xref: /linux/fs/nfs/direct.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53 
54 #include <asm/system.h>
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 
61 #define NFSDBG_FACILITY		NFSDBG_VFS
62 
63 static struct kmem_cache *nfs_direct_cachep;
64 
65 /*
66  * This represents a set of asynchronous requests that we're waiting on
67  */
68 struct nfs_direct_req {
69 	struct kref		kref;		/* release manager */
70 
71 	/* I/O parameters */
72 	struct nfs_open_context	*ctx;		/* file open context info */
73 	struct nfs_lock_context *l_ctx;		/* Lock context info */
74 	struct kiocb *		iocb;		/* controlling i/o request */
75 	struct inode *		inode;		/* target file of i/o */
76 
77 	/* completion state */
78 	atomic_t		io_count;	/* i/os we're waiting for */
79 	spinlock_t		lock;		/* protect completion state */
80 	ssize_t			count,		/* bytes actually processed */
81 				error;		/* any reported error */
82 	struct completion	completion;	/* wait for i/o completion */
83 
84 	/* commit state */
85 	struct list_head	rewrite_list;	/* saved nfs_write_data structs */
86 	struct nfs_write_data *	commit_data;	/* special write_data for commits */
87 	int			flags;
88 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
89 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
90 	struct nfs_writeverf	verf;		/* unstable write verifier */
91 };
92 
93 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
94 static const struct rpc_call_ops nfs_write_direct_ops;
95 
96 static inline void get_dreq(struct nfs_direct_req *dreq)
97 {
98 	atomic_inc(&dreq->io_count);
99 }
100 
101 static inline int put_dreq(struct nfs_direct_req *dreq)
102 {
103 	return atomic_dec_and_test(&dreq->io_count);
104 }
105 
106 /**
107  * nfs_direct_IO - NFS address space operation for direct I/O
108  * @rw: direction (read or write)
109  * @iocb: target I/O control block
110  * @iov: array of vectors that define I/O buffer
111  * @pos: offset in file to begin the operation
112  * @nr_segs: size of iovec array
113  *
114  * The presence of this routine in the address space ops vector means
115  * the NFS client supports direct I/O.  However, we shunt off direct
116  * read and write requests before the VFS gets them, so this method
117  * should never be called.
118  */
119 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
120 {
121 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
122 			iocb->ki_filp->f_path.dentry->d_name.name,
123 			(long long) pos, nr_segs);
124 
125 	return -EINVAL;
126 }
127 
128 static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
129 {
130 	unsigned int npages;
131 	unsigned int i;
132 
133 	if (count == 0)
134 		return;
135 	pages += (pgbase >> PAGE_SHIFT);
136 	npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
137 	for (i = 0; i < npages; i++) {
138 		struct page *page = pages[i];
139 		if (!PageCompound(page))
140 			set_page_dirty(page);
141 	}
142 }
143 
144 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
145 {
146 	unsigned int i;
147 	for (i = 0; i < npages; i++)
148 		page_cache_release(pages[i]);
149 }
150 
151 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
152 {
153 	struct nfs_direct_req *dreq;
154 
155 	dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
156 	if (!dreq)
157 		return NULL;
158 
159 	kref_init(&dreq->kref);
160 	kref_get(&dreq->kref);
161 	init_completion(&dreq->completion);
162 	INIT_LIST_HEAD(&dreq->rewrite_list);
163 	dreq->iocb = NULL;
164 	dreq->ctx = NULL;
165 	dreq->l_ctx = NULL;
166 	spin_lock_init(&dreq->lock);
167 	atomic_set(&dreq->io_count, 0);
168 	dreq->count = 0;
169 	dreq->error = 0;
170 	dreq->flags = 0;
171 
172 	return dreq;
173 }
174 
175 static void nfs_direct_req_free(struct kref *kref)
176 {
177 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
178 
179 	if (dreq->l_ctx != NULL)
180 		nfs_put_lock_context(dreq->l_ctx);
181 	if (dreq->ctx != NULL)
182 		put_nfs_open_context(dreq->ctx);
183 	kmem_cache_free(nfs_direct_cachep, dreq);
184 }
185 
186 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
187 {
188 	kref_put(&dreq->kref, nfs_direct_req_free);
189 }
190 
191 /*
192  * Collects and returns the final error value/byte-count.
