xref: /linux/fs/nfs/direct.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  *
38  */
39 
40 #include <linux/config.h>
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
52 
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 
57 #define NFSDBG_FACILITY		NFSDBG_VFS
58 #define MAX_DIRECTIO_SIZE	(4096UL << PAGE_SHIFT)
59 
60 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
61 static kmem_cache_t *nfs_direct_cachep;
62 
63 /*
64  * This represents a set of asynchronous requests that we're waiting on
65  */
66 struct nfs_direct_req {
67 	struct kref		kref;		/* release manager */
68 	struct list_head	list;		/* nfs_read_data structs */
69 	wait_queue_head_t	wait;		/* wait for i/o completion */
70 	struct page **		pages;		/* pages in our buffer */
71 	unsigned int		npages;		/* count of pages */
72 	atomic_t		complete,	/* i/os we're waiting for */
73 				count,		/* bytes actually processed */
74 				error;		/* any reported error */
75 };
76 
77 
78 /**
79  * nfs_get_user_pages - find and set up pages underlying user's buffer
80  * rw: direction (read or write)
81  * user_addr: starting address of this segment of user's buffer
82  * count: size of this segment
83  * @pages: returned array of page struct pointers underlying user's buffer
84  */
85 static inline int
86 nfs_get_user_pages(int rw, unsigned long user_addr, size_t size,
87 		struct page ***pages)
88 {
89 	int result = -ENOMEM;
90 	unsigned long page_count;
91 	size_t array_size;
92 
93 	/* set an arbitrary limit to prevent type overflow */
94 	/* XXX: this can probably be as large as INT_MAX */
95 	if (size > MAX_DIRECTIO_SIZE) {
96 		*pages = NULL;
97 		return -EFBIG;
98 	}
99 
100 	page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
101 	page_count -= user_addr >> PAGE_SHIFT;
102 
103 	array_size = (page_count * sizeof(struct page *));
104 	*pages = kmalloc(array_size, GFP_KERNEL);
105 	if (*pages) {
106 		down_read(&current->mm->mmap_sem);
107 		result = get_user_pages(current, current->mm, user_addr,
108 					page_count, (rw == READ), 0,
109 					*pages, NULL);
110 		up_read(&current->mm->mmap_sem);
111 		/*
112 		 * If we got fewer pages than expected from get_user_pages(),
113 		 * the user buffer runs off the end of a mapping; return EFAULT.
114 		 */
115 		if (result >= 0 && result < page_count) {
116 			nfs_free_user_pages(*pages, result, 0);
117 			*pages = NULL;
118 			result = -EFAULT;
119 		}
120 	}
121 	return result;
122 }
123 
124 /**
125  * nfs_free_user_pages - tear down page struct array
126  * @pages: array of page struct pointers underlying target buffer
127  * @npages: number of pages in the array
128  * @do_dirty: dirty the pages as we release them
129  */
130 static void
131 nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
132 {
133 	int i;
134 	for (i = 0; i < npages; i++) {
135 		struct page *page = pages[i];
136 		if (do_dirty && !PageCompound(page))
137 			set_page_dirty_lock(page);
138 		page_cache_release(page);
139 	}
140 	kfree(pages);
141 }
142 
143 /**
144  * nfs_direct_req_release - release  nfs_direct_req structure for direct read
145  * @kref: kref object embedded in an nfs_direct_req structure
146  *
147  */
148 static void nfs_direct_req_release(struct kref *kref)
149 {
150 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
151 	kmem_cache_free(nfs_direct_cachep, dreq);
152 }
153 
154 /**
155  * nfs_direct_read_alloc - allocate nfs_read_data structures for direct read
156  * @count: count of bytes for the read request
157  * @rsize: local rsize setting
158  *
159  * Note we also set the number of requests we have in the dreq when we are
160  * done.  This prevents races with I/O completion so we will always wait
161  * until all requests have been dispatched and completed.
