xref: /linux/fs/nfs/direct.c (revision 79de4d9ade7411ffdddf0b69c87020311731d155)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 #include "nfstrace.h"
64 
65 #define NFSDBG_FACILITY		NFSDBG_VFS
66 
67 static struct kmem_cache *nfs_direct_cachep;
68 
69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
72 static void nfs_direct_write_schedule_work(struct work_struct *work);
73 
74 static inline void get_dreq(struct nfs_direct_req *dreq)
75 {
76 	atomic_inc(&dreq->io_count);
77 }
78 
79 static inline int put_dreq(struct nfs_direct_req *dreq)
80 {
81 	return atomic_dec_and_test(&dreq->io_count);
82 }
83 
84 static void
85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
86 			    const struct nfs_pgio_header *hdr,
87 			    ssize_t dreq_len)
88 {
89 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
90 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
91 		return;
92 	if (dreq->max_count >= dreq_len) {
93 		dreq->max_count = dreq_len;
94 		if (dreq->count > dreq_len)
95 			dreq->count = dreq_len;
96 	}
97 
98 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error)
99 		dreq->error = hdr->error;
100 }
101 
102 static void
103 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
104 		       const struct nfs_pgio_header *hdr)
105 {
106 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
107 	ssize_t dreq_len = 0;
108 
109 	if (hdr_end > dreq->io_start)
110 		dreq_len = hdr_end - dreq->io_start;
111 
112 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
113 
114 	if (dreq_len > dreq->max_count)
115 		dreq_len = dreq->max_count;
116 
117 	if (dreq->count < dreq_len)
118 		dreq->count = dreq_len;
119 }
120 
121 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq,
122 					struct nfs_page *req)
123 {
124 	loff_t offs = req_offset(req);
125 	size_t req_start = (size_t)(offs - dreq->io_start);
126 
127 	if (req_start < dreq->max_count)
128 		dreq->max_count = req_start;
129 	if (req_start < dreq->count)
130 		dreq->count = req_start;
131 }
132 
133 /**
134  * nfs_swap_rw - NFS address space operation for swap I/O
135  * @iocb: target I/O control block
136  * @iter: I/O buffer
137  *
138  * Perform IO to the swap-file.  This is much like direct IO.
139  */
140 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
141 {
142 	ssize_t ret;
143 
144 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
145 
146 	if (iov_iter_rw(iter) == READ)
147 		ret = nfs_file_direct_read(iocb, iter, true);
148 	else
149 		ret = nfs_file_direct_write(iocb, iter, true);
150 	if (ret < 0)
151 		return ret;
152 	return 0;
153 }
154 
155 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
156 {
157 	unsigned int i;
158 	for (i = 0; i < npages; i++)
159 		put_page(pages[i]);
160 }
161 
162 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
163 			      struct nfs_direct_req *dreq)
164 {
165 	cinfo->inode = dreq->inode;
166 	cinfo->mds = &dreq->mds_cinfo;
167 	cinfo->ds = &dreq->ds_cinfo;
168 	cinfo->dreq = dreq;
169 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
170 }
171 
172 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
173 {
174 	struct nfs_direct_req *dreq;
175 
176 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
177 	if (!dreq)
178 		return NULL;
179 
180 	kref_init(&dreq->kref);
181 	kref_get(&dreq->kref);
182 	init_completion(&dreq->completion);
183 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
184 	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
185 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
186 	spin_lock_init(&dreq->lock);
187 
188 	return dreq;
189 }
190 
191 static void nfs_direct_req_free(struct kref *kref)
192 {
193 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
194 
195 	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
196 	if (dreq->l_ctx != NULL)
197 		nfs_put_lock_context(dreq->l_ctx);
198 	if (dreq->ctx != NULL)
199 		put_nfs_open_context(dreq->ctx);
200 	kmem_cache_free(nfs_direct_cachep, dreq);
201 }
202 
203 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
204 {
205 	kref_put(&dreq->kref, nfs_direct_req_free);
206 }
207 
208 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
209 {
210 	return dreq->bytes_left;
211 }
212 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
213 
214 /*
215  * Collects and returns the final error value/byte-count.
