1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 50 #include <linux/nfs_fs.h> 51 #include <linux/nfs_page.h> 52 #include <linux/sunrpc/clnt.h> 53 54 #include <asm/uaccess.h> 55 #include <linux/atomic.h> 56 57 #include "internal.h" 58 #include "iostat.h" 59 #include "pnfs.h" 60 61 #define NFSDBG_FACILITY NFSDBG_VFS 62 63 static struct kmem_cache *nfs_direct_cachep; 64 65 /* 66 * This represents a set of asynchronous requests that we're waiting on 67 */ 68 struct nfs_direct_req { 69 struct kref kref; /* release manager */ 70 71 /* I/O parameters */ 72 struct nfs_open_context *ctx; /* file open context info */ 73 struct nfs_lock_context *l_ctx; /* Lock context info */ 74 struct kiocb * iocb; /* controlling i/o request */ 75 struct inode * inode; /* target file of i/o */ 76 77 /* completion state */ 78 atomic_t io_count; /* i/os we're waiting for */ 79 spinlock_t lock; /* protect completion state */ 80 ssize_t count, /* bytes actually processed */ 81 error; /* any reported error */ 82 struct completion completion; /* wait for i/o completion */ 83 84 /* commit state */ 85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 87 struct work_struct work; 88 int flags; 89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 91 struct nfs_writeverf verf; /* unstable write verifier */ 92 }; 93 94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 97 static void nfs_direct_write_schedule_work(struct work_struct *work); 98 99 static inline void get_dreq(struct nfs_direct_req *dreq) 100 { 101 atomic_inc(&dreq->io_count); 102 } 103 104 static inline int put_dreq(struct nfs_direct_req *dreq) 105 { 106 return atomic_dec_and_test(&dreq->io_count); 107 } 108 109 /** 110 * nfs_direct_IO - NFS address space operation for direct I/O 111 * @rw: direction (read or write) 112 * @iocb: target I/O control block 113 * @iov: array of vectors that define I/O buffer 114 * @pos: offset in file to begin the operation 115 * @nr_segs: size of iovec array 116 * 117 * The presence of this routine in the address space ops vector means 118 * the NFS client supports direct I/O. However, we shunt off direct 119 * read and write requests before the VFS gets them, so this method 120 * should never be called. 121 */ 122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 123 { 124 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 125 iocb->ki_filp->f_path.dentry->d_name.name, 126 (long long) pos, nr_segs); 127 128 return -EINVAL; 129 } 130 131 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 132 { 133 unsigned int i; 134 for (i = 0; i < npages; i++) 135 page_cache_release(pages[i]); 136 } 137 138 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 139 struct nfs_direct_req *dreq) 140 { 141 cinfo->lock = &dreq->lock; 142 cinfo->mds = &dreq->mds_cinfo; 143 cinfo->ds = &dreq->ds_cinfo; 144 cinfo->dreq = dreq; 145 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 146 } 147 148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 149 { 150 struct nfs_direct_req *dreq; 151 152 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 153 if (!dreq) 154 return NULL; 155 156 kref_init(&dreq->kref); 157 kref_get(&dreq->kref); 158 init_completion(&dreq->completion); 159 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 160 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 161 spin_lock_init(&dreq->lock); 162 163 return dreq; 164 } 165 166 static void nfs_direct_req_free(struct kref *kref) 167 { 168 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 169 170 if (dreq->l_ctx != NULL) 171 nfs_put_lock_context(dreq->l_ctx); 172 if (dreq->ctx != NULL) 173 put_nfs_open_context(dreq->ctx); 174 kmem_cache_free(nfs_direct_cachep, dreq); 175 } 176 177 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 178 { 179 kref_put(&dreq->kref, nfs_direct_req_free); 180 } 181 182 /* 183 * Collects and returns the final error value/byte-count. 