xref: /linux/fs/nfs/direct.c (revision 619d30b4b8c488042b4a720ca79dccc346d1a516)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_req {
70 	struct kref		kref;		/* release manager */
71 
72 	/* I/O parameters */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct nfs_lock_context *l_ctx;		/* Lock context info */
75 	struct kiocb *		iocb;		/* controlling i/o request */
76 	struct inode *		inode;		/* target file of i/o */
77 
78 	/* completion state */
79 	atomic_t		io_count;	/* i/os we're waiting for */
80 	spinlock_t		lock;		/* protect completion state */
81 	ssize_t			count,		/* bytes actually processed */
82 				bytes_left,	/* bytes left to be sent */
83 				error;		/* any reported error */
84 	struct completion	completion;	/* wait for i/o completion */
85 
86 	/* commit state */
87 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
88 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
89 	struct work_struct	work;
90 	int			flags;
91 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
93 	struct nfs_writeverf	verf;		/* unstable write verifier */
94 };
95 
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100 
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 	atomic_inc(&dreq->io_count);
104 }
105 
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 	return atomic_dec_and_test(&dreq->io_count);
109 }
110 
111 /**
112  * nfs_direct_IO - NFS address space operation for direct I/O
113  * @rw: direction (read or write)
114  * @iocb: target I/O control block
115  * @iov: array of vectors that define I/O buffer
116  * @pos: offset in file to begin the operation
117  * @nr_segs: size of iovec array
118  *
119  * The presence of this routine in the address space ops vector means
120  * the NFS client supports direct I/O. However, for most direct IO, we
121  * shunt off direct read and write requests before the VFS gets them,
122  * so this method is only ever called for swap.
123  */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
128 			iocb->ki_filp, (long long) pos, iter->nr_segs);
129 
130 	return -EINVAL;
131 #else
132 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
133 
134 	if (rw == READ || rw == KERNEL_READ)
135 		return nfs_file_direct_read(iocb, iter, pos,
136 				rw == READ ? true : false);
137 	return nfs_file_direct_write(iocb, iter, pos,
138 				rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
140 }
141 
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
143 {
144 	unsigned int i;
145 	for (i = 0; i < npages; i++)
146 		page_cache_release(pages[i]);
147 }
148 
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 			      struct nfs_direct_req *dreq)
151 {
152 	cinfo->lock = &dreq->lock;
153 	cinfo->mds = &dreq->mds_cinfo;
154 	cinfo->ds = &dreq->ds_cinfo;
155 	cinfo->dreq = dreq;
156 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
157 }
158 
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
160 {
161 	struct nfs_direct_req *dreq;
162 
163 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 	if (!dreq)
165 		return NULL;
166 
167 	kref_init(&dreq->kref);
168 	kref_get(&dreq->kref);
169 	init_completion(&dreq->completion);
170 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 	spin_lock_init(&dreq->lock);
173 
174 	return dreq;
175 }
176 
177 static void nfs_direct_req_free(struct kref *kref)
178 {
179 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
180 
181 	if (dreq->l_ctx != NULL)
182 		nfs_put_lock_context(dreq->l_ctx);
183 	if (dreq->ctx != NULL)
184 		put_nfs_open_context(dreq->ctx);
185 	kmem_cache_free(nfs_direct_cachep, dreq);
186 }
187 
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
189 {
190 	kref_put(&dreq->kref, nfs_direct_req_free);
191 }
192 
193 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
194 {
195 	return dreq->bytes_left;
196 }
197 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
198 
199 /*
200  * Collects and returns the final error value/byte-count.
201  */
202 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
203 {
204 	ssize_t result = -EIOCBQUEUED;
205 
206 	/* Async requests don't wait here */
207 	if (dreq->iocb)
208 		goto out;
209 
210 	result = wait_for_completion_killable(&dreq->completion);
211 
212 	if (!result)
213 		result = dreq->error;
214 	if (!result)
215 		result = dreq->count;
216 
217 out:
218 	return (ssize_t) result;
219 }
220 
221 /*
222  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
223  * the iocb is still valid here if this is a synchronous request.