193  */
194 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
195 {
196 	ssize_t result = -EIOCBQUEUED;
197 
198 	/* Async requests don't wait here */
199 	if (dreq->iocb)
200 		goto out;
201 
202 	result = wait_for_completion_killable(&dreq->completion);
203 
204 	if (!result)
205 		result = dreq->error;
206 	if (!result)
207 		result = dreq->count;
208 
209 out:
210 	return (ssize_t) result;
211 }
212 
213 /*
214  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
215  * the iocb is still valid here if this is a synchronous request.
216  */
217 static void nfs_direct_complete(struct nfs_direct_req *dreq)
218 {
219 	if (dreq->iocb) {
220 		long res = (long) dreq->error;
221 		if (!res)
222 			res = (long) dreq->count;
223 		aio_complete(dreq->iocb, res, 0);
224 	}
225 	complete_all(&dreq->completion);
226 
227 	nfs_direct_req_release(dreq);
228 }
229 
230 /*
231  * We must hold a reference to all the pages in this direct read request
232  * until the RPCs complete.  This could be long *after* we are woken up in
233  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
234  */
235 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
236 {
237 	struct nfs_read_data *data = calldata;
238 
239 	nfs_readpage_result(task, data);
240 }
241 
242 static void nfs_direct_read_release(void *calldata)
243 {
244 
245 	struct nfs_read_data *data = calldata;
246 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
247 	int status = data->task.tk_status;
248 
249 	spin_lock(&dreq->lock);
250 	if (unlikely(status < 0)) {
251 		dreq->error = status;
252 		spin_unlock(&dreq->lock);
253 	} else {
254 		dreq->count += data->res.count;
255 		spin_unlock(&dreq->lock);
256 		nfs_direct_dirty_pages(data->pagevec,
257 				data->args.pgbase,
258 				data->res.count);
259 	}
260 	nfs_direct_release_pages(data->pagevec, data->npages);
261 
262 	if (put_dreq(dreq))
263 		nfs_direct_complete(dreq);
264 	nfs_readdata_free(data);
265 }
266 
267 static const struct rpc_call_ops nfs_read_direct_ops = {
268 #if defined(CONFIG_NFS_V4_1)
269 	.rpc_call_prepare = nfs_read_prepare,
270 #endif /* CONFIG_NFS_V4_1 */
271 	.rpc_call_done = nfs_direct_read_result,
272 	.rpc_release = nfs_direct_read_release,
273 };
274 
275 /*
276  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
277  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
278  * bail and stop sending more reads.  Read length accounting is
279  * handled automatically by nfs_direct_read_result().  Otherwise, if
280  * no requests have been sent, just return an error.