184 */ 185 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 186 { 187 ssize_t result = -EIOCBQUEUED; 188 189 /* Async requests don't wait here */ 190 if (dreq->iocb) 191 goto out; 192 193 result = wait_for_completion_killable(&dreq->completion); 194 195 if (!result) 196 result = dreq->error; 197 if (!result) 198 result = dreq->count; 199 200 out: 201 return (ssize_t) result; 202 } 203 204 /* 205 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 206 * the iocb is still valid here if this is a synchronous request. 207 */ 208 static void nfs_direct_complete(struct nfs_direct_req *dreq) 209 { 210 if (dreq->iocb) { 211 long res = (long) dreq->error; 212 if (!res) 213 res = (long) dreq->count; 214 aio_complete(dreq->iocb, res, 0); 215 } 216 complete_all(&dreq->completion); 217 218 nfs_direct_req_release(dreq); 219 } 220 221 static void nfs_direct_readpage_release(struct nfs_page *req) 222 { 223 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 224 req->wb_context->dentry->d_inode->i_sb->s_id, 225 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 226 req->wb_bytes, 227 (long long)req_offset(req)); 228 nfs_release_request(req); 229 } 230 231 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 232 { 233 unsigned long bytes = 0; 234 struct nfs_direct_req *dreq = hdr->dreq; 235 236 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 237 goto out_put; 238 239 spin_lock(&dreq->lock); 240 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 241 dreq->error = hdr->error; 242 else 243 dreq->count += hdr->good_bytes; 244 spin_unlock(&dreq->lock); 245 246 while (!list_empty(&hdr->pages)) { 247 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 248 struct page *page = req->wb_page; 249 250 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) { 251 if (bytes > hdr->good_bytes) 252 zero_user(page, 0, PAGE_SIZE); 253 else if (hdr->good_bytes - bytes < PAGE_SIZE) 254 zero_user_segment(page, 255 hdr->good_bytes & ~PAGE_MASK, 256 PAGE_SIZE); 257 } 258 if (!PageCompound(page)) { 259 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 260 if (bytes < hdr->good_bytes) 261 set_page_dirty(page); 262 } else 263 set_page_dirty(page); 264 } 265 bytes += req->wb_bytes; 266 nfs_list_remove_request(req); 267 nfs_direct_readpage_release(req); 268 } 269 out_put: 270 if (put_dreq(dreq)) 271 nfs_direct_complete(dreq); 272 hdr->release(hdr); 273 } 274 275 static void nfs_read_sync_pgio_error(struct list_head *head) 276 { 277 struct nfs_page *req; 278 279 while (!list_empty(head)) { 280 req = nfs_list_entry(head->next); 281 nfs_list_remove_request(req); 282 nfs_release_request(req); 283 } 284 } 285 286 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 287 { 288 get_dreq(hdr->dreq); 289 } 290 291 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 292 .error_cleanup = nfs_read_sync_pgio_error, 293 .init_hdr = nfs_direct_pgio_init, 294 .completion = nfs_direct_read_completion, 295 }; 296 297 /* 298 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 299 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 300 * bail and stop sending more reads. Read length accounting is 301 * handled automatically by nfs_direct_read_result(). Otherwise, if 302 * no requests have been sent, just return an error. 