224  */
225 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
226 {
227 	struct inode *inode = dreq->inode;
228 
229 	if (dreq->iocb && write) {
230 		loff_t pos = dreq->iocb->ki_pos + dreq->count;
231 
232 		spin_lock(&inode->i_lock);
233 		if (i_size_read(inode) < pos)
234 			i_size_write(inode, pos);
235 		spin_unlock(&inode->i_lock);
236 	}
237 
238 	if (write)
239 		nfs_zap_mapping(inode, inode->i_mapping);
240 
241 	inode_dio_done(inode);
242 
243 	if (dreq->iocb) {
244 		long res = (long) dreq->error;
245 		if (!res)
246 			res = (long) dreq->count;
247 		aio_complete(dreq->iocb, res, 0);
248 	}
249 
250 	complete_all(&dreq->completion);
251 
252 	nfs_direct_req_release(dreq);
253 }
254 
255 static void nfs_direct_readpage_release(struct nfs_page *req)
256 {
257 	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
258 		req->wb_context->dentry->d_inode->i_sb->s_id,
259 		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
260 		req->wb_bytes,
261 		(long long)req_offset(req));
262 	nfs_release_request(req);
263 }
264 
265 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
266 {
267 	unsigned long bytes = 0;
268 	struct nfs_direct_req *dreq = hdr->dreq;
269 
270 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
271 		goto out_put;
272 
273 	spin_lock(&dreq->lock);
274 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
275 		dreq->error = hdr->error;
276 	else
277 		dreq->count += hdr->good_bytes;
278 	spin_unlock(&dreq->lock);
279 
280 	while (!list_empty(&hdr->pages)) {
281 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
282 		struct page *page = req->wb_page;
283 
284 		if (!PageCompound(page) && bytes < hdr->good_bytes)
285 			set_page_dirty(page);
286 		bytes += req->wb_bytes;
287 		nfs_list_remove_request(req);
288 		nfs_direct_readpage_release(req);
289 	}
290 out_put:
291 	if (put_dreq(dreq))
292 		nfs_direct_complete(dreq, false);
293 	hdr->release(hdr);
294 }
295 
296 static void nfs_read_sync_pgio_error(struct list_head *head)
297 {
298 	struct nfs_page *req;
299 
300 	while (!list_empty(head)) {
301 		req = nfs_list_entry(head->next);
302 		nfs_list_remove_request(req);
303 		nfs_release_request(req);
304 	}
305 }
306 
307 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
308 {
309 	get_dreq(hdr->dreq);
310 }
311 
312 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
313 	.error_cleanup = nfs_read_sync_pgio_error,
314 	.init_hdr = nfs_direct_pgio_init,
315 	.completion = nfs_direct_read_completion,
316 };
317 
318 /*
319  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
320  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
321  * bail and stop sending more reads.  Read length accounting is
322  * handled automatically by nfs_direct_read_result().  Otherwise, if
323  * no requests have been sent, just return an error.
324  */
325 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
326 						const struct iovec *iov,
327 						loff_t pos, bool uio)
328 {
329 	struct nfs_direct_req *dreq = desc->pg_dreq;
330 	struct nfs_open_context *ctx = dreq->ctx;
331 	struct inode *inode = ctx->dentry->d_inode;
332 	unsigned long user_addr = (unsigned long)iov->iov_base;
333 	size_t count = iov->iov_len;
334 	size_t rsize = NFS_SERVER(inode)->rsize;
335 	unsigned int pgbase;
336 	int result;
337 	ssize_t started = 0;
338 	struct page **pagevec = NULL;
339 	unsigned int npages;
340 
341 	do {
342 		size_t bytes;
343 		int i;
344 
345 		pgbase = user_addr & ~PAGE_MASK;
346 		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
347 
348 		result = -ENOMEM;
349 		npages = nfs_page_array_len(pgbase, bytes);
350 		if (!pagevec)
351 			pagevec = kmalloc(npages * sizeof(struct page *),
352 					  GFP_KERNEL);
353 		if (!pagevec)
354 			break;
355 		if (uio) {
356 			down_read(&current->mm->mmap_sem);
357 			result = get_user_pages(current, current->mm, user_addr,
