xref: /linux/fs/nfs/direct.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_req {
70 	struct kref		kref;		/* release manager */
71 
72 	/* I/O parameters */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct nfs_lock_context *l_ctx;		/* Lock context info */
75 	struct kiocb *		iocb;		/* controlling i/o request */
76 	struct inode *		inode;		/* target file of i/o */
77 
78 	/* completion state */
79 	atomic_t		io_count;	/* i/os we're waiting for */
80 	spinlock_t		lock;		/* protect completion state */
81 	ssize_t			count,		/* bytes actually processed */
82 				bytes_left,	/* bytes left to be sent */
83 				error;		/* any reported error */
84 	struct completion	completion;	/* wait for i/o completion */
85 
86 	/* commit state */
87 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
88 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
89 	struct work_struct	work;
90 	int			flags;
91 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
93 	struct nfs_writeverf	verf;		/* unstable write verifier */
94 };
95 
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100 
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 	atomic_inc(&dreq->io_count);
104 }
105 
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 	return atomic_dec_and_test(&dreq->io_count);
109 }
110 
111 /**
112  * nfs_direct_IO - NFS address space operation for direct I/O
113  * @rw: direction (read or write)
114  * @iocb: target I/O control block
115  * @iov: array of vectors that define I/O buffer
116  * @pos: offset in file to begin the operation
117  * @nr_segs: size of iovec array
118  *
119  * The presence of this routine in the address space ops vector means
120  * the NFS client supports direct I/O. However, for most direct IO, we
121  * shunt off direct read and write requests before the VFS gets them,
122  * so this method is only ever called for swap.
123  */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
128 			iocb->ki_filp->f_path.dentry->d_name.name,
129 			(long long) pos, nr_segs);
130 
131 	return -EINVAL;
132 #else
133 	VM_BUG_ON(iocb->ki_left != PAGE_SIZE);
134 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
135 
136 	if (rw == READ || rw == KERNEL_READ)
137 		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
138 				rw == READ ? true : false);
139 	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
140 				rw == WRITE ? true : false);
141 #endif /* CONFIG_NFS_SWAP */
142 }
143 
144 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
145 {
146 	unsigned int i;
147 	for (i = 0; i < npages; i++)
148 		page_cache_release(pages[i]);
149 }
150 
151 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
152 			      struct nfs_direct_req *dreq)
153 {
154 	cinfo->lock = &dreq->lock;
155 	cinfo->mds = &dreq->mds_cinfo;
156 	cinfo->ds = &dreq->ds_cinfo;
157 	cinfo->dreq = dreq;
158 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
159 }
160 
161 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
162 {
163 	struct nfs_direct_req *dreq;
164 
165 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
166 	if (!dreq)
167 		return NULL;
168 
169 	kref_init(&dreq->kref);
170 	kref_get(&dreq->kref);
171 	init_completion(&dreq->completion);
172 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
173 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
174 	spin_lock_init(&dreq->lock);
175 
176 	return dreq;
177 }
178 
179 static void nfs_direct_req_free(struct kref *kref)
180 {
181 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
182 
183 	if (dreq->l_ctx != NULL)
184 		nfs_put_lock_context(dreq->l_ctx);
185 	if (dreq->ctx != NULL)
186 		put_nfs_open_context(dreq->ctx);
187 	kmem_cache_free(nfs_direct_cachep, dreq);
188 }
189 
190 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
191 {
192 	kref_put(&dreq->kref, nfs_direct_req_free);
193 }
194 
195 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
196 {
197 	return dreq->bytes_left;
198 }
199 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
200 
201 /*
202  * Collects and returns the final error value/byte-count.
203  */
204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
205 {
206 	ssize_t result = -EIOCBQUEUED;
207 
208 	/* Async requests don't wait here */
209 	if (dreq->iocb)
210 		goto out;
211 
212 	result = wait_for_completion_killable(&dreq->completion);
213 
214 	if (!result)
215 		result = dreq->error;
216 	if (!result)
217 		result = dreq->count;
218 
219 out:
220 	return (ssize_t) result;
221 }
222 
223 /*
224  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
225  * the iocb is still valid here if this is a synchronous request.