303 */ 304 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 305 const struct iovec *iov, 306 loff_t pos) 307 { 308 struct nfs_direct_req *dreq = desc->pg_dreq; 309 struct nfs_open_context *ctx = dreq->ctx; 310 struct inode *inode = ctx->dentry->d_inode; 311 unsigned long user_addr = (unsigned long)iov->iov_base; 312 size_t count = iov->iov_len; 313 size_t rsize = NFS_SERVER(inode)->rsize; 314 unsigned int pgbase; 315 int result; 316 ssize_t started = 0; 317 struct page **pagevec = NULL; 318 unsigned int npages; 319 320 do { 321 size_t bytes; 322 int i; 323 324 pgbase = user_addr & ~PAGE_MASK; 325 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 326 327 result = -ENOMEM; 328 npages = nfs_page_array_len(pgbase, bytes); 329 if (!pagevec) 330 pagevec = kmalloc(npages * sizeof(struct page *), 331 GFP_KERNEL); 332 if (!pagevec) 333 break; 334 down_read(¤t->mm->mmap_sem); 335 result = get_user_pages(current, current->mm, user_addr, 336 npages, 1, 0, pagevec, NULL); 337 up_read(¤t->mm->mmap_sem); 338 if (result < 0) 339 break; 340 if ((unsigned)result < npages) { 341 bytes = result * PAGE_SIZE; 342 if (bytes <= pgbase) { 343 nfs_direct_release_pages(pagevec, result); 344 break; 345 } 346 bytes -= pgbase; 347 npages = result; 348 } 349 350 for (i = 0; i < npages; i++) { 351 struct nfs_page *req; 352 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 353 /* XXX do we need to do the eof zeroing found in async_filler? */ 354 req = nfs_create_request(dreq->ctx, dreq->inode, 355 pagevec[i], 356 pgbase, req_len); 357 if (IS_ERR(req)) { 358 result = PTR_ERR(req); 359 break; 360 } 361 req->wb_index = pos >> PAGE_SHIFT; 362 req->wb_offset = pos & ~PAGE_MASK; 363 if (!nfs_pageio_add_request(desc, req)) { 364 result = desc->pg_error; 365 nfs_release_request(req); 366 break; 367 } 368 pgbase = 0; 369 bytes -= req_len; 370 started += req_len; 371 user_addr += req_len; 372 pos += req_len; 373 count -= req_len; 374 } 375 /* The nfs_page now hold references to these pages */ 376 nfs_direct_release_pages(pagevec, npages); 377 } while (count != 0 && result >= 0); 378 379 kfree(pagevec); 380 381 if (started) 382 return started; 383 return result < 0 ? (ssize_t) result : -EFAULT; 384 } 385 386 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 387 const struct iovec *iov, 388 unsigned long nr_segs, 389 loff_t pos) 390 { 391 struct nfs_pageio_descriptor desc; 392 ssize_t result = -EINVAL; 393 size_t requested_bytes = 0; 394 unsigned long seg; 395 396 nfs_pageio_init_read(&desc, dreq->inode, 397 &nfs_direct_read_completion_ops); 398 get_dreq(dreq); 399 desc.pg_dreq = dreq; 400 401 for (seg = 0; seg < nr_segs; seg++) { 402 const struct iovec *vec = &iov[seg]; 403 result = nfs_direct_read_schedule_segment(&desc, vec, pos); 404 if (result < 0) 405 break; 406 requested_bytes += result; 407 if ((size_t)result < vec->iov_len) 408 break; 409 pos += vec->iov_len; 410 } 411 412 nfs_pageio_complete(&desc); 413 414 /* 415 * If no bytes were started, return the error, and let the 416 * generic layer handle the completion. 417 */ 418 if (requested_bytes == 0) { 419 nfs_direct_req_release(dreq); 420 return result < 0 ? result : -EIO; 421 } 422 423 if (put_dreq(dreq)) 424 nfs_direct_complete(dreq); 425 return 0; 426 } 427 428 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 429 unsigned long nr_segs, loff_t pos) 430 { 431 ssize_t result = -ENOMEM; 432 struct inode *inode = iocb->ki_filp->f_mapping->host; 433 struct nfs_direct_req *dreq; 434 435 dreq = nfs_direct_req_alloc(); 436 if (dreq == NULL) 437 goto out; 438 439 dreq->inode = inode; 440 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 441 dreq->l_ctx = nfs_get_lock_context(dreq->ctx); 442 if (dreq->l_ctx == NULL) 443 goto out_release; 444 if (!is_sync_kiocb(iocb)) 445 dreq->iocb = iocb; 446 447 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos); 448 if (!result) 449 result = nfs_direct_wait(dreq); 450 NFS_I(inode)->read_io += result; 451 out_release: 452 nfs_direct_req_release(dreq); 453 out: 454 return result; 455 } 456 457 static void nfs_inode_dio_write_done(struct inode *inode) 458 { 459 nfs_zap_mapping(inode, inode->i_mapping); 460 inode_dio_done(inode); 461 } 462 463 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 464 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 