358 					npages, 1, 0, pagevec, NULL);
359 			up_read(&current->mm->mmap_sem);
360 			if (result < 0)
361 				break;
362 		} else {
363 			WARN_ON(npages != 1);
364 			result = get_kernel_page(user_addr, 1, pagevec);
365 			if (WARN_ON(result != 1))
366 				break;
367 		}
368 
369 		if ((unsigned)result < npages) {
370 			bytes = result * PAGE_SIZE;
371 			if (bytes <= pgbase) {
372 				nfs_direct_release_pages(pagevec, result);
373 				break;
374 			}
375 			bytes -= pgbase;
376 			npages = result;
377 		}
378 
379 		for (i = 0; i < npages; i++) {
380 			struct nfs_page *req;
381 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
382 			/* XXX do we need to do the eof zeroing found in async_filler? */
383 			req = nfs_create_request(dreq->ctx, dreq->inode,
384 						 pagevec[i],
385 						 pgbase, req_len);
386 			if (IS_ERR(req)) {
387 				result = PTR_ERR(req);
388 				break;
389 			}
390 			req->wb_index = pos >> PAGE_SHIFT;
391 			req->wb_offset = pos & ~PAGE_MASK;
392 			if (!nfs_pageio_add_request(desc, req)) {
393 				result = desc->pg_error;
394 				nfs_release_request(req);
395 				break;
396 			}
397 			pgbase = 0;
398 			bytes -= req_len;
399 			started += req_len;
400 			user_addr += req_len;
401 			pos += req_len;
402 			count -= req_len;
403 			dreq->bytes_left -= req_len;
404 		}
405 		/* The nfs_page now hold references to these pages */
406 		nfs_direct_release_pages(pagevec, npages);
407 	} while (count != 0 && result >= 0);
408 
409 	kfree(pagevec);
410 
411 	if (started)
412 		return started;
413 	return result < 0 ? (ssize_t) result : -EFAULT;
414 }
415 
416 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
417 					      struct iov_iter *iter,
418 					      loff_t pos, bool uio)
419 {
420 	struct nfs_pageio_descriptor desc;
421 	struct inode *inode = dreq->inode;
422 	ssize_t result = -EINVAL;
423 	size_t requested_bytes = 0;
424 	unsigned long seg;
425 
426 	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
427 			     &nfs_direct_read_completion_ops);
428 	get_dreq(dreq);
429 	desc.pg_dreq = dreq;
430 	atomic_inc(&inode->i_dio_count);
431 
432 	for (seg = 0; seg < iter->nr_segs; seg++) {
433 		const struct iovec *vec = &iter->iov[seg];
434 		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
435 		if (result < 0)
436 			break;
437 		requested_bytes += result;
438 		if ((size_t)result < vec->iov_len)
439 			break;
440 		pos += vec->iov_len;
441 	}
442 
443 	nfs_pageio_complete(&desc);
444 
445 	/*
446 	 * If no bytes were started, return the error, and let the
447 	 * generic layer handle the completion.
448 	 */
449 	if (requested_bytes == 0) {
450 		inode_dio_done(inode);
451 		nfs_direct_req_release(dreq);
452 		return result < 0 ? result : -EIO;
453 	}
454 
455 	if (put_dreq(dreq))
456 		nfs_direct_complete(dreq, false);
457 	return 0;
458 }
459 
460 /**
461  * nfs_file_direct_read - file direct read operation for NFS files
462  * @iocb: target I/O control block
463  * @iter: vector of user buffers into which to read data
464  * @pos: byte offset in file where reading starts
465  *
466  * We use this function for direct reads instead of calling
467  * generic_file_aio_read() in order to avoid gfar's check to see if
468  * the request starts before the end of the file.  For that check
469  * to work, we must generate a GETATTR before each direct read, and
470  * even then there is a window between the GETATTR and the subsequent
471  * READ where the file size could change.  Our preference is simply
472  * to do all reads the application wants, and the server will take
473  * care of managing the end of file boundary.
474  *
475  * This function also eliminates unnecessarily updating the file's
476  * atime locally, as the NFS server sets the file's atime, and this
477  * client must read the updated atime from the server back into its
478  * cache.
