1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_req { 70 struct kref kref; /* release manager */ 71 72 /* I/O parameters */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct nfs_lock_context *l_ctx; /* Lock context info */ 75 struct kiocb * iocb; /* controlling i/o request */ 76 struct inode * inode; /* target file of i/o */ 77 78 /* completion state */ 79 atomic_t io_count; /* i/os we're waiting for */ 80 spinlock_t lock; /* protect completion state */ 81 ssize_t count, /* bytes actually processed */ 82 bytes_left, /* bytes left to be sent */ 83 error; /* any reported error */ 84 struct completion completion; /* wait for i/o completion */ 85 86 /* commit state */ 87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 89 struct work_struct work; 90 int flags; 91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 93 struct nfs_writeverf verf; /* unstable write verifier */ 94 }; 95 96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 static void nfs_direct_write_schedule_work(struct work_struct *work); 100 101 static inline void get_dreq(struct nfs_direct_req *dreq) 102 { 103 atomic_inc(&dreq->io_count); 104 } 105 106 static inline int put_dreq(struct nfs_direct_req *dreq) 107 { 108 return atomic_dec_and_test(&dreq->io_count); 109 } 110 111 /** 112 * nfs_direct_IO - NFS address space operation for direct I/O 113 * @rw: direction (read or write) 114 * @iocb: target I/O control block 115 * @iov: array of vectors that define I/O buffer 116 * @pos: offset in file to begin the operation 117 * @nr_segs: size of iovec array 118 * 119 * The presence of this routine in the address space ops vector means 120 * the NFS client supports direct I/O. However, for most direct IO, we 121 * shunt off direct read and write requests before the VFS gets them, 122 * so this method is only ever called for swap. 123 */ 124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 125 { 126 #ifndef CONFIG_NFS_SWAP 127 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 128 iocb->ki_filp->f_path.dentry->d_name.name, 129 (long long) pos, nr_segs); 130 131 return -EINVAL; 132 #else 133 VM_BUG_ON(iocb->ki_left != PAGE_SIZE); 134 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 135 136 if (rw == READ || rw == KERNEL_READ) 137 return nfs_file_direct_read(iocb, iov, nr_segs, pos, 138 rw == READ ? true : false); 139 return nfs_file_direct_write(iocb, iov, nr_segs, pos, 140 rw == WRITE ? true : false); 141 #endif /* CONFIG_NFS_SWAP */ 142 } 143 144 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 145 { 146 unsigned int i; 147 for (i = 0; i < npages; i++) 148 page_cache_release(pages[i]); 149 } 150 151 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 152 struct nfs_direct_req *dreq) 153 { 154 cinfo->lock = &dreq->lock; 155 cinfo->mds = &dreq->mds_cinfo; 156 cinfo->ds = &dreq->ds_cinfo; 157 cinfo->dreq = dreq; 158 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 159 } 160 161 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 162 { 163 struct nfs_direct_req *dreq; 164 165 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 166 if (!dreq) 167 return NULL; 168 169 kref_init(&dreq->kref); 170 kref_get(&dreq->kref); 171 init_completion(&dreq->completion); 172 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 173 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 174 spin_lock_init(&dreq->lock); 175 176 return dreq; 177 } 178 179 static void nfs_direct_req_free(struct kref *kref) 180 { 181 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 182 183 if (dreq->l_ctx != NULL) 184 nfs_put_lock_context(dreq->l_ctx); 185 if (dreq->ctx != NULL) 186 put_nfs_open_context(dreq->ctx); 187 kmem_cache_free(nfs_direct_cachep, dreq); 188 } 189 190 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 191 { 192 kref_put(&dreq->kref, nfs_direct_req_free); 193 } 194 195 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 196 { 197 return dreq->bytes_left; 198 } 199 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 200 201 /* 202 * Collects and returns the final error value/byte-count. 