xref: /linux/fs/nfs/direct.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 
63 #define NFSDBG_FACILITY		NFSDBG_VFS
64 
65 static struct kmem_cache *nfs_direct_cachep;
66 
67 /*
68  * This represents a set of asynchronous requests that we're waiting on
69  */
70 struct nfs_direct_mirror {
71 	ssize_t count;
72 };
73 
74 struct nfs_direct_req {
75 	struct kref		kref;		/* release manager */
76 
77 	/* I/O parameters */
78 	struct nfs_open_context	*ctx;		/* file open context info */
79 	struct nfs_lock_context *l_ctx;		/* Lock context info */
80 	struct kiocb *		iocb;		/* controlling i/o request */
81 	struct inode *		inode;		/* target file of i/o */
82 
83 	/* completion state */
84 	atomic_t		io_count;	/* i/os we're waiting for */
85 	spinlock_t		lock;		/* protect completion state */
86 
87 	struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
88 	int			mirror_count;
89 
90 	loff_t			io_start;	/* Start offset for I/O */
91 	ssize_t			count,		/* bytes actually processed */
92 				max_count,	/* max expected count */
93 				bytes_left,	/* bytes left to be sent */
94 				error;		/* any reported error */
95 	struct completion	completion;	/* wait for i/o completion */
96 
97 	/* commit state */
98 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
99 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
100 	struct work_struct	work;
101 	int			flags;
102 	/* for write */
103 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
104 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
105 	/* for read */
106 #define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
107 	struct nfs_writeverf	verf;		/* unstable write verifier */
108 };
109 
110 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
111 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
112 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
113 static void nfs_direct_write_schedule_work(struct work_struct *work);
114 
115 static inline void get_dreq(struct nfs_direct_req *dreq)
116 {
117 	atomic_inc(&dreq->io_count);
118 }
119 
120 static inline int put_dreq(struct nfs_direct_req *dreq)
121 {
122 	return atomic_dec_and_test(&dreq->io_count);
123 }
124 
125 static void
126 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
127 {
128 	int i;
129 	ssize_t count;
130 
131 	WARN_ON_ONCE(dreq->count >= dreq->max_count);
132 
133 	if (dreq->mirror_count == 1) {
134 		dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
135 		dreq->count += hdr->good_bytes;
136 	} else {
137 		/* mirrored writes */
138 		count = dreq->mirrors[hdr->pgio_mirror_idx].count;
139 		if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
140 			count = hdr->io_start + hdr->good_bytes - dreq->io_start;
141 			dreq->mirrors[hdr->pgio_mirror_idx].count = count;
142 		}
143 		/* update the dreq->count by finding the minimum agreed count from all
144 		 * mirrors */
145 		count = dreq->mirrors[0].count;
146 
147 		for (i = 1; i < dreq->mirror_count; i++)
148 			count = min(count, dreq->mirrors[i].count);
149 
150 		dreq->count = count;
151 	}
152 }
153 
154 /*
155  * nfs_direct_select_verf - select the right verifier
156  * @dreq - direct request possibly spanning multiple servers
157  * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
158  * @commit_idx - commit bucket index for the DS
159  *
160  * returns the correct verifier to use given the role of the server
161  */
162 static struct nfs_writeverf *
163 nfs_direct_select_verf(struct nfs_direct_req *dreq,
164 		       struct nfs_client *ds_clp,
165 		       int commit_idx)
166 {
167 	struct nfs_writeverf *verfp = &dreq->verf;
168 
169 #ifdef CONFIG_NFS_V4_1
170 	/*
171 	 * pNFS is in use, use the DS verf except commit_through_mds is set
172 	 * for layout segment where nbuckets is zero.
173 	 */
174 	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
175 		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
176 			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
177 		else
178 			WARN_ON_ONCE(1);
179 	}
180 #endif
181 	return verfp;
182 }
183 
184 
185 /*
186  * nfs_direct_set_hdr_verf - set the write/commit verifier
187  * @dreq - direct request possibly spanning multiple servers
188  * @hdr - pageio header to validate against previously seen verfs
189  *
190  * Set the server's (MDS or DS) "seen" verifier
191  */
192 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
193 				    struct nfs_pgio_header *hdr)
194 {
195 	struct nfs_writeverf *verfp;
196 
197 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
198 	WARN_ON_ONCE(verfp->committed >= 0);
199 	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
200 	WARN_ON_ONCE(verfp->committed < 0);
201 }
202 
203 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1,
204 		const struct nfs_writeverf *v2)
205 {
206 	return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier);
207 }
208 
209 /*
210  * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
211  * @dreq - direct request possibly spanning multiple servers
212  * @hdr - pageio header to validate against previously seen verf
213  *
214  * set the server's "seen" verf if not initialized.