226  */
227 static void nfs_direct_complete(struct nfs_direct_req *dreq)
228 {
229 	if (dreq->iocb) {
230 		long res = (long) dreq->error;
231 		if (!res)
232 			res = (long) dreq->count;
233 		aio_complete(dreq->iocb, res, 0);
234 	}
235 	complete_all(&dreq->completion);
236 
237 	nfs_direct_req_release(dreq);
238 }
239 
240 static void nfs_direct_readpage_release(struct nfs_page *req)
241 {
242 	dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
243 		req->wb_context->dentry->d_inode->i_sb->s_id,
244 		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
245 		req->wb_bytes,
246 		(long long)req_offset(req));
247 	nfs_release_request(req);
248 }
249 
250 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
251 {
252 	unsigned long bytes = 0;
253 	struct nfs_direct_req *dreq = hdr->dreq;
254 
255 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
256 		goto out_put;
257 
258 	spin_lock(&dreq->lock);
259 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
260 		dreq->error = hdr->error;
261 	else
262 		dreq->count += hdr->good_bytes;
263 	spin_unlock(&dreq->lock);
264 
265 	while (!list_empty(&hdr->pages)) {
266 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
267 		struct page *page = req->wb_page;
268 
269 		if (!PageCompound(page) && bytes < hdr->good_bytes)
270 			set_page_dirty(page);
271 		bytes += req->wb_bytes;
272 		nfs_list_remove_request(req);
273 		nfs_direct_readpage_release(req);
274 	}
275 out_put:
276 	if (put_dreq(dreq))
277 		nfs_direct_complete(dreq);
278 	hdr->release(hdr);
279 }
280 
281 static void nfs_read_sync_pgio_error(struct list_head *head)
282 {
283 	struct nfs_page *req;
284 
285 	while (!list_empty(head)) {
286 		req = nfs_list_entry(head->next);
287 		nfs_list_remove_request(req);
288 		nfs_release_request(req);
289 	}
290 }
291 
292 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
293 {
294 	get_dreq(hdr->dreq);
295 }
296 
297 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
298 	.error_cleanup = nfs_read_sync_pgio_error,
299 	.init_hdr = nfs_direct_pgio_init,
300 	.completion = nfs_direct_read_completion,
301 };
302 
303 /*
304  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
305  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
306  * bail and stop sending more reads.  Read length accounting is
307  * handled automatically by nfs_direct_read_result().  Otherwise, if
308  * no requests have been sent, just return an error.
309  */
310 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
311 						const struct iovec *iov,
312 						loff_t pos, bool uio)
313 {
314 	struct nfs_direct_req *dreq = desc->pg_dreq;
315 	struct nfs_open_context *ctx = dreq->ctx;
316 	struct inode *inode = ctx->dentry->d_inode;
317 	unsigned long user_addr = (unsigned long)iov->iov_base;
318 	size_t count = iov->iov_len;
319 	size_t rsize = NFS_SERVER(inode)->rsize;
320 	unsigned int pgbase;
321 	int result;
322 	ssize_t started = 0;
323 	struct page **pagevec = NULL;
324 	unsigned int npages;
325 
326 	do {
327 		size_t bytes;
328 		int i;
329 
330 		pgbase = user_addr & ~PAGE_MASK;
331 		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
332 
333 		result = -ENOMEM;
334 		npages = nfs_page_array_len(pgbase, bytes);
335 		if (!pagevec)
336 			pagevec = kmalloc(npages * sizeof(struct page *),
337 					  GFP_KERNEL);
338 		if (!pagevec)
339 			break;
340 		if (uio) {
341 			down_read(&current->mm->mmap_sem);
342 			result = get_user_pages(current, current->mm, user_addr,
343 					npages, 1, 0, pagevec, NULL);
344 			up_read(&current->mm->mmap_sem);
345 			if (result < 0)
346 				break;
347 		} else {
348 			WARN_ON(npages != 1);
349 			result = get_kernel_page(user_addr, 1, pagevec);
350 			if (WARN_ON(result != 1))
351 				break;
352 		}
353 
354 		if ((unsigned)result < npages) {
355 			bytes = result * PAGE_SIZE;
356 			if (bytes <= pgbase) {
357 				nfs_direct_release_pages(pagevec, result);
358 				break;
359 			}
360 			bytes -= pgbase;
361 			npages = result;
362 		}