203 */ 204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 205 { 206 ssize_t result = -EIOCBQUEUED; 207 208 /* Async requests don't wait here */ 209 if (dreq->iocb) 210 goto out; 211 212 result = wait_for_completion_killable(&dreq->completion); 213 214 if (!result) 215 result = dreq->error; 216 if (!result) 217 result = dreq->count; 218 219 out: 220 return (ssize_t) result; 221 } 222 223 /* 224 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 225 * the iocb is still valid here if this is a synchronous request. 226 */ 227 static void nfs_direct_complete(struct nfs_direct_req *dreq) 228 { 229 if (dreq->iocb) { 230 long res = (long) dreq->error; 231 if (!res) 232 res = (long) dreq->count; 233 aio_complete(dreq->iocb, res, 0); 234 } 235 complete_all(&dreq->completion); 236 237 nfs_direct_req_release(dreq); 238 } 239 240 static void nfs_direct_readpage_release(struct nfs_page *req) 241 { 242 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 243 req->wb_context->dentry->d_inode->i_sb->s_id, 244 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 245 req->wb_bytes, 246 (long long)req_offset(req)); 247 nfs_release_request(req); 248 } 249 250 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 251 { 252 unsigned long bytes = 0; 253 struct nfs_direct_req *dreq = hdr->dreq; 254 255 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 256 goto out_put; 257 258 spin_lock(&dreq->lock); 259 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 260 dreq->error = hdr->error; 261 else 262 dreq->count += hdr->good_bytes; 263 spin_unlock(&dreq->lock); 264 265 while (!list_empty(&hdr->pages)) { 266 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 267 struct page *page = req->wb_page; 268 269 if (!PageCompound(page) && bytes < hdr->good_bytes) 270 set_page_dirty(page); 271 bytes += req->wb_bytes; 272 nfs_list_remove_request(req); 273 nfs_direct_readpage_release(req); 274 } 275 out_put: 276 if (put_dreq(dreq)) 277 nfs_direct_complete(dreq); 278 hdr->release(hdr); 279 } 280 281 static void nfs_read_sync_pgio_error(struct list_head *head) 282 { 283 struct nfs_page *req; 284 285 while (!list_empty(head)) { 286 req = nfs_list_entry(head->next); 287 nfs_list_remove_request(req); 288 nfs_release_request(req); 289 } 290 } 291 292 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 293 { 294 get_dreq(hdr->dreq); 295 } 296 297 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 298 .error_cleanup = nfs_read_sync_pgio_error, 299 .init_hdr = nfs_direct_pgio_init, 300 .completion = nfs_direct_read_completion, 301 }; 302 303 /* 304 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 305 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 306 * bail and stop sending more reads. Read length accounting is 307 * handled automatically by nfs_direct_read_result(). Otherwise, if 308 * no requests have been sent, just return an error. 309 */ 310 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 311 const struct iovec *iov, 312 loff_t pos, bool uio) 313 { 314 struct nfs_direct_req *dreq = desc->pg_dreq; 315 struct nfs_open_context *ctx = dreq->ctx; 316 struct inode *inode = ctx->dentry->d_inode; 317 unsigned long user_addr = (unsigned long)iov->iov_base; 318 size_t count = iov->iov_len; 319 size_t rsize = NFS_SERVER(inode)->rsize; 320 unsigned int pgbase; 321 int result; 322 ssize_t started = 0; 323 struct page **pagevec = NULL; 324 unsigned int npages; 325 326 do { 327 size_t bytes; 328 int i; 329 330 pgbase = user_addr & ~PAGE_MASK; 331 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 332 333 result = -ENOMEM; 334 npages = nfs_page_array_len(pgbase, bytes); 335 if (!pagevec) 336 pagevec = kmalloc(npages * sizeof(struct page *), 337 GFP_KERNEL); 338 if (!pagevec) 339 break; 340 if (uio) { 341 down_read(¤t->mm->mmap_sem); 342 result = get_user_pages(current, current->mm, user_addr, 343 npages, 1, 0, pagevec, NULL); 344 up_read(¤t->mm->mmap_sem); 345 if (result < 0) 346 break; 347 } else { 348 WARN_ON(npages != 1); 349 result = get_kernel_page(user_addr, 1, pagevec); 350 if (WARN_ON(result != 1)) 351 break; 352 } 353 354 if ((unsigned)result < npages) { 355 bytes = result * PAGE_SIZE; 356 if (bytes <= pgbase) { 357 nfs_direct_release_pages(pagevec, result); 358 break; 359 } 360 bytes -= pgbase; 361 npages = result; 362 } 363 364 for (i = 0; i < npages; i++) { 365 struct nfs_page *req; 366 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 367 /* XXX do we need to do the eof zeroing found in async_filler? */ 368 req = nfs_create_request(dreq->ctx, dreq->inode, 369 pagevec[i], 370 pgbase, req_len); 371 if (IS_ERR(req)) { 372 result = PTR_ERR(req); 373 break; 374 } 375 req->wb_index = pos >> PAGE_SHIFT; 376 req->wb_offset = pos & ~PAGE_MASK; 377 if (!nfs_pageio_add_request(desc, req)) { 378 result = desc->pg_error; 379 nfs_release_request(req); 380 break; 381 } 382 pgbase = 0; 383 bytes -= req_len; 384 started += req_len; 385 user_addr += req_len; 386 pos += req_len; 387 count -= req_len; 388 dreq->bytes_left -= req_len; 389 } 390 /* The nfs_page now hold references to these pages */ 391 nfs_direct_release_pages(pagevec, npages); 392 } while (count != 0 && result >= 0); 393 394 kfree(pagevec); 395 396 if (started) 397 return started; 398 return result < 0 ? (ssize_t) result : -EFAULT; 399 } 400 401 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 402 const struct iovec *iov, 403 unsigned long nr_segs, 404 loff_t pos, bool uio) 405 { 406 struct nfs_pageio_descriptor desc; 407 ssize_t result = -EINVAL; 408 size_t requested_bytes = 0; 409 unsigned long seg; 410 411 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 412 &nfs_direct_read_completion_ops); 413 get_dreq(dreq); 414 desc.pg_dreq = dreq; 415 416 for (seg = 0; seg < nr_segs; seg++) { 417 const struct iovec *vec = &iov[seg]; 418 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 419 if (result < 0) 420 break; 421 requested_bytes += result; 422 if ((size_t)result < vec->iov_len) 423 break; 424 pos += vec->iov_len; 425 } 426 427 nfs_pageio_complete(&desc); 428 429 /* 430 * If no bytes were started, return the error, and let the 431 * generic layer handle the completion. 432 */ 433 if (requested_bytes == 0) { 434 nfs_direct_req_release(dreq); 435 return result < 0 ? result : -EIO; 436 } 437 438 if (put_dreq(dreq)) 439 nfs_direct_complete(dreq); 440 return 0; 441 } 442 443 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 444 unsigned long nr_segs, loff_t pos, bool uio) 445 { 446 ssize_t result = -ENOMEM; 447 struct inode *inode = iocb->ki_filp->f_mapping->host; 448 struct nfs_direct_req *dreq; 449 struct nfs_lock_context *l_ctx; 450 451 dreq = nfs_direct_req_alloc(); 452 if (dreq == NULL) 453 goto out; 454 455 dreq->inode = inode; 456 dreq->bytes_left = iov_length(iov, nr_segs); 457 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 458 l_ctx = nfs_get_lock_context(dreq->ctx); 459 if (IS_ERR(l_ctx)) { 460 result = PTR_ERR(l_ctx); 461 goto out_release; 462 } 463 dreq->l_ctx = l_ctx; 464 if (!is_sync_kiocb(iocb)) 465 dreq->iocb = iocb; 466 467 NFS_I(inode)->read_io += iov_length(iov, nr_segs); 468 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio); 469 if (!result) 470 result = nfs_direct_wait(dreq); 471 out_release: 472 nfs_direct_req_release(dreq); 473 out: 474 return result; 475 } 476 477 static void nfs_inode_dio_write_done(struct inode *inode) 478 { 479 nfs_zap_mapping(inode, inode->i_mapping); 480 inode_dio_done(inode); 481 } 482 483 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 484 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 485 { 486 struct nfs_pageio_descriptor desc; 487 struct nfs_page *req, *tmp; 488 LIST_HEAD(reqs); 