281  */
282 static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
283 						const struct iovec *iov,
284 						loff_t pos)
285 {
286 	struct nfs_open_context *ctx = dreq->ctx;
287 	struct inode *inode = ctx->dentry->d_inode;
288 	unsigned long user_addr = (unsigned long)iov->iov_base;
289 	size_t count = iov->iov_len;
290 	size_t rsize = NFS_SERVER(inode)->rsize;
291 	struct rpc_task *task;
292 	struct rpc_message msg = {
293 		.rpc_cred = ctx->cred,
294 	};
295 	struct rpc_task_setup task_setup_data = {
296 		.rpc_client = NFS_CLIENT(inode),
297 		.rpc_message = &msg,
298 		.callback_ops = &nfs_read_direct_ops,
299 		.workqueue = nfsiod_workqueue,
300 		.flags = RPC_TASK_ASYNC,
301 	};
302 	unsigned int pgbase;
303 	int result;
304 	ssize_t started = 0;
305 
306 	do {
307 		struct nfs_read_data *data;
308 		size_t bytes;
309 
310 		pgbase = user_addr & ~PAGE_MASK;
311 		bytes = min(rsize,count);
312 
313 		result = -ENOMEM;
314 		data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
315 		if (unlikely(!data))
316 			break;
317 
318 		down_read(&current->mm->mmap_sem);
319 		result = get_user_pages(current, current->mm, user_addr,
320 					data->npages, 1, 0, data->pagevec, NULL);
321 		up_read(&current->mm->mmap_sem);
322 		if (result < 0) {
323 			nfs_readdata_free(data);
324 			break;
325 		}
326 		if ((unsigned)result < data->npages) {
327 			bytes = result * PAGE_SIZE;
328 			if (bytes <= pgbase) {
329 				nfs_direct_release_pages(data->pagevec, result);
330 				nfs_readdata_free(data);
331 				break;
332 			}
333 			bytes -= pgbase;
334 			data->npages = result;
335 		}
336 
337 		get_dreq(dreq);
338 
339 		data->req = (struct nfs_page *) dreq;
340 		data->inode = inode;
341 		data->cred = msg.rpc_cred;
342 		data->args.fh = NFS_FH(inode);
343 		data->args.context = ctx;
344 		data->args.lock_context = dreq->l_ctx;
345 		data->args.offset = pos;
346 		data->args.pgbase = pgbase;
347 		data->args.pages = data->pagevec;
348 		data->args.count = bytes;
349 		data->res.fattr = &data->fattr;
350 		data->res.eof = 0;
351 		data->res.count = bytes;
352 		nfs_fattr_init(&data->fattr);
353 		msg.rpc_argp = &data->args;
354 		msg.rpc_resp = &data->res;
355 
356 		task_setup_data.task = &data->task;
357 		task_setup_data.callback_data = data;
358 		NFS_PROTO(inode)->read_setup(data, &msg);
359 
360 		task = rpc_run_task(&task_setup_data);
361 		if (IS_ERR(task))
362 			break;
363 		rpc_put_task(task);
364 
365 		dprintk("NFS: %5u initiated direct read call "
366 			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
367 				data->task.tk_pid,
368 				inode->i_sb->s_id,
369 				(long long)NFS_FILEID(inode),
370 				bytes,
371 				(unsigned long long)data->args.offset);
372 
373 		started += bytes;
374 		user_addr += bytes;
375 		pos += bytes;
376 		/* FIXME: Remove this unnecessary math from final patch */
377 		pgbase += bytes;
378 		pgbase &= ~PAGE_MASK;
379 		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
380 
381 		count -= bytes;
382 	} while (count != 0);
383 
384 	if (started)
385 		return started;
386 	return result < 0 ? (ssize_t) result : -EFAULT;
387 }
388 
389 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
390 					      const struct iovec *iov,
391 					      unsigned long nr_segs,
392 					      loff_t pos)
393 {
394 	ssize_t result = -EINVAL;
395 	size_t requested_bytes = 0;
396 	unsigned long seg;
397 
398 	get_dreq(dreq);
399 
400 	for (seg = 0; seg < nr_segs; seg++) {
401 		const struct iovec *vec = &iov[seg];
402 		result = nfs_direct_read_schedule_segment(dreq, vec, pos);
403 		if (result < 0)
404 			break;
405 		requested_bytes += result;
406 		if ((size_t)result < vec->iov_len)
407 			break;
408 		pos += vec->iov_len;
409 	}
410 
411 	/*
412 	 * If no bytes were started, return the error, and let the
413 	 * generic layer handle the completion.
