1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 #include "fscache.h" 63 #include "nfstrace.h" 64 65 #define NFSDBG_FACILITY NFSDBG_VFS 66 67 static struct kmem_cache *nfs_direct_cachep; 68 69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 72 static void nfs_direct_write_schedule_work(struct work_struct *work); 73 74 static inline void get_dreq(struct nfs_direct_req *dreq) 75 { 76 atomic_inc(&dreq->io_count); 77 } 78 79 static inline int put_dreq(struct nfs_direct_req *dreq) 80 { 81 return atomic_dec_and_test(&dreq->io_count); 82 } 83 84 static void 85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 86 const struct nfs_pgio_header *hdr, 87 ssize_t dreq_len) 88 { 89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 90 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 91 return; 92 if (dreq->max_count >= dreq_len) { 93 dreq->max_count = dreq_len; 94 if (dreq->count > dreq_len) 95 dreq->count = dreq_len; 96 } 97 98 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error) 99 dreq->error = hdr->error; 100 } 101 102 static void 103 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 104 const struct nfs_pgio_header *hdr) 105 { 106 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 107 ssize_t dreq_len = 0; 108 109 if (hdr_end > dreq->io_start) 110 dreq_len = hdr_end - dreq->io_start; 111 112 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 113 114 if (dreq_len > dreq->max_count) 115 dreq_len = dreq->max_count; 116 117 if (dreq->count < dreq_len) 118 dreq->count = dreq_len; 119 } 120 121 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq, 122 struct nfs_page *req) 123 { 124 loff_t offs = req_offset(req); 125 size_t req_start = (size_t)(offs - dreq->io_start); 126 127 if (req_start < dreq->max_count) 128 dreq->max_count = req_start; 129 if (req_start < dreq->count) 130 dreq->count = req_start; 131 } 132 133 /** 134 * nfs_swap_rw - NFS address space operation for swap I/O 135 * @iocb: target I/O control block 136 * @iter: I/O buffer 137 * 138 * Perform IO to the swap-file. This is much like direct IO. 139 */ 140 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter) 141 { 142 ssize_t ret; 143 144 if (iov_iter_rw(iter) == READ) 145 ret = nfs_file_direct_read(iocb, iter, true); 146 else 147 ret = nfs_file_direct_write(iocb, iter, true); 148 if (ret < 0) 149 return ret; 150 return 0; 151 } 152 153 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 154 { 155 unsigned int i; 156 for (i = 0; i < npages; i++) 157 put_page(pages[i]); 158 } 159 160 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 161 struct nfs_direct_req *dreq) 162 { 163 cinfo->inode = dreq->inode; 164 cinfo->mds = &dreq->mds_cinfo; 165 cinfo->ds = &dreq->ds_cinfo; 166 cinfo->dreq = dreq; 167 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 168 } 169 170 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 171 { 172 struct nfs_direct_req *dreq; 173 174 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 175 if (!dreq) 176 return NULL; 177 178 kref_init(&dreq->kref); 179 kref_get(&dreq->kref); 180 init_completion(&dreq->completion); 181 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 182 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 183 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 184 spin_lock_init(&dreq->lock); 185 186 return dreq; 187 } 188 189 static void nfs_direct_req_free(struct kref *kref) 190 { 191 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 192 193 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 194 if (dreq->l_ctx != NULL) 195 nfs_put_lock_context(dreq->l_ctx); 196 if (dreq->ctx != NULL) 197 put_nfs_open_context(dreq->ctx); 198 kmem_cache_free(nfs_direct_cachep, dreq); 199 } 200 201 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 202 { 203 kref_put(&dreq->kref, nfs_direct_req_free); 204 } 205 206 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset) 207 { 208 loff_t start = offset - dreq->io_start; 209 return dreq->max_count - start; 210 } 211 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 212 213 /* 214 * Collects and returns the final error value/byte-count. 