489 struct nfs_commit_info cinfo; 490 LIST_HEAD(failed); 491 492 nfs_init_cinfo_from_dreq(&cinfo, dreq); 493 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 494 spin_lock(cinfo.lock); 495 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 496 spin_unlock(cinfo.lock); 497 498 dreq->count = 0; 499 get_dreq(dreq); 500 501 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 502 &nfs_direct_write_completion_ops); 503 desc.pg_dreq = dreq; 504 505 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 506 if (!nfs_pageio_add_request(&desc, req)) { 507 nfs_list_remove_request(req); 508 nfs_list_add_request(req, &failed); 509 spin_lock(cinfo.lock); 510 dreq->flags = 0; 511 dreq->error = -EIO; 512 spin_unlock(cinfo.lock); 513 } 514 nfs_release_request(req); 515 } 516 nfs_pageio_complete(&desc); 517 518 while (!list_empty(&failed)) { 519 req = nfs_list_entry(failed.next); 520 nfs_list_remove_request(req); 521 nfs_unlock_and_release_request(req); 522 } 523 524 if (put_dreq(dreq)) 525 nfs_direct_write_complete(dreq, dreq->inode); 526 } 527 528 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 529 { 530 struct nfs_direct_req *dreq = data->dreq; 531 struct nfs_commit_info cinfo; 532 struct nfs_page *req; 533 int status = data->task.tk_status; 534 535 nfs_init_cinfo_from_dreq(&cinfo, dreq); 536 if (status < 0) { 537 dprintk("NFS: %5u commit failed with error %d.\n", 538 data->task.tk_pid, status); 539 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 540 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 541 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 542 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 543 } 544 545 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 546 while (!list_empty(&data->pages)) { 547 req = nfs_list_entry(data->pages.next); 548 nfs_list_remove_request(req); 549 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 550 /* Note the rewrite will go through mds */ 551 nfs_mark_request_commit(req, NULL, &cinfo); 552 } else 553 nfs_release_request(req); 554 nfs_unlock_and_release_request(req); 555 } 556 557 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 558 nfs_direct_write_complete(dreq, data->inode); 559 } 560 561 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 562 { 563 /* There is no lock to clear */ 564 } 565 566 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 567 .completion = nfs_direct_commit_complete, 568 .error_cleanup = nfs_direct_error_cleanup, 569 }; 570 571 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 572 { 573 int res; 574 struct nfs_commit_info cinfo; 575 LIST_HEAD(mds_list); 576 577 nfs_init_cinfo_from_dreq(&cinfo, dreq); 578 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 579 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 580 if (res < 0) /* res == -ENOMEM */ 581 nfs_direct_write_reschedule(dreq); 582 } 583 584 static void nfs_direct_write_schedule_work(struct work_struct *work) 585 { 586 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 587 int flags = dreq->flags; 588 589 dreq->flags = 0; 590 switch (flags) { 591 case NFS_ODIRECT_DO_COMMIT: 592 nfs_direct_commit_schedule(dreq); 593 break; 594 case NFS_ODIRECT_RESCHED_WRITES: 595 nfs_direct_write_reschedule(dreq); 596 break; 597 default: 598 nfs_inode_dio_write_done(dreq->inode); 599 nfs_direct_complete(dreq); 600 } 601 } 602 603 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 604 { 605 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 606 } 607 608 #else 609 static void nfs_direct_write_schedule_work(struct work_struct *work) 610 { 611 } 612 613 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 614 { 615 nfs_inode_dio_write_done(inode); 616 nfs_direct_complete(dreq); 617 } 618 #endif 619 620 /* 621 * NB: Return the value of the first error return code. Subsequent 622 * errors after the first one are ignored. 