1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_req { 70 struct kref kref; /* release manager */ 71 72 /* I/O parameters */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct nfs_lock_context *l_ctx; /* Lock context info */ 75 struct kiocb * iocb; /* controlling i/o request */ 76 struct inode * inode; /* target file of i/o */ 77 78 /* completion state */ 79 atomic_t io_count; /* i/os we're waiting for */ 80 spinlock_t lock; /* protect completion state */ 81 ssize_t count, /* bytes actually processed */ 82 bytes_left, /* bytes left to be sent */ 83 error; /* any reported error */ 84 struct completion completion; /* wait for i/o completion */ 85 86 /* commit state */ 87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 89 struct work_struct work; 90 int flags; 91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 93 struct nfs_writeverf verf; /* unstable write verifier */ 94 }; 95 96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 static void nfs_direct_write_schedule_work(struct work_struct *work); 100 101 static inline void get_dreq(struct nfs_direct_req *dreq) 102 { 103 atomic_inc(&dreq->io_count); 104 } 105 106 static inline int put_dreq(struct nfs_direct_req *dreq) 107 { 108 return atomic_dec_and_test(&dreq->io_count); 109 } 110 111 /** 112 * nfs_direct_IO - NFS address space operation for direct I/O 113 * @rw: direction (read or write) 114 * @iocb: target I/O control block 115 * @iov: array of vectors that define I/O buffer 116 * @pos: offset in file to begin the operation 117 * @nr_segs: size of iovec array 118 * 119 * The presence of this routine in the address space ops vector means 120 * the NFS client supports direct I/O. However, for most direct IO, we 121 * shunt off direct read and write requests before the VFS gets them, 122 * so this method is only ever called for swap. 123 */ 124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos) 125 { 126 #ifndef CONFIG_NFS_SWAP 127 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n", 128 iocb->ki_filp, (long long) pos, iter->nr_segs); 129 130 return -EINVAL; 131 #else 132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 133 134 if (rw == READ || rw == KERNEL_READ) 135 return nfs_file_direct_read(iocb, iter, pos, 136 rw == READ ? true : false); 137 return nfs_file_direct_write(iocb, iter, pos, 138 rw == WRITE ? true : false); 139 #endif /* CONFIG_NFS_SWAP */ 140 } 141 142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 143 { 144 unsigned int i; 145 for (i = 0; i < npages; i++) 146 page_cache_release(pages[i]); 147 } 148 149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 150 struct nfs_direct_req *dreq) 151 { 152 cinfo->lock = &dreq->lock; 153 cinfo->mds = &dreq->mds_cinfo; 154 cinfo->ds = &dreq->ds_cinfo; 155 cinfo->dreq = dreq; 156 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 157 } 158 159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 160 { 161 struct nfs_direct_req *dreq; 162 163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 164 if (!dreq) 165 return NULL; 166 167 kref_init(&dreq->kref); 168 kref_get(&dreq->kref); 169 init_completion(&dreq->completion); 170 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 172 spin_lock_init(&dreq->lock); 173 174 return dreq; 175 } 176 177 static void nfs_direct_req_free(struct kref *kref) 178 { 179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 180 181 if (dreq->l_ctx != NULL) 182 nfs_put_lock_context(dreq->l_ctx); 183 if (dreq->ctx != NULL) 184 put_nfs_open_context(dreq->ctx); 185 kmem_cache_free(nfs_direct_cachep, dreq); 186 } 187 188 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 189 { 190 kref_put(&dreq->kref, nfs_direct_req_free); 191 } 192 193 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 194 { 195 return dreq->bytes_left; 196 } 197 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 198 199 /* 200 * Collects and returns the final error value/byte-count. 