363 
364 		for (i = 0; i < npages; i++) {
365 			struct nfs_page *req;
366 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
367 			/* XXX do we need to do the eof zeroing found in async_filler? */
368 			req = nfs_create_request(dreq->ctx, dreq->inode,
369 						 pagevec[i],
370 						 pgbase, req_len);
371 			if (IS_ERR(req)) {
372 				result = PTR_ERR(req);
373 				break;
374 			}
375 			req->wb_index = pos >> PAGE_SHIFT;
376 			req->wb_offset = pos & ~PAGE_MASK;
377 			if (!nfs_pageio_add_request(desc, req)) {
378 				result = desc->pg_error;
379 				nfs_release_request(req);
380 				break;
381 			}
382 			pgbase = 0;
383 			bytes -= req_len;
384 			started += req_len;
385 			user_addr += req_len;
386 			pos += req_len;
387 			count -= req_len;
388 			dreq->bytes_left -= req_len;
389 		}
390 		/* The nfs_page now hold references to these pages */
391 		nfs_direct_release_pages(pagevec, npages);
392 	} while (count != 0 && result >= 0);
393 
394 	kfree(pagevec);
395 
396 	if (started)
397 		return started;
398 	return result < 0 ? (ssize_t) result : -EFAULT;
399 }
400 
401 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
402 					      const struct iovec *iov,
403 					      unsigned long nr_segs,
404 					      loff_t pos, bool uio)
405 {
406 	struct nfs_pageio_descriptor desc;
407 	ssize_t result = -EINVAL;
408 	size_t requested_bytes = 0;
409 	unsigned long seg;
410 
411 	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
412 			     &nfs_direct_read_completion_ops);
413 	get_dreq(dreq);
414 	desc.pg_dreq = dreq;
415 
416 	for (seg = 0; seg < nr_segs; seg++) {
417 		const struct iovec *vec = &iov[seg];
418 		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
419 		if (result < 0)
420 			break;
421 		requested_bytes += result;
422 		if ((size_t)result < vec->iov_len)
423 			break;
424 		pos += vec->iov_len;
425 	}
426 
427 	nfs_pageio_complete(&desc);
428 
429 	/*
430 	 * If no bytes were started, return the error, and let the
431 	 * generic layer handle the completion.
432 	 */
433 	if (requested_bytes == 0) {
434 		nfs_direct_req_release(dreq);
435 		return result < 0 ? result : -EIO;
436 	}
437 
438 	if (put_dreq(dreq))
439 		nfs_direct_complete(dreq);
440 	return 0;
441 }
442 
443 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
444 			       unsigned long nr_segs, loff_t pos, bool uio)
445 {
446 	ssize_t result = -ENOMEM;
447 	struct inode *inode = iocb->ki_filp->f_mapping->host;
448 	struct nfs_direct_req *dreq;
449 	struct nfs_lock_context *l_ctx;
450 
451 	dreq = nfs_direct_req_alloc();
452 	if (dreq == NULL)
453 		goto out;
454 
455 	dreq->inode = inode;
456 	dreq->bytes_left = iov_length(iov, nr_segs);
457 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
458 	l_ctx = nfs_get_lock_context(dreq->ctx);
459 	if (IS_ERR(l_ctx)) {
460 		result = PTR_ERR(l_ctx);
461 		goto out_release;
462 	}
463 	dreq->l_ctx = l_ctx;
464 	if (!is_sync_kiocb(iocb))
465 		dreq->iocb = iocb;
466 
467 	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
468 	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
469 	if (!result)
470 		result = nfs_direct_wait(dreq);
471 out_release:
472 	nfs_direct_req_release(dreq);
473 out:
474 	return result;
475 }
476 
477 static void nfs_inode_dio_write_done(struct inode *inode)
478 {
479 	nfs_zap_mapping(inode, inode->i_mapping);
480 	inode_dio_done(inode);
481 }
482 
483 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
484 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
485 {
486 	struct nfs_pageio_descriptor desc;
487 	struct nfs_page *req, *tmp;
488 	LIST_HEAD(reqs);
489 	struct nfs_commit_info cinfo;
490 	LIST_HEAD(failed);
491 
492 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
493 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
494 	spin_lock(cinfo.lock);
495 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
496 	spin_unlock(cinfo.lock);
497 
498 	dreq->count = 0;
499 	get_dreq(dreq);
500 
501 	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
