1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_req { 70 struct kref kref; /* release manager */ 71 72 /* I/O parameters */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct nfs_lock_context *l_ctx; /* Lock context info */ 75 struct kiocb * iocb; /* controlling i/o request */ 76 struct inode * inode; /* target file of i/o */ 77 78 /* completion state */ 79 atomic_t io_count; /* i/os we're waiting for */ 80 spinlock_t lock; /* protect completion state */ 81 ssize_t count, /* bytes actually processed */ 82 bytes_left, /* bytes left to be sent */ 83 error; /* any reported error */ 84 struct completion completion; /* wait for i/o completion */ 85 86 /* commit state */ 87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 89 struct work_struct work; 90 int flags; 91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 93 struct nfs_writeverf verf; /* unstable write verifier */ 94 }; 95 96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 static void nfs_direct_write_schedule_work(struct work_struct *work); 100 101 static inline void get_dreq(struct nfs_direct_req *dreq) 102 { 103 atomic_inc(&dreq->io_count); 104 } 105 106 static inline int put_dreq(struct nfs_direct_req *dreq) 107 { 108 return atomic_dec_and_test(&dreq->io_count); 109 } 110 111 /** 112 * nfs_direct_IO - NFS address space operation for direct I/O 113 * @rw: direction (read or write) 114 * @iocb: target I/O control block 115 * @iov: array of vectors that define I/O buffer 116 * @pos: offset in file to begin the operation 117 * @nr_segs: size of iovec array 118 * 119 * The presence of this routine in the address space ops vector means 120 * the NFS client supports direct I/O. However, for most direct IO, we 121 * shunt off direct read and write requests before the VFS gets them, 122 * so this method is only ever called for swap. 123 */ 124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 125 { 126 #ifndef CONFIG_NFS_SWAP 127 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 128 iocb->ki_filp->f_path.dentry->d_name.name, 129 (long long) pos, nr_segs); 130 131 return -EINVAL; 132 #else 133 VM_BUG_ON(iocb->ki_left != PAGE_SIZE); 134 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 135 136 if (rw == READ || rw == KERNEL_READ) 137 return nfs_file_direct_read(iocb, iov, nr_segs, pos, 138 rw == READ ? true : false); 139 return nfs_file_direct_write(iocb, iov, nr_segs, pos, 140 rw == WRITE ? true : false); 141 #endif /* CONFIG_NFS_SWAP */ 142 } 143 144 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 145 { 146 unsigned int i; 147 for (i = 0; i < npages; i++) 148 page_cache_release(pages[i]); 149 } 150 151 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 152 struct nfs_direct_req *dreq) 153 { 154 cinfo->lock = &dreq->lock; 155 cinfo->mds = &dreq->mds_cinfo; 156 cinfo->ds = &dreq->ds_cinfo; 157 cinfo->dreq = dreq; 158 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 159 } 160 161 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 162 { 163 struct nfs_direct_req *dreq; 164 165 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 166 if (!dreq) 167 return NULL; 168 169 kref_init(&dreq->kref); 170 kref_get(&dreq->kref); 171 init_completion(&dreq->completion); 172 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 173 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 174 spin_lock_init(&dreq->lock); 175 176 return dreq; 177 } 178 179 static void nfs_direct_req_free(struct kref *kref) 180 { 181 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 182 183 if (dreq->l_ctx != NULL) 184 nfs_put_lock_context(dreq->l_ctx); 185 if (dreq->ctx != NULL) 186 put_nfs_open_context(dreq->ctx); 187 kmem_cache_free(nfs_direct_cachep, dreq); 188 } 189 190 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 191 { 192 kref_put(&dreq->kref, nfs_direct_req_free); 193 } 194 195 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 196 { 197 return dreq->bytes_left; 198 } 199 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 200 201 /* 202 * Collects and returns the final error value/byte-count. 