215  * returns result of comparison between @hdr->verf and the "seen"
216  * verf of the server used by @hdr (DS or MDS)
217  */
218 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
219 					  struct nfs_pgio_header *hdr)
220 {
221 	struct nfs_writeverf *verfp;
222 
223 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
224 	if (verfp->committed < 0) {
225 		nfs_direct_set_hdr_verf(dreq, hdr);
226 		return 0;
227 	}
228 	return nfs_direct_cmp_verf(verfp, &hdr->verf);
229 }
230 
231 /*
232  * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
233  * @dreq - direct request possibly spanning multiple servers
234  * @data - commit data to validate against previously seen verf
235  *
236  * returns result of comparison between @data->verf and the verf of
237  * the server used by @data (DS or MDS)
238  */
239 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
240 					   struct nfs_commit_data *data)
241 {
242 	struct nfs_writeverf *verfp;
243 
244 	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
245 					 data->ds_commit_index);
246 
247 	/* verifier not set so always fail */
248 	if (verfp->committed < 0)
249 		return 1;
250 
251 	return nfs_direct_cmp_verf(verfp, &data->verf);
252 }
253 
254 /**
255  * nfs_direct_IO - NFS address space operation for direct I/O
256  * @iocb: target I/O control block
257  * @iter: I/O buffer
258  *
259  * The presence of this routine in the address space ops vector means
260  * the NFS client supports direct I/O. However, for most direct IO, we
261  * shunt off direct read and write requests before the VFS gets them,
262  * so this method is only ever called for swap.
263  */
264 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
265 {
266 	struct inode *inode = iocb->ki_filp->f_mapping->host;
267 
268 	/* we only support swap file calling nfs_direct_IO */
269 	if (!IS_SWAPFILE(inode))
270 		return 0;
271 
272 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
273 
274 	if (iov_iter_rw(iter) == READ)
275 		return nfs_file_direct_read(iocb, iter);
276 	return nfs_file_direct_write(iocb, iter);
277 }
278 
279 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
280 {
281 	unsigned int i;
282 	for (i = 0; i < npages; i++)
283 		put_page(pages[i]);
284 }
285 
286 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
287 			      struct nfs_direct_req *dreq)
288 {
289 	cinfo->inode = dreq->inode;
290 	cinfo->mds = &dreq->mds_cinfo;
291 	cinfo->ds = &dreq->ds_cinfo;
292 	cinfo->dreq = dreq;
293 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
294 }
295 
296 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
297 					     struct nfs_pageio_descriptor *pgio,
298 					     struct nfs_page *req)
299 {
300 	int mirror_count = 1;
301 
302 	if (pgio->pg_ops->pg_get_mirror_count)
303 		mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
304 
305 	dreq->mirror_count = mirror_count;
306 }
307 
308 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
309 {
310 	struct nfs_direct_req *dreq;
311 
312 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
313 	if (!dreq)
314 		return NULL;
315 
316 	kref_init(&dreq->kref);
317 	kref_get(&dreq->kref);
318 	init_completion(&dreq->completion);
319 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
320 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
321 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
322 	dreq->mirror_count = 1;
323 	spin_lock_init(&dreq->lock);
324 
325 	return dreq;
326 }
327 
328 static void nfs_direct_req_free(struct kref *kref)
329 {
330 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
331 
332 	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
333 	if (dreq->l_ctx != NULL)
334 		nfs_put_lock_context(dreq->l_ctx);
335 	if (dreq->ctx != NULL)
336 		put_nfs_open_context(dreq->ctx);
337 	kmem_cache_free(nfs_direct_cachep, dreq);
338 }
339 
340 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
341 {
342 	kref_put(&dreq->kref, nfs_direct_req_free);
343 }
344 
345 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
346 {
347 	return dreq->bytes_left;
348 }
349 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
350 
351 /*
352  * Collects and returns the final error value/byte-count.
