file *filp, loff_t *ppos,
192 		     struct pipe_inode_info *pipe, size_t count,
193 		     unsigned int flags)
194 {
195 	struct inode *inode = file_inode(filp);
196 	ssize_t res;
197 
198 	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
199 		filp, (unsigned long) count, (unsigned long long) *ppos);
200 
201 	res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
202 	if (!res) {
203 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
204 		if (res > 0)
205 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
206 	}
207 	return res;
208 }
209 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
210 
211 int
212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
213 {
214 	struct inode *inode = file_inode(file);
215 	int	status;
216 
217 	dprintk("NFS: mmap(%pD2)\n", file);
218 
219 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
220 	 *       so we call that before revalidating the mapping
221 	 */
222 	status = generic_file_mmap(file, vma);
223 	if (!status) {
224 		vma->vm_ops = &nfs_file_vm_ops;
225 		status = nfs_revalidate_mapping(inode, file->f_mapping);
226 	}
227 	return status;
228 }
229 EXPORT_SYMBOL_GPL(nfs_file_mmap);
230 
231 /*
232  * Flush any dirty pages for this process, and check for write errors.
233  * The return status from this call provides a reliable indication of
234  * whether any write errors occurred for this process.
235  *
236  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
237  * disk, but it retrieves and clears ctx->error after synching, despite
238  * the two being set at the same time in nfs_context_set_write_error().
239  * This is because the former is used to notify the _next_ call to
240  * nfs_file_write() that a write error occurred, and hence cause it to
241  * fall back to doing a synchronous write.
242  */
243 int
244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
245 {
246 	struct nfs_open_context *ctx = nfs_file_open_context(file);
247 	struct inode *inode = file_inode(file);
248 	int have_error, do_resend, status;
249 	int ret = 0;
250 
251 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
252 
253 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
254 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
255 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
256 	status = nfs_commit_inode(inode, FLUSH_SYNC);
257 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
258 	if (have_error) {
259 		ret = xchg(&ctx->error, 0);
260 		if (ret)
261 			goto out;
262 	}
263 	if (status < 0) {
264 		ret = status;
265 		goto out;
266 	}
267 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
268 	if (do_resend)
269 		ret = -EAGAIN;
270 out:
271 	return ret;
272 }
273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
274 
275 static int
276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
277 {
278 	int ret;
279 	struct inode *inode = file_inode(file);
280 
281 	trace_nfs_fsync_enter(inode);
282 
283 	nfs_inode_dio_wait(inode);
284 	do {
285 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
286 		if (ret != 0)
287 			break;
288 		mutex_lock(&inode->i_mutex);
289 		ret = nfs_file_fsync_commit(file, start, end, datasync);
290 		mutex_unlock(&inode->i_mutex);
291 		/*
292 		 * If nfs_file_fsync_commit detected a server reboot, then
293 		 * resend all dirty pages that might have been covered by
294 		 * the NFS_CONTEXT_RESEND_WRITES flag
295 		 */
296 		start = 0;
297 		end = LLONG_MAX;
298 	} while (ret == -EAGAIN);
299 
300 	trace_nfs_fsync_exit(inode, ret);
301 	return ret;
302 }
303 
304 /*
305  * Decide whether a read/modify/write cycle may be more efficient
306  * then a modify/write/read cycle when writing to a page in the
307  * page cache.
308  *
309  * The modify/write/read cycle may occur if a page is read before
310  * being completely filled by the writer.  In this situation, the
311  * page must be completely written to stable storage on the server
312  * before it can be refilled by reading in the page from the server.
313  * This can lead to expensive, small, FILE_SYNC mode writes being
314  * done.
315  *
316  * It may be more efficient to read the page first if the file is
317  * open for reading in addition to writing, the page is not marked
318  * as Uptodate, it is not dirty or waiting to be committed,
319  * indicating that it was previously allocated and then modified,
320  * that there were valid bytes of data in that range of the file,
321  * and that the new data won't completely replace the old data in
322  * that range of the file.
323  */
324 static int nfs_want_read_modify_write(struct file *file, struct page *page,
325 			loff_t pos, unsigned len)
326 {
327 	unsigned int pglen = nfs_page_length(page);
328 	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
329 	unsigned int end = offset + len;
330 
331 	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
332 		if (!PageUptodate(page))
333 			return 1;
334 		return 0;
335 	}
336 
337 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
338 	    !PageUptodate(page) &&		/* Uptodate? */
339 	    !PagePrivate(page) &&		/* i/o request already? */
340 	    pglen &&				/* valid bytes of file? */
341 	    (end < pglen || offset))		/* replace all valid bytes? */
342 		return 1;
343 	return 0;
344 }
345 
346 /*
347  * This does the "real" work of the write. We must allocate and lock the
348  * page to be sent back to the generic routine, which then copies the
349  * data from user space.