201 */ 202 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 203 { 204 ssize_t result = -EIOCBQUEUED; 205 206 /* Async requests don't wait here */ 207 if (dreq->iocb) 208 goto out; 209 210 result = wait_for_completion_killable(&dreq->completion); 211 212 if (!result) 213 result = dreq->error; 214 if (!result) 215 result = dreq->count; 216 217 out: 218 return (ssize_t) result; 219 } 220 221 /* 222 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 223 * the iocb is still valid here if this is a synchronous request. 224 */ 225 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write) 226 { 227 struct inode *inode = dreq->inode; 228 229 if (dreq->iocb && write) { 230 loff_t pos = dreq->iocb->ki_pos + dreq->count; 231 232 spin_lock(&inode->i_lock); 233 if (i_size_read(inode) < pos) 234 i_size_write(inode, pos); 235 spin_unlock(&inode->i_lock); 236 } 237 238 if (write) 239 nfs_zap_mapping(inode, inode->i_mapping); 240 241 inode_dio_done(inode); 242 243 if (dreq->iocb) { 244 long res = (long) dreq->error; 245 if (!res) 246 res = (long) dreq->count; 247 aio_complete(dreq->iocb, res, 0); 248 } 249 250 complete_all(&dreq->completion); 251 252 nfs_direct_req_release(dreq); 253 } 254 255 static void nfs_direct_readpage_release(struct nfs_page *req) 256 { 257 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n", 258 req->wb_context->dentry->d_inode->i_sb->s_id, 259 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode), 260 req->wb_bytes, 261 (long long)req_offset(req)); 262 nfs_release_request(req); 263 } 264 265 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 266 { 267 unsigned long bytes = 0; 268 struct nfs_direct_req *dreq = hdr->dreq; 269 270 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 271 goto out_put; 272 273 spin_lock(&dreq->lock); 274 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 275 dreq->error = hdr->error; 276 else 277 dreq->count += hdr->good_bytes; 278 spin_unlock(&dreq->lock); 279 280 while (!list_empty(&hdr->pages)) { 281 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 282 struct page *page = req->wb_page; 283 284 if (!PageCompound(page) && bytes < hdr->good_bytes) 285 set_page_dirty(page); 286 bytes += req->wb_bytes; 287 nfs_list_remove_request(req); 288 nfs_direct_readpage_release(req); 289 } 290 out_put: 291 if (put_dreq(dreq)) 292 nfs_direct_complete(dreq, false); 293 hdr->release(hdr); 294 } 295 296 static void nfs_read_sync_pgio_error(struct list_head *head) 297 { 298 struct nfs_page *req; 299 300 while (!list_empty(head)) { 301 req = nfs_list_entry(head->next); 302 nfs_list_remove_request(req); 303 nfs_release_request(req); 304 } 305 } 306 307 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 308 { 309 get_dreq(hdr->dreq); 310 } 311 312 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 313 .error_cleanup = nfs_read_sync_pgio_error, 314 .init_hdr = nfs_direct_pgio_init, 315 .completion = nfs_direct_read_completion, 316 }; 317 318 /* 319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 320 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 321 * bail and stop sending more reads. Read length accounting is 322 * handled automatically by nfs_direct_read_result(). Otherwise, if 323 * no requests have been sent, just return an error. 324 */ 325 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 326 const struct iovec *iov, 327 loff_t pos, bool uio) 328 { 329 struct nfs_direct_req *dreq = desc->pg_dreq; 330 struct nfs_open_context *ctx = dreq->ctx; 331 struct inode *inode = ctx->dentry->d_inode; 332 unsigned long user_addr = (unsigned long)iov->iov_base; 333 size_t count = iov->iov_len; 334 size_t rsize = NFS_SERVER(inode)->rsize; 335 unsigned int pgbase; 336 int result; 337 ssize_t started = 0; 338 struct page **pagevec = NULL; 339 unsigned int npages; 340 341 do { 342 size_t bytes; 343 int i; 344 345 pgbase = user_addr & ~PAGE_MASK; 346 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 