353  */
354 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
355 {
356 	ssize_t result = -EIOCBQUEUED;
357 
358 	/* Async requests don't wait here */
359 	if (dreq->iocb)
360 		goto out;
361 
362 	result = wait_for_completion_killable(&dreq->completion);
363 
364 	if (!result) {
365 		result = dreq->count;
366 		WARN_ON_ONCE(dreq->count < 0);
367 	}
368 	if (!result)
369 		result = dreq->error;
370 
371 out:
372 	return (ssize_t) result;
373 }
374 
375 /*
376  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
377  * the iocb is still valid here if this is a synchronous request.
378  */
379 static void nfs_direct_complete(struct nfs_direct_req *dreq)
380 {
381 	struct inode *inode = dreq->inode;
382 
383 	inode_dio_end(inode);
384 
385 	if (dreq->iocb) {
386 		long res = (long) dreq->error;
387 		if (dreq->count != 0) {
388 			res = (long) dreq->count;
389 			WARN_ON_ONCE(dreq->count < 0);
390 		}
391 		dreq->iocb->ki_complete(dreq->iocb, res, 0);
392 	}
393 
394 	complete(&dreq->completion);
395 
396 	nfs_direct_req_release(dreq);
397 }
398 
399 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
400 {
401 	unsigned long bytes = 0;
402 	struct nfs_direct_req *dreq = hdr->dreq;
403 
404 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
405 		goto out_put;
406 
407 	spin_lock(&dreq->lock);
408 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
409 		dreq->error = hdr->error;
410 	else
411 		nfs_direct_good_bytes(dreq, hdr);
412 
413 	spin_unlock(&dreq->lock);
414 
415 	while (!list_empty(&hdr->pages)) {
416 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
417 		struct page *page = req->wb_page;
418 
419 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
420 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
421 			set_page_dirty(page);
422 		bytes += req->wb_bytes;
423 		nfs_list_remove_request(req);
424 		nfs_release_request(req);
425 	}
426 out_put:
427 	if (put_dreq(dreq))
428 		nfs_direct_complete(dreq);
429 	hdr->release(hdr);
430 }
431 
432 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
433 {
434 	struct nfs_page *req;
435 
436 	while (!list_empty(head)) {
437 		req = nfs_list_entry(head->next);
438 		nfs_list_remove_request(req);
439 		nfs_release_request(req);
440 	}
441 }
442 
443 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
444 {
445 	get_dreq(hdr->dreq);
446 }
447 
448 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
449 	.error_cleanup = nfs_read_sync_pgio_error,
450 	.init_hdr = nfs_direct_pgio_init,
451 	.completion = nfs_direct_read_completion,
452 };
453 
454 /*
455  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
456  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
457  * bail and stop sending more reads.  Read length accounting is
458  * handled automatically by nfs_direct_read_result().  Otherwise, if
459  * no requests have been sent, just return an error.
460  */
461 
462 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
463 					      struct iov_iter *iter,
464 					      loff_t pos)
465 {
466 	struct nfs_pageio_descriptor desc;
467 	struct inode *inode = dreq->inode;
468 	ssize_t result = -EINVAL;
469 	size_t requested_bytes = 0;
470 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
471 
472 	nfs_pageio_init_read(&desc, dreq->inode, false,
473 			     &nfs_direct_read_completion_ops);
474 	get_dreq(dreq);
475 	desc.pg_dreq = dreq;
476 	inode_dio_begin(inode);
477 
478 	while (iov_iter_count(iter)) {
479 		struct page **pagevec;
480 		size_t bytes;
481 		size_t pgbase;
482 		unsigned npages, i;
483 
484 		result = iov_iter_get_pages_alloc(iter, &pagevec,
485 						  rsize, &pgbase);
486 		if (result < 0)
487 			break;
488 
489 		bytes = result;
490 		iov_iter_advance(iter, bytes);
491 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
492 		for (i = 0; i < npages; i++) {
493 			struct nfs_page *req;
494 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
495 			/* XXX do we need to do the eof zeroing found in async_filler? */
496 			req = nfs_create_request(dreq->ctx, pagevec[i],
497 						 pgbase, req_len);
498 			if (IS_ERR(req)) {
499 				result = PTR_ERR(req);
500 				break;
501 			}
502 			req->wb_index = pos >> PAGE_SHIFT;
503 			req->wb_offset = pos & ~PAGE_MASK;
504 			if (!nfs_pageio_add_request(&desc, req)) {
505 				result = desc.pg_error;
506 				nfs_release_request(req);
507 				break;
508 			}
509 			pgbase = 0;
510 			bytes -= req_len;
511 			requested_bytes += req_len;
512 			pos += req_len;
513 			dreq->bytes_left -= req_len;
514 		}
515 		nfs_direct_release_pages(pagevec, npages);
516 		kvfree(pagevec);
517 		if (result < 0)
518 			break;
519 	}
520 
521 	nfs_pageio_complete(&desc);
522 
523 	/*
524 	 * If no bytes were started, return the error, and let the
525 	 * generic layer handle the completion.