162  */
163 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, unsigned int rsize)
164 {
165 	struct list_head *list;
166 	struct nfs_direct_req *dreq;
167 	unsigned int reads = 0;
168 	unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
169 
170 	dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
171 	if (!dreq)
172 		return NULL;
173 
174 	kref_init(&dreq->kref);
175 	init_waitqueue_head(&dreq->wait);
176 	INIT_LIST_HEAD(&dreq->list);
177 	atomic_set(&dreq->count, 0);
178 	atomic_set(&dreq->error, 0);
179 
180 	list = &dreq->list;
181 	for(;;) {
182 		struct nfs_read_data *data = nfs_readdata_alloc(rpages);
183 
184 		if (unlikely(!data)) {
185 			while (!list_empty(list)) {
186 				data = list_entry(list->next,
187 						  struct nfs_read_data, pages);
188 				list_del(&data->pages);
189 				nfs_readdata_free(data);
190 			}
191 			kref_put(&dreq->kref, nfs_direct_req_release);
192 			return NULL;
193 		}
194 
195 		INIT_LIST_HEAD(&data->pages);
196 		list_add(&data->pages, list);
197 
198 		data->req = (struct nfs_page *) dreq;
199 		reads++;
200 		if (nbytes <= rsize)
201 			break;
202 		nbytes -= rsize;
203 	}
204 	kref_get(&dreq->kref);
205 	atomic_set(&dreq->complete, reads);
206 	return dreq;
207 }
208 
209 /**
210  * nfs_direct_read_result - handle a read reply for a direct read request
211  * @data: address of NFS READ operation control block
212  * @status: status of this NFS READ operation
213  *
214  * We must hold a reference to all the pages in this direct read request
215  * until the RPCs complete.  This could be long *after* we are woken up in
216  * nfs_direct_read_wait (for instance, if someone hits ^C on a slow server).
217  */
218 static void nfs_direct_read_result(struct nfs_read_data *data, int status)
219 {
220 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
221 
222 	if (likely(status >= 0))
223 		atomic_add(data->res.count, &dreq->count);
224 	else
225 		atomic_set(&dreq->error, status);
226 
227 	if (unlikely(atomic_dec_and_test(&dreq->complete))) {
228 		nfs_free_user_pages(dreq->pages, dreq->npages, 1);
229 		wake_up(&dreq->wait);
230 		kref_put(&dreq->kref, nfs_direct_req_release);
231 	}
232 }
233 
234 /**
235  * nfs_direct_read_schedule - dispatch NFS READ operations for a direct read
236  * @dreq: address of nfs_direct_req struct for this request
237  * @inode: target inode
238  * @ctx: target file open context
239  * @user_addr: starting address of this segment of user's buffer
240  * @count: size of this segment
241  * @file_offset: offset in file to begin the operation
242  *
243  * For each nfs_read_data struct that was allocated on the list, dispatch
244  * an NFS READ operation
245  */
246 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq,
247 		struct inode *inode, struct nfs_open_context *ctx,
248 		unsigned long user_addr, size_t count, loff_t file_offset)
249 {
250 	struct list_head *list = &dreq->list;
251 	struct page **pages = dreq->pages;
252 	unsigned int curpage, pgbase;
253 	unsigned int rsize = NFS_SERVER(inode)->rsize;
254 
255 	curpage = 0;
256 	pgbase = user_addr & ~PAGE_MASK;
257 	do {
258 		struct nfs_read_data *data;
259 		unsigned int bytes;
260 
261 		bytes = rsize;
262 		if (count < rsize)
263 			bytes = count;
264 
265 		data = list_entry(list->next, struct nfs_read_data, pages);
266 		list_del_init(&data->pages);
267 
268 		data->inode = inode;
269 		data->cred = ctx->cred;
270 		data->args.fh = NFS_FH(inode);
271 		data->args.context = ctx;
272 		data->args.offset = file_offset;
273 		data->args.pgbase = pgbase;
274 		data->args.pages = &pages[curpage];
275 		data->args.count = bytes;
276 		data->res.fattr = &data->fattr;
277 		data->res.eof = 0;
278 		data->res.count = bytes;
279 
280 		NFS_PROTO(inode)->read_setup(data);
281 
282 		data->task.tk_cookie = (unsigned long) inode;
283 		data->complete = nfs_direct_read_result;
284 
285 		lock_kernel();
286 		rpc_execute(&data->task);
287 		unlock_kernel();
288 
289 		dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
290 				data->task.tk_pid,
291 				inode->i_sb->s_id,
292 				(long long)NFS_FILEID(inode),
293 				bytes,
294 				(unsigned long long)data->args.offset);
295 
296 		file_offset += bytes;
297 		pgbase += bytes;
298 		curpage += pgbase >> PAGE_SHIFT;
299 		pgbase &= ~PAGE_MASK;
300 
301 		count -= bytes;
302 	} while (count != 0);
303 }
304 
305 /**
306  * nfs_direct_read_wait - wait for I/O completion for direct reads
307  * @dreq: request on which we are to wait
308  * @intr: whether or not this wait can be interrupted
309  *
310  * Collects and returns the final error value/byte-count.
