1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 #include "fscache.h" 63 64 #define NFSDBG_FACILITY NFSDBG_VFS 65 66 static struct kmem_cache *nfs_direct_cachep; 67 68 struct nfs_direct_req { 69 struct kref kref; /* release manager */ 70 71 /* I/O parameters */ 72 struct nfs_open_context *ctx; /* file open context info */ 73 struct nfs_lock_context *l_ctx; /* Lock context info */ 74 struct kiocb * iocb; /* controlling i/o request */ 75 struct inode * inode; /* target file of i/o */ 76 77 /* completion state */ 78 atomic_t io_count; /* i/os we're waiting for */ 79 spinlock_t lock; /* protect completion state */ 80 81 loff_t io_start; /* Start offset for I/O */ 82 ssize_t count, /* bytes actually processed */ 83 max_count, /* max expected count */ 84 bytes_left, /* bytes left to be sent */ 85 error; /* any reported error */ 86 struct completion completion; /* wait for i/o completion */ 87 88 /* commit state */ 89 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 90 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 91 struct work_struct work; 92 int flags; 93 /* for write */ 94 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 95 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 96 /* for read */ 97 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */ 98 #define NFS_ODIRECT_DONE INT_MAX /* write verification failed */ 99 }; 100 101 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 102 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 103 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 104 static void nfs_direct_write_schedule_work(struct work_struct *work); 105 106 static inline void get_dreq(struct nfs_direct_req *dreq) 107 { 108 atomic_inc(&dreq->io_count); 109 } 110 111 static inline int put_dreq(struct nfs_direct_req *dreq) 112 { 113 return atomic_dec_and_test(&dreq->io_count); 114 } 115 116 static void 117 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 118 const struct nfs_pgio_header *hdr, 119 ssize_t dreq_len) 120 { 121 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 122 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 123 return; 124 if (dreq->max_count >= dreq_len) { 125 dreq->max_count = dreq_len; 126 if (dreq->count > dreq_len) 127 dreq->count = dreq_len; 128 129 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 130 dreq->error = hdr->error; 131 else /* Clear outstanding error if this is EOF */ 132 dreq->error = 0; 133 } 134 } 135 136 static void 137 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 138 const struct nfs_pgio_header *hdr) 139 { 140 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 141 ssize_t dreq_len = 0; 142 143 if (hdr_end > dreq->io_start) 144 dreq_len = hdr_end - dreq->io_start; 145 146 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 147 148 if (dreq_len > dreq->max_count) 149 dreq_len = dreq->max_count; 150 151 if (dreq->count < dreq_len) 152 dreq->count = dreq_len; 153 } 154 155 /** 156 * nfs_direct_IO - NFS address space operation for direct I/O 157 * @iocb: target I/O control block 158 * @iter: I/O buffer 159 * 160 * The presence of this routine in the address space ops vector means 161 * the NFS client supports direct I/O. However, for most direct IO, we 162 * shunt off direct read and write requests before the VFS gets them, 163 * so this method is only ever called for swap. 164 */ 165 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 166 { 167 struct inode *inode = iocb->ki_filp->f_mapping->host; 168 169 /* we only support swap file calling nfs_direct_IO */ 170 if (!IS_SWAPFILE(inode)) 171 return 0; 172 173 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 174 175 if (iov_iter_rw(iter) == READ) 176 return nfs_file_direct_read(iocb, iter); 177 return nfs_file_direct_write(iocb, iter); 178 } 179 180 