479  */
480 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
481 				loff_t pos, bool uio)
482 {
483 	struct file *file = iocb->ki_filp;
484 	struct address_space *mapping = file->f_mapping;
485 	struct inode *inode = mapping->host;
486 	struct nfs_direct_req *dreq;
487 	struct nfs_lock_context *l_ctx;
488 	ssize_t result = -EINVAL;
489 	size_t count;
490 
491 	count = iov_length(iter->iov, iter->nr_segs);
492 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
493 
494 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
495 		file, count, (long long) pos);
496 
497 	result = 0;
498 	if (!count)
499 		goto out;
500 
501 	mutex_lock(&inode->i_mutex);
502 	result = nfs_sync_mapping(mapping);
503 	if (result)
504 		goto out_unlock;
505 
506 	task_io_account_read(count);
507 
508 	result = -ENOMEM;
509 	dreq = nfs_direct_req_alloc();
510 	if (dreq == NULL)
511 		goto out_unlock;
512 
513 	dreq->inode = inode;
514 	dreq->bytes_left = count;
515 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
516 	l_ctx = nfs_get_lock_context(dreq->ctx);
517 	if (IS_ERR(l_ctx)) {
518 		result = PTR_ERR(l_ctx);
519 		goto out_release;
520 	}
521 	dreq->l_ctx = l_ctx;
522 	if (!is_sync_kiocb(iocb))
523 		dreq->iocb = iocb;
524 
525 	NFS_I(inode)->read_io += count;
526 	result = nfs_direct_read_schedule_iovec(dreq, iter, pos, uio);
527 
528 	mutex_unlock(&inode->i_mutex);
529 
530 	if (!result) {
531 		result = nfs_direct_wait(dreq);
532 		if (result > 0)
533 			iocb->ki_pos = pos + result;
534 	}
535 
536 	nfs_direct_req_release(dreq);
537 	return result;
538 
539 out_release:
540 	nfs_direct_req_release(dreq);
541 out_unlock:
542 	mutex_unlock(&inode->i_mutex);
543 out:
544 	return result;
545 }
546 
547 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
548 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
549 {
550 	struct nfs_pageio_descriptor desc;
551 	struct nfs_page *req, *tmp;
552 	LIST_HEAD(reqs);
553 	struct nfs_commit_info cinfo;
554 	LIST_HEAD(failed);
555 
556 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
557 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
558 	spin_lock(cinfo.lock);
559 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
560 	spin_unlock(cinfo.lock);
561 
562 	dreq->count = 0;
563 	get_dreq(dreq);
564 
565 	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
566 			      &nfs_direct_write_completion_ops);
567 	desc.pg_dreq = dreq;
568 
569 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
570 		if (!nfs_pageio_add_request(&desc, req)) {
571 			nfs_list_remove_request(req);
572 			nfs_list_add_request(req, &failed);
573 			spin_lock(cinfo.lock);
574 			dreq->flags = 0;
575 			dreq->error = -EIO;
576 			spin_unlock(cinfo.lock);
577 		}
578 		nfs_release_request(req);
579 	}
580 	nfs_pageio_complete(&desc);
581 
582 	while (!list_empty(&failed)) {
583 		req = nfs_list_entry(failed.next);
584 		nfs_list_remove_request(req);
585 		nfs_unlock_and_release_request(req);
586 	}
587 
588 	if (put_dreq(dreq))
589 		nfs_direct_write_complete(dreq, dreq->inode);
590 }
591 
592 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
593 {
594 	struct nfs_direct_req *dreq = data->dreq;
595 	struct nfs_commit_info cinfo;
596 	struct nfs_page *req;
597 	int status = data->task.tk_status;
598 
599 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
600 	if (status < 0) {
601 		dprintk("NFS: %5u commit failed with error %d.\n",
602 			data->task.tk_pid, status);
603 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
604 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
605 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
606 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
607 	}
608 
609 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
610 	while (!list_empty(&data->pages)) {
611 		req = nfs_list_entry(data->pages.next);
612 		nfs_list_remove_request(req);
613 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
614 			/* Note the rewrite will go through mds */
615 			nfs_mark_request_commit(req, NULL, &cinfo);
616 		} else
617 			nfs_release_request(req);
618 		nfs_unlock_and_release_request(req);
619 	}
620 
621 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
622 		nfs_direct_write_complete(dreq, data->inode);
623 }
624 
625 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
626 {
627 	/* There is no lock to clear */
628 }
629 
630 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
631 	.completion = nfs_direct_commit_complete,
632 	.error_cleanup = nfs_direct_error_cleanup,
633 };
634 
635 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
636 {
637 	int res;
638 	struct nfs_commit_info cinfo;
639 	LIST_HEAD(mds_list);
640 
641 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
642 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
643 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
644 	if (res < 0) /* res == -ENOMEM */
645 		nfs_direct_write_reschedule(dreq);
646 }
647 
648 static void nfs_direct_write_schedule_work(struct work_struct *work)
649 {
650 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
651 	int flags = dreq->flags;
652 
653 	dreq->flags = 0;
654 	switch (flags) {
655 		case NFS_ODIRECT_DO_COMMIT:
656 			nfs_direct_commit_schedule(dreq);
657 			break;
658 		case NFS_ODIRECT_RESCHED_WRITES:
659 			nfs_direct_write_reschedule(dreq);
660 			break;
661 		default:
662 			nfs_direct_complete(dreq, true);
663 	}
664 }
665 
666 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
667 {
668 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
669 }
670 
671 #else
672 static void nfs_direct_write_schedule_work(struct work_struct *work)
673 {
674 }
675 
676 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
677 {
678 	nfs_direct_complete(dreq, true);
679 }
680 #endif
681 
682 /*
683  * NB: Return the value of the first error return code.  Subsequent
684  *     errors after the first one are ignored.