350  *
351  * If the writer ends up delaying the write, the writer needs to
352  * increment the page use counts until he is done with the page.
353  */
354 static int nfs_write_begin(struct file *file, struct address_space *mapping,
355 			loff_t pos, unsigned len, unsigned flags,
356 			struct page **pagep, void **fsdata)
357 {
358 	int ret;
359 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
360 	struct page *page;
361 	int once_thru = 0;
362 
363 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
364 		file, mapping->host->i_ino, len, (long long) pos);
365 
366 start:
367 	/*
368 	 * Prevent starvation issues if someone is doing a consistency
369 	 * sync-to-disk
370 	 */
371 	ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
372 				 nfs_wait_bit_killable, TASK_KILLABLE);
373 	if (ret)
374 		return ret;
375 	/*
376 	 * Wait for O_DIRECT to complete
377 	 */
378 	nfs_inode_dio_wait(mapping->host);
379 
380 	page = grab_cache_page_write_begin(mapping, index, flags);
381 	if (!page)
382 		return -ENOMEM;
383 	*pagep = page;
384 
385 	ret = nfs_flush_incompatible(file, page);
386 	if (ret) {
387 		unlock_page(page);
388 		page_cache_release(page);
389 	} else if (!once_thru &&
390 		   nfs_want_read_modify_write(file, page, pos, len)) {
391 		once_thru = 1;
392 		ret = nfs_readpage(file, page);
393 		page_cache_release(page);
394 		if (!ret)
395 			goto start;
396 	}
397 	return ret;
398 }
399 
400 static int nfs_write_end(struct file *file, struct address_space *mapping,
401 			loff_t pos, unsigned len, unsigned copied,
402 			struct page *page, void *fsdata)
403 {
404 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
405 	struct nfs_open_context *ctx = nfs_file_open_context(file);
406 	int status;
407 
408 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
409 		file, mapping->host->i_ino, len, (long long) pos);
410 
411 	/*
412 	 * Zero any uninitialised parts of the page, and then mark the page
413 	 * as up to date if it turns out that we're extending the file.
414 	 */
415 	if (!PageUptodate(page)) {
416 		unsigned pglen = nfs_page_length(page);
417 		unsigned end = offset + len;
418 
419 		if (pglen == 0) {
420 			zero_user_segments(page, 0, offset,
421 					end, PAGE_CACHE_SIZE);
422 			SetPageUptodate(page);
423 		} else if (end >= pglen) {
424 			zero_user_segment(page, end, PAGE_CACHE_SIZE);
425 			if (offset == 0)
426 				SetPageUptodate(page);
427 		} else
428 			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
429 	}
430 
431 	status = nfs_updatepage(file, page, offset, copied);
432 
433 	unlock_page(page);
434 	page_cache_release(page);
435 
436 	if (status < 0)
437 		return status;
438 	NFS_I(mapping->host)->write_io += copied;
439 
440 	if (nfs_ctx_key_to_expire(ctx)) {
441 		status = nfs_wb_all(mapping->host);
442 		if (status < 0)
443 			return status;
444 	}
445 
446 	return copied;
447 }
448 
449 /*
450  * Partially or wholly invalidate a page
451  * - Release the private state associated with a page if undergoing complete
452  *   page invalidation
453  * - Called if either PG_private or PG_fscache is set on the page
454  * - Caller holds page lock
455  */
456 static void nfs_invalidate_page(struct page *page, unsigned int offset,
457 				unsigned int length)
458 {
459 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
460 		 page, offset, length);
461 
462 	if (offset != 0 || length < PAGE_CACHE_SIZE)
463 		return;
464 	/* Cancel any unstarted writes on this page */
465 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
466 
467 	nfs_fscache_invalidate_page(page, page->mapping->host);
468 }
469 
470 /*
471  * Attempt to release the private state associated with a page
472  * - Called if either PG_private or PG_fscache is set on the page
473  * - Caller holds page lock
474  * - Return true (may release page) or false (may not)
475  */
476 static int nfs_release_page(struct page *page, gfp_t gfp)
477 {
478 	struct address_space *mapping = page->mapping;
479 
480 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
481 
482 	/* Always try to initiate a 'commit' if relevant, but only
483 	 * wait for it if __GFP_WAIT is set.  Even then, only wait 1
484 	 * second and only if the 'bdi' is not congested.