216  */
217 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
218 {
219 	ssize_t result = -EIOCBQUEUED;
220 
221 	/* Async requests don't wait here */
222 	if (dreq->iocb)
223 		goto out;
224 
225 	result = wait_for_completion_killable(&dreq->completion);
226 
227 	if (!result) {
228 		result = dreq->count;
229 		WARN_ON_ONCE(dreq->count < 0);
230 	}
231 	if (!result)
232 		result = dreq->error;
233 
234 out:
235 	return (ssize_t) result;
236 }
237 
238 /*
239  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
240  * the iocb is still valid here if this is a synchronous request.
241  */
242 static void nfs_direct_complete(struct nfs_direct_req *dreq)
243 {
244 	struct inode *inode = dreq->inode;
245 
246 	inode_dio_end(inode);
247 
248 	if (dreq->iocb) {
249 		long res = (long) dreq->error;
250 		if (dreq->count != 0) {
251 			res = (long) dreq->count;
252 			WARN_ON_ONCE(dreq->count < 0);
253 		}
254 		dreq->iocb->ki_complete(dreq->iocb, res);
255 	}
256 
257 	complete(&dreq->completion);
258 
259 	nfs_direct_req_release(dreq);
260 }
261 
262 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
263 {
264 	unsigned long bytes = 0;
265 	struct nfs_direct_req *dreq = hdr->dreq;
266 
267 	spin_lock(&dreq->lock);
268 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
269 		spin_unlock(&dreq->lock);
270 		goto out_put;
271 	}
272 
273 	nfs_direct_count_bytes(dreq, hdr);
274 	spin_unlock(&dreq->lock);
275 
276 	while (!list_empty(&hdr->pages)) {
277 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
278 		struct page *page = req->wb_page;
279 
280 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
281 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
282 			set_page_dirty(page);
283 		bytes += req->wb_bytes;
284 		nfs_list_remove_request(req);
285 		nfs_release_request(req);
286 	}
287 out_put:
288 	if (put_dreq(dreq))
289 		nfs_direct_complete(dreq);
290 	hdr->release(hdr);
291 }
292 
293 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
294 {
295 	struct nfs_page *req;
296 
297 	while (!list_empty(head)) {
298 		req = nfs_list_entry(head->next);
299 		nfs_list_remove_request(req);
300 		nfs_release_request(req);
301 	}
302 }
303 
304 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
305 {
306 	get_dreq(hdr->dreq);
307 }
308 
309 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
310 	.error_cleanup = nfs_read_sync_pgio_error,
311 	.init_hdr = nfs_direct_pgio_init,
312 	.completion = nfs_direct_read_completion,
313 };
314 
315 /*
316  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
317  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
318  * bail and stop sending more reads.  Read length accounting is
319  * handled automatically by nfs_direct_read_result().  Otherwise, if
320  * no requests have been sent, just return an error.
321  */
322 
323 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
324 					      struct iov_iter *iter,
325 					      loff_t pos)
326 {
327 	struct nfs_pageio_descriptor desc;
328 	struct inode *inode = dreq->inode;
329 	ssize_t result = -EINVAL;
330 	size_t requested_bytes = 0;
331 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
332 
333 	nfs_pageio_init_read(&desc, dreq->inode, false,
334 			     &nfs_direct_read_completion_ops);
335 	get_dreq(dreq);
336 	desc.pg_dreq = dreq;
337 	inode_dio_begin(inode);
338 
339 	while (iov_iter_count(iter)) {
340 		struct page **pagevec;
341 		size_t bytes;
342 		size_t pgbase;
343 		unsigned npages, i;
344 
345 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
346 						  rsize, &pgbase);
347 		if (result < 0)
348 			break;
349 
350 		bytes = result;
351 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
352 		for (i = 0; i < npages; i++) {
353 			struct nfs_page *req;
354 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
355 			/* XXX do we need to do the eof zeroing found in async_filler? */
356 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
357 							pgbase, pos, req_len);
358 			if (IS_ERR(req)) {
359 				result = PTR_ERR(req);
360 				break;
361 			}
362 			if (!nfs_pageio_add_request(&desc, req)) {
363 				result = desc.pg_error;
364 				nfs_release_request(req);
365 				break;
366 			}
367 			pgbase = 0;
368 			bytes -= req_len;
369 			requested_bytes += req_len;
370 			pos += req_len;
371 			dreq->bytes_left -= req_len;
372 		}
373 		nfs_direct_release_pages(pagevec, npages);
374 		kvfree(pagevec);
375 		if (result < 0)
376 			break;
377 	}
378 
379 	nfs_pageio_complete(&desc);
380 
381 	/*
382 	 * If no bytes were started, return the error, and let the
383 	 * generic layer handle the completion.