215 */ 216 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 217 { 218 ssize_t result = -EIOCBQUEUED; 219 220 /* Async requests don't wait here */ 221 if (dreq->iocb) 222 goto out; 223 224 result = wait_for_completion_killable(&dreq->completion); 225 226 if (!result) { 227 result = dreq->count; 228 WARN_ON_ONCE(dreq->count < 0); 229 } 230 if (!result) 231 result = dreq->error; 232 233 out: 234 return (ssize_t) result; 235 } 236 237 /* 238 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 239 * the iocb is still valid here if this is a synchronous request. 240 */ 241 static void nfs_direct_complete(struct nfs_direct_req *dreq) 242 { 243 struct inode *inode = dreq->inode; 244 245 inode_dio_end(inode); 246 247 if (dreq->iocb) { 248 long res = (long) dreq->error; 249 if (dreq->count != 0) { 250 res = (long) dreq->count; 251 WARN_ON_ONCE(dreq->count < 0); 252 } 253 dreq->iocb->ki_complete(dreq->iocb, res); 254 } 255 256 complete(&dreq->completion); 257 258 nfs_direct_req_release(dreq); 259 } 260 261 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 262 { 263 unsigned long bytes = 0; 264 struct nfs_direct_req *dreq = hdr->dreq; 265 266 spin_lock(&dreq->lock); 267 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 268 spin_unlock(&dreq->lock); 269 goto out_put; 270 } 271 272 nfs_direct_count_bytes(dreq, hdr); 273 spin_unlock(&dreq->lock); 274 275 while (!list_empty(&hdr->pages)) { 276 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 277 struct page *page = req->wb_page; 278 279 if (!PageCompound(page) && bytes < hdr->good_bytes && 280 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 281 set_page_dirty(page); 282 bytes += req->wb_bytes; 283 nfs_list_remove_request(req); 284 nfs_release_request(req); 285 } 286 out_put: 287 if (put_dreq(dreq)) 288 nfs_direct_complete(dreq); 289 hdr->release(hdr); 290 } 291 292 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 293 { 294 struct nfs_page *req; 295 296 while (!list_empty(head)) { 297 req = nfs_list_entry(head->next); 298 nfs_list_remove_request(req); 299 nfs_release_request(req); 300 } 301 } 302 303 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 304 { 305 get_dreq(hdr->dreq); 306 set_bit(NFS_IOHDR_ODIRECT, &hdr->flags); 307 } 308 309 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 310 .error_cleanup = nfs_read_sync_pgio_error, 311 .init_hdr = nfs_direct_pgio_init, 312 .completion = nfs_direct_read_completion, 313 }; 314 315 /* 316 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 317 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 318 * bail and stop sending more reads. Read length accounting is 319 * handled automatically by nfs_direct_read_result(). Otherwise, if 320 * no requests have been sent, just return an error. 321 */ 322 323 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 324 struct iov_iter *iter, 325 loff_t pos) 326 { 327 struct nfs_pageio_descriptor desc; 328 struct inode *inode = dreq->inode; 329 ssize_t result = -EINVAL; 330 size_t requested_bytes = 0; 331 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 332 333 nfs_pageio_init_read(&desc, dreq->inode, false, 334 &nfs_direct_read_completion_ops); 335 get_dreq(dreq); 336 desc.pg_dreq = dreq; 337 inode_dio_begin(inode); 338 339 while (iov_iter_count(iter)) { 340 struct page **pagevec; 341 size_t bytes; 342 size_t pgbase; 343 unsigned npages, i; 344 345 result = iov_iter_get_pages_alloc2(iter, &pagevec, 346 rsize, &pgbase); 347 if (result < 0) 348 break; 349 350 bytes = result; 351 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 352 for (i = 0; i < npages; i++) { 353 struct nfs_page *req; 354 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 355 /* XXX do we need to do the eof zeroing found in async_filler? */ 356 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 357 pgbase, pos, req_len); 358 if (IS_ERR(req)) { 359 result = PTR_ERR(req); 360 break; 361 } 362 if (!nfs_pageio_add_request(&desc, req)) { 363 result = desc.pg_error; 364 nfs_release_request(req); 365 break; 366 } 367 pgbase = 0; 368 bytes -= req_len; 369 requested_bytes += req_len; 370 pos += req_len; 371 } 372 nfs_direct_release_pages(pagevec, npages); 373 kvfree(pagevec); 374 if (result < 0) 375 break; 376 } 377 378 nfs_pageio_complete(&desc); 379 380 /* 381 * If no bytes were started, return the error, and let the 382 * generic layer handle the completion. 