485 	 * Waiting indefinitely can cause deadlocks when the NFS
486 	 * server is on this machine, when a new TCP connection is
487 	 * needed and in other rare cases.  There is no particular
488 	 * need to wait extensively here.  A short wait has the
489 	 * benefit that someone else can worry about the freezer.
490 	 */
491 	if (mapping) {
492 		struct nfs_server *nfss = NFS_SERVER(mapping->host);
493 		nfs_commit_inode(mapping->host, 0);
494 		if ((gfp & __GFP_WAIT) &&
495 		    !bdi_write_congested(&nfss->backing_dev_info)) {
496 			wait_on_page_bit_killable_timeout(page, PG_private,
497 							  HZ);
498 			if (PagePrivate(page))
499 				set_bdi_congested(&nfss->backing_dev_info,
500 						  BLK_RW_ASYNC);
501 		}
502 	}
503 	/* If PagePrivate() is set, then the page is not freeable */
504 	if (PagePrivate(page))
505 		return 0;
506 	return nfs_fscache_release_page(page, gfp);
507 }
508 
509 static void nfs_check_dirty_writeback(struct page *page,
510 				bool *dirty, bool *writeback)
511 {
512 	struct nfs_inode *nfsi;
513 	struct address_space *mapping = page_file_mapping(page);
514 
515 	if (!mapping || PageSwapCache(page))
516 		return;
517 
518 	/*
519 	 * Check if an unstable page is currently being committed and
520 	 * if so, have the VM treat it as if the page is under writeback
521 	 * so it will not block due to pages that will shortly be freeable.
522 	 */
523 	nfsi = NFS_I(mapping->host);
524 	if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
525 		*writeback = true;
526 		return;
527 	}
528 
529 	/*
530 	 * If PagePrivate() is set, then the page is not freeable and as the
531 	 * inode is not being committed, it's not going to be cleaned in the
532 	 * near future so treat it as dirty
533 	 */
534 	if (PagePrivate(page))
535 		*dirty = true;
536 }
537 
538 /*
539  * Attempt to clear the private state associated with a page when an error
540  * occurs that requires the cached contents of an inode to be written back or
541  * destroyed
542  * - Called if either PG_private or fscache is set on the page
543  * - Caller holds page lock
544  * - Return 0 if successful, -error otherwise
545  */
546 static int nfs_launder_page(struct page *page)
547 {
548 	struct inode *inode = page_file_mapping(page)->host;
549 	struct nfs_inode *nfsi = NFS_I(inode);
550 
551 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
552 		inode->i_ino, (long long)page_offset(page));
553 
554 	nfs_fscache_wait_on_page_write(nfsi, page);
555 	return nfs_wb_page(inode, page);
556 }
557 
558 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
559 						sector_t *span)
560 {
561 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
562 
563 	*span = sis->pages;
564 
565 	return rpc_clnt_swap_activate(clnt);
566 }
567 
568 static void nfs_swap_deactivate(struct file *file)
569 {
570 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
571 
572 	rpc_clnt_swap_deactivate(clnt);
573 }
574 
575 const struct address_space_operations nfs_file_aops = {
576 	.readpage = nfs_readpage,
577 	.readpages = nfs_readpages,
578 	.set_page_dirty = __set_page_dirty_nobuffers,
579 	.writepage = nfs_writepage,
580 	.writepages = nfs_writepages,
581 	.write_begin = nfs_write_begin,
582 	.write_end = nfs_write_end,
583 	.invalidatepage = nfs_invalidate_page,
584 	.releasepage = nfs_release_page,
585 	.direct_IO = nfs_direct_IO,
586 	.migratepage = nfs_migrate_page,
587 	.launder_page = nfs_launder_page,
588 	.is_dirty_writeback = nfs_check_dirty_writeback,
589 	.error_remove_page = generic_error_remove_page,
590 	.swap_activate = nfs_swap_activate,
591 	.swap_deactivate = nfs_swap_deactivate,
592 };
593 
594 /*
595  * Notification that a PTE pointing to an NFS page is about to be made
596  * writable, implying that someone is about to modify the page through a
597  * shared-writable mapping
598  */
599 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
600 {
601 	struct page *page = vmf->page;
602 	struct file *filp = vma->vm_file;
603 	struct inode *inode = file_inode(filp);
604 	unsigned pagelen;
605 	int ret = VM_FAULT_NOPAGE;
606 	struct address_space *mapping;
607 
608 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
609 		filp, filp->f_mapping->host->i_ino,