384 	 */
385 	if (requested_bytes == 0) {
386 		inode_dio_end(inode);
387 		nfs_direct_req_release(dreq);
388 		return result < 0 ? result : -EIO;
389 	}
390 
391 	if (put_dreq(dreq))
392 		nfs_direct_complete(dreq);
393 	return requested_bytes;
394 }
395 
396 /**
397  * nfs_file_direct_read - file direct read operation for NFS files
398  * @iocb: target I/O control block
399  * @iter: vector of user buffers into which to read data
400  * @swap: flag indicating this is swap IO, not O_DIRECT IO
401  *
402  * We use this function for direct reads instead of calling
403  * generic_file_aio_read() in order to avoid gfar's check to see if
404  * the request starts before the end of the file.  For that check
405  * to work, we must generate a GETATTR before each direct read, and
406  * even then there is a window between the GETATTR and the subsequent
407  * READ where the file size could change.  Our preference is simply
408  * to do all reads the application wants, and the server will take
409  * care of managing the end of file boundary.
410  *
411  * This function also eliminates unnecessarily updating the file's
412  * atime locally, as the NFS server sets the file's atime, and this
413  * client must read the updated atime from the server back into its
414  * cache.
415  */
416 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
417 			     bool swap)
418 {
419 	struct file *file = iocb->ki_filp;
420 	struct address_space *mapping = file->f_mapping;
421 	struct inode *inode = mapping->host;
422 	struct nfs_direct_req *dreq;
423 	struct nfs_lock_context *l_ctx;
424 	ssize_t result, requested;
425 	size_t count = iov_iter_count(iter);
426 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
427 
428 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
429 		file, count, (long long) iocb->ki_pos);
430 
431 	result = 0;
432 	if (!count)
433 		goto out;
434 
435 	task_io_account_read(count);
436 
437 	result = -ENOMEM;
438 	dreq = nfs_direct_req_alloc();
439 	if (dreq == NULL)
440 		goto out;
441 
442 	dreq->inode = inode;
443 	dreq->bytes_left = dreq->max_count = count;
444 	dreq->io_start = iocb->ki_pos;
445 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
446 	l_ctx = nfs_get_lock_context(dreq->ctx);
447 	if (IS_ERR(l_ctx)) {
448 		result = PTR_ERR(l_ctx);
449 		nfs_direct_req_release(dreq);
450 		goto out_release;
451 	}
452 	dreq->l_ctx = l_ctx;
453 	if (!is_sync_kiocb(iocb))
454 		dreq->iocb = iocb;
455 
456 	if (user_backed_iter(iter))
457 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
458 
459 	if (!swap)
460 		nfs_start_io_direct(inode);
461 
462 	NFS_I(inode)->read_io += count;
463 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
464 
465 	if (!swap)
466 		nfs_end_io_direct(inode);
467 
468 	if (requested > 0) {
469 		result = nfs_direct_wait(dreq);
470 		if (result > 0) {
471 			requested -= result;
472 			iocb->ki_pos += result;
473 		}
474 		iov_iter_revert(iter, requested);
475 	} else {
476 		result = requested;
477 	}
478 
479 out_release:
480 	nfs_direct_req_release(dreq);
481 out:
482 	return result;
483 }
484 
485 static void nfs_direct_add_page_head(struct list_head *list,
486 				     struct nfs_page *req)
487 {
488 	struct nfs_page *head = req->wb_head;
489 
490 	if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
491 		return;
492 	if (!list_empty(&head->wb_list)) {
493 		nfs_unlock_request(head);
494 		return;
495 	}
496 	list_add(&head->wb_list, list);
497 	kref_get(&head->wb_kref);
498 	kref_get(&head->wb_kref);
499 }
500 
501 static void nfs_direct_join_group(struct list_head *list,
502 				  struct nfs_commit_info *cinfo,
503 				  struct inode *inode)
504 {
505 	struct nfs_page *req, *subreq;
506 
507 	list_for_each_entry(req, list, wb_list) {
508 		if (req->wb_head != req) {
509 			nfs_direct_add_page_head(&req->wb_list, req);
510 			continue;
511 		}
512 		subreq = req->wb_this_page;
513 		if (subreq == req)
514 			continue;
515 		do {
516 			/*
517 			 * Remove subrequests from this list before freeing
518 			 * them in the call to nfs_join_page_group().