502 			      &nfs_direct_write_completion_ops);
503 	desc.pg_dreq = dreq;
504 
505 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
506 		if (!nfs_pageio_add_request(&desc, req)) {
507 			nfs_list_remove_request(req);
508 			nfs_list_add_request(req, &failed);
509 			spin_lock(cinfo.lock);
510 			dreq->flags = 0;
511 			dreq->error = -EIO;
512 			spin_unlock(cinfo.lock);
513 		}
514 		nfs_release_request(req);
515 	}
516 	nfs_pageio_complete(&desc);
517 
518 	while (!list_empty(&failed)) {
519 		req = nfs_list_entry(failed.next);
520 		nfs_list_remove_request(req);
521 		nfs_unlock_and_release_request(req);
522 	}
523 
524 	if (put_dreq(dreq))
525 		nfs_direct_write_complete(dreq, dreq->inode);
526 }
527 
528 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
529 {
530 	struct nfs_direct_req *dreq = data->dreq;
531 	struct nfs_commit_info cinfo;
532 	struct nfs_page *req;
533 	int status = data->task.tk_status;
534 
535 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
536 	if (status < 0) {
537 		dprintk("NFS: %5u commit failed with error %d.\n",
538 			data->task.tk_pid, status);
539 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
540 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
541 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
542 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
543 	}
544 
545 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
546 	while (!list_empty(&data->pages)) {
547 		req = nfs_list_entry(data->pages.next);
548 		nfs_list_remove_request(req);
549 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
550 			/* Note the rewrite will go through mds */
551 			nfs_mark_request_commit(req, NULL, &cinfo);
552 		} else
553 			nfs_release_request(req);
554 		nfs_unlock_and_release_request(req);
555 	}
556 
557 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
558 		nfs_direct_write_complete(dreq, data->inode);
559 }
560 
561 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
562 {
563 	/* There is no lock to clear */
564 }
565 
566 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
567 	.completion = nfs_direct_commit_complete,
568 	.error_cleanup = nfs_direct_error_cleanup,
569 };
570 
571 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
572 {
573 	int res;
574 	struct nfs_commit_info cinfo;
575 	LIST_HEAD(mds_list);
576 
577 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
578 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
579 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
580 	if (res < 0) /* res == -ENOMEM */
581 		nfs_direct_write_reschedule(dreq);
582 }
583 
584 static void nfs_direct_write_schedule_work(struct work_struct *work)
585 {
586 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
587 	int flags = dreq->flags;
588 
589 	dreq->flags = 0;
590 	switch (flags) {
591 		case NFS_ODIRECT_DO_COMMIT:
592 			nfs_direct_commit_schedule(dreq);
593 			break;
594 		case NFS_ODIRECT_RESCHED_WRITES:
595 			nfs_direct_write_reschedule(dreq);
596 			break;
597 		default:
598 			nfs_inode_dio_write_done(dreq->inode);
599 			nfs_direct_complete(dreq);
600 	}
601 }
602 
603 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
604 {
605 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
606 }
607 
608 #else
609 static void nfs_direct_write_schedule_work(struct work_struct *work)
610 {
611 }
612 
613 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
614 {
615 	nfs_inode_dio_write_done(inode);
616 	nfs_direct_complete(dreq);
617 }
618 #endif
619 
620 /*
621  * NB: Return the value of the first error return code.  Subsequent
622  *     errors after the first one are ignored.
623  */
624 /*
625  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
626  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
627  * bail and stop sending more writes.  Write length accounting is
628  * handled automatically by nfs_direct_write_result().  Otherwise, if
629  * no requests have been sent, just return an error.