347 348 result = -ENOMEM; 349 npages = nfs_page_array_len(pgbase, bytes); 350 if (!pagevec) 351 pagevec = kmalloc(npages * sizeof(struct page *), 352 GFP_KERNEL); 353 if (!pagevec) 354 break; 355 if (uio) { 356 down_read(¤t->mm->mmap_sem); 357 result = get_user_pages(current, current->mm, user_addr, 358 npages, 1, 0, pagevec, NULL); 359 up_read(¤t->mm->mmap_sem); 360 if (result < 0) 361 break; 362 } else { 363 WARN_ON(npages != 1); 364 result = get_kernel_page(user_addr, 1, pagevec); 365 if (WARN_ON(result != 1)) 366 break; 367 } 368 369 if ((unsigned)result < npages) { 370 bytes = result * PAGE_SIZE; 371 if (bytes <= pgbase) { 372 nfs_direct_release_pages(pagevec, result); 373 break; 374 } 375 bytes -= pgbase; 376 npages = result; 377 } 378 379 for (i = 0; i < npages; i++) { 380 struct nfs_page *req; 381 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 382 /* XXX do we need to do the eof zeroing found in async_filler? */ 383 req = nfs_create_request(dreq->ctx, dreq->inode, 384 pagevec[i], 385 pgbase, req_len); 386 if (IS_ERR(req)) { 387 result = PTR_ERR(req); 388 break; 389 } 390 req->wb_index = pos >> PAGE_SHIFT; 391 req->wb_offset = pos & ~PAGE_MASK; 392 if (!nfs_pageio_add_request(desc, req)) { 393 result = desc->pg_error; 394 nfs_release_request(req); 395 break; 396 } 397 pgbase = 0; 398 bytes -= req_len; 399 started += req_len; 400 user_addr += req_len; 401 pos += req_len; 402 count -= req_len; 403 dreq->bytes_left -= req_len; 404 } 405 /* The nfs_page now hold references to these pages */ 406 nfs_direct_release_pages(pagevec, npages); 407 } while (count != 0 && result >= 0); 408 409 kfree(pagevec); 410 411 if (started) 412 return started; 413 return result < 0 ? (ssize_t) result : -EFAULT; 414 } 415 416 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 417 struct iov_iter *iter, 418 loff_t pos, bool uio) 419 { 420 struct nfs_pageio_descriptor desc; 421 struct inode *inode = dreq->inode; 422 ssize_t result = -EINVAL; 423 size_t requested_bytes = 0; 424 unsigned long seg; 425 426 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 427 &nfs_direct_read_completion_ops); 428 get_dreq(dreq); 429 desc.pg_dreq = dreq; 430 atomic_inc(&inode->i_dio_count); 431 432 for (seg = 0; seg < iter->nr_segs; seg++) { 433 const struct iovec *vec = &iter->iov[seg]; 434 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 435 if (result < 0) 436 break; 437 requested_bytes += result; 438 if ((size_t)result < vec->iov_len) 439 break; 440 pos += vec->iov_len; 441 } 442 443 nfs_pageio_complete(&desc); 444 445 /* 446 * If no bytes were started, return the error, and let the 447 * generic layer handle the completion. 448 */ 449 if (requested_bytes == 0) { 450 inode_dio_done(inode); 451 nfs_direct_req_release(dreq); 452 return result < 0 ? result : -EIO; 453 } 454 455 if (put_dreq(dreq)) 456 nfs_direct_complete(dreq, false); 457 return 0; 458 } 459 460 /** 461 * nfs_file_direct_read - file direct read operation for NFS files 462 * @iocb: target I/O control block 463 * @iter: vector of user buffers into which to read data 464 * @pos: byte offset in file where reading starts 465 * 466 * We use this function for direct reads instead of calling 467 * generic_file_aio_read() in order to avoid gfar's check to see if 468 * the request starts before the end of the file. For that check 469 * to work, we must generate a GETATTR before each direct read, and 470 * even then there is a window between the GETATTR and the subsequent 471 * READ where the file size could change. Our preference is simply 472 * to do all reads the application wants, and the server will take 473 * care of managing the end of file boundary. 474 * 475 * This function also eliminates unnecessarily updating the file's 476 * atime locally, as the NFS server sets the file's atime, and this 477 * client must read the updated atime from the server back into its 478 * cache. 