311  */
312 static ssize_t nfs_direct_read_wait(struct nfs_direct_req *dreq, int intr)
313 {
314 	int result = 0;
315 
316 	if (intr) {
317 		result = wait_event_interruptible(dreq->wait,
318 					(atomic_read(&dreq->complete) == 0));
319 	} else {
320 		wait_event(dreq->wait, (atomic_read(&dreq->complete) == 0));
321 	}
322 
323 	if (!result)
324 		result = atomic_read(&dreq->error);
325 	if (!result)
326 		result = atomic_read(&dreq->count);
327 
328 	kref_put(&dreq->kref, nfs_direct_req_release);
329 	return (ssize_t) result;
330 }
331 
332 /**
333  * nfs_direct_read_seg - Read in one iov segment.  Generate separate
334  *                        read RPCs for each "rsize" bytes.
335  * @inode: target inode
336  * @ctx: target file open context
337  * @user_addr: starting address of this segment of user's buffer
338  * @count: size of this segment
339  * @file_offset: offset in file to begin the operation
340  * @pages: array of addresses of page structs defining user's buffer
341  * @nr_pages: number of pages in the array
342  *
343  */
344 static ssize_t nfs_direct_read_seg(struct inode *inode,
345 		struct nfs_open_context *ctx, unsigned long user_addr,
346 		size_t count, loff_t file_offset, struct page **pages,
347 		unsigned int nr_pages)
348 {
349 	ssize_t result;
350 	sigset_t oldset;
351 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
352 	struct nfs_direct_req *dreq;
353 
354 	dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
355 	if (!dreq)
356 		return -ENOMEM;
357 
358 	dreq->pages = pages;
359 	dreq->npages = nr_pages;
360 
361 	rpc_clnt_sigmask(clnt, &oldset);
362 	nfs_direct_read_schedule(dreq, inode, ctx, user_addr, count,
363 				 file_offset);
364 	result = nfs_direct_read_wait(dreq, clnt->cl_intr);
365 	rpc_clnt_sigunmask(clnt, &oldset);
366 
367 	return result;
368 }
369 
370 /**
371  * nfs_direct_read - For each iov segment, map the user's buffer
372  *                   then generate read RPCs.
373  * @inode: target inode
374  * @ctx: target file open context
375  * @iov: array of vectors that define I/O buffer
376  * file_offset: offset in file to begin the operation
377  * nr_segs: size of iovec array
378  *
379  * We've already pushed out any non-direct writes so that this read
380  * will see them when we read from the server.
381  */
382 static ssize_t
383 nfs_direct_read(struct inode *inode, struct nfs_open_context *ctx,
384 		const struct iovec *iov, loff_t file_offset,
385 		unsigned long nr_segs)
386 {
387 	ssize_t tot_bytes = 0;
388 	unsigned long seg = 0;
389 
390 	while ((seg < nr_segs) && (tot_bytes >= 0)) {
391 		ssize_t result;
392 		int page_count;
393 		struct page **pages;
394 		const struct iovec *vec = &iov[seg++];
395 		unsigned long user_addr = (unsigned long) vec->iov_base;
396 		size_t size = vec->iov_len;
397 
398                 page_count = nfs_get_user_pages(READ, user_addr, size, &pages);
399                 if (page_count < 0) {
400                         nfs_free_user_pages(pages, 0, 0);
401 			if (tot_bytes > 0)
402 				break;
403                         return page_count;
404                 }
405 
406 		result = nfs_direct_read_seg(inode, ctx, user_addr, size,
407 				file_offset, pages, page_count);
408 
409 		if (result <= 0) {
410 			if (tot_bytes > 0)
411 				break;
412 			return result;
413 		}
414 		tot_bytes += result;
415 		file_offset += result;
416 		if (result < size)
417 			break;
418 	}
419 
420 	return tot_bytes;
421 }
422 
423 /**
424  * nfs_direct_write_seg - Write out one iov segment.  Generate separate
425  *                        write RPCs for each "wsize" bytes, then commit.