414 	 */
415 	if (requested_bytes == 0) {
416 		nfs_direct_req_release(dreq);
417 		return result < 0 ? result : -EIO;
418 	}
419 
420 	if (put_dreq(dreq))
421 		nfs_direct_complete(dreq);
422 	return 0;
423 }
424 
425 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
426 			       unsigned long nr_segs, loff_t pos)
427 {
428 	ssize_t result = -ENOMEM;
429 	struct inode *inode = iocb->ki_filp->f_mapping->host;
430 	struct nfs_direct_req *dreq;
431 
432 	dreq = nfs_direct_req_alloc();
433 	if (dreq == NULL)
434 		goto out;
435 
436 	dreq->inode = inode;
437 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
438 	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
439 	if (dreq->l_ctx == NULL)
440 		goto out_release;
441 	if (!is_sync_kiocb(iocb))
442 		dreq->iocb = iocb;
443 
444 	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
445 	if (!result)
446 		result = nfs_direct_wait(dreq);
447 out_release:
448 	nfs_direct_req_release(dreq);
449 out:
450 	return result;
451 }
452 
453 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
454 {
455 	while (!list_empty(&dreq->rewrite_list)) {
456 		struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
457 		list_del(&data->pages);
458 		nfs_direct_release_pages(data->pagevec, data->npages);
459 		nfs_writedata_free(data);
460 	}
461 }
462 
463 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
464 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
465 {
466 	struct inode *inode = dreq->inode;
467 	struct list_head *p;
468 	struct nfs_write_data *data;
469 	struct rpc_task *task;
470 	struct rpc_message msg = {
471 		.rpc_cred = dreq->ctx->cred,
472 	};
473 	struct rpc_task_setup task_setup_data = {
474 		.rpc_client = NFS_CLIENT(inode),
475 		.rpc_message = &msg,
476 		.callback_ops = &nfs_write_direct_ops,
477 		.workqueue = nfsiod_workqueue,
478 		.flags = RPC_TASK_ASYNC,
479 	};
480 
481 	dreq->count = 0;
482 	get_dreq(dreq);
483 
484 	list_for_each(p, &dreq->rewrite_list) {
485 		data = list_entry(p, struct nfs_write_data, pages);
486 
487 		get_dreq(dreq);
488 
489 		/* Use stable writes */
490 		data->args.stable = NFS_FILE_SYNC;
491 
492 		/*
493 		 * Reset data->res.
494 		 */
495 		nfs_fattr_init(&data->fattr);
496 		data->res.count = data->args.count;
497 		memset(&data->verf, 0, sizeof(data->verf));
498 
499 		/*
500 		 * Reuse data->task; data->args should not have changed
501 		 * since the original request was sent.
502 		 */
503 		task_setup_data.task = &data->task;
504 		task_setup_data.callback_data = data;
505 		msg.rpc_argp = &data->args;
506 		msg.rpc_resp = &data->res;
507 		NFS_PROTO(inode)->write_setup(data, &msg);
508 
509 		/*
510 		 * We're called via an RPC callback, so BKL is already held.
511 		 */
512 		task = rpc_run_task(&task_setup_data);
513 		if (!IS_ERR(task))
514 			rpc_put_task(task);
515 
516 		dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
517 				data->task.tk_pid,
518 				inode->i_sb->s_id,
519 				(long long)NFS_FILEID(inode),
520 				data->args.count,
521 				(unsigned long long)data->args.offset);
522 	}
523 
524 	if (put_dreq(dreq))
525 		nfs_direct_write_complete(dreq, inode);
526 }
527 
528 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
529 {
530 	struct nfs_write_data *data = calldata;
531 
532 	/* Call the NFS version-specific code */
533 	NFS_PROTO(data->inode)->commit_done(task, data);
534 }
535 
536 static void nfs_direct_commit_release(void *calldata)
537 {
538 	struct nfs_write_data *data = calldata;
539 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