479 */ 480 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 481 loff_t pos, bool uio) 482 { 483 struct file *file = iocb->ki_filp; 484 struct address_space *mapping = file->f_mapping; 485 struct inode *inode = mapping->host; 486 struct nfs_direct_req *dreq; 487 struct nfs_lock_context *l_ctx; 488 ssize_t result = -EINVAL; 489 size_t count; 490 491 count = iov_length(iter->iov, iter->nr_segs); 492 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 493 494 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 495 file, count, (long long) pos); 496 497 result = 0; 498 if (!count) 499 goto out; 500 501 mutex_lock(&inode->i_mutex); 502 result = nfs_sync_mapping(mapping); 503 if (result) 504 goto out_unlock; 505 506 task_io_account_read(count); 507 508 result = -ENOMEM; 509 dreq = nfs_direct_req_alloc(); 510 if (dreq == NULL) 511 goto out_unlock; 512 513 dreq->inode = inode; 514 dreq->bytes_left = count; 515 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 516 l_ctx = nfs_get_lock_context(dreq->ctx); 517 if (IS_ERR(l_ctx)) { 518 result = PTR_ERR(l_ctx); 519 goto out_release; 520 } 521 dreq->l_ctx = l_ctx; 522 if (!is_sync_kiocb(iocb)) 523 dreq->iocb = iocb; 524 525 NFS_I(inode)->read_io += count; 526 result = nfs_direct_read_schedule_iovec(dreq, iter, pos, uio); 527 528 mutex_unlock(&inode->i_mutex); 529 530 if (!result) { 531 result = nfs_direct_wait(dreq); 532 if (result > 0) 533 iocb->ki_pos = pos + result; 534 } 535 536 nfs_direct_req_release(dreq); 537 return result; 538 539 out_release: 540 nfs_direct_req_release(dreq); 541 out_unlock: 542 mutex_unlock(&inode->i_mutex); 543 out: 544 return result; 545 } 546 547 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 548 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 549 { 550 struct nfs_pageio_descriptor desc; 551 struct nfs_page *req, *tmp; 552 LIST_HEAD(reqs); 553 struct nfs_commit_info cinfo; 554 LIST_HEAD(failed); 555 556 nfs_init_cinfo_from_dreq(&cinfo, dreq); 557 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 558 spin_lock(cinfo.lock); 559 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 560 spin_unlock(cinfo.lock); 561 562 dreq->count = 0; 563 get_dreq(dreq); 564 565 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 566 &nfs_direct_write_completion_ops); 567 desc.pg_dreq = dreq; 568 569 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 570 if (!nfs_pageio_add_request(&desc, req)) { 571 nfs_list_remove_request(req); 572 nfs_list_add_request(req, &failed); 573 spin_lock(cinfo.lock); 574 dreq->flags = 0; 575 dreq->error = -EIO; 576 spin_unlock(cinfo.lock); 577 } 578 nfs_release_request(req); 579 } 580 nfs_pageio_complete(&desc); 581 582 while (!list_empty(&failed)) { 583 req = nfs_list_entry(failed.next); 584 nfs_list_remove_request(req); 585 nfs_unlock_and_release_request(req); 586 } 587 588 if (put_dreq(dreq)) 589 nfs_direct_write_complete(dreq, dreq->inode); 590 } 591 592 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 593 { 594 struct nfs_direct_req *dreq = data->dreq; 595 struct nfs_commit_info cinfo; 596 struct nfs_page *req; 597 int status = data->task.tk_status; 598 599 nfs_init_cinfo_from_dreq(&cinfo, dreq); 600 if (status < 0) { 601 dprintk("NFS: %5u commit failed with error %d.\n", 602 data->task.tk_pid, status); 603 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 604 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 605 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 606 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 607 } 608 609 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 610 while (!list_empty(&data->pages)) { 611 req = nfs_list_entry(data->pages.next); 612 nfs_list_remove_request(req); 613 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 614 /* Note the rewrite will go through mds */ 615 nfs_mark_request_commit(req, NULL, &cinfo); 616 } else 617 nfs_release_request(req); 618 nfs_unlock_and_release_request(req); 619 } 620 