623 */ 624 /* 625 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 626 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 627 * bail and stop sending more writes. Write length accounting is 628 * handled automatically by nfs_direct_write_result(). Otherwise, if 629 * no requests have been sent, just return an error. 630 */ 631 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 632 const struct iovec *iov, 633 loff_t pos, bool uio) 634 { 635 struct nfs_direct_req *dreq = desc->pg_dreq; 636 struct nfs_open_context *ctx = dreq->ctx; 637 struct inode *inode = ctx->dentry->d_inode; 638 unsigned long user_addr = (unsigned long)iov->iov_base; 639 size_t count = iov->iov_len; 640 size_t wsize = NFS_SERVER(inode)->wsize; 641 unsigned int pgbase; 642 int result; 643 ssize_t started = 0; 644 struct page **pagevec = NULL; 645 unsigned int npages; 646 647 do { 648 size_t bytes; 649 int i; 650 651 pgbase = user_addr & ~PAGE_MASK; 652 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 653 654 result = -ENOMEM; 655 npages = nfs_page_array_len(pgbase, bytes); 656 if (!pagevec) 657 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 658 if (!pagevec) 659 break; 660 661 if (uio) { 662 down_read(¤t->mm->mmap_sem); 663 result = get_user_pages(current, current->mm, user_addr, 664 npages, 0, 0, pagevec, NULL); 665 up_read(¤t->mm->mmap_sem); 666 if (result < 0) 667 break; 668 } else { 669 WARN_ON(npages != 1); 670 result = get_kernel_page(user_addr, 0, pagevec); 671 if (WARN_ON(result != 1)) 672 break; 673 } 674 675 if ((unsigned)result < npages) { 676 bytes = result * PAGE_SIZE; 677 if (bytes <= pgbase) { 678 nfs_direct_release_pages(pagevec, result); 679 break; 680 } 681 bytes -= pgbase; 682 npages = result; 683 } 684 685 for (i = 0; i < npages; i++) { 686 struct nfs_page *req; 687 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 688 689 req = nfs_create_request(dreq->ctx, dreq->inode, 690 pagevec[i], 691 pgbase, req_len); 692 if (IS_ERR(req)) { 693 result = PTR_ERR(req); 694 break; 695 } 696 nfs_lock_request(req); 697 req->wb_index = pos >> PAGE_SHIFT; 698 req->wb_offset = pos & ~PAGE_MASK; 699 if (!nfs_pageio_add_request(desc, req)) { 700 result = desc->pg_error; 701 nfs_unlock_and_release_request(req); 702 break; 703 } 704 pgbase = 0; 705 bytes -= req_len; 706 started += req_len; 707 user_addr += req_len; 708 pos += req_len; 709 count -= req_len; 710 dreq->bytes_left -= req_len; 711 } 712 /* The nfs_page now hold references to these pages */ 713 nfs_direct_release_pages(pagevec, npages); 714 } while (count != 0 && result >= 0); 715 716 kfree(pagevec); 717 718 if (started) 719 return started; 720 return result < 0 ? (ssize_t) result : -EFAULT; 721 } 722 723 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 724 { 725 struct nfs_direct_req *dreq = hdr->dreq; 726 struct nfs_commit_info cinfo; 727 int bit = -1; 728 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 729 730 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 731 goto out_put; 732 733 nfs_init_cinfo_from_dreq(&cinfo, dreq); 734 735 spin_lock(&dreq->lock); 736 737 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 738 dreq->flags = 0; 739 dreq->error = hdr->error; 740 } 741 if (dreq->error != 0) 742 bit = NFS_IOHDR_ERROR; 743 else { 744 dreq->count += hdr->good_bytes; 745 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 746 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 747 bit = NFS_IOHDR_NEED_RESCHED; 748 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 749 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 750 bit = NFS_IOHDR_NEED_RESCHED; 751 else if (dreq->flags == 0) { 752 memcpy(&dreq->verf, hdr->verf, 753 sizeof(dreq->verf)); 754 bit = NFS_IOHDR_NEED_COMMIT; 755 dreq->flags = NFS_ODIRECT_DO_COMMIT; 756 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 757 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 758 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 759 bit = NFS_IOHDR_NEED_RESCHED; 760 } else 761 bit = NFS_IOHDR_NEED_COMMIT; 762 } 763 } 764 } 765 spin_unlock(&dreq->lock); 766 767 while (!list_empty(&hdr->pages)) { 768 req = nfs_list_entry(hdr->pages.next); 769 nfs_list_remove_request(req); 770 switch (bit) { 771 case NFS_IOHDR_NEED_RESCHED: 772 case NFS_IOHDR_NEED_COMMIT: 773 kref_get(&req->wb_kref); 774 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 775 } 776 nfs_unlock_and_release_request(req); 777 } 778 779 out_put: 780 if (put_dreq(dreq)) 781 nfs_direct_write_complete(dreq, hdr->inode); 782 hdr->release(hdr); 783 } 784 785 static void nfs_write_sync_pgio_error(struct list_head *head) 786 { 787 struct nfs_page *req; 788 789 while (!list_empty(head)) { 790 req = nfs_list_entry(head->next); 791 nfs_list_remove_request(req); 792 nfs_unlock_and_release_request(req); 793 } 794 } 795 796 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 797 .error_cleanup = nfs_write_sync_pgio_error, 798 .init_hdr = nfs_direct_pgio_init, 799 .completion = nfs_direct_write_completion, 800 }; 801 802 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 803 const struct iovec *iov, 804 unsigned long nr_segs, 805 loff_t pos, bool uio) 806 { 807 struct nfs_pageio_descriptor desc; 808 struct inode *inode = dreq->inode; 809 ssize_t result = 0; 810 size_t requested_bytes = 0; 811 unsigned long seg; 812 813 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 814 &nfs_direct_write_completion_ops); 815 desc.pg_dreq = dreq; 816 get_dreq(dreq); 817 atomic_inc(&inode->i_dio_count); 818 819 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs); 820 for (seg = 0; seg < nr_segs; seg++) { 821 const struct iovec *vec = &iov[seg]; 822 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 823 if (result < 0) 824 break; 825 requested_bytes += result; 826 if ((size_t)result < vec->iov_len) 827 break; 828 pos += vec->iov_len; 829 } 830 nfs_pageio_complete(&desc); 831 832 /* 833 * If no bytes were started, return the error, and let the 834 * generic layer handle the completion. 835 */ 836 if (requested_bytes == 0) { 837 inode_dio_done(inode); 838 nfs_direct_req_release(dreq); 839 return result < 0 ? result : -EIO; 840 } 841 842 if (put_dreq(dreq)) 843 nfs_direct_write_complete(dreq, dreq->inode); 844 return 0; 845 } 846 847 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 848 unsigned long nr_segs, loff_t pos, 849 size_t count, bool uio) 850 { 851 ssize_t result = -ENOMEM; 852 struct inode *inode = iocb->ki_filp->f_mapping->host; 853 struct nfs_direct_req *dreq; 854 struct nfs_lock_context *l_ctx; 855 856 dreq = nfs_direct_req_alloc(); 857 if (!dreq) 858 goto out; 859 860 dreq->inode = inode; 861 dreq->bytes_left = count; 862 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 863 l_ctx = nfs_get_lock_context(dreq->ctx); 864 if (IS_ERR(l_ctx)) { 865 result = PTR_ERR(l_ctx); 866 goto out_release; 867 } 868 dreq->l_ctx = l_ctx; 869 if (!is_sync_kiocb(iocb)) 870 dreq->iocb = iocb; 871 872 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio); 873 if (!result) 874 result = nfs_direct_wait(dreq); 875 out_release: 876 nfs_direct_req_release(dreq); 877 out: 878 return result; 879 } 880 881 /** 882 * nfs_file_direct_read - file direct read operation for NFS files 883 * @iocb: target I/O control block 884 * @iov: vector of user buffers into which to read data 885 * @nr_segs: size of iov vector 886 * @pos: byte offset in file where reading starts 887 * 888 * We use this function for direct reads instead of calling 889 * generic_file_aio_read() in order to avoid gfar's check to see if 890 * the request starts before the end of the file. For that check 891 * to work, we must generate a GETATTR before each direct read, and 892 * even then there is a window between the GETATTR and the subsequent 893 * READ where the file size could change. Our preference is simply 894 * to do all reads the application wants, and the server will take 895 * care of managing the end of file boundary. 