540 	int status = data->task.tk_status;
541 
542 	if (status < 0) {
543 		dprintk("NFS: %5u commit failed with error %d.\n",
544 				data->task.tk_pid, status);
545 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
546 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
547 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
548 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
549 	}
550 
551 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
552 	nfs_direct_write_complete(dreq, data->inode);
553 	nfs_commit_free(data);
554 }
555 
556 static const struct rpc_call_ops nfs_commit_direct_ops = {
557 #if defined(CONFIG_NFS_V4_1)
558 	.rpc_call_prepare = nfs_write_prepare,
559 #endif /* CONFIG_NFS_V4_1 */
560 	.rpc_call_done = nfs_direct_commit_result,
561 	.rpc_release = nfs_direct_commit_release,
562 };
563 
564 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
565 {
566 	struct nfs_write_data *data = dreq->commit_data;
567 	struct rpc_task *task;
568 	struct rpc_message msg = {
569 		.rpc_argp = &data->args,
570 		.rpc_resp = &data->res,
571 		.rpc_cred = dreq->ctx->cred,
572 	};
573 	struct rpc_task_setup task_setup_data = {
574 		.task = &data->task,
575 		.rpc_client = NFS_CLIENT(dreq->inode),
576 		.rpc_message = &msg,
577 		.callback_ops = &nfs_commit_direct_ops,
578 		.callback_data = data,
579 		.workqueue = nfsiod_workqueue,
580 		.flags = RPC_TASK_ASYNC,
581 	};
582 
583 	data->inode = dreq->inode;
584 	data->cred = msg.rpc_cred;
585 
586 	data->args.fh = NFS_FH(data->inode);
587 	data->args.offset = 0;
588 	data->args.count = 0;
589 	data->args.context = dreq->ctx;
590 	data->args.lock_context = dreq->l_ctx;
591 	data->res.count = 0;
592 	data->res.fattr = &data->fattr;
593 	data->res.verf = &data->verf;
594 	nfs_fattr_init(&data->fattr);
595 
596 	NFS_PROTO(data->inode)->commit_setup(data, &msg);
597 
598 	/* Note: task.tk_ops->rpc_release will free dreq->commit_data */
599 	dreq->commit_data = NULL;
600 
601 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
602 
603 	task = rpc_run_task(&task_setup_data);
604 	if (!IS_ERR(task))
605 		rpc_put_task(task);
606 }
607 
608 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
609 {
610 	int flags = dreq->flags;
611 
612 	dreq->flags = 0;
613 	switch (flags) {
614 		case NFS_ODIRECT_DO_COMMIT:
615 			nfs_direct_commit_schedule(dreq);
616 			break;
617 		case NFS_ODIRECT_RESCHED_WRITES:
618 			nfs_direct_write_reschedule(dreq);
619 			break;
620 		default:
621 			if (dreq->commit_data != NULL)
622 				nfs_commit_free(dreq->commit_data);
623 			nfs_direct_free_writedata(dreq);
624 			nfs_zap_mapping(inode, inode->i_mapping);
625 			nfs_direct_complete(dreq);
626 	}
627 }
628 
629 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
630 {
631 	dreq->commit_data = nfs_commitdata_alloc();
632 	if (dreq->commit_data != NULL)
633 		dreq->commit_data->req = (struct nfs_page *) dreq;
634 }
635 #else
636 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
637 {
638 	dreq->commit_data = NULL;
639 }
640 
641 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
642 {
643 	nfs_direct_free_writedata(dreq);
644 	nfs_zap_mapping(inode, inode->i_mapping);
645 	nfs_direct_complete(dreq);
646 }
647 #endif
648 
649 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
650 {
651 	struct nfs_write_data *data = calldata;
652 
653 	nfs_writeback_done(task, data);
654 }
655 
656 /*
657  * NB: Return the value of the first error return code.  Subsequent
658  *     errors after the first one are ignored.