630  */
631 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
632 						 const struct iovec *iov,
633 						 loff_t pos, bool uio)
634 {
635 	struct nfs_direct_req *dreq = desc->pg_dreq;
636 	struct nfs_open_context *ctx = dreq->ctx;
637 	struct inode *inode = ctx->dentry->d_inode;
638 	unsigned long user_addr = (unsigned long)iov->iov_base;
639 	size_t count = iov->iov_len;
640 	size_t wsize = NFS_SERVER(inode)->wsize;
641 	unsigned int pgbase;
642 	int result;
643 	ssize_t started = 0;
644 	struct page **pagevec = NULL;
645 	unsigned int npages;
646 
647 	do {
648 		size_t bytes;
649 		int i;
650 
651 		pgbase = user_addr & ~PAGE_MASK;
652 		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
653 
654 		result = -ENOMEM;
655 		npages = nfs_page_array_len(pgbase, bytes);
656 		if (!pagevec)
657 			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
658 		if (!pagevec)
659 			break;
660 
661 		if (uio) {
662 			down_read(&current->mm->mmap_sem);
663 			result = get_user_pages(current, current->mm, user_addr,
664 						npages, 0, 0, pagevec, NULL);
665 			up_read(&current->mm->mmap_sem);
666 			if (result < 0)
667 				break;
668 		} else {
669 			WARN_ON(npages != 1);
670 			result = get_kernel_page(user_addr, 0, pagevec);
671 			if (WARN_ON(result != 1))
672 				break;
673 		}
674 
675 		if ((unsigned)result < npages) {
676 			bytes = result * PAGE_SIZE;
677 			if (bytes <= pgbase) {
678 				nfs_direct_release_pages(pagevec, result);
679 				break;
680 			}
681 			bytes -= pgbase;
682 			npages = result;
683 		}
684 
685 		for (i = 0; i < npages; i++) {
686 			struct nfs_page *req;
687 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
688 
689 			req = nfs_create_request(dreq->ctx, dreq->inode,
690 						 pagevec[i],
691 						 pgbase, req_len);
692 			if (IS_ERR(req)) {
693 				result = PTR_ERR(req);
694 				break;
695 			}
696 			nfs_lock_request(req);
697 			req->wb_index = pos >> PAGE_SHIFT;
698 			req->wb_offset = pos & ~PAGE_MASK;
699 			if (!nfs_pageio_add_request(desc, req)) {
700 				result = desc->pg_error;
701 				nfs_unlock_and_release_request(req);
702 				break;
703 			}
704 			pgbase = 0;
705 			bytes -= req_len;
706 			started += req_len;
707 			user_addr += req_len;
708 			pos += req_len;
709 			count -= req_len;
710 			dreq->bytes_left -= req_len;
711 		}
712 		/* The nfs_page now hold references to these pages */
713 		nfs_direct_release_pages(pagevec, npages);
714 	} while (count != 0 && result >= 0);
715 
716 	kfree(pagevec);
717 
718 	if (started)
719 		return started;
720 	return result < 0 ? (ssize_t) result : -EFAULT;
721 }
722 
723 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
724 {
725 	struct nfs_direct_req *dreq = hdr->dreq;
726 	struct nfs_commit_info cinfo;
727 	int bit = -1;
728 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
729 
730 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
731 		goto out_put;
732 
733 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
734 
735 	spin_lock(&dreq->lock);
736 
737 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
738 		dreq->flags = 0;
739 		dreq->error = hdr->error;
740 	}
741 	if (dreq->error != 0)
742 		bit = NFS_IOHDR_ERROR;
743 	else {
744 		dreq->count += hdr->good_bytes;
745 		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
746 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
747 			bit = NFS_IOHDR_NEED_RESCHED;
748 		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
749 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
750 				bit = NFS_IOHDR_NEED_RESCHED;
751 			else if (dreq->flags == 0) {
752 				memcpy(&dreq->verf, hdr->verf,
753 				       sizeof(dreq->verf));
754 				bit = NFS_IOHDR_NEED_COMMIT;
755 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
756 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
757 				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
758 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
759 					bit = NFS_IOHDR_NEED_RESCHED;
760 				} else
761 					bit = NFS_IOHDR_NEED_COMMIT;
762 			}
763 		}
764 	}