519 			 */
520 			if (!list_empty(&subreq->wb_list)) {
521 				nfs_list_remove_request(subreq);
522 				nfs_release_request(subreq);
523 			}
524 		} while ((subreq = subreq->wb_this_page) != req);
525 		nfs_join_page_group(req, cinfo, inode);
526 	}
527 }
528 
529 static void
530 nfs_direct_write_scan_commit_list(struct inode *inode,
531 				  struct list_head *list,
532 				  struct nfs_commit_info *cinfo)
533 {
534 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
535 	pnfs_recover_commit_reqs(list, cinfo);
536 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
537 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
538 }
539 
540 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
541 {
542 	struct nfs_pageio_descriptor desc;
543 	struct nfs_page *req;
544 	LIST_HEAD(reqs);
545 	struct nfs_commit_info cinfo;
546 
547 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
548 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
549 
550 	nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
551 
552 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
553 	get_dreq(dreq);
554 
555 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
556 			      &nfs_direct_write_completion_ops);
557 	desc.pg_dreq = dreq;
558 
559 	while (!list_empty(&reqs)) {
560 		req = nfs_list_entry(reqs.next);
561 		/* Bump the transmission count */
562 		req->wb_nio++;
563 		if (!nfs_pageio_add_request(&desc, req)) {
564 			spin_lock(&dreq->lock);
565 			if (dreq->error < 0) {
566 				desc.pg_error = dreq->error;
567 			} else if (desc.pg_error != -EAGAIN) {
568 				dreq->flags = 0;
569 				if (!desc.pg_error)
570 					desc.pg_error = -EIO;
571 				dreq->error = desc.pg_error;
572 			} else
573 				dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
574 			spin_unlock(&dreq->lock);
575 			break;
576 		}
577 		nfs_release_request(req);
578 	}
579 	nfs_pageio_complete(&desc);
580 
581 	while (!list_empty(&reqs)) {
582 		req = nfs_list_entry(reqs.next);
583 		nfs_list_remove_request(req);
584 		nfs_unlock_and_release_request(req);
585 		if (desc.pg_error == -EAGAIN) {
586 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
587 		} else {
588 			spin_lock(&dreq->lock);
589 			nfs_direct_truncate_request(dreq, req);
590 			spin_unlock(&dreq->lock);
591 			nfs_release_request(req);
592 		}
593 	}
594 
595 	if (put_dreq(dreq))
596 		nfs_direct_write_complete(dreq);
597 }
598 
599 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
600 {
601 	const struct nfs_writeverf *verf = data->res.verf;
602 	struct nfs_direct_req *dreq = data->dreq;
603 	struct nfs_commit_info cinfo;
604 	struct nfs_page *req;
605 	int status = data->task.tk_status;
606 
607 	trace_nfs_direct_commit_complete(dreq);
608 
609 	if (status < 0) {
610 		/* Errors in commit are fatal */
611 		dreq->error = status;
612 		dreq->flags = NFS_ODIRECT_DONE;
613 	} else {
614 		status = dreq->error;
615 	}
616 
617 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
618 
619 	while (!list_empty(&data->pages)) {
620 		req = nfs_list_entry(data->pages.next);
621 		nfs_list_remove_request(req);
622 		if (status < 0) {
623 			spin_lock(&dreq->lock);
624 			nfs_direct_truncate_request(dreq, req);
625 			spin_unlock(&dreq->lock);
626 			nfs_release_request(req);
627 		} else if (!nfs_write_match_verf(verf, req)) {
628 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
629 			/*
630 			 * Despite the reboot, the write was successful,
631 			 * so reset wb_nio.