685  */
686 /*
687  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
688  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
689  * bail and stop sending more writes.  Write length accounting is
690  * handled automatically by nfs_direct_write_result().  Otherwise, if
691  * no requests have been sent, just return an error.
692  */
693 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
694 						 const struct iovec *iov,
695 						 loff_t pos, bool uio)
696 {
697 	struct nfs_direct_req *dreq = desc->pg_dreq;
698 	struct nfs_open_context *ctx = dreq->ctx;
699 	struct inode *inode = ctx->dentry->d_inode;
700 	unsigned long user_addr = (unsigned long)iov->iov_base;
701 	size_t count = iov->iov_len;
702 	size_t wsize = NFS_SERVER(inode)->wsize;
703 	unsigned int pgbase;
704 	int result;
705 	ssize_t started = 0;
706 	struct page **pagevec = NULL;
707 	unsigned int npages;
708 
709 	do {
710 		size_t bytes;
711 		int i;
712 
713 		pgbase = user_addr & ~PAGE_MASK;
714 		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
715 
716 		result = -ENOMEM;
717 		npages = nfs_page_array_len(pgbase, bytes);
718 		if (!pagevec)
719 			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
720 		if (!pagevec)
721 			break;
722 
723 		if (uio) {
724 			down_read(&current->mm->mmap_sem);
725 			result = get_user_pages(current, current->mm, user_addr,
726 						npages, 0, 0, pagevec, NULL);
727 			up_read(&current->mm->mmap_sem);
728 			if (result < 0)
729 				break;
730 		} else {
731 			WARN_ON(npages != 1);
732 			result = get_kernel_page(user_addr, 0, pagevec);
733 			if (WARN_ON(result != 1))
734 				break;
735 		}
736 
737 		if ((unsigned)result < npages) {
738 			bytes = result * PAGE_SIZE;
739 			if (bytes <= pgbase) {
740 				nfs_direct_release_pages(pagevec, result);
741 				break;
742 			}
743 			bytes -= pgbase;
744 			npages = result;
745 		}
746 
747 		for (i = 0; i < npages; i++) {
748 			struct nfs_page *req;
749 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
750 
751 			req = nfs_create_request(dreq->ctx, dreq->inode,
752 						 pagevec[i],
753 						 pgbase, req_len);
754 			if (IS_ERR(req)) {
755 				result = PTR_ERR(req);
756 				break;
757 			}
758 			nfs_lock_request(req);
759 			req->wb_index = pos >> PAGE_SHIFT;
760 			req->wb_offset = pos & ~PAGE_MASK;
761 			if (!nfs_pageio_add_request(desc, req)) {
762 				result = desc->pg_error;
763 				nfs_unlock_and_release_request(req);
764 				break;
765 			}
766 			pgbase = 0;
767 			bytes -= req_len;
768 			started += req_len;
769 			user_addr += req_len;
770 			pos += req_len;
771 			count -= req_len;
772 			dreq->bytes_left -= req_len;
773 		}
774 		/* The nfs_page now hold references to these pages */
775 		nfs_direct_release_pages(pagevec, npages);
776 	} while (count != 0 && result >= 0);
777 
778 	kfree(pagevec);
779 
780 	if (started)
781 		return started;
782 	return result < 0 ? (ssize_t) result : -EFAULT;
783 }
784 
785 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
786 {
787 	struct nfs_direct_req *dreq = hdr->dreq;
788 	struct nfs_commit_info cinfo;
789 	int bit = -1;
790 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
791 
792 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
793 		goto out_put;
794 
795 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
796 
797 	spin_lock(&dreq->lock);
798 
799 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
800 		dreq->flags = 0;
801 		dreq->error = hdr->error;
802 	}
803 	if (dreq->error != 0)
804 		bit = NFS_IOHDR_ERROR;
805 	else {
806 		dreq->count += hdr->good_bytes;
807 		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