765 	spin_unlock(&dreq->lock);
766 
767 	while (!list_empty(&hdr->pages)) {
768 		req = nfs_list_entry(hdr->pages.next);
769 		nfs_list_remove_request(req);
770 		switch (bit) {
771 		case NFS_IOHDR_NEED_RESCHED:
772 		case NFS_IOHDR_NEED_COMMIT:
773 			kref_get(&req->wb_kref);
774 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
775 		}
776 		nfs_unlock_and_release_request(req);
777 	}
778 
779 out_put:
780 	if (put_dreq(dreq))
781 		nfs_direct_write_complete(dreq, hdr->inode);
782 	hdr->release(hdr);
783 }
784 
785 static void nfs_write_sync_pgio_error(struct list_head *head)
786 {
787 	struct nfs_page *req;
788 
789 	while (!list_empty(head)) {
790 		req = nfs_list_entry(head->next);
791 		nfs_list_remove_request(req);
792 		nfs_unlock_and_release_request(req);
793 	}
794 }
795 
796 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
797 	.error_cleanup = nfs_write_sync_pgio_error,
798 	.init_hdr = nfs_direct_pgio_init,
799 	.completion = nfs_direct_write_completion,
800 };
801 
802 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
803 					       const struct iovec *iov,
804 					       unsigned long nr_segs,
805 					       loff_t pos, bool uio)
806 {
807 	struct nfs_pageio_descriptor desc;
808 	struct inode *inode = dreq->inode;
809 	ssize_t result = 0;
810 	size_t requested_bytes = 0;
811 	unsigned long seg;
812 
813 	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
814 			      &nfs_direct_write_completion_ops);
815 	desc.pg_dreq = dreq;
816 	get_dreq(dreq);
817 	atomic_inc(&inode->i_dio_count);
818 
819 	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
820 	for (seg = 0; seg < nr_segs; seg++) {
821 		const struct iovec *vec = &iov[seg];
822 		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
823 		if (result < 0)
824 			break;
825 		requested_bytes += result;
826 		if ((size_t)result < vec->iov_len)
827 			break;
828 		pos += vec->iov_len;
829 	}
830 	nfs_pageio_complete(&desc);
831 
832 	/*
833 	 * If no bytes were started, return the error, and let the
834 	 * generic layer handle the completion.
835 	 */
836 	if (requested_bytes == 0) {
837 		inode_dio_done(inode);
838 		nfs_direct_req_release(dreq);
839 		return result < 0 ? result : -EIO;
840 	}
841 
842 	if (put_dreq(dreq))
843 		nfs_direct_write_complete(dreq, dreq->inode);
844 	return 0;
845 }
846 
847 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
848 				unsigned long nr_segs, loff_t pos,
849 				size_t count, bool uio)
850 {
851 	ssize_t result = -ENOMEM;
852 	struct inode *inode = iocb->ki_filp->f_mapping->host;
853 	struct nfs_direct_req *dreq;
854 	struct nfs_lock_context *l_ctx;
855 
856 	dreq = nfs_direct_req_alloc();
857 	if (!dreq)
858 		goto out;
859 
860 	dreq->inode = inode;
861 	dreq->bytes_left = count;
862 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
863 	l_ctx = nfs_get_lock_context(dreq->ctx);
864 	if (IS_ERR(l_ctx)) {
865 		result = PTR_ERR(l_ctx);
866 		goto out_release;
867 	}
868 	dreq->l_ctx = l_ctx;
869 	if (!is_sync_kiocb(iocb))
870 		dreq->iocb = iocb;
871 
872 	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
873 	if (!result)
874 		result = nfs_direct_wait(dreq);
875 out_release:
876 	nfs_direct_req_release(dreq);
877 out:
878 	return result;
879 }
880 
881 /**
882  * nfs_file_direct_read - file direct read operation for NFS files
883  * @iocb: target I/O control block
884  * @iov: vector of user buffers into which to read data
885  * @nr_segs: size of iov vector
886  * @pos: byte offset in file where reading starts
887  *
888  * We use this function for direct reads instead of calling
889  * generic_file_aio_read() in order to avoid gfar's check to see if
890  * the request starts before the end of the file.  For that check
891  * to work, we must generate a GETATTR before each direct read, and
892  * even then there is a window between the GETATTR and the subsequent
893  * READ where the file size could change.  Our preference is simply
894  * to do all reads the application wants, and the server will take
895  * care of managing the end of file boundary.