632 			 */
633 			req->wb_nio = 0;
634 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
635 		} else
636 			nfs_release_request(req);
637 		nfs_unlock_and_release_request(req);
638 	}
639 
640 	if (nfs_commit_end(cinfo.mds))
641 		nfs_direct_write_complete(dreq);
642 }
643 
644 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
645 		struct nfs_page *req)
646 {
647 	struct nfs_direct_req *dreq = cinfo->dreq;
648 
649 	trace_nfs_direct_resched_write(dreq);
650 
651 	spin_lock(&dreq->lock);
652 	if (dreq->flags != NFS_ODIRECT_DONE)
653 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
654 	spin_unlock(&dreq->lock);
655 	nfs_mark_request_commit(req, NULL, cinfo, 0);
656 }
657 
658 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
659 	.completion = nfs_direct_commit_complete,
660 	.resched_write = nfs_direct_resched_write,
661 };
662 
663 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
664 {
665 	int res;
666 	struct nfs_commit_info cinfo;
667 	LIST_HEAD(mds_list);
668 
669 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
670 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
671 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
672 	if (res < 0) /* res == -ENOMEM */
673 		nfs_direct_write_reschedule(dreq);
674 }
675 
676 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
677 {
678 	struct nfs_commit_info cinfo;
679 	struct nfs_page *req;
680 	LIST_HEAD(reqs);
681 
682 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
683 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
684 
685 	while (!list_empty(&reqs)) {
686 		req = nfs_list_entry(reqs.next);
687 		nfs_list_remove_request(req);
688 		nfs_direct_truncate_request(dreq, req);
689 		nfs_release_request(req);
690 		nfs_unlock_and_release_request(req);
691 	}
692 }
693 
694 static void nfs_direct_write_schedule_work(struct work_struct *work)
695 {
696 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
697 	int flags = dreq->flags;
698 
699 	dreq->flags = 0;
700 	switch (flags) {
701 		case NFS_ODIRECT_DO_COMMIT:
702 			nfs_direct_commit_schedule(dreq);
703 			break;
704 		case NFS_ODIRECT_RESCHED_WRITES:
705 			nfs_direct_write_reschedule(dreq);
706 			break;
707 		default:
708 			nfs_direct_write_clear_reqs(dreq);
709 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
710 			nfs_direct_complete(dreq);
711 	}
712 }
713 
714 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
715 {
716 	trace_nfs_direct_write_complete(dreq);
717 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
718 }
719 
720 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
721 {
722 	struct nfs_direct_req *dreq = hdr->dreq;
723 	struct nfs_commit_info cinfo;
724 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
725 	int flags = NFS_ODIRECT_DONE;
726 
727 	trace_nfs_direct_write_completion(dreq);
728 
729 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
730 
731 	spin_lock(&dreq->lock);
732 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
733 		spin_unlock(&dreq->lock);
734 		goto out_put;
735 	}
736 
737 	nfs_direct_count_bytes(dreq, hdr);
738 	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) &&
739 	    !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
740 		if (!dreq->flags)
741 			dreq->flags = NFS_ODIRECT_DO_COMMIT;
742 		flags = dreq->flags;
743 	}
744 	spin_unlock(&dreq->lock);
745 
746 	while (!list_empty(&hdr->pages)) {
747 
748 		req = nfs_list_entry(hdr->pages.next);
749 		nfs_list_remove_request(req);
750 		if (flags == NFS_ODIRECT_DO_COMMIT) {
751 			kref_get(&req->wb_kref);
752 			memcpy(&req->wb_verf, &hdr->verf.verifier,
753 			       sizeof(req->wb_verf));
754 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
755 				hdr->ds_commit_idx);
756 		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
757 			kref_get(&req->wb_kref);
758 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
759 		}
760 		nfs_unlock_and_release_request(req);
761 	}
762 
763 out_put:
764 	if (put_dreq(dreq))
765 		nfs_direct_write_complete(dreq);
766 	hdr->release(hdr);
767 }
768 
769 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
770 {
771 	struct nfs_page *req;
772 
773 	while (!list_empty(head)) {
774 		req = nfs_list_entry(head->next);
775 		nfs_list_remove_request(req);
776 		nfs_unlock_and_release_request(req);
777 	}
778 }
779 
780 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
781 {
782 	struct nfs_direct_req *dreq = hdr->dreq;
783 	struct nfs_page *req;
784 	struct nfs_commit_info cinfo;
785 
786 	trace_nfs_direct_write_reschedule_io(dreq);
787 
788 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
789 	spin_lock(&dreq->lock);
790 	if (dreq->error == 0)
791 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
792 	set_bit(NFS_IOHDR_REDO, &hdr->flags);
793 	spin_unlock(&dreq->lock);
794 	while (!list_empty(&hdr->pages)) {
795 		req = nfs_list_entry(hdr->pages.next);
796 		nfs_list_remove_request(req);
797 		nfs_unlock_request(req);
798 		nfs_mark_request_commit(req, NULL, &cinfo, 0);
799 	}
800 }
801 
802 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
803 	.error_cleanup = nfs_write_sync_pgio_error,
804 	.init_hdr = nfs_direct_pgio_init,
805 	.completion = nfs_direct_write_completion,
806 	.reschedule_io = nfs_direct_write_reschedule_io,
807 };
808 
809 
810 /*
811  * NB: Return the value of the first error return code.  Subsequent
812  *     errors after the first one are ignored.