203 */ 204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 205 { 206 ssize_t result = -EIOCBQUEUED; 207 208 /* Async requests don't wait here */ 209 if (dreq->iocb) 210 goto out; 211 212 result = wait_for_completion_killable(&dreq->completion); 213 214 if (!result) 215 result = dreq->error; 216 if (!result) 217 result = dreq->count; 218 219 out: 220 return (ssize_t) result; 221 } 222 223 /* 224 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 225 * the iocb is still valid here if this is a synchronous request. 226 */ 227 static void nfs_direct_complete(struct nfs_direct_req *dreq) 228 { 229 if (dreq->iocb) { 230 long res = (long) dreq->error; 231 if (!res) 232 res = (long) dreq->count; 233 aio_complete(dreq->iocb, res, 0); 234 } 235 complete_all(&dreq->completion); 236 237 nfs_direct_req_release(dreq); 238 } 239 240 static void nfs_direct_readpage_release(struct nfs_page *req) 241 { 242 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 243 req->wb_context->dentry->d_inode->i_sb->s_id, 244 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 245 req->wb_bytes, 246 (long long)req_offset(req)); 247 nfs_release_request(req); 248 } 249 250 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 251 { 252 unsigned long bytes = 0; 253 struct nfs_direct_req *dreq = hdr->dreq; 254 255 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 256 goto out_put; 257 258 spin_lock(&dreq->lock); 259 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 260 dreq->error = hdr->error; 261 else 262 dreq->count += hdr->good_bytes; 263 spin_unlock(&dreq->lock); 264 265 while (!list_empty(&hdr->pages)) { 266 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 267 struct page *page = req->wb_page; 268 269 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) { 270 if (bytes > hdr->good_bytes) 271 zero_user(page, 0, PAGE_SIZE); 272 else if (hdr->good_bytes - bytes < PAGE_SIZE) 273 zero_user_segment(page, 274 hdr->good_bytes & ~PAGE_MASK, 275 PAGE_SIZE); 276 } 277 if (!PageCompound(page)) { 278 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 279 if (bytes < hdr->good_bytes) 280 set_page_dirty(page); 281 } else 282 set_page_dirty(page); 283 } 284 bytes += req->wb_bytes; 285 nfs_list_remove_request(req); 286 nfs_direct_readpage_release(req); 287 } 288 out_put: 289 if (put_dreq(dreq)) 290 nfs_direct_complete(dreq); 291 hdr->release(hdr); 292 } 293 294 static void nfs_read_sync_pgio_error(struct list_head *head) 295 { 296 struct nfs_page *req; 297 298 while (!list_empty(head)) { 299 req = nfs_list_entry(head->next); 300 nfs_list_remove_request(req); 301 nfs_release_request(req); 302 } 303 } 304 305 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 306 { 307 get_dreq(hdr->dreq); 308 } 309 310 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 311 .error_cleanup = nfs_read_sync_pgio_error, 312 .init_hdr = nfs_direct_pgio_init, 313 .completion = nfs_direct_read_completion, 314 }; 315 316 /* 317 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 318 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 319 * bail and stop sending more reads. Read length accounting is 320 * handled automatically by nfs_direct_read_result(). Otherwise, if 321 * no requests have been sent, just return an error. 