383 */ 384 if (requested_bytes == 0) { 385 inode_dio_end(inode); 386 nfs_direct_req_release(dreq); 387 return result < 0 ? result : -EIO; 388 } 389 390 if (put_dreq(dreq)) 391 nfs_direct_complete(dreq); 392 return requested_bytes; 393 } 394 395 /** 396 * nfs_file_direct_read - file direct read operation for NFS files 397 * @iocb: target I/O control block 398 * @iter: vector of user buffers into which to read data 399 * @swap: flag indicating this is swap IO, not O_DIRECT IO 400 * 401 * We use this function for direct reads instead of calling 402 * generic_file_aio_read() in order to avoid gfar's check to see if 403 * the request starts before the end of the file. For that check 404 * to work, we must generate a GETATTR before each direct read, and 405 * even then there is a window between the GETATTR and the subsequent 406 * READ where the file size could change. Our preference is simply 407 * to do all reads the application wants, and the server will take 408 * care of managing the end of file boundary. 409 * 410 * This function also eliminates unnecessarily updating the file's 411 * atime locally, as the NFS server sets the file's atime, and this 412 * client must read the updated atime from the server back into its 413 * cache. 414 */ 415 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 416 bool swap) 417 { 418 struct file *file = iocb->ki_filp; 419 struct address_space *mapping = file->f_mapping; 420 struct inode *inode = mapping->host; 421 struct nfs_direct_req *dreq; 422 struct nfs_lock_context *l_ctx; 423 ssize_t result, requested; 424 size_t count = iov_iter_count(iter); 425 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 426 427 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 428 file, count, (long long) iocb->ki_pos); 429 430 result = 0; 431 if (!count) 432 goto out; 433 434 task_io_account_read(count); 435 436 result = -ENOMEM; 437 dreq = nfs_direct_req_alloc(); 438 if (dreq == NULL) 439 goto out; 440 441 dreq->inode = inode; 442 dreq->max_count = count; 443 dreq->io_start = iocb->ki_pos; 444 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 445 l_ctx = nfs_get_lock_context(dreq->ctx); 446 if (IS_ERR(l_ctx)) { 447 result = PTR_ERR(l_ctx); 448 nfs_direct_req_release(dreq); 449 goto out_release; 450 } 451 dreq->l_ctx = l_ctx; 452 if (!is_sync_kiocb(iocb)) 453 dreq->iocb = iocb; 454 455 if (user_backed_iter(iter)) 456 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 457 458 if (!swap) { 459 result = nfs_start_io_direct(inode); 460 if (result) { 461 /* release the reference that would usually be 462 * consumed by nfs_direct_read_schedule_iovec() 463 */ 464 nfs_direct_req_release(dreq); 465 goto out_release; 466 } 467 } 468 469 NFS_I(inode)->read_io += count; 470 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 471 472 if (!swap) 473 nfs_end_io_direct(inode); 474 475 if (requested > 0) { 476 result = nfs_direct_wait(dreq); 477 if (result > 0) { 478 requested -= result; 479 iocb->ki_pos += result; 480 } 481 iov_iter_revert(iter, requested); 482 } else { 483 result = requested; 484 } 485 486 out_release: 487 nfs_direct_req_release(dreq); 488 out: 489 return result; 490 } 491 492 static void nfs_direct_add_page_head(struct list_head *list, 493 struct nfs_page *req) 494 { 495 struct nfs_page *head = req->wb_head; 496 497 if (!list_empty(&head->wb_list) || !nfs_lock_request(head)) 498 return; 499 if (!list_empty(&head->wb_list)) { 500 nfs_unlock_request(head); 501 return; 502 } 503 list_add(&head->wb_list, list); 504 kref_get(&head->wb_kref); 505 kref_get(&head->wb_kref); 506 } 507 508 static void nfs_direct_join_group(struct list_head *list, 509 struct nfs_commit_info *cinfo, 510 struct inode *inode) 511 { 512 struct nfs_page *req, *subreq; 513 514 list_for_each_entry(req, list, wb_list) { 515 if (req->wb_head != req) { 516 nfs_direct_add_page_head(&req->wb_list, req); 517 continue; 518 } 519 subreq = req->wb_this_page; 520 if (subreq == req) 521 continue; 522 do { 523 /* 524 * Remove subrequests from this list before freeing 525 * them in the call to nfs_join_page_group(). 