426  * @inode: target inode
427  * @ctx: target file open context
428  * user_addr: starting address of this segment of user's buffer
429  * count: size of this segment
430  * file_offset: offset in file to begin the operation
431  * @pages: array of addresses of page structs defining user's buffer
432  * nr_pages: size of pages array
433  */
434 static ssize_t nfs_direct_write_seg(struct inode *inode,
435 		struct nfs_open_context *ctx, unsigned long user_addr,
436 		size_t count, loff_t file_offset, struct page **pages,
437 		int nr_pages)
438 {
439 	const unsigned int wsize = NFS_SERVER(inode)->wsize;
440 	size_t request;
441 	int curpage, need_commit;
442 	ssize_t result, tot_bytes;
443 	struct nfs_writeverf first_verf;
444 	struct nfs_write_data *wdata;
445 
446 	wdata = nfs_writedata_alloc(NFS_SERVER(inode)->wpages);
447 	if (!wdata)
448 		return -ENOMEM;
449 
450 	wdata->inode = inode;
451 	wdata->cred = ctx->cred;
452 	wdata->args.fh = NFS_FH(inode);
453 	wdata->args.context = ctx;
454 	wdata->args.stable = NFS_UNSTABLE;
455 	if (IS_SYNC(inode) || NFS_PROTO(inode)->version == 2 || count <= wsize)
456 		wdata->args.stable = NFS_FILE_SYNC;
457 	wdata->res.fattr = &wdata->fattr;
458 	wdata->res.verf = &wdata->verf;
459 
460 	nfs_begin_data_update(inode);
461 retry:
462 	need_commit = 0;
463 	tot_bytes = 0;
464 	curpage = 0;
465 	request = count;
466 	wdata->args.pgbase = user_addr & ~PAGE_MASK;
467 	wdata->args.offset = file_offset;
468 	do {
469 		wdata->args.count = request;
470 		if (wdata->args.count > wsize)
471 			wdata->args.count = wsize;
472 		wdata->args.pages = &pages[curpage];
473 
474 		dprintk("NFS: direct write: c=%u o=%Ld ua=%lu, pb=%u, cp=%u\n",
475 			wdata->args.count, (long long) wdata->args.offset,
476 			user_addr + tot_bytes, wdata->args.pgbase, curpage);
477 
478 		lock_kernel();
479 		result = NFS_PROTO(inode)->write(wdata);
480 		unlock_kernel();
481 
482 		if (result <= 0) {
483 			if (tot_bytes > 0)
484 				break;
485 			goto out;
486 		}
487 
488 		if (tot_bytes == 0)
489 			memcpy(&first_verf.verifier, &wdata->verf.verifier,
490 						sizeof(first_verf.verifier));
491 		if (wdata->verf.committed != NFS_FILE_SYNC) {
492 			need_commit = 1;
493 			if (memcmp(&first_verf.verifier, &wdata->verf.verifier,
494 					sizeof(first_verf.verifier)))
495 				goto sync_retry;
496 		}
497 
498 		tot_bytes += result;
499 
500 		/* in case of a short write: stop now, let the app recover */
501 		if (result < wdata->args.count)
502 			break;
503 
504 		wdata->args.offset += result;
505 		wdata->args.pgbase += result;
506 		curpage += wdata->args.pgbase >> PAGE_SHIFT;
507 		wdata->args.pgbase &= ~PAGE_MASK;
508 		request -= result;
509 	} while (request != 0);
510 
511 	/*
512 	 * Commit data written so far, even in the event of an error
513 	 */
514 	if (need_commit) {
515 		wdata->args.count = tot_bytes;
516 		wdata->args.offset = file_offset;
517 
518 		lock_kernel();
519 		result = NFS_PROTO(inode)->commit(wdata);
520 		unlock_kernel();
521 
522 		if (result < 0 || memcmp(&first_verf.verifier,
523 					 &wdata->verf.verifier,
524 					 sizeof(first_verf.verifier)) != 0)
525 			goto sync_retry;
526 	}
527 	result = tot_bytes;
528 
529 out:
530 	nfs_end_data_update(inode);
531 	nfs_writedata_free(wdata);
532 	return result;
533 
534 sync_retry:
535 	wdata->args.stable = NFS_FILE_SYNC;
536 	goto retry;
537 }
538 
539 /**
540  * nfs_direct_write - For each iov segment, map the user's buffer
541  *                    then generate write and commit RPCs.