896  *
897  * This function also eliminates unnecessarily updating the file's
898  * atime locally, as the NFS server sets the file's atime, and this
899  * client must read the updated atime from the server back into its
900  * cache.
901  */
902 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
903 				unsigned long nr_segs, loff_t pos, bool uio)
904 {
905 	ssize_t retval = -EINVAL;
906 	struct file *file = iocb->ki_filp;
907 	struct address_space *mapping = file->f_mapping;
908 	size_t count;
909 
910 	count = iov_length(iov, nr_segs);
911 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
912 
913 	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
914 		file->f_path.dentry->d_parent->d_name.name,
915 		file->f_path.dentry->d_name.name,
916 		count, (long long) pos);
917 
918 	retval = 0;
919 	if (!count)
920 		goto out;
921 
922 	retval = nfs_sync_mapping(mapping);
923 	if (retval)
924 		goto out;
925 
926 	task_io_account_read(count);
927 
928 	retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
929 	if (retval > 0)
930 		iocb->ki_pos = pos + retval;
931 
932 out:
933 	return retval;
934 }
935 
936 /**
937  * nfs_file_direct_write - file direct write operation for NFS files
938  * @iocb: target I/O control block
939  * @iov: vector of user buffers from which to write data
940  * @nr_segs: size of iov vector
941  * @pos: byte offset in file where writing starts
942  *
943  * We use this function for direct writes instead of calling
944  * generic_file_aio_write() in order to avoid taking the inode
945  * semaphore and updating the i_size.  The NFS server will set
946  * the new i_size and this client must read the updated size
947  * back into its cache.  We let the server do generic write
948  * parameter checking and report problems.
949  *
950  * We eliminate local atime updates, see direct read above.
951  *
952  * We avoid unnecessary page cache invalidations for normal cached
953  * readers of this file.
954  *
955  * Note that O_APPEND is not supported for NFS direct writes, as there
956  * is no atomic O_APPEND write facility in the NFS protocol.
957  */
958 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
959 				unsigned long nr_segs, loff_t pos, bool uio)
960 {
961 	ssize_t retval = -EINVAL;
962 	struct file *file = iocb->ki_filp;
963 	struct address_space *mapping = file->f_mapping;
964 	size_t count;
965 
966 	count = iov_length(iov, nr_segs);
967 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
968 
969 	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
970 		file->f_path.dentry->d_parent->d_name.name,
971 		file->f_path.dentry->d_name.name,
972 		count, (long long) pos);
973 
974 	retval = generic_write_checks(file, &pos, &count, 0);
975 	if (retval)
976 		goto out;
977 
978 	retval = -EINVAL;
979 	if ((ssize_t) count < 0)
980 		goto out;
981 	retval = 0;
982 	if (!count)
983 		goto out;
984 
985 	retval = nfs_sync_mapping(mapping);
986 	if (retval)
987 		goto out;
988 
989 	task_io_account_write(count);
990 
991 	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
992 	if (retval > 0) {
993 		struct inode *inode = mapping->host;
994 
995 		iocb->ki_pos = pos + retval;
996 		spin_lock(&inode->i_lock);
997 		if (i_size_read(inode) < iocb->ki_pos)
998 			i_size_write(inode, iocb->ki_pos);
999 		spin_unlock(&inode->i_lock);
1000 	}
1001 out:
1002 	return retval;
1003 }
1004 
1005 /**
1006  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1007  *
1008  */
1009 int __init nfs_init_directcache(void)
1010 {
1011 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1012 						sizeof(struct nfs_direct_req),
1013 						0, (SLAB_RECLAIM_ACCOUNT|
1014 							SLAB_MEM_SPREAD),
1015 						NULL);
1016 	if (nfs_direct_cachep == NULL)
1017 		return -ENOMEM;
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1024  *
1025  */
1026 void nfs_destroy_directcache(void)
1027 {
1028 	kmem_cache_destroy(nfs_direct_cachep);
1029 }
1030