526 */ 527 if (!list_empty(&subreq->wb_list)) { 528 nfs_list_remove_request(subreq); 529 nfs_release_request(subreq); 530 } 531 } while ((subreq = subreq->wb_this_page) != req); 532 nfs_join_page_group(req, cinfo, inode); 533 } 534 } 535 536 static void 537 nfs_direct_write_scan_commit_list(struct inode *inode, 538 struct list_head *list, 539 struct nfs_commit_info *cinfo) 540 { 541 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 542 pnfs_recover_commit_reqs(list, cinfo); 543 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 544 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 545 } 546 547 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 548 { 549 struct nfs_pageio_descriptor desc; 550 struct nfs_page *req; 551 LIST_HEAD(reqs); 552 struct nfs_commit_info cinfo; 553 554 nfs_init_cinfo_from_dreq(&cinfo, dreq); 555 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 556 557 nfs_direct_join_group(&reqs, &cinfo, dreq->inode); 558 559 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 560 get_dreq(dreq); 561 562 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 563 &nfs_direct_write_completion_ops); 564 desc.pg_dreq = dreq; 565 566 while (!list_empty(&reqs)) { 567 req = nfs_list_entry(reqs.next); 568 /* Bump the transmission count */ 569 req->wb_nio++; 570 if (!nfs_pageio_add_request(&desc, req)) { 571 spin_lock(&dreq->lock); 572 if (dreq->error < 0) { 573 desc.pg_error = dreq->error; 574 } else if (desc.pg_error != -EAGAIN) { 575 dreq->flags = 0; 576 if (!desc.pg_error) 577 desc.pg_error = -EIO; 578 dreq->error = desc.pg_error; 579 } else 580 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 581 spin_unlock(&dreq->lock); 582 break; 583 } 584 nfs_release_request(req); 585 } 586 nfs_pageio_complete(&desc); 587 588 while (!list_empty(&reqs)) { 589 req = nfs_list_entry(reqs.next); 590 nfs_list_remove_request(req); 591 nfs_unlock_and_release_request(req); 592 if (desc.pg_error == -EAGAIN) { 593 nfs_mark_request_commit(req, NULL, &cinfo, 0); 594 } else { 595 spin_lock(&dreq->lock); 596 nfs_direct_truncate_request(dreq, req); 597 spin_unlock(&dreq->lock); 598 nfs_release_request(req); 599 } 600 } 601 602 if (put_dreq(dreq)) 603 nfs_direct_write_complete(dreq); 604 } 605 606 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 607 { 608 const struct nfs_writeverf *verf = data->res.verf; 609 struct nfs_direct_req *dreq = data->dreq; 610 struct nfs_commit_info cinfo; 611 struct nfs_page *req; 612 int status = data->task.tk_status; 613 614 trace_nfs_direct_commit_complete(dreq); 615 616 spin_lock(&dreq->lock); 617 if (status < 0) { 618 /* Errors in commit are fatal */ 619 dreq->error = status; 620 dreq->flags = NFS_ODIRECT_DONE; 621 } else { 622 status = dreq->error; 623 } 624 spin_unlock(&dreq->lock); 625 626 nfs_init_cinfo_from_dreq(&cinfo, dreq); 627 628 while (!list_empty(&data->pages)) { 629 req = nfs_list_entry(data->pages.next); 630 nfs_list_remove_request(req); 631 if (status < 0) { 632 spin_lock(&dreq->lock); 633 nfs_direct_truncate_request(dreq, req); 634 spin_unlock(&dreq->lock); 635 nfs_release_request(req); 636 } else if (!nfs_write_match_verf(verf, req)) { 637 spin_lock(&dreq->lock); 638 if (dreq->flags == 0) 639 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 640 spin_unlock(&dreq->lock); 641 /* 642 * Despite the reboot, the write was successful, 643 * so reset wb_nio. 644 */ 645 req->wb_nio = 0; 646 nfs_mark_request_commit(req, NULL, &cinfo, 0); 647 } else 648 nfs_release_request(req); 649 nfs_unlock_and_release_request(req); 650 } 651 652 