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 181 { 182 unsigned int i; 183 for (i = 0; i < npages; i++) 184 put_page(pages[i]); 185 } 186 187 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 188 struct nfs_direct_req *dreq) 189 { 190 cinfo->inode = dreq->inode; 191 cinfo->mds = &dreq->mds_cinfo; 192 cinfo->ds = &dreq->ds_cinfo; 193 cinfo->dreq = dreq; 194 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 195 } 196 197 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 198 { 199 struct nfs_direct_req *dreq; 200 201 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 202 if (!dreq) 203 return NULL; 204 205 kref_init(&dreq->kref); 206 kref_get(&dreq->kref); 207 init_completion(&dreq->completion); 208 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 209 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 210 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 211 spin_lock_init(&dreq->lock); 212 213 return dreq; 214 } 215 216 static void nfs_direct_req_free(struct kref *kref) 217 { 218 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 219 220 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 221 if (dreq->l_ctx != NULL) 222 nfs_put_lock_context(dreq->l_ctx); 223 if (dreq->ctx != NULL) 224 put_nfs_open_context(dreq->ctx); 225 kmem_cache_free(nfs_direct_cachep, dreq); 226 } 227 228 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 229 { 230 kref_put(&dreq->kref, nfs_direct_req_free); 231 } 232 233 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 234 { 235 return dreq->bytes_left; 236 } 237 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 238 239 /* 240 * Collects and returns the final error value/byte-count. 241 */ 242 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 243 { 244 ssize_t result = -EIOCBQUEUED; 245 246 /* Async requests don't wait here */ 247 if (dreq->iocb) 248 goto out; 249 250 result = wait_for_completion_killable(&dreq->completion); 251 252 if (!result) { 253 result = dreq->count; 254 WARN_ON_ONCE(dreq->count < 0); 255 } 256 if (!result) 257 result = dreq->error; 258 259 out: 260 return (ssize_t) result; 261 } 262 263 /* 264 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 265 * the iocb is still valid here if this is a synchronous request. 266 */ 267 static void nfs_direct_complete(struct nfs_direct_req *dreq) 268 { 269 struct inode *inode = dreq->inode; 270 271 inode_dio_end(inode); 272 273 if (dreq->iocb) { 274 long res = (long) dreq->error; 275 if (dreq->count != 0) { 276 res = (long) dreq->count; 277 WARN_ON_ONCE(dreq->count < 0); 278 } 279 dreq->iocb->ki_complete(dreq->iocb, res); 280 } 281 282 complete(&dreq->completion); 283 284 nfs_direct_req_release(dreq); 285 } 286 287 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 288 { 289 unsigned long bytes = 0; 290 struct nfs_direct_req *dreq = hdr->dreq; 291 292 spin_lock(&dreq->lock); 293 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 294 spin_unlock(&dreq->lock); 295 goto out_put; 296 } 297 298 nfs_direct_count_bytes(dreq, hdr); 299 spin_unlock(&dreq->lock); 300 301 while (!list_empty(&hdr->pages)) { 302 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 303 struct page *page = req->wb_page; 304 305 if (!PageCompound(page) && bytes < hdr->good_bytes && 306 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 307 set_page_dirty(page); 308 bytes += req->wb_bytes; 309 nfs_list_remove_request(req); 310 nfs_release_request(req); 311 } 312 out_put: 313 if (put_dreq(dreq)) 314 nfs_direct_complete(dreq); 315 hdr->release(hdr); 316 } 317 318 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 319 { 320 struct nfs_page *req; 321 322 while (!list_empty(head)) { 323 req = nfs_list_entry(head->next); 324 nfs_list_remove_request(req); 325 nfs_release_request(req); 326 } 327 } 328 329 