659  */
660 static void nfs_direct_write_release(void *calldata)
661 {
662 	struct nfs_write_data *data = calldata;
663 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
664 	int status = data->task.tk_status;
665 
666 	spin_lock(&dreq->lock);
667 
668 	if (unlikely(status < 0)) {
669 		/* An error has occurred, so we should not commit */
670 		dreq->flags = 0;
671 		dreq->error = status;
672 	}
673 	if (unlikely(dreq->error != 0))
674 		goto out_unlock;
675 
676 	dreq->count += data->res.count;
677 
678 	if (data->res.verf->committed != NFS_FILE_SYNC) {
679 		switch (dreq->flags) {
680 			case 0:
681 				memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
682 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
683 				break;
684 			case NFS_ODIRECT_DO_COMMIT:
685 				if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
686 					dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
687 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
688 				}
689 		}
690 	}
691 out_unlock:
692 	spin_unlock(&dreq->lock);
693 
694 	if (put_dreq(dreq))
695 		nfs_direct_write_complete(dreq, data->inode);
696 }
697 
698 static const struct rpc_call_ops nfs_write_direct_ops = {
699 #if defined(CONFIG_NFS_V4_1)
700 	.rpc_call_prepare = nfs_write_prepare,
701 #endif /* CONFIG_NFS_V4_1 */
702 	.rpc_call_done = nfs_direct_write_result,
703 	.rpc_release = nfs_direct_write_release,
704 };
705 
706 /*
707  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
708  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
709  * bail and stop sending more writes.  Write length accounting is
710  * handled automatically by nfs_direct_write_result().  Otherwise, if
711  * no requests have been sent, just return an error.
712  */
713 static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
714 						 const struct iovec *iov,
715 						 loff_t pos, int sync)
716 {
717 	struct nfs_open_context *ctx = dreq->ctx;
718 	struct inode *inode = ctx->dentry->d_inode;
719 	unsigned long user_addr = (unsigned long)iov->iov_base;
720 	size_t count = iov->iov_len;
721 	struct rpc_task *task;
722 	struct rpc_message msg = {
723 		.rpc_cred = ctx->cred,
724 	};
725 	struct rpc_task_setup task_setup_data = {
726 		.rpc_client = NFS_CLIENT(inode),
727 		.rpc_message = &msg,
728 		.callback_ops = &nfs_write_direct_ops,
729 		.workqueue = nfsiod_workqueue,
730 		.flags = RPC_TASK_ASYNC,
731 	};
732 	size_t wsize = NFS_SERVER(inode)->wsize;
733 	unsigned int pgbase;
734 	int result;
735 	ssize_t started = 0;
736 
737 	do {
738 		struct nfs_write_data *data;
739 		size_t bytes;
740 
741 		pgbase = user_addr & ~PAGE_MASK;
742 		bytes = min(wsize,count);
743 
744 		result = -ENOMEM;
745 		data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
746 		if (unlikely(!data))
747 			break;
748 
749 		down_read(&current->mm->mmap_sem);
750 		result = get_user_pages(current, current->mm, user_addr,
751 					data->npages, 0, 0, data->pagevec, NULL);
752 		up_read(&current->mm->mmap_sem);
753 		if (result < 0) {
754 			nfs_writedata_free(data);
755 			break;
756 		}
757 		if ((unsigned)result < data->npages) {
758 			bytes = result * PAGE_SIZE;
759 			if (bytes <= pgbase) {
760 				nfs_direct_release_pages(data->pagevec, result);
761 				nfs_writedata_free(data);
762 				break;
763 			}
764 			bytes -= pgbase;
765 			data->npages = result;
766 		}
767 
768 		get_dreq(dreq);
769 
770 		list_move_tail(&data->pages, &dreq->rewrite_list);
771 
772 		data->req = (struct nfs_page *) dreq;
773 		data->inode = inode;
774 		data->cred = msg.rpc_cred;
775 		data->args.fh = NFS_FH(inode);
776 		data->args.context = ctx;
777 		data->args.lock_context = dreq->l_ctx;
778 		data->args.offset = pos;
779 		data->args.pgbase = pgbase;
780 		data->args.pages = data->pagevec;
781 		data->args.count = bytes;
782 		data->args.stable = sync;
783 		data->res.fattr = &data->fattr;