526 	 */
527 	if (requested_bytes == 0) {
528 		inode_dio_end(inode);
529 		nfs_direct_req_release(dreq);
530 		return result < 0 ? result : -EIO;
531 	}
532 
533 	if (put_dreq(dreq))
534 		nfs_direct_complete(dreq);
535 	return requested_bytes;
536 }
537 
538 /**
539  * nfs_file_direct_read - file direct read operation for NFS files
540  * @iocb: target I/O control block
541  * @iter: vector of user buffers into which to read data
542  *
543  * We use this function for direct reads instead of calling
544  * generic_file_aio_read() in order to avoid gfar's check to see if
545  * the request starts before the end of the file.  For that check
546  * to work, we must generate a GETATTR before each direct read, and
547  * even then there is a window between the GETATTR and the subsequent
548  * READ where the file size could change.  Our preference is simply
549  * to do all reads the application wants, and the server will take
550  * care of managing the end of file boundary.
551  *
552  * This function also eliminates unnecessarily updating the file's
553  * atime locally, as the NFS server sets the file's atime, and this
554  * client must read the updated atime from the server back into its
555  * cache.
556  */
557 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
558 {
559 	struct file *file = iocb->ki_filp;
560 	struct address_space *mapping = file->f_mapping;
561 	struct inode *inode = mapping->host;
562 	struct nfs_direct_req *dreq;
563 	struct nfs_lock_context *l_ctx;
564 	ssize_t result = -EINVAL, requested;
565 	size_t count = iov_iter_count(iter);
566 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
567 
568 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
569 		file, count, (long long) iocb->ki_pos);
570 
571 	result = 0;
572 	if (!count)
573 		goto out;
574 
575 	task_io_account_read(count);
576 
577 	result = -ENOMEM;
578 	dreq = nfs_direct_req_alloc();
579 	if (dreq == NULL)
580 		goto out;
581 
582 	dreq->inode = inode;
583 	dreq->bytes_left = dreq->max_count = count;
584 	dreq->io_start = iocb->ki_pos;
585 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
586 	l_ctx = nfs_get_lock_context(dreq->ctx);
587 	if (IS_ERR(l_ctx)) {
588 		result = PTR_ERR(l_ctx);
589 		goto out_release;
590 	}
591 	dreq->l_ctx = l_ctx;
592 	if (!is_sync_kiocb(iocb))
593 		dreq->iocb = iocb;
594 
595 	if (iter_is_iovec(iter))
596 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
597 
598 	nfs_start_io_direct(inode);
599 
600 	NFS_I(inode)->read_io += count;
601 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
602 
603 	nfs_end_io_direct(inode);
604 
605 	if (requested > 0) {
606 		result = nfs_direct_wait(dreq);
607 		if (result > 0) {
608 			requested -= result;
609 			iocb->ki_pos += result;
610 		}
611 		iov_iter_revert(iter, requested);
612 	} else {
613 		result = requested;
614 	}
615 
616 out_release:
617 	nfs_direct_req_release(dreq);
618 out:
619 	return result;
620 }
621 
622 static void
623 nfs_direct_write_scan_commit_list(struct inode *inode,
624 				  struct list_head *list,
625 				  struct nfs_commit_info *cinfo)
626 {
627 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
628 #ifdef CONFIG_NFS_V4_1
629 	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
630 		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
631 #endif
632 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
633 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
634 }
635 
636 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
637 {
638 	struct nfs_pageio_descriptor desc;
639 	struct nfs_page *req, *tmp;
640 	LIST_HEAD(reqs);
641 	struct nfs_commit_info cinfo;
642 	LIST_HEAD(failed);
643 	int i;
644 
645 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
646 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
647 
648 	dreq->count = 0;
649 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;
650 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
651 	for (i = 0; i < dreq->mirror_count; i++)
652 		dreq->mirrors[i].count = 0;
653 	get_dreq(dreq);
654 
655 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
656 			      &nfs_direct_write_completion_ops);
657 	desc.pg_dreq = dreq;
658 
659 	req = nfs_list_entry(reqs.next);
660 	nfs_direct_setup_mirroring(dreq, &desc, req);
661 	if (desc.pg_error < 0) {