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 330 { 331 get_dreq(hdr->dreq); 332 } 333 334 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 335 .error_cleanup = nfs_read_sync_pgio_error, 336 .init_hdr = nfs_direct_pgio_init, 337 .completion = nfs_direct_read_completion, 338 }; 339 340 /* 341 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 342 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 343 * bail and stop sending more reads. Read length accounting is 344 * handled automatically by nfs_direct_read_result(). Otherwise, if 345 * no requests have been sent, just return an error. 346 */ 347 348 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 349 struct iov_iter *iter, 350 loff_t pos) 351 { 352 struct nfs_pageio_descriptor desc; 353 struct inode *inode = dreq->inode; 354 ssize_t result = -EINVAL; 355 size_t requested_bytes = 0; 356 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 357 358 nfs_pageio_init_read(&desc, dreq->inode, false, 359 &nfs_direct_read_completion_ops); 360 get_dreq(dreq); 361 desc.pg_dreq = dreq; 362 inode_dio_begin(inode); 363 364 while (iov_iter_count(iter)) { 365 struct page **pagevec; 366 size_t bytes; 367 size_t pgbase; 368 unsigned npages, i; 369 370 result = iov_iter_get_pages_alloc(iter, &pagevec, 371 rsize, &pgbase); 372 if (result < 0) 373 break; 374 375 bytes = result; 376 iov_iter_advance(iter, bytes); 377 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 378 for (i = 0; i < npages; i++) { 379 struct nfs_page *req; 380 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 381 /* XXX do we need to do the eof zeroing found in async_filler? */ 382 req = nfs_create_request(dreq->ctx, pagevec[i], 383 pgbase, req_len); 384 if (IS_ERR(req)) { 385 result = PTR_ERR(req); 386 break; 387 } 388 req->wb_index = pos >> PAGE_SHIFT; 389 req->wb_offset = pos & ~PAGE_MASK; 390 if (!nfs_pageio_add_request(&desc, req)) { 391 result = desc.pg_error; 392 nfs_release_request(req); 393 break; 394 } 395 pgbase = 0; 396 bytes -= req_len; 397 requested_bytes += req_len; 398 pos += req_len; 399 dreq->bytes_left -= req_len; 400 } 401 nfs_direct_release_pages(pagevec, npages); 402 kvfree(pagevec); 403 if (result < 0) 404 break; 405 } 406 407 nfs_pageio_complete(&desc); 408 409 /* 410 * If no bytes were started, return the error, and let the 411 * generic layer handle the completion. 412 */ 413 if (requested_bytes == 0) { 414 inode_dio_end(inode); 415 nfs_direct_req_release(dreq); 416 return result < 0 ? result : -EIO; 417 } 418 419 if (put_dreq(dreq)) 420 nfs_direct_complete(dreq); 421 return requested_bytes; 422 } 423 424 /** 425 * nfs_file_direct_read - file direct read operation for NFS files 426 * @iocb: target I/O control block 427 * @iter: vector of user buffers into which to read data 428 * 429 * We use this function for direct reads instead of calling 430 * generic_file_aio_read() in order to avoid gfar's check to see if 431 * the request starts before the end of the file. For that check 432 * to work, we must generate a GETATTR before each direct read, and 433 * even then there is a window between the GETATTR and the subsequent 434 * READ where the file size could change. Our preference is simply 435 * to do all reads the application wants, and the server will take 436 * care of managing the end of file boundary. 437 * 438 * This function also eliminates unnecessarily updating the file's 439 * atime locally, as the NFS server sets the file's atime, and this 440 * client must read the updated atime from the server back into its 441 * cache. 