896 * 897 * This function also eliminates unnecessarily updating the file's 898 * atime locally, as the NFS server sets the file's atime, and this 899 * client must read the updated atime from the server back into its 900 * cache. 901 */ 902 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 903 unsigned long nr_segs, loff_t pos, bool uio) 904 { 905 ssize_t retval = -EINVAL; 906 struct file *file = iocb->ki_filp; 907 struct address_space *mapping = file->f_mapping; 908 size_t count; 909 910 count = iov_length(iov, nr_segs); 911 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 912 913 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n", 914 file->f_path.dentry->d_parent->d_name.name, 915 file->f_path.dentry->d_name.name, 916 count, (long long) pos); 917 918 retval = 0; 919 if (!count) 920 goto out; 921 922 retval = nfs_sync_mapping(mapping); 923 if (retval) 924 goto out; 925 926 task_io_account_read(count); 927 928 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio); 929 if (retval > 0) 930 iocb->ki_pos = pos + retval; 931 932 out: 933 return retval; 934 } 935 936 /** 937 * nfs_file_direct_write - file direct write operation for NFS files 938 * @iocb: target I/O control block 939 * @iov: vector of user buffers from which to write data 940 * @nr_segs: size of iov vector 941 * @pos: byte offset in file where writing starts 942 * 943 * We use this function for direct writes instead of calling 944 * generic_file_aio_write() in order to avoid taking the inode 945 * semaphore and updating the i_size. The NFS server will set 946 * the new i_size and this client must read the updated size 947 * back into its cache. We let the server do generic write 948 * parameter checking and report problems. 949 * 950 * We eliminate local atime updates, see direct read above. 951 * 952 * We avoid unnecessary page cache invalidations for normal cached 953 * readers of this file. 954 * 955 * Note that O_APPEND is not supported for NFS direct writes, as there 956 * is no atomic O_APPEND write facility in the NFS protocol. 957 */ 958 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 959 unsigned long nr_segs, loff_t pos, bool uio) 960 { 961 ssize_t retval = -EINVAL; 962 struct file *file = iocb->ki_filp; 963 struct address_space *mapping = file->f_mapping; 964 size_t count; 965 966 count = iov_length(iov, nr_segs); 967 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 968 969 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n", 970 file->f_path.dentry->d_parent->d_name.name, 971 file->f_path.dentry->d_name.name, 972 count, (long long) pos); 973 974 retval = generic_write_checks(file, &pos, &count, 0); 975 if (retval) 976 goto out; 977 978 retval = -EINVAL; 979 if ((ssize_t) count < 0) 980 goto out; 981 retval = 0; 982 if (!count) 983 goto out; 984 985 retval = nfs_sync_mapping(mapping); 986 if (retval) 987 goto out; 988 989 task_io_account_write(count); 990 991 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio); 992 if (retval > 0) { 993 struct inode *inode = mapping->host; 994 995 iocb->ki_pos = pos + retval; 996 spin_lock(&inode->i_lock); 997 if (i_size_read(inode) < iocb->ki_pos) 998 i_size_write(inode, iocb->ki_pos); 999 spin_unlock(&inode->i_lock); 1000 } 1001 out: 1002 return retval; 1003 } 1004 1005 /** 1006 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1007 * 1008 */ 1009 int __init nfs_init_directcache(void) 1010 { 1011 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1012 sizeof(struct nfs_direct_req), 1013 0, (SLAB_RECLAIM_ACCOUNT| 1014 SLAB_MEM_SPREAD), 1015 NULL); 1016 if (nfs_direct_cachep == NULL) 1017 return -ENOMEM; 1018 1019 return 0; 1020 } 1021 1022 /** 1023 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1024 * 1025 */ 1026 void nfs_destroy_directcache(void) 1027 { 1028 kmem_cache_destroy(nfs_direct_cachep); 1029 } 1030