322 */ 323 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 324 const struct iovec *iov, 325 loff_t pos, bool uio) 326 { 327 struct nfs_direct_req *dreq = desc->pg_dreq; 328 struct nfs_open_context *ctx = dreq->ctx; 329 struct inode *inode = ctx->dentry->d_inode; 330 unsigned long user_addr = (unsigned long)iov->iov_base; 331 size_t count = iov->iov_len; 332 size_t rsize = NFS_SERVER(inode)->rsize; 333 unsigned int pgbase; 334 int result; 335 ssize_t started = 0; 336 struct page **pagevec = NULL; 337 unsigned int npages; 338 339 do { 340 size_t bytes; 341 int i; 342 343 pgbase = user_addr & ~PAGE_MASK; 344 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 345 346 result = -ENOMEM; 347 npages = nfs_page_array_len(pgbase, bytes); 348 if (!pagevec) 349 pagevec = kmalloc(npages * sizeof(struct page *), 350 GFP_KERNEL); 351 if (!pagevec) 352 break; 353 if (uio) { 354 down_read(¤t->mm->mmap_sem); 355 result = get_user_pages(current, current->mm, user_addr, 356 npages, 1, 0, pagevec, NULL); 357 up_read(¤t->mm->mmap_sem); 358 if (result < 0) 359 break; 360 } else { 361 WARN_ON(npages != 1); 362 result = get_kernel_page(user_addr, 1, pagevec); 363 if (WARN_ON(result != 1)) 364 break; 365 } 366 367 if ((unsigned)result < npages) { 368 bytes = result * PAGE_SIZE; 369 if (bytes <= pgbase) { 370 nfs_direct_release_pages(pagevec, result); 371 break; 372 } 373 bytes -= pgbase; 374 npages = result; 375 } 376 377 for (i = 0; i < npages; i++) { 378 struct nfs_page *req; 379 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 380 /* XXX do we need to do the eof zeroing found in async_filler? */ 381 req = nfs_create_request(dreq->ctx, dreq->inode, 382 pagevec[i], 383 pgbase, req_len); 384 if (IS_ERR(req)) { 385 result = PTR_ERR(req); 386 break; 387 } 388 req->wb_index = pos >> PAGE_SHIFT; 389 req->wb_offset = pos & ~PAGE_MASK; 390 if (!nfs_pageio_add_request(desc, req)) { 391 result = desc->pg_error; 392 nfs_release_request(req); 393 break; 394 } 395 pgbase = 0; 396 bytes -= req_len; 397 started += req_len; 398 user_addr += req_len; 399 pos += req_len; 400 count -= req_len; 401 dreq->bytes_left -= req_len; 402 } 403 /* The nfs_page now hold references to these pages */ 404 nfs_direct_release_pages(pagevec, npages); 405 } while (count != 0 && result >= 0); 406 407 kfree(pagevec); 408 409 if (started) 410 return started; 411 return result < 0 ? (ssize_t) result : -EFAULT; 412 } 413 414 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 415 const struct iovec *iov, 416 unsigned long nr_segs, 417 loff_t pos, bool uio) 418 { 419 struct nfs_pageio_descriptor desc; 420 ssize_t result = -EINVAL; 421 size_t requested_bytes = 0; 422 unsigned long seg; 423 424 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 425 &nfs_direct_read_completion_ops); 426 get_dreq(dreq); 427 desc.pg_dreq = dreq; 428 429 for (seg = 0; seg < nr_segs; seg++) { 430 const struct iovec *vec = &iov[seg]; 431 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 432 if (result < 0) 433 break; 434 requested_bytes += result; 435 if ((size_t)result < vec->iov_len) 436 break; 437 pos += vec->iov_len; 438 } 439 440 nfs_pageio_complete(&desc); 441 442 /* 443 * If no bytes were started, return the error, and let the 444 * generic layer handle the completion. 445 */ 446 if (requested_bytes == 0) { 447 nfs_direct_req_release(dreq); 448 return result < 0 ? result : -EIO; 449 } 450 451 if (put_dreq(dreq)) 452 nfs_direct_complete(dreq); 453 return 0; 454 } 455 456 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 457 unsigned long nr_segs, loff_t pos, bool uio) 458 { 459 ssize_t result = -ENOMEM; 460 struct inode *inode = iocb->ki_filp->f_mapping->host; 461 struct nfs_direct_req *dreq; 462 struct nfs_lock_context *l_ctx; 463 464 dreq = nfs_direct_req_alloc(); 465 if (dreq == NULL) 466 goto out; 467 468 dreq->inode = inode; 