662 		list_splice_init(&reqs, &failed);
663 		goto out_failed;
664 	}
665 
666 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
667 		/* Bump the transmission count */
668 		req->wb_nio++;
669 		if (!nfs_pageio_add_request(&desc, req)) {
670 			nfs_list_move_request(req, &failed);
671 			spin_lock(&cinfo.inode->i_lock);
672 			dreq->flags = 0;
673 			if (desc.pg_error < 0)
674 				dreq->error = desc.pg_error;
675 			else
676 				dreq->error = -EIO;
677 			spin_unlock(&cinfo.inode->i_lock);
678 		}
679 		nfs_release_request(req);
680 	}
681 	nfs_pageio_complete(&desc);
682 
683 out_failed:
684 	while (!list_empty(&failed)) {
685 		req = nfs_list_entry(failed.next);
686 		nfs_list_remove_request(req);
687 		nfs_unlock_and_release_request(req);
688 	}
689 
690 	if (put_dreq(dreq))
691 		nfs_direct_write_complete(dreq);
692 }
693 
694 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
695 {
696 	struct nfs_direct_req *dreq = data->dreq;
697 	struct nfs_commit_info cinfo;
698 	struct nfs_page *req;
699 	int status = data->task.tk_status;
700 
701 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
702 	if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data))
703 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
704 
705 	while (!list_empty(&data->pages)) {
706 		req = nfs_list_entry(data->pages.next);
707 		nfs_list_remove_request(req);
708 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
709 			/*
710 			 * Despite the reboot, the write was successful,
711 			 * so reset wb_nio.
712 			 */
713 			req->wb_nio = 0;
714 			/* Note the rewrite will go through mds */
715 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
716 		} else
717 			nfs_release_request(req);
718 		nfs_unlock_and_release_request(req);
719 	}
720 
721 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
722 		nfs_direct_write_complete(dreq);
723 }
724 
725 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
726 		struct nfs_page *req)
727 {
728 	struct nfs_direct_req *dreq = cinfo->dreq;
729 
730 	spin_lock(&dreq->lock);
731 	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
732 	spin_unlock(&dreq->lock);
733 	nfs_mark_request_commit(req, NULL, cinfo, 0);
734 }
735 
736 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
737 	.completion = nfs_direct_commit_complete,
738 	.resched_write = nfs_direct_resched_write,
739 };
740 
741 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
742 {
743 	int res;
744 	struct nfs_commit_info cinfo;
745 	LIST_HEAD(mds_list);
746 
747 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
748 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
749 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
750 	if (res < 0) /* res == -ENOMEM */
751 		nfs_direct_write_reschedule(dreq);
752 }
753 
754 static void nfs_direct_write_schedule_work(struct work_struct *work)
755 {
756 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
757 	int flags = dreq->flags;
758 
759 	dreq->flags = 0;
760 	switch (flags) {
761 		case NFS_ODIRECT_DO_COMMIT:
762 			nfs_direct_commit_schedule(dreq);
763 			break;
764 		case NFS_ODIRECT_RESCHED_WRITES:
765 			nfs_direct_write_reschedule(dreq);
766 			break;
767 		default:
768 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
769 			nfs_direct_complete(dreq);
770 	}
771 }
772 
773 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
774 {
775 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
776 }
777 
778 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
779 {
780 	struct nfs_direct_req *dreq = hdr->dreq;
781 	struct nfs_commit_info cinfo;
782 	bool request_commit = false;
783 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
784 
785 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
786 		goto out_put;
787 
788 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
789 
790 	spin_lock(&dreq->lock);
791 
792 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
793 		dreq->error = hdr->error;
794 	if (dreq->error == 0) {
795 		nfs_direct_good_bytes(dreq, hdr);
796 		if (nfs_write_need_commit(hdr)) {
797 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
798 				request_commit = true;
799 			else if (dreq->flags == 0) {
800 				nfs_direct_set_hdr_verf(dreq, hdr);
801 				request_commit = true;