808 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
809 			bit = NFS_IOHDR_NEED_RESCHED;
810 		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
811 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
812 				bit = NFS_IOHDR_NEED_RESCHED;
813 			else if (dreq->flags == 0) {
814 				memcpy(&dreq->verf, hdr->verf,
815 				       sizeof(dreq->verf));
816 				bit = NFS_IOHDR_NEED_COMMIT;
817 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
818 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
819 				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
820 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
821 					bit = NFS_IOHDR_NEED_RESCHED;
822 				} else
823 					bit = NFS_IOHDR_NEED_COMMIT;
824 			}
825 		}
826 	}
827 	spin_unlock(&dreq->lock);
828 
829 	while (!list_empty(&hdr->pages)) {
830 		req = nfs_list_entry(hdr->pages.next);
831 		nfs_list_remove_request(req);
832 		switch (bit) {
833 		case NFS_IOHDR_NEED_RESCHED:
834 		case NFS_IOHDR_NEED_COMMIT:
835 			kref_get(&req->wb_kref);
836 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
837 		}
838 		nfs_unlock_and_release_request(req);
839 	}
840 
841 out_put:
842 	if (put_dreq(dreq))
843 		nfs_direct_write_complete(dreq, hdr->inode);
844 	hdr->release(hdr);
845 }
846 
847 static void nfs_write_sync_pgio_error(struct list_head *head)
848 {
849 	struct nfs_page *req;
850 
851 	while (!list_empty(head)) {
852 		req = nfs_list_entry(head->next);
853 		nfs_list_remove_request(req);
854 		nfs_unlock_and_release_request(req);
855 	}
856 }
857 
858 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
859 	.error_cleanup = nfs_write_sync_pgio_error,
860 	.init_hdr = nfs_direct_pgio_init,
861 	.completion = nfs_direct_write_completion,
862 };
863 
864 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
865 					       struct iov_iter *iter,
866 					       loff_t pos, bool uio)
867 {
868 	struct nfs_pageio_descriptor desc;
869 	struct inode *inode = dreq->inode;
870 	ssize_t result = 0;
871 	size_t requested_bytes = 0;
872 	unsigned long seg;
873 
874 	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
875 			      &nfs_direct_write_completion_ops);
876 	desc.pg_dreq = dreq;
877 	get_dreq(dreq);
878 	atomic_inc(&inode->i_dio_count);
879 
880 	NFS_I(dreq->inode)->write_io += iov_length(iter->iov, iter->nr_segs);
881 	for (seg = 0; seg < iter->nr_segs; seg++) {
882 		const struct iovec *vec = &iter->iov[seg];
883 		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
884 		if (result < 0)
885 			break;
886 		requested_bytes += result;
887 		if ((size_t)result < vec->iov_len)
888 			break;
889 		pos += vec->iov_len;
890 	}
891 	nfs_pageio_complete(&desc);
892 
893 	/*
894 	 * If no bytes were started, return the error, and let the
895 	 * generic layer handle the completion.
896 	 */
897 	if (requested_bytes == 0) {
898 		inode_dio_done(inode);
899 		nfs_direct_req_release(dreq);
900 		return result < 0 ? result : -EIO;
901 	}
902 
903 	if (put_dreq(dreq))
904 		nfs_direct_write_complete(dreq, dreq->inode);
905 	return 0;
906 }
907 
908 /**
909  * nfs_file_direct_write - file direct write operation for NFS files
910  * @iocb: target I/O control block
911  * @iter: vector of user buffers from which to write data
912  * @pos: byte offset in file where writing starts
913  *
914  * We use this function for direct writes instead of calling
915  * generic_file_aio_write() in order to avoid taking the inode
916  * semaphore and updating the i_size.  The NFS server will set
917  * the new i_size and this client must read the updated size
918  * back into its cache.  We let the server do generic write
919  * parameter checking and report problems.