621 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 622 nfs_direct_write_complete(dreq, data->inode); 623 } 624 625 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 626 { 627 /* There is no lock to clear */ 628 } 629 630 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 631 .completion = nfs_direct_commit_complete, 632 .error_cleanup = nfs_direct_error_cleanup, 633 }; 634 635 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 636 { 637 int res; 638 struct nfs_commit_info cinfo; 639 LIST_HEAD(mds_list); 640 641 nfs_init_cinfo_from_dreq(&cinfo, dreq); 642 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 643 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 644 if (res < 0) /* res == -ENOMEM */ 645 nfs_direct_write_reschedule(dreq); 646 } 647 648 static void nfs_direct_write_schedule_work(struct work_struct *work) 649 { 650 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 651 int flags = dreq->flags; 652 653 dreq->flags = 0; 654 switch (flags) { 655 case NFS_ODIRECT_DO_COMMIT: 656 nfs_direct_commit_schedule(dreq); 657 break; 658 case NFS_ODIRECT_RESCHED_WRITES: 659 nfs_direct_write_reschedule(dreq); 660 break; 661 default: 662 nfs_direct_complete(dreq, true); 663 } 664 } 665 666 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 667 { 668 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 669 } 670 671 #else 672 static void nfs_direct_write_schedule_work(struct work_struct *work) 673 { 674 } 675 676 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 677 { 678 nfs_direct_complete(dreq, true); 679 } 680 #endif 681 682 /* 683 * NB: Return the value of the first error return code. Subsequent 684 * errors after the first one are ignored. 685 */ 686 /* 687 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 688 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 689 * bail and stop sending more writes. Write length accounting is 690 * handled automatically by nfs_direct_write_result(). Otherwise, if 691 * no requests have been sent, just return an error. 692 */ 693 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 694 const struct iovec *iov, 695 loff_t pos, bool uio) 696 { 697 struct nfs_direct_req *dreq = desc->pg_dreq; 698 struct nfs_open_context *ctx = dreq->ctx; 699 struct inode *inode = ctx->dentry->d_inode; 700 unsigned long user_addr = (unsigned long)iov->iov_base; 701 size_t count = iov->iov_len; 702 size_t wsize = NFS_SERVER(inode)->wsize; 703 unsigned int pgbase; 704 int result; 705 ssize_t started = 0; 706 struct page **pagevec = NULL; 707 unsigned int npages; 708 709 do { 710 size_t bytes; 711 int i; 712 713 pgbase = user_addr & ~PAGE_MASK; 714 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 715 716 result = -ENOMEM; 717 npages = nfs_page_array_len(pgbase, bytes); 718 if (!pagevec) 719 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 720 if (!pagevec) 721 break; 722 723 if (uio) { 724 down_read(¤t->mm->mmap_sem); 725 result = get_user_pages(current, current->mm, user_addr, 726 npages, 0, 0, pagevec, NULL); 727 up_read(¤t->mm->mmap_sem); 728 if (result < 0) 729 break; 730 } else { 731 WARN_ON(npages != 1); 732 result = get_kernel_page(user_addr, 0, pagevec); 733 if (WARN_ON(result != 1)) 734 break; 735 } 736 737 if ((unsigned)result < npages) { 738 bytes = result * PAGE_SIZE; 739 if (bytes <= pgbase) { 740 nfs_direct_release_pages(pagevec, result); 741 break; 742 } 743 bytes -= pgbase; 744 npages = result; 745 } 746 747 for (i = 0; i < npages; i++) { 748 struct nfs_page *req; 749 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 750 751 req = nfs_create_request(dreq->ctx, dreq->inode, 752 pagevec[i], 753 pgbase, req_len); 754 if (IS_ERR(req)) { 755 result = PTR_ERR(req); 756 break; 757 } 758 nfs_lock_request(req); 759 req->wb_index = pos >> PAGE_SHIFT; 760 req->wb_offset = pos & ~PAGE_MASK; 761 if (!nfs_pageio_add_request(desc, req)) { 762 result = desc->pg_error; 763 