442 */ 443 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter) 444 { 445 struct file *file = iocb->ki_filp; 446 struct address_space *mapping = file->f_mapping; 447 struct inode *inode = mapping->host; 448 struct nfs_direct_req *dreq; 449 struct nfs_lock_context *l_ctx; 450 ssize_t result, requested; 451 size_t count = iov_iter_count(iter); 452 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 453 454 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 455 file, count, (long long) iocb->ki_pos); 456 457 result = 0; 458 if (!count) 459 goto out; 460 461 task_io_account_read(count); 462 463 result = -ENOMEM; 464 dreq = nfs_direct_req_alloc(); 465 if (dreq == NULL) 466 goto out; 467 468 dreq->inode = inode; 469 dreq->bytes_left = dreq->max_count = count; 470 dreq->io_start = iocb->ki_pos; 471 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 472 l_ctx = nfs_get_lock_context(dreq->ctx); 473 if (IS_ERR(l_ctx)) { 474 result = PTR_ERR(l_ctx); 475 nfs_direct_req_release(dreq); 476 goto out_release; 477 } 478 dreq->l_ctx = l_ctx; 479 if (!is_sync_kiocb(iocb)) 480 dreq->iocb = iocb; 481 482 if (iter_is_iovec(iter)) 483 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 484 485 nfs_start_io_direct(inode); 486 487 NFS_I(inode)->read_io += count; 488 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 489 490 nfs_end_io_direct(inode); 491 492 if (requested > 0) { 493 result = nfs_direct_wait(dreq); 494 if (result > 0) { 495 requested -= result; 496 iocb->ki_pos += result; 497 } 498 iov_iter_revert(iter, requested); 499 } else { 500 result = requested; 501 } 502 503 out_release: 504 nfs_direct_req_release(dreq); 505 out: 506 return result; 507 } 508 509 static void 510 nfs_direct_join_group(struct list_head *list, struct inode *inode) 511 { 512 struct nfs_page *req, *next; 513 514 list_for_each_entry(req, list, wb_list) { 515 if (req->wb_head != req || req->wb_this_page == req) 516 continue; 517 for (next = req->wb_this_page; 518 next != req->wb_head; 519 next = next->wb_this_page) { 520 nfs_list_remove_request(next); 521 nfs_release_request(next); 522 } 523 nfs_join_page_group(req, inode); 524 } 525 } 526 527 static void 528 nfs_direct_write_scan_commit_list(struct inode *inode, 529 struct list_head *list, 530 struct nfs_commit_info *cinfo) 531 { 532 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 533 pnfs_recover_commit_reqs(list, cinfo); 534 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 535 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 536 } 537 538 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 539 { 540 struct nfs_pageio_descriptor desc; 541 struct nfs_page *req, *tmp; 542 LIST_HEAD(reqs); 543 struct nfs_commit_info cinfo; 544 LIST_HEAD(failed); 545 546 nfs_init_cinfo_from_dreq(&cinfo, dreq); 547 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 548 549 nfs_direct_join_group(&reqs, dreq->inode); 550 551 dreq->count = 0; 552 dreq->max_count = 0; 553 list_for_each_entry(req, &reqs, wb_list) 554 dreq->max_count += req->wb_bytes; 555 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 556 get_dreq(dreq); 557 558 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 559 &nfs_direct_write_completion_ops); 560 desc.pg_dreq = dreq; 561 562 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 563 /* Bump the transmission count */ 564 req->wb_nio++; 565 if (!nfs_pageio_add_request(&desc, req)) { 566 nfs_list_move_request(req, &failed); 567 spin_lock(&cinfo.inode->i_lock); 568 dreq->flags = 0; 569 if (desc.pg_error < 0) 570 dreq->error = desc.pg_error; 571 else 572 dreq->error = -EIO; 573 spin_unlock(&cinfo.inode->i_lock); 574 } 575 nfs_release_request(req); 576 } 577 nfs_pageio_complete(&desc); 578 579 while (!list_empty(&failed)) { 580 req = nfs_list_entry(failed.next); 581 nfs_list_remove_request(req); 582 nfs_unlock_and_release_request(req); 583 } 584 585 if (put_dreq(dreq)) 586 nfs_direct_write_complete(dreq); 587 } 588 589 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 590 { 591 const struct nfs_writeverf *verf = data->res.verf; 592 struct nfs_direct_req *dreq = data->dreq; 593 struct nfs_commit_info cinfo; 594 struct nfs_page *req; 595 int status = data->task.tk_status; 596 597 if (status < 0) { 598 /* Errors in commit are fatal */ 599 dreq->error = status; 600 dreq->max_count = 0; 601 dreq->count = 0; 602 dreq->flags = NFS_ODIRECT_DONE; 603 } else if (dreq->flags == NFS_ODIRECT_DONE) 604 status = dreq->error; 605 606 nfs_init_cinfo_from_dreq(&cinfo, dreq); 607 608 while (!list_empty(&data->pages)) { 609 req = nfs_list_entry(data->pages.next); 610 nfs_list_remove_request(req); 611 if (status >= 0 && !nfs_write_match_verf(verf, req)) { 612 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 613 /* 614 * Despite the reboot, the write was successful, 615 * so reset wb_nio. 616 */ 617 req->wb_nio = 0; 618 nfs_mark_request_commit(req, NULL, &cinfo, 0); 619 } else /* Error or match */ 620 nfs_release_request(req); 621 nfs_unlock_and_release_request(req); 622 } 623 624 if (nfs_commit_end(cinfo.mds)) 625 nfs_direct_write_complete(dreq); 626 } 627 628 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 629 struct nfs_page *req) 630 { 631 struct nfs_direct_req *dreq = cinfo->dreq; 632 633 spin_lock(&dreq->lock); 634 if (dreq->flags != NFS_ODIRECT_DONE) 635 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 636 spin_unlock(&dreq->lock); 637 nfs_mark_request_commit(req, NULL, cinfo, 0); 638 } 639 640 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 641 .completion = nfs_direct_commit_complete, 642 .resched_write = nfs_direct_resched_write, 643 }; 644 645 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 646 { 647 int res; 648 struct nfs_commit_info cinfo; 649 LIST_HEAD(mds_list); 650 651 nfs_init_cinfo_from_dreq(&cinfo, dreq); 652 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 653 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 654 if (res < 0) /* res == -ENOMEM */ 655 nfs_direct_write_reschedule(dreq); 656 } 657 658 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 659 { 660 struct nfs_commit_info cinfo; 661 struct nfs_page *req; 662 LIST_HEAD(reqs); 663 664 nfs_init_cinfo_from_dreq(&cinfo, dreq); 665 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 666 667 while (!list_empty(&reqs)) { 668 req = nfs_list_entry(reqs.next); 669 nfs_list_remove_request(req); 670 nfs_release_request(req); 671 nfs_unlock_and_release_request(req); 672 } 673 } 674 675 static void nfs_direct_write_schedule_work(struct work_struct *work) 676 { 677 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 678 int flags = dreq->flags; 679 680 dreq->flags = 0; 681 switch (flags) { 682 case NFS_ODIRECT_DO_COMMIT: 683 nfs_direct_commit_schedule(dreq); 684 break; 685 case NFS_ODIRECT_RESCHED_WRITES: 686 nfs_direct_write_reschedule(dreq); 687 break; 688 default: 689 nfs_direct_write_clear_reqs(dreq); 690 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 691 nfs_direct_complete(dreq); 692 } 693 } 694 695 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 696 { 697 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 698 } 699 700 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 701 { 702 struct nfs_direct_req *dreq = hdr->dreq; 703 struct nfs_commit_info cinfo; 704 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 705 int flags = NFS_ODIRECT_DONE; 706 707 nfs_init_cinfo_from_dreq(&cinfo, dreq); 708 709 spin_lock(&dreq->lock); 710 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 711 spin_unlock(&dreq->lock); 712 goto out_put; 713 } 714 715 nfs_direct_count_bytes(dreq, hdr); 716 if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) { 717 if (!dreq->flags) 718 dreq->flags = NFS_ODIRECT_DO_COMMIT; 719 flags = dreq->flags; 720 } 721 spin_unlock(&dreq->lock); 722 723 while (!list_empty(&hdr->pages)) { 724 725 req = nfs_list_entry(hdr->pages.next); 726 nfs_list_remove_request(req); 727 if (flags == NFS_ODIRECT_DO_COMMIT) { 728 kref_get(&req->wb_kref); 729 memcpy(&req->wb_verf, &hdr->verf.verifier, 730 sizeof(req->wb_verf)); 731 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 732 hdr->ds_commit_idx); 733 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) { 734 kref_get(&req->wb_kref); 735 nfs_mark_request_commit(req, NULL, &cinfo, 0); 736 } 737 nfs_unlock_and_release_request(req); 738 } 739 740 out_put: 741 if (put_dreq(dreq)) 742 nfs_direct_write_complete(dreq); 743 hdr->release(hdr); 744 } 745 746 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 747 { 748 struct nfs_page *req; 749 750 while (!list_empty(head)) { 751 req = nfs_list_entry(head->next); 752 nfs_list_remove_request(req); 753 nfs_unlock_and_release_request(req); 754 } 755 } 756 757 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 758 { 759 struct nfs_direct_req *dreq = hdr->dreq; 760 761 spin_lock(&dreq->lock); 762 if (dreq->error == 0) { 763 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 764 /* fake unstable write to let common nfs resend pages */ 765 hdr->verf.committed = NFS_UNSTABLE; 766 hdr->good_bytes = hdr->args.offset + hdr->args.count - 767 hdr->io_start; 768 } 769 spin_unlock(&dreq->lock); 770 } 771 772 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 773 .error_cleanup = nfs_write_sync_pgio_error, 774 .init_hdr = nfs_direct_pgio_init, 775 .completion = nfs_direct_write_completion, 776 .reschedule_io = nfs_direct_write_reschedule_io, 777 }; 778 779 780 /* 781 * NB: Return the value of the first error return code. Subsequent 782 * errors after the first one are ignored. 783 */ 784 /* 785 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 786 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 787 * bail and stop sending more writes. Write length accounting is 788 * handled automatically by nfs_direct_write_result(). Otherwise, if 789 * no requests have been sent, just return an error. 790 */ 791 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 792 struct iov_iter *iter, 793 loff_t pos) 794 { 795 struct nfs_pageio_descriptor desc; 796 struct inode *inode = dreq->inode; 797 ssize_t result = 0; 798 size_t requested_bytes = 0; 799 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 800 801 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 802 &nfs_direct_write_completion_ops); 803 desc.pg_dreq = dreq; 804 get_dreq(dreq); 805 inode_dio_begin(inode); 806 807 NFS_I(inode)->write_io += iov_iter_count(iter); 808 while (iov_iter_count(iter)) { 809 struct page **pagevec; 810 size_t bytes; 811 size_t pgbase; 812 unsigned npages, i; 813 814 result = iov_iter_get_pages_alloc(iter, &pagevec, 815 wsize, &pgbase); 816 if (result < 0) 817 break; 818 819 bytes = result; 820 iov_iter_advance(iter, bytes); 821 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 822 for (i = 0; i < npages; i++) { 823 struct nfs_page *req; 824 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 825 826 req = nfs_create_request(dreq->ctx, pagevec[i], 827 pgbase, req_len); 828 if (IS_ERR(req)) { 829 result = PTR_ERR(req); 830 break; 831 } 832 833 if (desc.pg_error < 0) { 834 nfs_free_request(req); 835 result = desc.pg_error; 836 break; 837 } 838 839 nfs_lock_request(req); 840 req->wb_index = pos >> PAGE_SHIFT; 841 req->wb_offset = pos & ~PAGE_MASK; 842 if (!nfs_pageio_add_request(&desc, req)) { 843 result = desc.pg_error; 844 nfs_unlock_and_release_request(req); 845 break; 846 } 847 pgbase = 0; 848 bytes -= req_len; 849 requested_bytes += req_len; 850 pos += req_len; 851 dreq->bytes_left -= req_len; 852 } 853 nfs_direct_release_pages(pagevec, npages); 854 kvfree(pagevec); 855 if (result < 0) 856 break; 857 } 858 nfs_pageio_complete(&desc); 859 860 /* 861 * If no bytes were started, return the error, and let the 862 * generic layer handle the completion. 