1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 #include "fscache.h" 63 #include "nfstrace.h" 64 65 #define NFSDBG_FACILITY NFSDBG_VFS 66 67 static struct kmem_cache *nfs_direct_cachep; 68 69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 72 static void nfs_direct_write_schedule_work(struct work_struct *work); 73 74 static inline void get_dreq(struct nfs_direct_req *dreq) 75 { 76 atomic_inc(&dreq->io_count); 77 } 78 79 static inline int put_dreq(struct nfs_direct_req *dreq) 80 { 81 return atomic_dec_and_test(&dreq->io_count); 82 } 83 84 static void 85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 86 const struct nfs_pgio_header *hdr, 87 ssize_t dreq_len) 88 { 89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 90 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 91 return; 92 if (dreq->max_count >= dreq_len) { 93 dreq->max_count = dreq_len; 94 if (dreq->count > dreq_len) 95 dreq->count = dreq_len; 96 } 97 98 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error) 99 dreq->error = hdr->error; 100 } 101 102 static void 103 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 104 const struct nfs_pgio_header *hdr) 105 { 106 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 107 ssize_t dreq_len = 0; 108 109 if (hdr_end > dreq->io_start) 110 dreq_len = hdr_end - dreq->io_start; 111 112 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 113 114 if (dreq_len > dreq->max_count) 115 dreq_len = dreq->max_count; 116 117 if (dreq->count < dreq_len) 118 dreq->count = dreq_len; 119 } 120 121 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq, 122 struct nfs_page *req) 123 { 124 loff_t offs = req_offset(req); 125 size_t req_start = (size_t)(offs - dreq->io_start); 126 127 if (req_start < dreq->max_count) 128 dreq->max_count = req_start; 129 if (req_start < dreq->count) 130 dreq->count = req_start; 131 } 132 133 /** 134 * nfs_swap_rw - NFS address space operation for swap I/O 135 * @iocb: target I/O control block 136 * @iter: I/O buffer 137 * 138 * Perform IO to the swap-file. This is much like direct IO. 139 */ 140 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter) 141 { 142 ssize_t ret; 143 144 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 145 146 if (iov_iter_rw(iter) == READ) 147 ret = nfs_file_direct_read(iocb, iter, true); 148 else 149 ret = nfs_file_direct_write(iocb, iter, true); 150 if (ret < 0) 151 return ret; 152 return 0; 153 } 154 155 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 156 { 157 unsigned int i; 158 for (i = 0; i < npages; i++) 159 put_page(pages[i]); 160 } 161 162 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 163 struct nfs_direct_req *dreq) 164 { 165 cinfo->inode = dreq->inode; 166 cinfo->mds = &dreq->mds_cinfo; 167 cinfo->ds = &dreq->ds_cinfo; 168 cinfo->dreq = dreq; 169 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 170 } 171 172 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 173 { 174 struct nfs_direct_req *dreq; 175 176 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 177 if (!dreq) 178 return NULL; 179 180 kref_init(&dreq->kref); 181 kref_get(&dreq->kref); 182 init_completion(&dreq->completion); 183 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 184 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 185 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 186 spin_lock_init(&dreq->lock); 187 188 return dreq; 189 } 190 191 static void nfs_direct_req_free(struct kref *kref) 192 { 193 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 194 195 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 196 if (dreq->l_ctx != NULL) 197 nfs_put_lock_context(dreq->l_ctx); 198 if (dreq->ctx != NULL) 199 put_nfs_open_context(dreq->ctx); 200 kmem_cache_free(nfs_direct_cachep, dreq); 201 } 202 203 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 204 { 205 kref_put(&dreq->kref, nfs_direct_req_free); 206 } 207 208 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 209 { 210 return dreq->bytes_left; 211 } 212 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 213 214 /* 215 * Collects and returns the final error value/byte-count. 