542  * @inode: target inode
543  * @ctx: target file open context
544  * @iov: array of vectors that define I/O buffer
545  * file_offset: offset in file to begin the operation
546  * nr_segs: size of iovec array
547  *
548  * Upon return, generic_file_direct_IO invalidates any cached pages
549  * that non-direct readers might access, so they will pick up these
550  * writes immediately.
551  */
552 static ssize_t nfs_direct_write(struct inode *inode,
553 		struct nfs_open_context *ctx, const struct iovec *iov,
554 		loff_t file_offset, unsigned long nr_segs)
555 {
556 	ssize_t tot_bytes = 0;
557 	unsigned long seg = 0;
558 
559 	while ((seg < nr_segs) && (tot_bytes >= 0)) {
560 		ssize_t result;
561 		int page_count;
562 		struct page **pages;
563 		const struct iovec *vec = &iov[seg++];
564 		unsigned long user_addr = (unsigned long) vec->iov_base;
565 		size_t size = vec->iov_len;
566 
567                 page_count = nfs_get_user_pages(WRITE, user_addr, size, &pages);
568                 if (page_count < 0) {
569                         nfs_free_user_pages(pages, 0, 0);
570 			if (tot_bytes > 0)
571 				break;
572                         return page_count;
573                 }
574 
575 		result = nfs_direct_write_seg(inode, ctx, user_addr, size,
576 				file_offset, pages, page_count);
577 		nfs_free_user_pages(pages, page_count, 0);
578 
579 		if (result <= 0) {
580 			if (tot_bytes > 0)
581 				break;
582 			return result;
583 		}
584 		tot_bytes += result;
585 		file_offset += result;
586 		if (result < size)
587 			break;
588 	}
589 	return tot_bytes;
590 }
591 
592 /**
593  * nfs_direct_IO - NFS address space operation for direct I/O
594  * rw: direction (read or write)
595  * @iocb: target I/O control block
596  * @iov: array of vectors that define I/O buffer
597  * file_offset: offset in file to begin the operation
598  * nr_segs: size of iovec array
599  *
600  */
601 ssize_t
602 nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
603 		loff_t file_offset, unsigned long nr_segs)
604 {
605 	ssize_t result = -EINVAL;
606 	struct file *file = iocb->ki_filp;
607 	struct nfs_open_context *ctx;
608 	struct dentry *dentry = file->f_dentry;
609 	struct inode *inode = dentry->d_inode;
610 
611 	/*
612 	 * No support for async yet
613 	 */
614 	if (!is_sync_kiocb(iocb))
615 		return result;
616 
617 	ctx = (struct nfs_open_context *)file->private_data;
618 	switch (rw) {
619 	case READ:
620 		dprintk("NFS: direct_IO(read) (%s) off/no(%Lu/%lu)\n",
621 				dentry->d_name.name, file_offset, nr_segs);
622 
623 		result = nfs_direct_read(inode, ctx, iov,
624 						file_offset, nr_segs);
625 		break;
626 	case WRITE:
627 		dprintk("NFS: direct_IO(write) (%s) off/no(%Lu/%lu)\n",
628 				dentry->d_name.name, file_offset, nr_segs);
629 
630 		result = nfs_direct_write(inode, ctx, iov,
631 						file_offset, nr_segs);
632 		break;
633 	default:
634 		break;
635 	}
636 	return result;
637 }
638 
639 /**
640  * nfs_file_direct_read - file direct read operation for NFS files
641  * @iocb: target I/O control block
642  * @buf: user's buffer into which to read data
643  * count: number of bytes to read
644  * pos: byte offset in file where reading starts
645  *
646  * We use this function for direct reads instead of calling
647  * generic_file_aio_read() in order to avoid gfar's check to see if
648  * the request starts before the end of the file.  For that check
649  * to work, we must generate a GETATTR before each direct read, and
650  * even then there is a window between the GETATTR and the subsequent
651  * READ where the file size could change.  So our preference is simply
652  * to do all reads the application wants, and the server will take
653  * care of managing the end of file boundary.
654  *
655  * This function also eliminates unnecessarily updating the file's
656  * atime locally, as the NFS server sets the file's atime, and this
657  * client must read the updated atime from the server back into its
658  * cache.