610 		(long long)page_offset(page));
611 
612 	/* make sure the cache has finished storing the page */
613 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
614 
615 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
616 			nfs_wait_bit_killable, TASK_KILLABLE);
617 
618 	lock_page(page);
619 	mapping = page_file_mapping(page);
620 	if (mapping != inode->i_mapping)
621 		goto out_unlock;
622 
623 	wait_on_page_writeback(page);
624 
625 	pagelen = nfs_page_length(page);
626 	if (pagelen == 0)
627 		goto out_unlock;
628 
629 	ret = VM_FAULT_LOCKED;
630 	if (nfs_flush_incompatible(filp, page) == 0 &&
631 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
632 		goto out;
633 
634 	ret = VM_FAULT_SIGBUS;
635 out_unlock:
636 	unlock_page(page);
637 out:
638 	return ret;
639 }
640 
641 static const struct vm_operations_struct nfs_file_vm_ops = {
642 	.fault = filemap_fault,
643 	.map_pages = filemap_map_pages,
644 	.page_mkwrite = nfs_vm_page_mkwrite,
645 };
646 
647 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
648 {
649 	struct nfs_open_context *ctx;
650 
651 	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
652 		return 1;
653 	ctx = nfs_file_open_context(filp);
654 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
655 	    nfs_ctx_key_to_expire(ctx))
656 		return 1;
657 	return 0;
658 }
659 
660 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
661 {
662 	struct file *file = iocb->ki_filp;
663 	struct inode *inode = file_inode(file);
664 	unsigned long written = 0;
665 	ssize_t result;
666 	size_t count = iov_iter_count(from);
667 
668 	result = nfs_key_timeout_notify(file, inode);
669 	if (result)
670 		return result;
671 
672 	if (iocb->ki_flags & IOCB_DIRECT) {
673 		result = generic_write_checks(iocb, from);
674 		if (result <= 0)
675 			return result;
676 		return nfs_file_direct_write(iocb, from);
677 	}
678 
679 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
680 		file, count, (long long) iocb->ki_pos);
681 
682 	result = -EBUSY;
683 	if (IS_SWAPFILE(inode))
684 		goto out_swapfile;
685 	/*
686 	 * O_APPEND implies that we must revalidate the file length.
687 	 */
688 	if (iocb->ki_flags & IOCB_APPEND) {
689 		result = nfs_revalidate_file_size(inode, file);
690 		if (result)
691 			goto out;
692 	}
693 
694 	result = count;
695 	if (!count)
696 		goto out;
697 
698 	result = generic_file_write_iter(iocb, from);
699 	if (result > 0)
700 		written = result;
701 
702 	/* Return error values for O_DSYNC and IS_SYNC() */
703 	if (result >= 0 && nfs_need_sync_write(file, inode)) {
704 		int err = vfs_fsync(file, 0);
705 		if (err < 0)
706 			result = err;
707 	}
708 	if (result > 0)
709 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
710 out:
711 	return result;
712 
713 out_swapfile:
714 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
715 	goto out;
716 }
717 EXPORT_SYMBOL_GPL(nfs_file_write);
718 
719 static int
720 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
721 {
722 	struct inode *inode = filp->f_mapping->host;
723 	int status = 0;
724 	unsigned int saved_type = fl->fl_type;
725 
726 	/* Try local locking first */
727 	posix_test_lock(filp, fl);
728 	if (fl->fl_type != F_UNLCK) {
729 		/* found a conflict */
730 		goto out;
731 	}
732 	fl->fl_type = saved_type;
733 
734 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
735 		goto out_noconflict;
736 
737 	if (is_local)
738 		goto out_noconflict;
739 
740 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
741 out:
742 	return status;
743 out_noconflict:
744 	fl->fl_type = F_UNLCK;
745 	goto out;
746 }
747 
748 static int do_vfs_lock(struct file *file, struct file_lock *fl)
749 {
750 	int res = 0;
751 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
752 		case FL_POSIX:
753 			res = posix_lock_file_wait(file, fl);
754 			break;
755 		case FL_FLOCK:
756 			res = flock_lock_file_wait(file, fl);
757 			break;
758 		default:
759 			BUG();
760 	}
761 	return res;
762 }
763 
764 static int
765 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
766 {
767 	struct inode *inode = filp->f_mapping->host;
768 	struct nfs_lock_context *l_ctx;
769 	int status;
770 
771 	/*
772 	 * Flush all pending writes before doing anything
773 	 * with locks..