216 */ 217 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 218 { 219 ssize_t result = -EIOCBQUEUED; 220 221 /* Async requests don't wait here */ 222 if (dreq->iocb) 223 goto out; 224 225 result = wait_for_completion_killable(&dreq->completion); 226 227 if (!result) { 228 result = dreq->count; 229 WARN_ON_ONCE(dreq->count < 0); 230 } 231 if (!result) 232 result = dreq->error; 233 234 out: 235 return (ssize_t) result; 236 } 237 238 /* 239 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 240 * the iocb is still valid here if this is a synchronous request. 241 */ 242 static void nfs_direct_complete(struct nfs_direct_req *dreq) 243 { 244 struct inode *inode = dreq->inode; 245 246 inode_dio_end(inode); 247 248 if (dreq->iocb) { 249 long res = (long) dreq->error; 250 if (dreq->count != 0) { 251 res = (long) dreq->count; 252 WARN_ON_ONCE(dreq->count < 0); 253 } 254 dreq->iocb->ki_complete(dreq->iocb, res); 255 } 256 257 complete(&dreq->completion); 258 259 nfs_direct_req_release(dreq); 260 } 261 262 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 263 { 264 unsigned long bytes = 0; 265 struct nfs_direct_req *dreq = hdr->dreq; 266 267 spin_lock(&dreq->lock); 268 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 269 spin_unlock(&dreq->lock); 270 goto out_put; 271 } 272 273 nfs_direct_count_bytes(dreq, hdr); 274 spin_unlock(&dreq->lock); 275 276 while (!list_empty(&hdr->pages)) { 277 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 278 struct page *page = req->wb_page; 279 280 if (!PageCompound(page) && bytes < hdr->good_bytes && 281 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 282 set_page_dirty(page); 283 bytes += req->wb_bytes; 284 nfs_list_remove_request(req); 285 nfs_release_request(req); 286 } 287 out_put: 288 if (put_dreq(dreq)) 289 nfs_direct_complete(dreq); 290 hdr->release(hdr); 291 } 292 293 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 294 { 295 struct nfs_page *req; 296 297 while (!list_empty(head)) { 298 req = nfs_list_entry(head->next); 299 nfs_list_remove_request(req); 300 nfs_release_request(req); 301 } 302 } 303 304 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 305 { 306 get_dreq(hdr->dreq); 307 } 308 309 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 310 .error_cleanup = nfs_read_sync_pgio_error, 311 .init_hdr = nfs_direct_pgio_init, 312 .completion = nfs_direct_read_completion, 313 }; 314 315 /* 316 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 317 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 318 * bail and stop sending more reads. Read length accounting is 319 * handled automatically by nfs_direct_read_result(). Otherwise, if 320 * no requests have been sent, just return an error. 321 */ 322 323 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 324 struct iov_iter *iter, 325 loff_t pos) 326 { 327 struct nfs_pageio_descriptor desc; 328 struct inode *inode = dreq->inode; 329 ssize_t result = -EINVAL; 330 size_t requested_bytes = 0; 331 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 332 333 nfs_pageio_init_read(&desc, dreq->inode, false, 334 &nfs_direct_read_completion_ops); 335 get_dreq(dreq); 336 desc.pg_dreq = dreq; 337 inode_dio_begin(inode); 338 339 while (iov_iter_count(iter)) { 340 struct page **pagevec; 341 size_t bytes; 342 size_t pgbase; 343 unsigned npages, i; 344 345 result = iov_iter_get_pages_alloc2(iter, &pagevec, 346 rsize, &pgbase); 347 if (result < 0) 348 break; 349 350 bytes = result; 351 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 352 for (i = 0; i < npages; i++) { 353 struct nfs_page *req; 354 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 355 /* XXX do we need to do the eof zeroing found in async_filler? */ 356 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 