465 { 466 struct nfs_pageio_descriptor desc; 467 struct nfs_page *req, *tmp; 468 LIST_HEAD(reqs); 469 struct nfs_commit_info cinfo; 470 LIST_HEAD(failed); 471 472 nfs_init_cinfo_from_dreq(&cinfo, dreq); 473 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 474 spin_lock(cinfo.lock); 475 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 476 spin_unlock(cinfo.lock); 477 478 dreq->count = 0; 479 get_dreq(dreq); 480 481 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, 482 &nfs_direct_write_completion_ops); 483 desc.pg_dreq = dreq; 484 485 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 486 if (!nfs_pageio_add_request(&desc, req)) { 487 nfs_list_add_request(req, &failed); 488 spin_lock(cinfo.lock); 489 dreq->flags = 0; 490 dreq->error = -EIO; 491 spin_unlock(cinfo.lock); 492 } 493 nfs_release_request(req); 494 } 495 nfs_pageio_complete(&desc); 496 497 while (!list_empty(&failed)) 498 nfs_unlock_and_release_request(req); 499 500 if (put_dreq(dreq)) 501 nfs_direct_write_complete(dreq, dreq->inode); 502 } 503 504 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 505 { 506 struct nfs_direct_req *dreq = data->dreq; 507 struct nfs_commit_info cinfo; 508 struct nfs_page *req; 509 int status = data->task.tk_status; 510 511 nfs_init_cinfo_from_dreq(&cinfo, dreq); 512 if (status < 0) { 513 dprintk("NFS: %5u commit failed with error %d.\n", 514 data->task.tk_pid, status); 515 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 516 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 517 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 518 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 519 } 520 521 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 522 while (!list_empty(&data->pages)) { 523 req = nfs_list_entry(data->pages.next); 524 nfs_list_remove_request(req); 525 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 526 /* Note the rewrite will go through mds */ 527 nfs_mark_request_commit(req, NULL, &cinfo); 528 } else 529 nfs_release_request(req); 530 nfs_unlock_and_release_request(req); 531 } 532 533 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 534 nfs_direct_write_complete(dreq, data->inode); 535 } 536 537 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 538 { 539 /* There is no lock to clear */ 540 } 541 542 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 543 .completion = nfs_direct_commit_complete, 544 .error_cleanup = nfs_direct_error_cleanup, 545 }; 546 547 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 548 { 549 int res; 550 struct nfs_commit_info cinfo; 551 LIST_HEAD(mds_list); 552 553 nfs_init_cinfo_from_dreq(&cinfo, dreq); 554 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 555 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 556 if (res < 0) /* res == -ENOMEM */ 557 nfs_direct_write_reschedule(dreq); 558 } 559 560 static void nfs_direct_write_schedule_work(struct work_struct *work) 561 { 562 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 563 int flags = dreq->flags; 564 565 dreq->flags = 0; 566 switch (flags) { 567 case NFS_ODIRECT_DO_COMMIT: 568 nfs_direct_commit_schedule(dreq); 569 break; 570 case NFS_ODIRECT_RESCHED_WRITES: 571 nfs_direct_write_reschedule(dreq); 572 break; 573 default: 574 nfs_inode_dio_write_done(dreq->inode); 575 nfs_direct_complete(dreq); 576 } 577 } 578 579 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 580 { 581 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 582 } 583 584 #else 585 static void nfs_direct_write_schedule_work(struct work_struct *work) 586 { 587 } 588 589 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 590 { 591 nfs_inode_dio_write_done(inode); 592 nfs_direct_complete(dreq); 593 } 594 #endif 595 596 /* 597 * NB: Return the value of the first error return code. Subsequent 598 * errors after the first one are ignored. 