if (nfs_commit_end(cinfo.mds)) 653 nfs_direct_write_complete(dreq); 654 } 655 656 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 657 struct nfs_page *req) 658 { 659 struct nfs_direct_req *dreq = cinfo->dreq; 660 661 trace_nfs_direct_resched_write(dreq); 662 663 spin_lock(&dreq->lock); 664 if (dreq->flags != NFS_ODIRECT_DONE) 665 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 666 spin_unlock(&dreq->lock); 667 nfs_mark_request_commit(req, NULL, cinfo, 0); 668 } 669 670 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 671 .completion = nfs_direct_commit_complete, 672 .resched_write = nfs_direct_resched_write, 673 }; 674 675 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 676 { 677 int res; 678 struct nfs_commit_info cinfo; 679 LIST_HEAD(mds_list); 680 681 nfs_init_cinfo_from_dreq(&cinfo, dreq); 682 nfs_commit_begin(cinfo.mds); 683 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 684 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 685 if (res < 0) { /* res == -ENOMEM */ 686 spin_lock(&dreq->lock); 687 if (dreq->flags == 0) 688 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 689 spin_unlock(&dreq->lock); 690 } 691 if (nfs_commit_end(cinfo.mds)) 692 nfs_direct_write_complete(dreq); 693 } 694 695 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 696 { 697 struct nfs_commit_info cinfo; 698 struct nfs_page *req; 699 LIST_HEAD(reqs); 700 701 nfs_init_cinfo_from_dreq(&cinfo, dreq); 702 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 703 704 while (!list_empty(&reqs)) { 705 req = nfs_list_entry(reqs.next); 706 nfs_list_remove_request(req); 707 nfs_direct_truncate_request(dreq, req); 708 nfs_release_request(req); 709 nfs_unlock_and_release_request(req); 710 } 711 } 712 713 static void nfs_direct_write_schedule_work(struct work_struct *work) 714 { 715 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 716 int flags = dreq->flags; 717 718 dreq->flags = 0; 719 switch (flags) { 720 case NFS_ODIRECT_DO_COMMIT: 721 nfs_direct_commit_schedule(dreq); 722 break; 723 case NFS_ODIRECT_RESCHED_WRITES: 724 nfs_direct_write_reschedule(dreq); 725 break; 726 default: 727 nfs_direct_write_clear_reqs(dreq); 728 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 729 nfs_direct_complete(dreq); 730 } 731 } 732 733 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 734 { 735 trace_nfs_direct_write_complete(dreq); 736 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 737 } 738 739 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 740 { 741 struct nfs_direct_req *dreq = hdr->dreq; 742 struct nfs_commit_info cinfo; 743 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 744 int flags = NFS_ODIRECT_DONE; 745 746 trace_nfs_direct_write_completion(dreq); 747 748 nfs_init_cinfo_from_dreq(&cinfo, dreq); 749 750 spin_lock(&dreq->lock); 751 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 752 spin_unlock(&dreq->lock); 753 goto out_put; 754 } 755 756 nfs_direct_count_bytes(dreq, hdr); 757 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) && 758 !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 759 if (!dreq->flags) 760 dreq->flags = NFS_ODIRECT_DO_COMMIT; 761 flags = dreq->flags; 762 } 763 spin_unlock(&dreq->lock); 764 765 while (!list_empty(&hdr->pages)) { 766 767 req = nfs_list_entry(hdr->pages.next); 768 nfs_list_remove_request(req); 769 if (flags == NFS_ODIRECT_DO_COMMIT) { 770 kref_get(&req->wb_kref); 771 memcpy(&req->wb_verf, &hdr->verf.verifier, 772 sizeof(req->wb_verf)); 773 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 774 hdr->ds_commit_idx); 775 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) { 776 kref_get(&req->wb_kref); 777 nfs_mark_request_commit(req, NULL, &cinfo, 0); 778 } 779 nfs_unlock_and_release_request(req); 780 } 781 782 out_put: 783 if (put_dreq(dreq)) 784 nfs_direct_write_complete(dreq); 785 hdr->release(hdr); 786 } 787 788 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 789 { 790 struct nfs_page *req; 791 792 while (!list_empty(head)) { 793 req = nfs_list_entry(head->next); 