813  */
814 /*
815  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
816  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
817  * bail and stop sending more writes.  Write length accounting is
818  * handled automatically by nfs_direct_write_result().  Otherwise, if
819  * no requests have been sent, just return an error.
820  */
821 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
822 					       struct iov_iter *iter,
823 					       loff_t pos, int ioflags)
824 {
825 	struct nfs_pageio_descriptor desc;
826 	struct inode *inode = dreq->inode;
827 	struct nfs_commit_info cinfo;
828 	ssize_t result = 0;
829 	size_t requested_bytes = 0;
830 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
831 	bool defer = false;
832 
833 	trace_nfs_direct_write_schedule_iovec(dreq);
834 
835 	nfs_pageio_init_write(&desc, inode, ioflags, false,
836 			      &nfs_direct_write_completion_ops);
837 	desc.pg_dreq = dreq;
838 	get_dreq(dreq);
839 	inode_dio_begin(inode);
840 
841 	NFS_I(inode)->write_io += iov_iter_count(iter);
842 	while (iov_iter_count(iter)) {
843 		struct page **pagevec;
844 		size_t bytes;
845 		size_t pgbase;
846 		unsigned npages, i;
847 
848 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
849 						  wsize, &pgbase);
850 		if (result < 0)
851 			break;
852 
853 		bytes = result;
854 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
855 		for (i = 0; i < npages; i++) {
856 			struct nfs_page *req;
857 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
858 
859 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
860 							pgbase, pos, req_len);
861 			if (IS_ERR(req)) {
862 				result = PTR_ERR(req);
863 				break;
864 			}
865 
866 			if (desc.pg_error < 0) {
867 				nfs_free_request(req);
868 				result = desc.pg_error;
869 				break;
870 			}
871 
872 			pgbase = 0;
873 			bytes -= req_len;
874 			requested_bytes += req_len;
875 			pos += req_len;
876 			dreq->bytes_left -= req_len;
877 
878 			if (defer) {
879 				nfs_mark_request_commit(req, NULL, &cinfo, 0);
880 				continue;
881 			}
882 
883 			nfs_lock_request(req);
884 			if (nfs_pageio_add_request(&desc, req))
885 				continue;
886 
887 			/* Exit on hard errors */
888 			if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) {
889 				result = desc.pg_error;
890 				nfs_unlock_and_release_request(req);
891 				break;
892 			}
893 
894 			/* If the error is soft, defer remaining requests */
895 			nfs_init_cinfo_from_dreq(&cinfo, dreq);
896 			spin_lock(&dreq->lock);
897 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
898 			spin_unlock(&dreq->lock);
899 			nfs_unlock_request(req);
900 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
901 			desc.pg_error = 0;
902 			defer = true;
903 		}
904 		nfs_direct_release_pages(pagevec, npages);
905 		kvfree(pagevec);
906 		if (result < 0)
907 			break;
908 	}
909 	nfs_pageio_complete(&desc);
910 
911 	/*
912 	 * If no bytes were started, return the error, and let the
913 	 * generic layer handle the completion.