nfs_unlock_and_release_request(req); 764 break; 765 } 766 pgbase = 0; 767 bytes -= req_len; 768 started += req_len; 769 user_addr += req_len; 770 pos += req_len; 771 count -= req_len; 772 dreq->bytes_left -= req_len; 773 } 774 /* The nfs_page now hold references to these pages */ 775 nfs_direct_release_pages(pagevec, npages); 776 } while (count != 0 && result >= 0); 777 778 kfree(pagevec); 779 780 if (started) 781 return started; 782 return result < 0 ? (ssize_t) result : -EFAULT; 783 } 784 785 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 786 { 787 struct nfs_direct_req *dreq = hdr->dreq; 788 struct nfs_commit_info cinfo; 789 int bit = -1; 790 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 791 792 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 793 goto out_put; 794 795 nfs_init_cinfo_from_dreq(&cinfo, dreq); 796 797 spin_lock(&dreq->lock); 798 799 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 800 dreq->flags = 0; 801 dreq->error = hdr->error; 802 } 803 if (dreq->error != 0) 804 bit = NFS_IOHDR_ERROR; 805 else { 806 dreq->count += hdr->good_bytes; 807 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 808 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 809 bit = NFS_IOHDR_NEED_RESCHED; 810 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 811 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 812 bit = NFS_IOHDR_NEED_RESCHED; 813 else if (dreq->flags == 0) { 814 memcpy(&dreq->verf, hdr->verf, 815 sizeof(dreq->verf)); 816 bit = NFS_IOHDR_NEED_COMMIT; 817 dreq->flags = NFS_ODIRECT_DO_COMMIT; 818 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 819 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 820 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 821 bit = NFS_IOHDR_NEED_RESCHED; 822 } else 823 bit = NFS_IOHDR_NEED_COMMIT; 824 } 825 } 826 } 827 spin_unlock(&dreq->lock); 828 829 while (!list_empty(&hdr->pages)) { 830 req = nfs_list_entry(hdr->pages.next); 831 nfs_list_remove_request(req); 832 switch (bit) { 833 case NFS_IOHDR_NEED_RESCHED: 834 case NFS_IOHDR_NEED_COMMIT: 835 kref_get(&req->wb_kref); 836 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 837 } 838 nfs_unlock_and_release_request(req); 839 } 840 841 out_put: 842 if (put_dreq(dreq)) 843 nfs_direct_write_complete(dreq, hdr->inode); 844 hdr->release(hdr); 845 } 846 847 static void nfs_write_sync_pgio_error(struct list_head *head) 848 { 849 struct nfs_page *req; 850 851 while (!list_empty(head)) { 852 req = nfs_list_entry(head->next); 853 nfs_list_remove_request(req); 854 nfs_unlock_and_release_request(req); 855 } 856 } 857 858 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 859 .error_cleanup = nfs_write_sync_pgio_error, 860 .init_hdr = nfs_direct_pgio_init, 861 .completion = nfs_direct_write_completion, 862 }; 863 864 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 865 struct iov_iter *iter, 866 loff_t pos, bool uio) 867 { 868 struct nfs_pageio_descriptor desc; 869 struct inode *inode = dreq->inode; 870 ssize_t result = 0; 871 size_t requested_bytes = 0; 872 unsigned long seg; 873 874 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 875 &nfs_direct_write_completion_ops); 876 desc.pg_dreq = dreq; 877 get_dreq(dreq); 878 atomic_inc(&inode->i_dio_count); 879 880 NFS_I(dreq->inode)->write_io += iov_length(iter->iov, iter->nr_segs); 881 for (seg = 0; seg < iter->nr_segs; seg++) { 882 const struct iovec *vec = &iter->iov[seg]; 883 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 884 if (result < 0) 885 break; 886 requested_bytes += result; 887 if ((size_t)result < vec->iov_len) 888 break; 889 pos += vec->iov_len; 890 } 891 nfs_pageio_complete(&desc); 892 893 /* 894 * If no bytes were started, return the error, and let the 895 * generic layer handle the completion. 