863 */ 864 if (requested_bytes == 0) { 865 inode_dio_end(inode); 866 nfs_direct_req_release(dreq); 867 return result < 0 ? result : -EIO; 868 } 869 870 if (put_dreq(dreq)) 871 nfs_direct_write_complete(dreq); 872 return requested_bytes; 873 } 874 875 /** 876 * nfs_file_direct_write - file direct write operation for NFS files 877 * @iocb: target I/O control block 878 * @iter: vector of user buffers from which to write data 879 * 880 * We use this function for direct writes instead of calling 881 * generic_file_aio_write() in order to avoid taking the inode 882 * semaphore and updating the i_size. The NFS server will set 883 * the new i_size and this client must read the updated size 884 * back into its cache. We let the server do generic write 885 * parameter checking and report problems. 886 * 887 * We eliminate local atime updates, see direct read above. 888 * 889 * We avoid unnecessary page cache invalidations for normal cached 890 * readers of this file. 891 * 892 * Note that O_APPEND is not supported for NFS direct writes, as there 893 * is no atomic O_APPEND write facility in the NFS protocol. 894 */ 895 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter) 896 { 897 ssize_t result, requested; 898 size_t count; 899 struct file *file = iocb->ki_filp; 900 struct address_space *mapping = file->f_mapping; 901 struct inode *inode = mapping->host; 902 struct nfs_direct_req *dreq; 903 struct nfs_lock_context *l_ctx; 904 loff_t pos, end; 905 906 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 907 file, iov_iter_count(iter), (long long) iocb->ki_pos); 908 909 result = generic_write_checks(iocb, iter); 910 if (result <= 0) 911 return result; 912 count = result; 913 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 914 915 pos = iocb->ki_pos; 916 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 917 918 task_io_account_write(count); 919 920 result = -ENOMEM; 921 dreq = nfs_direct_req_alloc(); 922 if (!dreq) 923 goto out; 924 925 dreq->inode = inode; 926 dreq->bytes_left = dreq->max_count = count; 927 dreq->io_start = pos; 928 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 929 l_ctx = nfs_get_lock_context(dreq->ctx); 930 if (IS_ERR(l_ctx)) { 931 result = PTR_ERR(l_ctx); 932 nfs_direct_req_release(dreq); 933 goto out_release; 934 } 935 dreq->l_ctx = l_ctx; 936 if (!is_sync_kiocb(iocb)) 937 dreq->iocb = iocb; 938 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 939 940 nfs_start_io_direct(inode); 941 942 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos); 943 944 if (mapping->nrpages) { 945 invalidate_inode_pages2_range(mapping, 946 pos >> PAGE_SHIFT, end); 947 } 948 949 nfs_end_io_direct(inode); 950 951 if (requested > 0) { 952 result = nfs_direct_wait(dreq); 953 if (result > 0) { 954 requested -= result; 955 iocb->ki_pos = pos + result; 956 /* XXX: should check the generic_write_sync retval */ 957 generic_write_sync(iocb, result); 958 } 959 iov_iter_revert(iter, requested); 960 } else { 961 result = requested; 962 } 963 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE); 964 out_release: 965 nfs_direct_req_release(dreq); 966 out: 967 return result; 968 } 969 970 /** 971 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 972 * 973 */ 974 int __init nfs_init_directcache(void) 975 { 976 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 977 sizeof(struct nfs_direct_req), 978 0, (SLAB_RECLAIM_ACCOUNT| 979 SLAB_MEM_SPREAD), 980 NULL); 981 if (nfs_direct_cachep == NULL) 982 return -ENOMEM; 983 984 return 0; 985 } 986 987 /** 988 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 989 * 990 */ 991 void nfs_destroy_directcache(void) 992 { 993 kmem_cache_destroy(nfs_direct_cachep); 994 } 995