802 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
803 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
804 				request_commit = true;
805 				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
806 					dreq->flags =
807 						NFS_ODIRECT_RESCHED_WRITES;
808 			}
809 		}
810 	}
811 	spin_unlock(&dreq->lock);
812 
813 	while (!list_empty(&hdr->pages)) {
814 
815 		req = nfs_list_entry(hdr->pages.next);
816 		nfs_list_remove_request(req);
817 		if (request_commit) {
818 			kref_get(&req->wb_kref);
819 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
820 				hdr->ds_commit_idx);
821 		}
822 		nfs_unlock_and_release_request(req);
823 	}
824 
825 out_put:
826 	if (put_dreq(dreq))
827 		nfs_direct_write_complete(dreq);
828 	hdr->release(hdr);
829 }
830 
831 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
832 {
833 	struct nfs_page *req;
834 
835 	while (!list_empty(head)) {
836 		req = nfs_list_entry(head->next);
837 		nfs_list_remove_request(req);
838 		nfs_unlock_and_release_request(req);
839 	}
840 }
841 
842 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
843 {
844 	struct nfs_direct_req *dreq = hdr->dreq;
845 
846 	spin_lock(&dreq->lock);
847 	if (dreq->error == 0) {
848 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
849 		/* fake unstable write to let common nfs resend pages */
850 		hdr->verf.committed = NFS_UNSTABLE;
851 		hdr->good_bytes = hdr->args.count;
852 	}
853 	spin_unlock(&dreq->lock);
854 }
855 
856 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
857 	.error_cleanup = nfs_write_sync_pgio_error,
858 	.init_hdr = nfs_direct_pgio_init,
859 	.completion = nfs_direct_write_completion,
860 	.reschedule_io = nfs_direct_write_reschedule_io,
861 };
862 
863 
864 /*
865  * NB: Return the value of the first error return code.  Subsequent
866  *     errors after the first one are ignored.
867  */
868 /*
869  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
870  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
871  * bail and stop sending more writes.  Write length accounting is
872  * handled automatically by nfs_direct_write_result().  Otherwise, if
873  * no requests have been sent, just return an error.
874  */
875 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
876 					       struct iov_iter *iter,
877 					       loff_t pos)
878 {
879 	struct nfs_pageio_descriptor desc;
880 	struct inode *inode = dreq->inode;
881 	ssize_t result = 0;
882 	size_t requested_bytes = 0;
883 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
884 
885 	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
886 			      &nfs_direct_write_completion_ops);
887 	desc.pg_dreq = dreq;
888 	get_dreq(dreq);
889 	inode_dio_begin(inode);
890 
891 	NFS_I(inode)->write_io += iov_iter_count(iter);
892 	while (iov_iter_count(iter)) {
893 		struct page **pagevec;
894 		size_t bytes;
895 		size_t pgbase;
896 		unsigned npages, i;
897 
898 		result = iov_iter_get_pages_alloc(iter, &pagevec,
899 						  wsize, &pgbase);
900 		if (result < 0)
901 			break;
902 
903 		bytes = result;
904 		iov_iter_advance(iter, bytes);
905 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
906 		for (i = 0; i < npages; i++) {
907 			struct nfs_page *req;
908 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
909 
910 			req = nfs_create_request(dreq->ctx, pagevec[i],
911 						 pgbase, req_len);
912 			if (IS_ERR(req)) {
913 				result = PTR_ERR(req);
914 				break;
915 			}
916 
917 			nfs_direct_setup_mirroring(dreq, &desc, req);
918 			if (desc.pg_error < 0) {
919 				nfs_free_request(req);
920 				result = desc.pg_error;
921 				break;
922 			}
923 
924 			nfs_lock_request(req);
925 			req->wb_index = pos >> PAGE_SHIFT;
926 			req->wb_offset = pos & ~PAGE_MASK;
927 			if (!nfs_pageio_add_request(&desc, req)) {
928 				result = desc.pg_error;
929 				nfs_unlock_and_release_request(req);
930 				break;
931 			}
932 			pgbase = 0;
933 			bytes -= req_len;
934 			requested_bytes += req_len;
935 			pos += req_len;
936 			dreq->bytes_left -= req_len;
937 		}
938 		nfs_direct_release_pages(pagevec, npages);
939 		kvfree(pagevec);
940 		if (result < 0)
941 			break;
942 	}
943 	nfs_pageio_complete(&desc);
944 
945 	/*
946 	 * If no bytes were started, return the error, and let the
947 	 * generic layer handle the completion.