794 nfs_list_remove_request(req); 795 nfs_unlock_and_release_request(req); 796 } 797 } 798 799 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 800 { 801 struct nfs_direct_req *dreq = hdr->dreq; 802 struct nfs_page *req; 803 struct nfs_commit_info cinfo; 804 805 trace_nfs_direct_write_reschedule_io(dreq); 806 807 nfs_init_cinfo_from_dreq(&cinfo, dreq); 808 spin_lock(&dreq->lock); 809 if (dreq->error == 0) 810 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 811 set_bit(NFS_IOHDR_REDO, &hdr->flags); 812 spin_unlock(&dreq->lock); 813 while (!list_empty(&hdr->pages)) { 814 req = nfs_list_entry(hdr->pages.next); 815 nfs_list_remove_request(req); 816 nfs_unlock_request(req); 817 nfs_mark_request_commit(req, NULL, &cinfo, 0); 818 } 819 } 820 821 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 822 .error_cleanup = nfs_write_sync_pgio_error, 823 .init_hdr = nfs_direct_pgio_init, 824 .completion = nfs_direct_write_completion, 825 .reschedule_io = nfs_direct_write_reschedule_io, 826 }; 827 828 829 /* 830 * NB: Return the value of the first error return code. Subsequent 831 * errors after the first one are ignored. 832 */ 833 /* 834 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 835 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 836 * bail and stop sending more writes. Write length accounting is 837 * handled automatically by nfs_direct_write_result(). Otherwise, if 838 * no requests have been sent, just return an error. 839 */ 840 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 841 struct iov_iter *iter, 842 loff_t pos, int ioflags) 843 { 844 struct nfs_pageio_descriptor desc; 845 struct inode *inode = dreq->inode; 846 struct nfs_commit_info cinfo; 847 ssize_t result = 0; 848 size_t requested_bytes = 0; 849 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 850 bool defer = false; 851 852 trace_nfs_direct_write_schedule_iovec(dreq); 853 854 nfs_pageio_init_write(&desc, inode, ioflags, false, 855 &nfs_direct_write_completion_ops); 856 desc.pg_dreq = dreq; 857 get_dreq(dreq); 858 inode_dio_begin(inode); 859 860 NFS_I(inode)->write_io += iov_iter_count(iter); 861 while (iov_iter_count(iter)) { 862 struct page **pagevec; 863 size_t bytes; 864 size_t pgbase; 865 unsigned npages, i; 866 867 result = iov_iter_get_pages_alloc2(iter, &pagevec, 868 wsize, &pgbase); 869 if (result < 0) 870 break; 871 872 bytes = result; 873 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 874 for (i = 0; i < npages; i++) { 875 struct nfs_page *req; 876 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 877 878 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 879 pgbase, pos, req_len); 880 if (IS_ERR(req)) { 881 result = PTR_ERR(req); 882 break; 883 } 884 885 if (desc.pg_error < 0) { 886 nfs_free_request(req); 887 result = desc.pg_error; 888 break; 889 } 890 891 pgbase = 0; 892 bytes -= req_len; 893 requested_bytes += req_len; 894 pos += req_len; 895 896 if (defer) { 897 nfs_mark_request_commit(req, NULL, &cinfo, 0); 898 continue; 899 } 900 901 nfs_lock_request(req); 902 if (nfs_pageio_add_request(&desc, req)) 903 continue; 904 905 /* Exit on hard errors */ 906 if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) { 907 result = desc.pg_error; 908 nfs_unlock_and_release_request(req); 909 break; 910 } 911 912 /* If the error is soft, defer remaining requests */ 913 nfs_init_cinfo_from_dreq(&cinfo, dreq); 914 spin_lock(&dreq->lock); 915 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 916 spin_unlock(&dreq->lock); 917 nfs_unlock_request(req); 918 nfs_mark_request_commit(req, NULL, &cinfo, 0); 919 desc.pg_error = 0; 920 defer = true; 921 } 922 nfs_direct_release_pages(pagevec, npages); 923 kvfree(pagevec); 924 if (result < 0) 925 break; 926 } 927 nfs_pageio_complete(&desc); 928 929 /* 930 * If no bytes were started, return the error, and let the 931 * generic layer handle the completion. 