357 pgbase, pos, req_len); 358 if (IS_ERR(req)) { 359 result = PTR_ERR(req); 360 break; 361 } 362 if (!nfs_pageio_add_request(&desc, req)) { 363 result = desc.pg_error; 364 nfs_release_request(req); 365 break; 366 } 367 pgbase = 0; 368 bytes -= req_len; 369 requested_bytes += req_len; 370 pos += req_len; 371 dreq->bytes_left -= req_len; 372 } 373 nfs_direct_release_pages(pagevec, npages); 374 kvfree(pagevec); 375 if (result < 0) 376 break; 377 } 378 379 nfs_pageio_complete(&desc); 380 381 /* 382 * If no bytes were started, return the error, and let the 383 * generic layer handle the completion. 384 */ 385 if (requested_bytes == 0) { 386 inode_dio_end(inode); 387 nfs_direct_req_release(dreq); 388 return result < 0 ? result : -EIO; 389 } 390 391 if (put_dreq(dreq)) 392 nfs_direct_complete(dreq); 393 return requested_bytes; 394 } 395 396 /** 397 * nfs_file_direct_read - file direct read operation for NFS files 398 * @iocb: target I/O control block 399 * @iter: vector of user buffers into which to read data 400 * @swap: flag indicating this is swap IO, not O_DIRECT IO 401 * 402 * We use this function for direct reads instead of calling 403 * generic_file_aio_read() in order to avoid gfar's check to see if 404 * the request starts before the end of the file. For that check 405 * to work, we must generate a GETATTR before each direct read, and 406 * even then there is a window between the GETATTR and the subsequent 407 * READ where the file size could change. Our preference is simply 408 * to do all reads the application wants, and the server will take 409 * care of managing the end of file boundary. 410 * 411 * This function also eliminates unnecessarily updating the file's 412 * atime locally, as the NFS server sets the file's atime, and this 413 * client must read the updated atime from the server back into its 414 * cache. 415 */ 416 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 417 bool swap) 418 { 419 struct file *file = iocb->ki_filp; 420 struct address_space *mapping = file->f_mapping; 421 struct inode *inode = mapping->host; 422 struct nfs_direct_req *dreq; 423 struct nfs_lock_context *l_ctx; 424 ssize_t result, requested; 425 size_t count = iov_iter_count(iter); 426 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 427 428 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 429 file, count, (long long) iocb->ki_pos); 430 431 result = 0; 432 if (!count) 433 goto out; 434 435 task_io_account_read(count); 436 437 result = -ENOMEM; 438 dreq = nfs_direct_req_alloc(); 439 if (dreq == NULL) 440 goto out; 441 442 dreq->inode = inode; 443 dreq->bytes_left = dreq->max_count = count; 444 dreq->io_start = iocb->ki_pos; 445 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 446 l_ctx = nfs_get_lock_context(dreq->ctx); 447 if (IS_ERR(l_ctx)) { 448 result = PTR_ERR(l_ctx); 449 nfs_direct_req_release(dreq); 450 goto out_release; 451 } 452 dreq->l_ctx = l_ctx; 453 if (!is_sync_kiocb(iocb)) 454 dreq->iocb = iocb; 455 456 if (user_backed_iter(iter)) 457 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 458 459 if (!swap) 460 nfs_start_io_direct(inode); 461 462 NFS_I(inode)->read_io += count; 463 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 464 465 if (!swap) 466 nfs_end_io_direct(inode); 467 468 if (requested > 0) { 469 result = nfs_direct_wait(dreq); 470 if (result > 0) { 471 requested -= result; 472 iocb->ki_pos += result; 473 } 474 iov_iter_revert(iter, requested); 475 } else { 476 result = requested; 477 } 478 479 out_release: 480 nfs_direct_req_release(dreq); 481 out: 482 return result; 483 } 484 485 static void nfs_direct_add_page_head(struct list_head *list, 486 struct nfs_page *req) 487 { 488 struct nfs_page *head = req->wb_head; 489 490 if (!list_empty(&head->wb_list) || !nfs_lock_request(head)) 491 return; 492 if (!list_empty(&head->wb_list)) { 493 nfs_unlock_request(head); 494 return; 495 } 496 list_add(&head->wb_list, list); 497 kref_get(&head->wb_kref); 498 kref_get(&head->wb_kref); 499 } 500 501 static void nfs_direct_join_group(struct list_head *list, 502 struct nfs_commit_info *cinfo, 503 struct inode *inode) 504 { 505 struct nfs_page *req, *subreq; 506 507 list_for_each_entry(req, list, wb_list) { 508 if (req->wb_head != req) { 509 nfs_direct_add_page_head(&req->wb_list, req); 510 continue; 511 } 512 subreq = req->wb_this_page; 513 if (subreq == req) 514 continue; 515 do { 516 /* 517 * Remove subrequests from this list before freeing 518 * them in the call to nfs_join_page_group(). 