920  *
921  * We eliminate local atime updates, see direct read above.
922  *
923  * We avoid unnecessary page cache invalidations for normal cached
924  * readers of this file.
925  *
926  * Note that O_APPEND is not supported for NFS direct writes, as there
927  * is no atomic O_APPEND write facility in the NFS protocol.
928  */
929 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
930 				loff_t pos, bool uio)
931 {
932 	ssize_t result = -EINVAL;
933 	struct file *file = iocb->ki_filp;
934 	struct address_space *mapping = file->f_mapping;
935 	struct inode *inode = mapping->host;
936 	struct nfs_direct_req *dreq;
937 	struct nfs_lock_context *l_ctx;
938 	loff_t end;
939 	size_t count;
940 
941 	count = iov_length(iter->iov, iter->nr_segs);
942 	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
943 
944 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
945 
946 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
947 		file, count, (long long) pos);
948 
949 	result = generic_write_checks(file, &pos, &count, 0);
950 	if (result)
951 		goto out;
952 
953 	result = -EINVAL;
954 	if ((ssize_t) count < 0)
955 		goto out;
956 	result = 0;
957 	if (!count)
958 		goto out;
959 
960 	mutex_lock(&inode->i_mutex);
961 
962 	result = nfs_sync_mapping(mapping);
963 	if (result)
964 		goto out_unlock;
965 
966 	if (mapping->nrpages) {
967 		result = invalidate_inode_pages2_range(mapping,
968 					pos >> PAGE_CACHE_SHIFT, end);
969 		if (result)
970 			goto out_unlock;
971 	}
972 
973 	task_io_account_write(count);
974 
975 	result = -ENOMEM;
976 	dreq = nfs_direct_req_alloc();
977 	if (!dreq)
978 		goto out_unlock;
979 
980 	dreq->inode = inode;
981 	dreq->bytes_left = count;
982 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
983 	l_ctx = nfs_get_lock_context(dreq->ctx);
984 	if (IS_ERR(l_ctx)) {
985 		result = PTR_ERR(l_ctx);
986 		goto out_release;
987 	}
988 	dreq->l_ctx = l_ctx;
989 	if (!is_sync_kiocb(iocb))
990 		dreq->iocb = iocb;
991 
992 	result = nfs_direct_write_schedule_iovec(dreq, iter, pos, uio);
993 
994 	if (mapping->nrpages) {
995 		invalidate_inode_pages2_range(mapping,
996 					      pos >> PAGE_CACHE_SHIFT, end);
997 	}
998 
999 	mutex_unlock(&inode->i_mutex);
1000 
1001 	if (!result) {
1002 		result = nfs_direct_wait(dreq);
1003 		if (result > 0) {
1004 			struct inode *inode = mapping->host;
1005 
1006 			iocb->ki_pos = pos + result;
1007 			spin_lock(&inode->i_lock);
1008 			if (i_size_read(inode) < iocb->ki_pos)
1009 				i_size_write(inode, iocb->ki_pos);
1010 			spin_unlock(&inode->i_lock);
1011 		}
1012 	}
1013 	nfs_direct_req_release(dreq);
1014 	return result;
1015 
1016 out_release:
1017 	nfs_direct_req_release(dreq);
1018 out_unlock:
1019 	mutex_unlock(&inode->i_mutex);
1020 out:
1021 	return result;
1022 }
1023 
1024 /**
1025  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1026  *
1027  */
1028 int __init nfs_init_directcache(void)
1029 {
1030 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1031 						sizeof(struct nfs_direct_req),
1032 						0, (SLAB_RECLAIM_ACCOUNT|
1033 							SLAB_MEM_SPREAD),
1034 						NULL);
1035 	if (nfs_direct_cachep == NULL)
1036 		return -ENOMEM;
1037 
1038 	return 0;
1039 }
1040 
1041 /**
1042  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1043  *
1044  */
1045 void nfs_destroy_directcache(void)
1046 {
1047 	kmem_cache_destroy(nfs_direct_cachep);
1048 }
1049