659  */
660 ssize_t
661 nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
662 {
663 	ssize_t retval = -EINVAL;
664 	loff_t *ppos = &iocb->ki_pos;
665 	struct file *file = iocb->ki_filp;
666 	struct nfs_open_context *ctx =
667 			(struct nfs_open_context *) file->private_data;
668 	struct address_space *mapping = file->f_mapping;
669 	struct inode *inode = mapping->host;
670 	struct iovec iov = {
671 		.iov_base = buf,
672 		.iov_len = count,
673 	};
674 
675 	dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
676 		file->f_dentry->d_parent->d_name.name,
677 		file->f_dentry->d_name.name,
678 		(unsigned long) count, (long long) pos);
679 
680 	if (!is_sync_kiocb(iocb))
681 		goto out;
682 	if (count < 0)
683 		goto out;
684 	retval = -EFAULT;
685 	if (!access_ok(VERIFY_WRITE, iov.iov_base, iov.iov_len))
686 		goto out;
687 	retval = 0;
688 	if (!count)
689 		goto out;
690 
691 	retval = nfs_sync_mapping(mapping);
692 	if (retval)
693 		goto out;
694 
695 	retval = nfs_direct_read(inode, ctx, &iov, pos, 1);
696 	if (retval > 0)
697 		*ppos = pos + retval;
698 
699 out:
700 	return retval;
701 }
702 
703 /**
704  * nfs_file_direct_write - file direct write operation for NFS files
705  * @iocb: target I/O control block
706  * @buf: user's buffer from which to write data
707  * count: number of bytes to write
708  * pos: byte offset in file where writing starts
709  *
710  * We use this function for direct writes instead of calling
711  * generic_file_aio_write() in order to avoid taking the inode
712  * semaphore and updating the i_size.  The NFS server will set
713  * the new i_size and this client must read the updated size
714  * back into its cache.  We let the server do generic write
715  * parameter checking and report problems.
716  *
717  * We also avoid an unnecessary invocation of generic_osync_inode(),
718  * as it is fairly meaningless to sync the metadata of an NFS file.
719  *
720  * We eliminate local atime updates, see direct read above.
721  *
722  * We avoid unnecessary page cache invalidations for normal cached
723  * readers of this file.
724  *
725  * Note that O_APPEND is not supported for NFS direct writes, as there
726  * is no atomic O_APPEND write facility in the NFS protocol.
727  */
728 ssize_t
729 nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
730 {
731 	ssize_t retval;
732 	struct file *file = iocb->ki_filp;
733 	struct nfs_open_context *ctx =
734 			(struct nfs_open_context *) file->private_data;
735 	struct address_space *mapping = file->f_mapping;
736 	struct inode *inode = mapping->host;
737 	struct iovec iov = {
738 		.iov_base = (char __user *)buf,
739 	};
740 
741 	dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
742 		file->f_dentry->d_parent->d_name.name,
743 		file->f_dentry->d_name.name,
744 		(unsigned long) count, (long long) pos);
745 
746 	retval = -EINVAL;
747 	if (!is_sync_kiocb(iocb))
748 		goto out;
749 
750 	retval = generic_write_checks(file, &pos, &count, 0);
751 	if (retval)
752 		goto out;
753 
754 	retval = -EINVAL;
755 	if ((ssize_t) count < 0)
756 		goto out;
757 	retval = 0;
758 	if (!count)
759 		goto out;
760 	iov.iov_len = count,
761 
762 	retval = -EFAULT;
763 	if (!access_ok(VERIFY_READ, iov.iov_base, iov.iov_len))
764 		goto out;
765 
766 	retval = nfs_sync_mapping(mapping);
767 	if (retval)
768 		goto out;
769 
770 	retval = nfs_direct_write(inode, ctx, &iov, pos, 1);
771 	if (mapping->nrpages)
772 		invalidate_inode_pages2(mapping);
773 	if (retval > 0)
774 		iocb->ki_pos = pos + retval;
775 
776 out:
777 	return retval;
778 }
779 
780 int nfs_init_directcache(void)
781 {
782 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
783 						sizeof(struct nfs_direct_req),
784 						0, SLAB_RECLAIM_ACCOUNT,
785 						NULL, NULL);
786 	if (nfs_direct_cachep == NULL)
787 		return -ENOMEM;
788 
789 	return 0;
790 }
791 
792 void nfs_destroy_directcache(void)
793 {
794 	if (kmem_cache_destroy(nfs_direct_cachep))
795 		printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
796 }
797