784 		data->res.count = bytes;
785 		data->res.verf = &data->verf;
786 		nfs_fattr_init(&data->fattr);
787 
788 		task_setup_data.task = &data->task;
789 		task_setup_data.callback_data = data;
790 		msg.rpc_argp = &data->args;
791 		msg.rpc_resp = &data->res;
792 		NFS_PROTO(inode)->write_setup(data, &msg);
793 
794 		task = rpc_run_task(&task_setup_data);
795 		if (IS_ERR(task))
796 			break;
797 		rpc_put_task(task);
798 
799 		dprintk("NFS: %5u initiated direct write call "
800 			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
801 				data->task.tk_pid,
802 				inode->i_sb->s_id,
803 				(long long)NFS_FILEID(inode),
804 				bytes,
805 				(unsigned long long)data->args.offset);
806 
807 		started += bytes;
808 		user_addr += bytes;
809 		pos += bytes;
810 
811 		/* FIXME: Remove this useless math from the final patch */
812 		pgbase += bytes;
813 		pgbase &= ~PAGE_MASK;
814 		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
815 
816 		count -= bytes;
817 	} while (count != 0);
818 
819 	if (started)
820 		return started;
821 	return result < 0 ? (ssize_t) result : -EFAULT;
822 }
823 
824 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
825 					       const struct iovec *iov,
826 					       unsigned long nr_segs,
827 					       loff_t pos, int sync)
828 {
829 	ssize_t result = 0;
830 	size_t requested_bytes = 0;
831 	unsigned long seg;
832 
833 	get_dreq(dreq);
834 
835 	for (seg = 0; seg < nr_segs; seg++) {
836 		const struct iovec *vec = &iov[seg];
837 		result = nfs_direct_write_schedule_segment(dreq, vec,
838 							   pos, sync);
839 		if (result < 0)
840 			break;
841 		requested_bytes += result;
842 		if ((size_t)result < vec->iov_len)
843 			break;
844 		pos += vec->iov_len;
845 	}
846 
847 	/*
848 	 * If no bytes were started, return the error, and let the
849 	 * generic layer handle the completion.
850 	 */
851 	if (requested_bytes == 0) {
852 		nfs_direct_req_release(dreq);
853 		return result < 0 ? result : -EIO;
854 	}
855 
856 	if (put_dreq(dreq))
857 		nfs_direct_write_complete(dreq, dreq->inode);
858 	return 0;
859 }
860 
861 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
862 				unsigned long nr_segs, loff_t pos,
863 				size_t count)
864 {
865 	ssize_t result = -ENOMEM;
866 	struct inode *inode = iocb->ki_filp->f_mapping->host;
867 	struct nfs_direct_req *dreq;
868 	size_t wsize = NFS_SERVER(inode)->wsize;
869 	int sync = NFS_UNSTABLE;
870 
871 	dreq = nfs_direct_req_alloc();
872 	if (!dreq)
873 		goto out;
874 	nfs_alloc_commit_data(dreq);
875 
876 	if (dreq->commit_data == NULL || count <= wsize)
877 		sync = NFS_FILE_SYNC;
878 
879 	dreq->inode = inode;
880 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
881 	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
882 	if (dreq->l_ctx == NULL)
883 		goto out_release;
884 	if (!is_sync_kiocb(iocb))
885 		dreq->iocb = iocb;
886 
887 	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
888 	if (!result)
889 		result = nfs_direct_wait(dreq);
890 out_release:
891 	nfs_direct_req_release(dreq);
892 out:
893 	return result;
894 }
895 
896 /**
897  * nfs_file_direct_read - file direct read operation for NFS files
898  * @iocb: target I/O control block
899  * @iov: vector of user buffers into which to read data
900  * @nr_segs: size of iov vector
901  * @pos: byte offset in file where reading starts
902  *
903  * We use this function for direct reads instead of calling
904  * generic_file_aio_read() in order to avoid gfar's check to see if
905  * the request starts before the end of the file.  For that check
906  * to work, we must generate a GETATTR before each direct read, and
907  * even then there is a window between the GETATTR and the subsequent
908  * READ where the file size could change.  Our preference is simply
909  * to do all reads the application wants, and the server will take
910  * care of managing the end of file boundary.