774 	 */
775 	vfs_fsync(filp, 0);
776 
777 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
778 	if (!IS_ERR(l_ctx)) {
779 		status = nfs_iocounter_wait(&l_ctx->io_count);
780 		nfs_put_lock_context(l_ctx);
781 		if (status < 0)
782 			return status;
783 	}
784 
785 	/* NOTE: special case
786 	 * 	If we're signalled while cleaning up locks on process exit, we
787 	 * 	still need to complete the unlock.
788 	 */
789 	/*
790 	 * Use local locking if mounted with "-onolock" or with appropriate
791 	 * "-olocal_lock="
792 	 */
793 	if (!is_local)
794 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
795 	else
796 		status = do_vfs_lock(filp, fl);
797 	return status;
798 }
799 
800 static int
801 is_time_granular(struct timespec *ts) {
802 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
803 }
804 
805 static int
806 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
807 {
808 	struct inode *inode = filp->f_mapping->host;
809 	int status;
810 
811 	/*
812 	 * Flush all pending writes before doing anything
813 	 * with locks..
814 	 */
815 	status = nfs_sync_mapping(filp->f_mapping);
816 	if (status != 0)
817 		goto out;
818 
819 	/*
820 	 * Use local locking if mounted with "-onolock" or with appropriate
821 	 * "-olocal_lock="
822 	 */
823 	if (!is_local)
824 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
825 	else
826 		status = do_vfs_lock(filp, fl);
827 	if (status < 0)
828 		goto out;
829 
830 	/*
831 	 * Revalidate the cache if the server has time stamps granular
832 	 * enough to detect subsecond changes.  Otherwise, clear the
833 	 * cache to prevent missing any changes.
834 	 *
835 	 * This makes locking act as a cache coherency point.
836 	 */
837 	nfs_sync_mapping(filp->f_mapping);
838 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
839 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
840 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
841 		else
842 			nfs_zap_caches(inode);
843 	}
844 out:
845 	return status;
846 }
847 
848 /*
849  * Lock a (portion of) a file
850  */
851 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
852 {
853 	struct inode *inode = filp->f_mapping->host;
854 	int ret = -ENOLCK;
855 	int is_local = 0;
856 
857 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
858 			filp, fl->fl_type, fl->fl_flags,
859 			(long long)fl->fl_start, (long long)fl->fl_end);
860 
861 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
862 
863 	/* No mandatory locks over NFS */
864 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
865 		goto out_err;
866 
867 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
868 		is_local = 1;
869 
870 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
871 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
872 		if (ret < 0)
873 			goto out_err;
874 	}
875 
876 	if (IS_GETLK(cmd))
877 		ret = do_getlk(filp, cmd, fl, is_local);
878 	else if (fl->fl_type == F_UNLCK)
879 		ret = do_unlk(filp, cmd, fl, is_local);
880 	else
881 		ret = do_setlk(filp, cmd, fl, is_local);
882 out_err:
883 	return ret;
884 }
885 EXPORT_SYMBOL_GPL(nfs_lock);
886 
887 /*
888  * Lock a (portion of) a file
889  */
890 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
891 {
892 	struct inode *inode = filp->f_mapping->host;
893 	int is_local = 0;
894 
895 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
896 			filp, fl->fl_type, fl->fl_flags);
897 
898 	if (!(fl->fl_flags & FL_FLOCK))
899 		return -ENOLCK;
900 
901 	/*
902 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
903 	 * any standard. In principle we might be able to support LOCK_MAND
904 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
905 	 * NFS code is not set up for it.
906 	 */
907 	if (fl->fl_type & LOCK_MAND)
908 		return -EINVAL;
909 
910 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
911 		is_local = 1;
912 
913 	/* We're simulating flock() locks using posix locks on the server */
914 	if (fl->fl_type == F_UNLCK)
915 		return do_unlk(filp, cmd, fl, is_local);
916 	return do_setlk(filp, cmd, fl, is_local);
917 }
918 EXPORT_SYMBOL_GPL(nfs_flock);
919 
920 const struct file_operations nfs_file_operations = {
921 	.llseek		= nfs_file_llseek,
922 	.read_iter	= nfs_file_read,
923 	.write_iter	= nfs_file_write,
924 	.mmap		= nfs_file_mmap,
925 	.open		= nfs_file_open,
926 	.flush		= nfs_file_flush,
927 	.release	= nfs_file_release,
928 	.fsync		= nfs_file_fsync,
929 	.lock		= nfs_lock,
930 	.flock		= nfs_flock,
931 	.splice_read	= nfs_file_splice_read,
932 	.splice_write	= iter_file_splice_write,
933 	.check_flags	= nfs_check_flags,
934 	.setlease	= simple_nosetlease,
935 };
936 EXPORT_SYMBOL_GPL(nfs_file_operations);
937