932 */ 933 if (requested_bytes == 0) { 934 inode_dio_end(inode); 935 nfs_direct_req_release(dreq); 936 return result < 0 ? result : -EIO; 937 } 938 939 if (put_dreq(dreq)) 940 nfs_direct_write_complete(dreq); 941 return requested_bytes; 942 } 943 944 /** 945 * nfs_file_direct_write - file direct write operation for NFS files 946 * @iocb: target I/O control block 947 * @iter: vector of user buffers from which to write data 948 * @swap: flag indicating this is swap IO, not O_DIRECT IO 949 * 950 * We use this function for direct writes instead of calling 951 * generic_file_aio_write() in order to avoid taking the inode 952 * semaphore and updating the i_size. The NFS server will set 953 * the new i_size and this client must read the updated size 954 * back into its cache. We let the server do generic write 955 * parameter checking and report problems. 956 * 957 * We eliminate local atime updates, see direct read above. 958 * 959 * We avoid unnecessary page cache invalidations for normal cached 960 * readers of this file. 961 * 962 * Note that O_APPEND is not supported for NFS direct writes, as there 963 * is no atomic O_APPEND write facility in the NFS protocol. 964 */ 965 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 966 bool swap) 967 { 968 ssize_t result, requested; 969 size_t count; 970 struct file *file = iocb->ki_filp; 971 struct address_space *mapping = file->f_mapping; 972 struct inode *inode = mapping->host; 973 struct nfs_direct_req *dreq; 974 struct nfs_lock_context *l_ctx; 975 loff_t pos, end; 976 977 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 978 file, iov_iter_count(iter), (long long) iocb->ki_pos); 979 980 if (swap) 981 /* bypass generic checks */ 982 result = iov_iter_count(iter); 983 else 984 result = generic_write_checks(iocb, iter); 985 if (result <= 0) 986 return result; 987 count = result; 988 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 989 990 pos = iocb->ki_pos; 991 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 992 993 task_io_account_write(count); 994 995 result = -ENOMEM; 996 dreq = nfs_direct_req_alloc(); 997 if (!dreq) 998 goto out; 999 1000 dreq->inode = inode; 1001 dreq->max_count = count; 1002 dreq->io_start = pos; 1003 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 1004 l_ctx = nfs_get_lock_context(dreq->ctx); 1005 if (IS_ERR(l_ctx)) { 1006 result = PTR_ERR(l_ctx); 1007 nfs_direct_req_release(dreq); 1008 goto out_release; 1009 } 1010 dreq->l_ctx = l_ctx; 1011 if (!is_sync_kiocb(iocb)) 1012 dreq->iocb = iocb; 1013 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 1014 1015 if (swap) { 1016 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1017 FLUSH_STABLE); 1018 } else { 1019 result = nfs_start_io_direct(inode); 1020 if (result) { 1021 /* release the reference that would usually be 1022 * consumed by nfs_direct_write_schedule_iovec() 1023 */ 1024 nfs_direct_req_release(dreq); 1025 goto out_release; 1026 } 1027 1028 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1029 FLUSH_COND_STABLE); 1030 1031 if (mapping->nrpages) { 1032 invalidate_inode_pages2_range(mapping, 1033 pos >> PAGE_SHIFT, end); 1034 } 1035 1036 nfs_end_io_direct(inode); 1037 } 1038 1039 if (requested > 0) { 1040 result = nfs_direct_wait(dreq); 1041 if (result > 0) { 1042 requested -= result; 1043 iocb->ki_pos = pos + result; 1044 /* XXX: should check the generic_write_sync retval */ 1045 generic_write_sync(iocb, result); 1046 } 1047 iov_iter_revert(iter, requested); 1048 } else { 1049 result = requested; 1050 } 1051 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE); 1052 out_release: 1053 nfs_direct_req_release(dreq); 1054 out: 1055 return result; 1056 } 1057 1058 /** 1059 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1060 * 1061 */ 1062 int __init nfs_init_directcache(void) 1063 { 1064 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1065 sizeof(struct nfs_direct_req), 1066 0, SLAB_RECLAIM_ACCOUNT, 1067 NULL); 1068 if (nfs_direct_cachep == NULL) 1069 return -ENOMEM; 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1076 * 1077 */ 1078 void nfs_destroy_directcache(void) 1079 { 1080 kmem_cache_destroy(nfs_direct_cachep); 1081 } 1082