599 */ 600 /* 601 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 602 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 603 * bail and stop sending more writes. Write length accounting is 604 * handled automatically by nfs_direct_write_result(). Otherwise, if 605 * no requests have been sent, just return an error. 606 */ 607 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 608 const struct iovec *iov, 609 loff_t pos) 610 { 611 struct nfs_direct_req *dreq = desc->pg_dreq; 612 struct nfs_open_context *ctx = dreq->ctx; 613 struct inode *inode = ctx->dentry->d_inode; 614 unsigned long user_addr = (unsigned long)iov->iov_base; 615 size_t count = iov->iov_len; 616 size_t wsize = NFS_SERVER(inode)->wsize; 617 unsigned int pgbase; 618 int result; 619 ssize_t started = 0; 620 struct page **pagevec = NULL; 621 unsigned int npages; 622 623 do { 624 size_t bytes; 625 int i; 626 627 pgbase = user_addr & ~PAGE_MASK; 628 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 629 630 result = -ENOMEM; 631 npages = nfs_page_array_len(pgbase, bytes); 632 if (!pagevec) 633 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 634 if (!pagevec) 635 break; 636 637 down_read(¤t->mm->mmap_sem); 638 result = get_user_pages(current, current->mm, user_addr, 639 npages, 0, 0, pagevec, NULL); 640 up_read(¤t->mm->mmap_sem); 641 if (result < 0) 642 break; 643 644 if ((unsigned)result < npages) { 645 bytes = result * PAGE_SIZE; 646 if (bytes <= pgbase) { 647 nfs_direct_release_pages(pagevec, result); 648 break; 649 } 650 bytes -= pgbase; 651 npages = result; 652 } 653 654 for (i = 0; i < npages; i++) { 655 struct nfs_page *req; 656 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 657 658 req = nfs_create_request(dreq->ctx, dreq->inode, 659 pagevec[i], 660 pgbase, req_len); 661 if (IS_ERR(req)) { 662 result = PTR_ERR(req); 663 break; 664 } 665 nfs_lock_request(req); 666 req->wb_index = pos >> PAGE_SHIFT; 667 req->wb_offset = pos & ~PAGE_MASK; 668 if (!nfs_pageio_add_request(desc, req)) { 669 result = desc->pg_error; 670 nfs_unlock_and_release_request(req); 671 break; 672 } 673 pgbase = 0; 674 bytes -= req_len; 675 started += req_len; 676 user_addr += req_len; 677 pos += req_len; 678 count -= req_len; 679 } 680 /* The nfs_page now hold references to these pages */ 681 nfs_direct_release_pages(pagevec, npages); 682 } while (count != 0 && result >= 0); 683 684 kfree(pagevec); 685 686 if (started) 687 return started; 688 return result < 0 ? (ssize_t) result : -EFAULT; 689 } 690 691 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 692 { 693 struct nfs_direct_req *dreq = hdr->dreq; 694 struct nfs_commit_info cinfo; 695 int bit = -1; 696 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 697 698 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 699 goto out_put; 700 701 nfs_init_cinfo_from_dreq(&cinfo, dreq); 702 703 spin_lock(&dreq->lock); 704 705 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 706 dreq->flags = 0; 707 dreq->error = hdr->error; 708 } 709 if (dreq->error != 0) 710 bit = NFS_IOHDR_ERROR; 711 else { 712 dreq->count += hdr->good_bytes; 713 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 714 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 715 bit = NFS_IOHDR_NEED_RESCHED; 716 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 717 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 718 bit = NFS_IOHDR_NEED_RESCHED; 719 else if (dreq->flags == 0) { 720 memcpy(&dreq->verf, hdr->verf, 721 sizeof(dreq->verf)); 722 bit = NFS_IOHDR_NEED_COMMIT; 723 dreq->flags = NFS_ODIRECT_DO_COMMIT; 724 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 725 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 726 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 727 bit = NFS_IOHDR_NEED_RESCHED; 728 } else 729 bit = NFS_IOHDR_NEED_COMMIT; 730 } 731 } 732 } 733 spin_unlock(&dreq->lock); 734 735 while (!list_empty(&hdr->pages)) { 736 req = nfs_list_entry(hdr->pages.next); 737 nfs_list_remove_request(req); 738 switch (bit) { 739 case NFS_IOHDR_NEED_RESCHED: 740 case NFS_IOHDR_NEED_COMMIT: 741 kref_get(&req->wb_kref); 742 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 743 } 744 nfs_unlock_and_release_request(req); 745 } 746 747 out_put: 748 if (put_dreq(dreq)) 749 nfs_direct_write_complete(dreq, hdr->inode); 750 hdr->release(hdr); 751 } 752 753 static void nfs_write_sync_pgio_error(struct list_head *head) 754 { 755 struct nfs_page *req; 756 757 while (!list_empty(head)) { 758 req = nfs_list_entry(head->next); 759 nfs_list_remove_request(req); 760 nfs_unlock_and_release_request(req); 761 } 762 } 763 764 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 765 .error_cleanup = nfs_write_sync_pgio_error, 766 .init_hdr = nfs_direct_pgio_init, 767 .completion = nfs_direct_write_completion, 768 }; 769 770 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 771 const struct iovec *iov, 772 unsigned long nr_segs, 773 loff_t pos) 774 { 775 struct nfs_pageio_descriptor desc; 776 struct inode *inode = dreq->inode; 777 ssize_t result = 0; 778 size_t requested_bytes = 0; 779 unsigned long seg; 780 781 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, 782 &nfs_direct_write_completion_ops); 783 desc.pg_dreq = dreq; 784 get_dreq(dreq); 785 atomic_inc(&inode->i_dio_count); 786 787 for (seg = 0; seg < nr_segs; seg++) { 788 const struct iovec *vec = &iov[seg]; 789 result = nfs_direct_write_schedule_segment(&desc, vec, pos); 790 if (result < 0) 791 break; 792 requested_bytes += result; 793 if ((size_t)result < vec->iov_len) 794 break; 795 pos += vec->iov_len; 796 } 797 nfs_pageio_complete(&desc); 798 NFS_I(dreq->inode)->write_io += desc.pg_bytes_written; 799 800 /* 801 * If no bytes were started, return the error, and let the 802 * generic layer handle the completion. 803 */ 804 if (requested_bytes == 0) { 805 inode_dio_done(inode); 806 nfs_direct_req_release(dreq); 807 return result < 0 ? result : -EIO; 808 } 809 810 if (put_dreq(dreq)) 811 nfs_direct_write_complete(dreq, dreq->inode); 812 return 0; 813 } 814 815 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 816 unsigned long nr_segs, loff_t pos, 817 size_t count) 818 { 819 ssize_t result = -ENOMEM; 820 struct inode *inode = iocb->ki_filp->f_mapping->host; 821 struct nfs_direct_req *dreq; 822 823 dreq = nfs_direct_req_alloc(); 824 if (!dreq) 825 goto out; 826 827 dreq->inode = inode; 828 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 829 dreq->l_ctx = nfs_get_lock_context(dreq->ctx); 830 if (dreq->l_ctx == NULL) 831 goto out_release; 832 if (!is_sync_kiocb(iocb)) 833 dreq->iocb = iocb; 834 835 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos); 836 if (!result) 837 result = nfs_direct_wait(dreq); 838 out_release: 839 nfs_direct_req_release(dreq); 840 out: 841 return result; 842 } 843 844 /** 845 * nfs_file_direct_read - file direct read operation for NFS files 846 * @iocb: target I/O control block 847 * @iov: vector of user buffers into which to read data 848 * @nr_segs: size of iov vector 849 * @pos: byte offset in file where reading starts 850 * 851 * We use this function for direct reads instead of calling 852 * generic_file_aio_read() in order to avoid gfar's check to see if 853 * the request starts before the end of the file. For that check 854 * to work, we must generate a GETATTR before each direct read, and 855 * even then there is a window between the GETATTR and the subsequent 856 * READ where the file size could change. Our preference is simply 857 * to do all reads the application wants, and the server will take 858 * care of managing the end of file boundary. 