914 	 */
915 	if (requested_bytes == 0) {
916 		inode_dio_end(inode);
917 		nfs_direct_req_release(dreq);
918 		return result < 0 ? result : -EIO;
919 	}
920 
921 	if (put_dreq(dreq))
922 		nfs_direct_write_complete(dreq);
923 	return requested_bytes;
924 }
925 
926 /**
927  * nfs_file_direct_write - file direct write operation for NFS files
928  * @iocb: target I/O control block
929  * @iter: vector of user buffers from which to write data
930  * @swap: flag indicating this is swap IO, not O_DIRECT IO
931  *
932  * We use this function for direct writes instead of calling
933  * generic_file_aio_write() in order to avoid taking the inode
934  * semaphore and updating the i_size.  The NFS server will set
935  * the new i_size and this client must read the updated size
936  * back into its cache.  We let the server do generic write
937  * parameter checking and report problems.
938  *
939  * We eliminate local atime updates, see direct read above.
940  *
941  * We avoid unnecessary page cache invalidations for normal cached
942  * readers of this file.
943  *
944  * Note that O_APPEND is not supported for NFS direct writes, as there
945  * is no atomic O_APPEND write facility in the NFS protocol.
946  */
947 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
948 			      bool swap)
949 {
950 	ssize_t result, requested;
951 	size_t count;
952 	struct file *file = iocb->ki_filp;
953 	struct address_space *mapping = file->f_mapping;
954 	struct inode *inode = mapping->host;
955 	struct nfs_direct_req *dreq;
956 	struct nfs_lock_context *l_ctx;
957 	loff_t pos, end;
958 
959 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
960 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
961 
962 	if (swap)
963 		/* bypass generic checks */
964 		result =  iov_iter_count(iter);
965 	else
966 		result = generic_write_checks(iocb, iter);
967 	if (result <= 0)
968 		return result;
969 	count = result;
970 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
971 
972 	pos = iocb->ki_pos;
973 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
974 
975 	task_io_account_write(count);
976 
977 	result = -ENOMEM;
978 	dreq = nfs_direct_req_alloc();
979 	if (!dreq)
980 		goto out;
981 
982 	dreq->inode = inode;
983 	dreq->bytes_left = dreq->max_count = count;
984 	dreq->io_start = pos;
985 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
986 	l_ctx = nfs_get_lock_context(dreq->ctx);
987 	if (IS_ERR(l_ctx)) {
988 		result = PTR_ERR(l_ctx);
989 		nfs_direct_req_release(dreq);
990 		goto out_release;
991 	}
992 	dreq->l_ctx = l_ctx;
993 	if (!is_sync_kiocb(iocb))
994 		dreq->iocb = iocb;
995 	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
996 
997 	if (swap) {
998 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
999 							    FLUSH_STABLE);
1000 	} else {
1001 		nfs_start_io_direct(inode);
1002 
1003 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1004 							    FLUSH_COND_STABLE);
1005 
1006 		if (mapping->nrpages) {
1007 			invalidate_inode_pages2_range(mapping,
1008 						      pos >> PAGE_SHIFT, end);
1009 		}
1010 
1011 		nfs_end_io_direct(inode);
1012 	}
1013 
1014 	if (requested > 0) {
1015 		result = nfs_direct_wait(dreq);
1016 		if (result > 0) {
1017 			requested -= result;
1018 			iocb->ki_pos = pos + result;
1019 			/* XXX: should check the generic_write_sync retval */
1020 			generic_write_sync(iocb, result);
1021 		}
1022 		iov_iter_revert(iter, requested);
1023 	} else {
1024 		result = requested;
1025 	}
1026 	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
1027 out_release:
1028 	nfs_direct_req_release(dreq);
1029 out:
1030 	return result;
1031 }
1032 
1033 /**
1034  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1035  *
1036  */
1037 int __init nfs_init_directcache(void)
1038 {
1039 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1040 						sizeof(struct nfs_direct_req),
1041 						0, (SLAB_RECLAIM_ACCOUNT|
1042 							SLAB_MEM_SPREAD),
1043 						NULL);
1044 	if (nfs_direct_cachep == NULL)
1045 		return -ENOMEM;
1046 
1047 	return 0;
1048 }
1049 
1050 /**
1051  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1052  *
1053  */
1054 void nfs_destroy_directcache(void)
1055 {
1056 	kmem_cache_destroy(nfs_direct_cachep);
1057 }
1058