519 */ 520 if (!list_empty(&subreq->wb_list)) { 521 nfs_list_remove_request(subreq); 522 nfs_release_request(subreq); 523 } 524 } while ((subreq = subreq->wb_this_page) != req); 525 nfs_join_page_group(req, cinfo, inode); 526 } 527 } 528 529 static void 530 nfs_direct_write_scan_commit_list(struct inode *inode, 531 struct list_head *list, 532 struct nfs_commit_info *cinfo) 533 { 534 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 535 pnfs_recover_commit_reqs(list, cinfo); 536 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 537 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 538 } 539 540 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 541 { 542 struct nfs_pageio_descriptor desc; 543 struct nfs_page *req; 544 LIST_HEAD(reqs); 545 struct nfs_commit_info cinfo; 546 547 nfs_init_cinfo_from_dreq(&cinfo, dreq); 548 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 549 550 nfs_direct_join_group(&reqs, &cinfo, dreq->inode); 551 552 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 553 get_dreq(dreq); 554 555 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 556 &nfs_direct_write_completion_ops); 557 desc.pg_dreq = dreq; 558 559 while (!list_empty(&reqs)) { 560 req = nfs_list_entry(reqs.next); 561 /* Bump the transmission count */ 562 req->wb_nio++; 563 if (!nfs_pageio_add_request(&desc, req)) { 564 spin_lock(&dreq->lock); 565 if (dreq->error < 0) { 566 desc.pg_error = dreq->error; 567 } else if (desc.pg_error != -EAGAIN) { 568 dreq->flags = 0; 569 if (!desc.pg_error) 570 desc.pg_error = -EIO; 571 dreq->error = desc.pg_error; 572 } else 573 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 574 spin_unlock(&dreq->lock); 575 break; 576 } 577 nfs_release_request(req); 578 } 579 nfs_pageio_complete(&desc); 580 581 while (!list_empty(&reqs)) { 582 req = nfs_list_entry(reqs.next); 583 nfs_list_remove_request(req); 584 nfs_unlock_and_release_request(req); 585 if (desc.pg_error == -EAGAIN) { 586 nfs_mark_request_commit(req, NULL, &cinfo, 0); 587 } else { 588 spin_lock(&dreq->lock); 589 nfs_direct_truncate_request(dreq, req); 590 spin_unlock(&dreq->lock); 591 nfs_release_request(req); 592 } 593 } 594 595 if (put_dreq(dreq)) 596 nfs_direct_write_complete(dreq); 597 } 598 599 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 600 { 601 const struct nfs_writeverf *verf = data->res.verf; 602 struct nfs_direct_req *dreq = data->dreq; 603 struct nfs_commit_info cinfo; 604 struct nfs_page *req; 605 int status = data->task.tk_status; 606 607 trace_nfs_direct_commit_complete(dreq); 608 609 if (status < 0) { 610 /* Errors in commit are fatal */ 611 dreq->error = status; 612 dreq->flags = NFS_ODIRECT_DONE; 613 } else { 614 status = dreq->error; 615 } 616 617 nfs_init_cinfo_from_dreq(&cinfo, dreq); 618 619 while (!list_empty(&data->pages)) { 620 req = nfs_list_entry(data->pages.next); 621 nfs_list_remove_request(req); 622 if (status < 0) { 623 spin_lock(&dreq->lock); 624 nfs_direct_truncate_request(dreq, req); 625 spin_unlock(&dreq->lock); 626 nfs_release_request(req); 627 } else if (!nfs_write_match_verf(verf, req)) { 628 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 629 /* 630 * Despite the reboot, the write was successful, 631 * so reset wb_nio. 632 */ 633 req->wb_nio = 0; 634 nfs_mark_request_commit(req, NULL, &cinfo, 0); 635 } else 636 nfs_release_request(req); 637 