911  *
912  * This function also eliminates unnecessarily updating the file's
913  * atime locally, as the NFS server sets the file's atime, and this
914  * client must read the updated atime from the server back into its
915  * cache.
916  */
917 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
918 				unsigned long nr_segs, loff_t pos)
919 {
920 	ssize_t retval = -EINVAL;
921 	struct file *file = iocb->ki_filp;
922 	struct address_space *mapping = file->f_mapping;
923 	size_t count;
924 
925 	count = iov_length(iov, nr_segs);
926 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
927 
928 	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
929 		file->f_path.dentry->d_parent->d_name.name,
930 		file->f_path.dentry->d_name.name,
931 		count, (long long) pos);
932 
933 	retval = 0;
934 	if (!count)
935 		goto out;
936 
937 	retval = nfs_sync_mapping(mapping);
938 	if (retval)
939 		goto out;
940 
941 	task_io_account_read(count);
942 
943 	retval = nfs_direct_read(iocb, iov, nr_segs, pos);
944 	if (retval > 0)
945 		iocb->ki_pos = pos + retval;
946 
947 out:
948 	return retval;
949 }
950 
951 /**
952  * nfs_file_direct_write - file direct write operation for NFS files
953  * @iocb: target I/O control block
954  * @iov: vector of user buffers from which to write data
955  * @nr_segs: size of iov vector
956  * @pos: byte offset in file where writing starts
957  *
958  * We use this function for direct writes instead of calling
959  * generic_file_aio_write() in order to avoid taking the inode
960  * semaphore and updating the i_size.  The NFS server will set
961  * the new i_size and this client must read the updated size
962  * back into its cache.  We let the server do generic write
963  * parameter checking and report problems.
964  *
965  * We eliminate local atime updates, see direct read above.
966  *
967  * We avoid unnecessary page cache invalidations for normal cached
968  * readers of this file.
969  *
970  * Note that O_APPEND is not supported for NFS direct writes, as there
971  * is no atomic O_APPEND write facility in the NFS protocol.
972  */
973 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
974 				unsigned long nr_segs, loff_t pos)
975 {
976 	ssize_t retval = -EINVAL;
977 	struct file *file = iocb->ki_filp;
978 	struct address_space *mapping = file->f_mapping;
979 	size_t count;
980 
981 	count = iov_length(iov, nr_segs);
982 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
983 
984 	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
985 		file->f_path.dentry->d_parent->d_name.name,
986 		file->f_path.dentry->d_name.name,
987 		count, (long long) pos);
988 
989 	retval = generic_write_checks(file, &pos, &count, 0);
990 	if (retval)
991 		goto out;
992 
993 	retval = -EINVAL;
994 	if ((ssize_t) count < 0)
995 		goto out;
996 	retval = 0;
997 	if (!count)
998 		goto out;
999 
1000 	retval = nfs_sync_mapping(mapping);
1001 	if (retval)
1002 		goto out;
1003 
1004 	task_io_account_write(count);
1005 
1006 	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
1007 
1008 	if (retval > 0)
1009 		iocb->ki_pos = pos + retval;
1010 
1011 out:
1012 	return retval;
1013 }
1014 
1015 /**
1016  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1017  *
1018  */
1019 int __init nfs_init_directcache(void)
1020 {
1021 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1022 						sizeof(struct nfs_direct_req),
1023 						0, (SLAB_RECLAIM_ACCOUNT|
1024 							SLAB_MEM_SPREAD),
1025 						NULL);
1026 	if (nfs_direct_cachep == NULL)
1027 		return -ENOMEM;
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1034  *
1035  */
1036 void nfs_destroy_directcache(void)
1037 {
1038 	kmem_cache_destroy(nfs_direct_cachep);
1039 }
1040