469 dreq->bytes_left = iov_length(iov, nr_segs); 470 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 471 l_ctx = nfs_get_lock_context(dreq->ctx); 472 if (IS_ERR(l_ctx)) { 473 result = PTR_ERR(l_ctx); 474 goto out_release; 475 } 476 dreq->l_ctx = l_ctx; 477 if (!is_sync_kiocb(iocb)) 478 dreq->iocb = iocb; 479 480 NFS_I(inode)->read_io += iov_length(iov, nr_segs); 481 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio); 482 if (!result) 483 result = nfs_direct_wait(dreq); 484 out_release: 485 nfs_direct_req_release(dreq); 486 out: 487 return result; 488 } 489 490 static void nfs_inode_dio_write_done(struct inode *inode) 491 { 492 nfs_zap_mapping(inode, inode->i_mapping); 493 inode_dio_done(inode); 494 } 495 496 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 497 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 498 { 499 struct nfs_pageio_descriptor desc; 500 struct nfs_page *req, *tmp; 501 LIST_HEAD(reqs); 502 struct nfs_commit_info cinfo; 503 LIST_HEAD(failed); 504 505 nfs_init_cinfo_from_dreq(&cinfo, dreq); 506 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 507 spin_lock(cinfo.lock); 508 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 509 spin_unlock(cinfo.lock); 510 511 dreq->count = 0; 512 get_dreq(dreq); 513 514 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 515 &nfs_direct_write_completion_ops); 516 desc.pg_dreq = dreq; 517 518 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 519 if (!nfs_pageio_add_request(&desc, req)) { 520 nfs_list_remove_request(req); 521 nfs_list_add_request(req, &failed); 522 spin_lock(cinfo.lock); 523 dreq->flags = 0; 524 dreq->error = -EIO; 525 spin_unlock(cinfo.lock); 526 } 527 nfs_release_request(req); 528 } 529 nfs_pageio_complete(&desc); 530 531 while (!list_empty(&failed)) { 532 req = nfs_list_entry(failed.next); 533 nfs_list_remove_request(req); 534 nfs_unlock_and_release_request(req); 535 } 536 537 if (put_dreq(dreq)) 538 nfs_direct_write_complete(dreq, dreq->inode); 539 } 540 541 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 542 { 543 struct nfs_direct_req *dreq = data->dreq; 544 struct nfs_commit_info cinfo; 545 struct nfs_page *req; 546 int status = data->task.tk_status; 547 548 nfs_init_cinfo_from_dreq(&cinfo, dreq); 549 if (status < 0) { 550 dprintk("NFS: %5u commit failed with error %d.\n", 551 data->task.tk_pid, status); 552 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 553 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 554 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 555 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 556 } 557 558 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 559 while (!list_empty(&data->pages)) { 560 req = nfs_list_entry(data->pages.next); 561 nfs_list_remove_request(req); 562 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 563 /* Note the rewrite will go through mds */ 564 nfs_mark_request_commit(req, NULL, &cinfo); 565 } else 566 nfs_release_request(req); 567 nfs_unlock_and_release_request(req); 568 } 569 570 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 571 nfs_direct_write_complete(dreq, data->inode); 572 } 573 574 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 575 { 576 /* There is no lock to clear */ 577 } 578 579 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 580 .completion = nfs_direct_commit_complete, 581 .error_cleanup = nfs_direct_error_cleanup, 582 }; 583 584 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 585 { 586 int res; 587 struct nfs_commit_info cinfo; 588 LIST_HEAD(mds_list); 589 590 nfs_init_cinfo_from_dreq(&cinfo, dreq); 591 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 592 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 593 