nfs_unlock_and_release_request(req); 638 } 639 640 if (nfs_commit_end(cinfo.mds)) 641 nfs_direct_write_complete(dreq); 642 } 643 644 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 645 struct nfs_page *req) 646 { 647 struct nfs_direct_req *dreq = cinfo->dreq; 648 649 trace_nfs_direct_resched_write(dreq); 650 651 spin_lock(&dreq->lock); 652 if (dreq->flags != NFS_ODIRECT_DONE) 653 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 654 spin_unlock(&dreq->lock); 655 nfs_mark_request_commit(req, NULL, cinfo, 0); 656 } 657 658 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 659 .completion = nfs_direct_commit_complete, 660 .resched_write = nfs_direct_resched_write, 661 }; 662 663 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 664 { 665 int res; 666 struct nfs_commit_info cinfo; 667 LIST_HEAD(mds_list); 668 669 nfs_init_cinfo_from_dreq(&cinfo, dreq); 670 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 671 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 672 if (res < 0) /* res == -ENOMEM */ 673 nfs_direct_write_reschedule(dreq); 674 } 675 676 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 677 { 678 struct nfs_commit_info cinfo; 679 struct nfs_page *req; 680 LIST_HEAD(reqs); 681 682 nfs_init_cinfo_from_dreq(&cinfo, dreq); 683 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 684 685 while (!list_empty(&reqs)) { 686 req = nfs_list_entry(reqs.next); 687 nfs_list_remove_request(req); 688 nfs_direct_truncate_request(dreq, req); 689 nfs_release_request(req); 690 nfs_unlock_and_release_request(req); 691 } 692 } 693 694 static void nfs_direct_write_schedule_work(struct work_struct *work) 695 { 696 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 697 int flags = dreq->flags; 698 699 dreq->flags = 0; 700 switch (flags) { 701 case NFS_ODIRECT_DO_COMMIT: 702 nfs_direct_commit_schedule(dreq); 703 break; 704 case NFS_ODIRECT_RESCHED_WRITES: 705 nfs_direct_write_reschedule(dreq); 706 break; 707 default: 708 nfs_direct_write_clear_reqs(dreq); 709 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 710 nfs_direct_complete(dreq); 711 } 712 } 713 714 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 715 { 716 trace_nfs_direct_write_complete(dreq); 717 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 718 } 719 720 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 721 { 722 struct nfs_direct_req *dreq = hdr->dreq; 723 struct nfs_commit_info cinfo; 724 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 725 int flags = NFS_ODIRECT_DONE; 726 727 trace_nfs_direct_write_completion(dreq); 728 729 nfs_init_cinfo_from_dreq(&cinfo, dreq); 730 731 spin_lock(&dreq->lock); 732 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 733 spin_unlock(&dreq->lock); 734 goto out_put; 735 } 736 737 nfs_direct_count_bytes(dreq, hdr); 738 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) && 739 !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 740 if (!dreq->flags) 741 dreq->flags = NFS_ODIRECT_DO_COMMIT; 742 flags = dreq->flags; 743 } 744 spin_unlock(&dreq->lock); 745 746 while (!list_empty(&hdr->pages)) { 747 748 req = nfs_list_entry(hdr->pages.next); 749 nfs_list_remove_request(req); 750 if (flags == NFS_ODIRECT_DO_COMMIT) { 751 kref_get(&req->wb_kref); 752 memcpy(&req->wb_verf, &hdr->verf.verifier, 753 sizeof(req->wb_verf)); 754 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 755 hdr->ds_commit_idx); 756 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) { 757 kref_get(&req->wb_kref); 758 nfs_mark_request_commit(req, NULL, &cinfo, 0); 759 } 760 nfs_unlock_and_release_request(req); 761 } 762 763 out_put: 764 if (put_dreq(dreq)) 765 nfs_direct_write_complete(dreq); 766 hdr->release(hdr); 767 } 768 769 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 770 { 771 struct nfs_page *req; 772 773 while (!list_empty(head)) { 774 req = nfs_list_entry(head->next); 775 nfs_list_remove_request(req); 776 nfs_unlock_and_release_request(req); 777 } 