859 * 860 * This function also eliminates unnecessarily updating the file's 861 * atime locally, as the NFS server sets the file's atime, and this 862 * client must read the updated atime from the server back into its 863 * cache. 864 */ 865 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 866 unsigned long nr_segs, loff_t pos) 867 { 868 ssize_t retval = -EINVAL; 869 struct file *file = iocb->ki_filp; 870 struct address_space *mapping = file->f_mapping; 871 size_t count; 872 873 count = iov_length(iov, nr_segs); 874 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 875 876 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n", 877 file->f_path.dentry->d_parent->d_name.name, 878 file->f_path.dentry->d_name.name, 879 count, (long long) pos); 880 881 retval = 0; 882 if (!count) 883 goto out; 884 885 retval = nfs_sync_mapping(mapping); 886 if (retval) 887 goto out; 888 889 task_io_account_read(count); 890 891 retval = nfs_direct_read(iocb, iov, nr_segs, pos); 892 if (retval > 0) 893 iocb->ki_pos = pos + retval; 894 895 out: 896 return retval; 897 } 898 899 /** 900 * nfs_file_direct_write - file direct write operation for NFS files 901 * @iocb: target I/O control block 902 * @iov: vector of user buffers from which to write data 903 * @nr_segs: size of iov vector 904 * @pos: byte offset in file where writing starts 905 * 906 * We use this function for direct writes instead of calling 907 * generic_file_aio_write() in order to avoid taking the inode 908 * semaphore and updating the i_size. The NFS server will set 909 * the new i_size and this client must read the updated size 910 * back into its cache. We let the server do generic write 911 * parameter checking and report problems. 912 * 913 * We eliminate local atime updates, see direct read above. 914 * 915 * We avoid unnecessary page cache invalidations for normal cached 916 * readers of this file. 917 * 918 * Note that O_APPEND is not supported for NFS direct writes, as there 919 * is no atomic O_APPEND write facility in the NFS protocol. 920 */ 921 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 922 unsigned long nr_segs, loff_t pos) 923 { 924 ssize_t retval = -EINVAL; 925 struct file *file = iocb->ki_filp; 926 struct address_space *mapping = file->f_mapping; 927 size_t count; 928 929 count = iov_length(iov, nr_segs); 930 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 931 932 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n", 933 file->f_path.dentry->d_parent->d_name.name, 934 file->f_path.dentry->d_name.name, 935 count, (long long) pos); 936 937 retval = generic_write_checks(file, &pos, &count, 0); 938 if (retval) 939 goto out; 940 941 retval = -EINVAL; 942 if ((ssize_t) count < 0) 943 goto out; 944 retval = 0; 945 if (!count) 946 goto out; 947 948 retval = nfs_sync_mapping(mapping); 949 if (retval) 950 goto out; 951 952 task_io_account_write(count); 953 954 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count); 955 if (retval > 0) { 956 struct inode *inode = mapping->host; 957 958 iocb->ki_pos = pos + retval; 959 spin_lock(&inode->i_lock); 960 if (i_size_read(inode) < iocb->ki_pos) 961 i_size_write(inode, iocb->ki_pos); 962 spin_unlock(&inode->i_lock); 963 } 964 out: 965 return retval; 966 } 967 968 /** 969 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 970 * 971 */ 972 int __init nfs_init_directcache(void) 973 { 974 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 975 sizeof(struct nfs_direct_req), 976 0, (SLAB_RECLAIM_ACCOUNT| 977 SLAB_MEM_SPREAD), 978 NULL); 979 if (nfs_direct_cachep == NULL) 980 return -ENOMEM; 981 982 return 0; 983 } 984 985 /** 986 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 987 * 988 */ 989 void nfs_destroy_directcache(void) 990 { 991 kmem_cache_destroy(nfs_direct_cachep); 992 } 993