if (res < 0) /* res == -ENOMEM */ 594 nfs_direct_write_reschedule(dreq); 595 } 596 597 static void nfs_direct_write_schedule_work(struct work_struct *work) 598 { 599 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 600 int flags = dreq->flags; 601 602 dreq->flags = 0; 603 switch (flags) { 604 case NFS_ODIRECT_DO_COMMIT: 605 nfs_direct_commit_schedule(dreq); 606 break; 607 case NFS_ODIRECT_RESCHED_WRITES: 608 nfs_direct_write_reschedule(dreq); 609 break; 610 default: 611 nfs_inode_dio_write_done(dreq->inode); 612 nfs_direct_complete(dreq); 613 } 614 } 615 616 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 617 { 618 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 619 } 620 621 #else 622 static void nfs_direct_write_schedule_work(struct work_struct *work) 623 { 624 } 625 626 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 627 { 628 nfs_inode_dio_write_done(inode); 629 nfs_direct_complete(dreq); 630 } 631 #endif 632 633 /* 634 * NB: Return the value of the first error return code. Subsequent 635 * errors after the first one are ignored. 636 */ 637 /* 638 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 639 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 640 * bail and stop sending more writes. Write length accounting is 641 * handled automatically by nfs_direct_write_result(). Otherwise, if 642 * no requests have been sent, just return an error. 643 */ 644 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 645 const struct iovec *iov, 646 loff_t pos, bool uio) 647 { 648 struct nfs_direct_req *dreq = desc->pg_dreq; 649 struct nfs_open_context *ctx = dreq->ctx; 650 struct inode *inode = ctx->dentry->d_inode; 651 unsigned long user_addr = (unsigned long)iov->iov_base; 652 size_t count = iov->iov_len; 653 size_t wsize = NFS_SERVER(inode)->wsize; 654 unsigned int pgbase; 655 int result; 656 ssize_t started = 0; 657 struct page **pagevec = NULL; 658 unsigned int npages; 659 660 do { 661 size_t bytes; 662 int i; 663 664 pgbase = user_addr & ~PAGE_MASK; 665 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 666 667 result = -ENOMEM; 668 npages = nfs_page_array_len(pgbase, bytes); 669 if (!pagevec) 670 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 671 if (!pagevec) 672 break; 673 674 if (uio) { 675 down_read(¤t->mm->mmap_sem); 676 result = get_user_pages(current, current->mm, user_addr, 677 npages, 0, 0, pagevec, NULL); 678 up_read(¤t->mm->mmap_sem); 679 if (result < 0) 680 break; 681 } else { 682 WARN_ON(npages != 1); 683 result = get_kernel_page(user_addr, 0, pagevec); 684 if (WARN_ON(result != 1)) 685 break; 686 } 687 688 if ((unsigned)result < npages) { 689 bytes = result * PAGE_SIZE; 690 if (bytes <= pgbase) { 691 nfs_direct_release_pages(pagevec, result); 692 break; 693 } 694 bytes -= pgbase; 695 npages = result; 696 } 697 698 for (i = 0; i < npages; i++) { 699 struct nfs_page *req; 700 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 701 702 req = nfs_create_request(dreq->ctx, dreq->inode, 703 pagevec[i], 704 pgbase, req_len); 705 if (IS_ERR(req)) { 706 result = PTR_ERR(req); 707 break; 708 } 709 nfs_lock_request(req); 710 req->wb_index = pos >> PAGE_SHIFT; 711 req->wb_offset = pos & ~PAGE_MASK; 712 if (!nfs_pageio_add_request(desc, req)) { 713 result = desc->pg_error; 714 nfs_unlock_and_release_request(req); 715 break; 716 } 717 pgbase = 0; 718 bytes -= req_len; 719 started += req_len; 720 user_addr += req_len; 721 pos += req_len; 722 count -= req_len; 723 dreq->bytes_left -= req_len; 724 } 725 /* The nfs_page now hold references to these pages */ 726 nfs_direct_release_pages(pagevec, npages); 727 } while (count != 0 && result >= 0); 728 729 kfree(pagevec); 730 731 if (started) 732 return started; 