778 } 779 780 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 781 { 782 struct nfs_direct_req *dreq = hdr->dreq; 783 struct nfs_page *req; 784 struct nfs_commit_info cinfo; 785 786 trace_nfs_direct_write_reschedule_io(dreq); 787 788 nfs_init_cinfo_from_dreq(&cinfo, dreq); 789 spin_lock(&dreq->lock); 790 if (dreq->error == 0) 791 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 792 set_bit(NFS_IOHDR_REDO, &hdr->flags); 793 spin_unlock(&dreq->lock); 794 while (!list_empty(&hdr->pages)) { 795 req = nfs_list_entry(hdr->pages.next); 796 nfs_list_remove_request(req); 797 nfs_unlock_request(req); 798 nfs_mark_request_commit(req, NULL, &cinfo, 0); 799 } 800 } 801 802 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 803 .error_cleanup = nfs_write_sync_pgio_error, 804 .init_hdr = nfs_direct_pgio_init, 805 .completion = nfs_direct_write_completion, 806 .reschedule_io = nfs_direct_write_reschedule_io, 807 }; 808 809 810 /* 811 * NB: Return the value of the first error return code. Subsequent 812 * errors after the first one are ignored. 813 */ 814 /* 815 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 816 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 817 * bail and stop sending more writes. Write length accounting is 818 * handled automatically by nfs_direct_write_result(). Otherwise, if 819 * no requests have been sent, just return an error. 820 */ 821 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 822 struct iov_iter *iter, 823 loff_t pos, int ioflags) 824 { 825 struct nfs_pageio_descriptor desc; 826 struct inode *inode = dreq->inode; 827 struct nfs_commit_info cinfo; 828 ssize_t result = 0; 829 size_t requested_bytes = 0; 830 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 831 bool defer = false; 832 833 trace_nfs_direct_write_schedule_iovec(dreq); 834 835 nfs_pageio_init_write(&desc, inode, ioflags, false, 836 &nfs_direct_write_completion_ops); 837 desc.pg_dreq = dreq; 838 get_dreq(dreq); 839 inode_dio_begin(inode); 840 841 NFS_I(inode)->write_io += iov_iter_count(iter); 842 while (iov_iter_count(iter)) { 843 struct page **pagevec; 844 size_t bytes; 845 size_t pgbase; 846 unsigned npages, i; 847 848 result = iov_iter_get_pages_alloc2(iter, &pagevec, 849 wsize, &pgbase); 850 if (result < 0) 851 break; 852 853 bytes = result; 854 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 855 for (i = 0; i < npages; i++) { 856 struct nfs_page *req; 857 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 858 859 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 860 pgbase, pos, req_len); 861 if (IS_ERR(req)) { 862 result = PTR_ERR(req); 863 break; 864 } 865 866 if (desc.pg_error < 0) { 867 nfs_free_request(req); 868 result = desc.pg_error; 869 break; 870 } 871 872 pgbase = 0; 873 bytes -= req_len; 874 requested_bytes += req_len; 875 pos += req_len; 876 dreq->bytes_left -= req_len; 877 878 if (defer) { 879 nfs_mark_request_commit(req, NULL, &cinfo, 0); 880 continue; 881 } 882 883 nfs_lock_request(req); 884 if (nfs_pageio_add_request(&desc, req)) 885 continue; 886 887 /* Exit on hard errors */ 888 if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) { 889 result = desc.pg_error; 890 nfs_unlock_and_release_request(req); 891 break; 892 } 893 894 /* If the error is soft, defer remaining requests */ 895 nfs_init_cinfo_from_dreq(&cinfo, dreq); 896 spin_lock(&dreq->lock); 897 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 898 spin_unlock(&dreq->lock); 899 nfs_unlock_request(req); 900 nfs_mark_request_commit(req, NULL, &cinfo, 0); 901 desc.pg_error = 0; 902 defer = true; 903 } 904 nfs_direct_release_pages(pagevec, npages); 905 kvfree(pagevec); 906 if (result < 0) 907 break; 908 } 909 nfs_pageio_complete(&desc); 910 911 /* 912 * If no bytes were started, return the error, and let the 913 * generic layer handle the completion. 