948 	 */
949 	if (requested_bytes == 0) {
950 		inode_dio_end(inode);
951 		nfs_direct_req_release(dreq);
952 		return result < 0 ? result : -EIO;
953 	}
954 
955 	if (put_dreq(dreq))
956 		nfs_direct_write_complete(dreq);
957 	return requested_bytes;
958 }
959 
960 /**
961  * nfs_file_direct_write - file direct write operation for NFS files
962  * @iocb: target I/O control block
963  * @iter: vector of user buffers from which to write data
964  *
965  * We use this function for direct writes instead of calling
966  * generic_file_aio_write() in order to avoid taking the inode
967  * semaphore and updating the i_size.  The NFS server will set
968  * the new i_size and this client must read the updated size
969  * back into its cache.  We let the server do generic write
970  * parameter checking and report problems.
971  *
972  * We eliminate local atime updates, see direct read above.
973  *
974  * We avoid unnecessary page cache invalidations for normal cached
975  * readers of this file.
976  *
977  * Note that O_APPEND is not supported for NFS direct writes, as there
978  * is no atomic O_APPEND write facility in the NFS protocol.
979  */
980 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
981 {
982 	ssize_t result = -EINVAL, requested;
983 	size_t count;
984 	struct file *file = iocb->ki_filp;
985 	struct address_space *mapping = file->f_mapping;
986 	struct inode *inode = mapping->host;
987 	struct nfs_direct_req *dreq;
988 	struct nfs_lock_context *l_ctx;
989 	loff_t pos, end;
990 
991 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
992 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
993 
994 	result = generic_write_checks(iocb, iter);
995 	if (result <= 0)
996 		return result;
997 	count = result;
998 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
999 
1000 	pos = iocb->ki_pos;
1001 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1002 
1003 	task_io_account_write(count);
1004 
1005 	result = -ENOMEM;
1006 	dreq = nfs_direct_req_alloc();
1007 	if (!dreq)
1008 		goto out;
1009 
1010 	dreq->inode = inode;
1011 	dreq->bytes_left = dreq->max_count = count;
1012 	dreq->io_start = pos;
1013 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1014 	l_ctx = nfs_get_lock_context(dreq->ctx);
1015 	if (IS_ERR(l_ctx)) {
1016 		result = PTR_ERR(l_ctx);
1017 		goto out_release;
1018 	}
1019 	dreq->l_ctx = l_ctx;
1020 	if (!is_sync_kiocb(iocb))
1021 		dreq->iocb = iocb;
1022 
1023 	nfs_start_io_direct(inode);
1024 
1025 	requested = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1026 
1027 	if (mapping->nrpages) {
1028 		invalidate_inode_pages2_range(mapping,
1029 					      pos >> PAGE_SHIFT, end);
1030 	}
1031 
1032 	nfs_end_io_direct(inode);
1033 
1034 	if (requested > 0) {
1035 		result = nfs_direct_wait(dreq);
1036 		if (result > 0) {
1037 			requested -= result;
1038 			iocb->ki_pos = pos + result;
1039 			/* XXX: should check the generic_write_sync retval */
1040 			generic_write_sync(iocb, result);
1041 		}
1042 		iov_iter_revert(iter, requested);
1043 	} else {
1044 		result = requested;
1045 	}
1046 out_release:
1047 	nfs_direct_req_release(dreq);
1048 out:
1049 	return result;
1050 }
1051 
1052 /**
1053  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1054  *
1055  */
1056 int __init nfs_init_directcache(void)
1057 {
1058 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1059 						sizeof(struct nfs_direct_req),
1060 						0, (SLAB_RECLAIM_ACCOUNT|
1061 							SLAB_MEM_SPREAD),
1062 						NULL);
1063 	if (nfs_direct_cachep == NULL)
1064 		return -ENOMEM;
1065 
1066 	return 0;
1067 }
1068 
1069 /**
1070  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1071  *
1072  */
1073 void nfs_destroy_directcache(void)
1074 {
1075 	kmem_cache_destroy(nfs_direct_cachep);
1076 }
1077