896 */ 897 if (requested_bytes == 0) { 898 inode_dio_done(inode); 899 nfs_direct_req_release(dreq); 900 return result < 0 ? result : -EIO; 901 } 902 903 if (put_dreq(dreq)) 904 nfs_direct_write_complete(dreq, dreq->inode); 905 return 0; 906 } 907 908 /** 909 * nfs_file_direct_write - file direct write operation for NFS files 910 * @iocb: target I/O control block 911 * @iter: vector of user buffers from which to write data 912 * @pos: byte offset in file where writing starts 913 * 914 * We use this function for direct writes instead of calling 915 * generic_file_aio_write() in order to avoid taking the inode 916 * semaphore and updating the i_size. The NFS server will set 917 * the new i_size and this client must read the updated size 918 * back into its cache. We let the server do generic write 919 * parameter checking and report problems. 920 * 921 * We eliminate local atime updates, see direct read above. 922 * 923 * We avoid unnecessary page cache invalidations for normal cached 924 * readers of this file. 925 * 926 * Note that O_APPEND is not supported for NFS direct writes, as there 927 * is no atomic O_APPEND write facility in the NFS protocol. 928 */ 929 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 930 loff_t pos, bool uio) 931 { 932 ssize_t result = -EINVAL; 933 struct file *file = iocb->ki_filp; 934 struct address_space *mapping = file->f_mapping; 935 struct inode *inode = mapping->host; 936 struct nfs_direct_req *dreq; 937 struct nfs_lock_context *l_ctx; 938 loff_t end; 939 size_t count; 940 941 count = iov_length(iter->iov, iter->nr_segs); 942 end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 943 944 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 945 946 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 947 file, count, (long long) pos); 948 949 result = generic_write_checks(file, &pos, &count, 0); 950 if (result) 951 goto out; 952 953 result = -EINVAL; 954 if ((ssize_t) count < 0) 955 goto out; 956 result = 0; 957 if (!count) 958 goto out; 959 960 mutex_lock(&inode->i_mutex); 961 962 result = nfs_sync_mapping(mapping); 963 if (result) 964 goto out_unlock; 965 966 if (mapping->nrpages) { 967 result = invalidate_inode_pages2_range(mapping, 968 pos >> PAGE_CACHE_SHIFT, end); 969 if (result) 970 goto out_unlock; 971 } 972 973 task_io_account_write(count); 974 975 result = -ENOMEM; 976 dreq = nfs_direct_req_alloc(); 977 if (!dreq) 978 goto out_unlock; 979 980 dreq->inode = inode; 981 dreq->bytes_left = count; 982 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 983 l_ctx = nfs_get_lock_context(dreq->ctx); 984 if (IS_ERR(l_ctx)) { 985 result = PTR_ERR(l_ctx); 986 goto out_release; 987 } 988 dreq->l_ctx = l_ctx; 989 if (!is_sync_kiocb(iocb)) 990 dreq->iocb = iocb; 991 992 result = nfs_direct_write_schedule_iovec(dreq, iter, pos, uio); 993 994 if (mapping->nrpages) { 995 invalidate_inode_pages2_range(mapping, 996 pos >> PAGE_CACHE_SHIFT, end); 997 } 998 999 mutex_unlock(&inode->i_mutex); 1000 1001 if (!result) { 1002 result = nfs_direct_wait(dreq); 1003 if (result > 0) { 1004 struct inode *inode = mapping->host; 1005 1006 iocb->ki_pos = pos + result; 1007 spin_lock(&inode->i_lock); 1008 if (i_size_read(inode) < iocb->ki_pos) 1009 i_size_write(inode, iocb->ki_pos); 1010 spin_unlock(&inode->i_lock); 1011 } 1012 } 1013 nfs_direct_req_release(dreq); 1014 return result; 1015 1016 out_release: 1017 nfs_direct_req_release(dreq); 1018 out_unlock: 1019 mutex_unlock(&inode->i_mutex); 1020 out: 1021 return result; 1022 } 1023 1024 /** 1025 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1026 * 1027 */ 1028 int __init nfs_init_directcache(void) 1029 { 1030 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1031 sizeof(struct nfs_direct_req), 1032 0, (SLAB_RECLAIM_ACCOUNT| 1033 SLAB_MEM_SPREAD), 1034 NULL); 1035 if (nfs_direct_cachep == NULL) 1036 return -ENOMEM; 1037 1038 return 0; 1039 } 1040 1041 /** 1042 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1043 * 1044 */ 1045 void nfs_destroy_directcache(void) 1046 { 1047 kmem_cache_destroy(nfs_direct_cachep); 1048 } 1049