914 */ 915 if (requested_bytes == 0) { 916 inode_dio_end(inode); 917 nfs_direct_req_release(dreq); 918 return result < 0 ? result : -EIO; 919 } 920 921 if (put_dreq(dreq)) 922 nfs_direct_write_complete(dreq); 923 return requested_bytes; 924 } 925 926 /** 927 * nfs_file_direct_write - file direct write operation for NFS files 928 * @iocb: target I/O control block 929 * @iter: vector of user buffers from which to write data 930 * @swap: flag indicating this is swap IO, not O_DIRECT IO 931 * 932 * We use this function for direct writes instead of calling 933 * generic_file_aio_write() in order to avoid taking the inode 934 * semaphore and updating the i_size. The NFS server will set 935 * the new i_size and this client must read the updated size 936 * back into its cache. We let the server do generic write 937 * parameter checking and report problems. 938 * 939 * We eliminate local atime updates, see direct read above. 940 * 941 * We avoid unnecessary page cache invalidations for normal cached 942 * readers of this file. 943 * 944 * Note that O_APPEND is not supported for NFS direct writes, as there 945 * is no atomic O_APPEND write facility in the NFS protocol. 946 */ 947 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 948 bool swap) 949 { 950 ssize_t result, requested; 951 size_t count; 952 struct file *file = iocb->ki_filp; 953 struct address_space *mapping = file->f_mapping; 954 struct inode *inode = mapping->host; 955 struct nfs_direct_req *dreq; 956 struct nfs_lock_context *l_ctx; 957 loff_t pos, end; 958 959 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 960 file, iov_iter_count(iter), (long long) iocb->ki_pos); 961 962 if (swap) 963 /* bypass generic checks */ 964 result = iov_iter_count(iter); 965 else 966 result = generic_write_checks(iocb, iter); 967 if (result <= 0) 968 return result; 969 count = result; 970 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 971 972 pos = iocb->ki_pos; 973 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 974 975 task_io_account_write(count); 976 977 result = -ENOMEM; 978 dreq = nfs_direct_req_alloc(); 979 if (!dreq) 980 goto out; 981 982 dreq->inode = inode; 983 dreq->bytes_left = dreq->max_count = count; 984 dreq->io_start = pos; 985 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 986 l_ctx = nfs_get_lock_context(dreq->ctx); 987 if (IS_ERR(l_ctx)) { 988 result = PTR_ERR(l_ctx); 989 nfs_direct_req_release(dreq); 990 goto out_release; 991 } 992 dreq->l_ctx = l_ctx; 993 if (!is_sync_kiocb(iocb)) 994 dreq->iocb = iocb; 995 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 996 997 if (swap) { 998 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 999 FLUSH_STABLE); 1000 } else { 1001 nfs_start_io_direct(inode); 1002 1003 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1004 FLUSH_COND_STABLE); 1005 1006 if (mapping->nrpages) { 1007 invalidate_inode_pages2_range(mapping, 1008 pos >> PAGE_SHIFT, end); 1009 } 1010 1011 nfs_end_io_direct(inode); 1012 } 1013 1014 if (requested > 0) { 1015 result = nfs_direct_wait(dreq); 1016 if (result > 0) { 1017 requested -= result; 1018 iocb->ki_pos = pos + result; 1019 /* XXX: should check the generic_write_sync retval */ 1020 generic_write_sync(iocb, result); 1021 } 1022 iov_iter_revert(iter, requested); 1023 } else { 1024 result = requested; 1025 } 1026 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE); 1027 out_release: 1028 nfs_direct_req_release(dreq); 1029 out: 1030 return result; 1031 } 1032 1033 /** 1034 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1035 * 1036 */ 1037 int __init nfs_init_directcache(void) 1038 { 1039 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1040 sizeof(struct nfs_direct_req), 1041 0, (SLAB_RECLAIM_ACCOUNT| 1042 SLAB_MEM_SPREAD), 1043 NULL); 1044 if (nfs_direct_cachep == NULL) 1045 return -ENOMEM; 1046 1047 return 0; 1048 } 1049 1050 /** 1051 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1052 * 1053 */ 1054 void nfs_destroy_directcache(void) 1055 { 1056 kmem_cache_destroy(nfs_direct_cachep); 1057 } 1058