733 return result < 0 ? (ssize_t) result : -EFAULT; 734 } 735 736 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 737 { 738 struct nfs_direct_req *dreq = hdr->dreq; 739 struct nfs_commit_info cinfo; 740 int bit = -1; 741 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 742 743 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 744 goto out_put; 745 746 nfs_init_cinfo_from_dreq(&cinfo, dreq); 747 748 spin_lock(&dreq->lock); 749 750 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 751 dreq->flags = 0; 752 dreq->error = hdr->error; 753 } 754 if (dreq->error != 0) 755 bit = NFS_IOHDR_ERROR; 756 else { 757 dreq->count += hdr->good_bytes; 758 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 759 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 760 bit = NFS_IOHDR_NEED_RESCHED; 761 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 762 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 763 bit = NFS_IOHDR_NEED_RESCHED; 764 else if (dreq->flags == 0) { 765 memcpy(&dreq->verf, hdr->verf, 766 sizeof(dreq->verf)); 767 bit = NFS_IOHDR_NEED_COMMIT; 768 dreq->flags = NFS_ODIRECT_DO_COMMIT; 769 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 770 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 771 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 772 bit = NFS_IOHDR_NEED_RESCHED; 773 } else 774 bit = NFS_IOHDR_NEED_COMMIT; 775 } 776 } 777 } 778 spin_unlock(&dreq->lock); 779 780 while (!list_empty(&hdr->pages)) { 781 req = nfs_list_entry(hdr->pages.next); 782 nfs_list_remove_request(req); 783 switch (bit) { 784 case NFS_IOHDR_NEED_RESCHED: 785 case NFS_IOHDR_NEED_COMMIT: 786 kref_get(&req->wb_kref); 787 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 788 } 789 nfs_unlock_and_release_request(req); 790 } 791 792 out_put: 793 if (put_dreq(dreq)) 794 nfs_direct_write_complete(dreq, hdr->inode); 795 hdr->release(hdr); 796 } 797 798 static void nfs_write_sync_pgio_error(struct list_head *head) 799 { 800 struct nfs_page *req; 801 802 while (!list_empty(head)) { 803 req = nfs_list_entry(head->next); 804 nfs_list_remove_request(req); 805 nfs_unlock_and_release_request(req); 806 } 807 } 808 809 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 810 .error_cleanup = nfs_write_sync_pgio_error, 811 .init_hdr = nfs_direct_pgio_init, 812 .completion = nfs_direct_write_completion, 813 }; 814 815 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 816 const struct iovec *iov, 817 unsigned long nr_segs, 818 loff_t pos, bool uio) 819 { 820 struct nfs_pageio_descriptor desc; 821 struct inode *inode = dreq->inode; 822 ssize_t result = 0; 823 size_t requested_bytes = 0; 824 unsigned long seg; 825 826 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 827 &nfs_direct_write_completion_ops); 828 desc.pg_dreq = dreq; 829 get_dreq(dreq); 830 atomic_inc(&inode->i_dio_count); 831 832 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs); 833 for (seg = 0; seg < nr_segs; seg++) { 834 const struct iovec *vec = &iov[seg]; 835 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 836 if (result < 0) 837 break; 838 requested_bytes += result; 839 if ((size_t)result < vec->iov_len) 840 break; 841 pos += vec->iov_len; 842 } 843 nfs_pageio_complete(&desc); 844 845 /* 846 * If no bytes were started, return the error, and let the 847 * generic layer handle the completion. 848 */ 849 if (requested_bytes == 0) { 850 inode_dio_done(inode); 851 nfs_direct_req_release(dreq); 852 return result < 0 ? result : -EIO; 853 } 854 855 if (put_dreq(dreq)) 856 nfs_direct_write_complete(dreq, dreq->inode); 857 return 0; 858 } 859 860 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 861 unsigned long nr_segs, loff_t pos, 862 size_t count, bool uio) 863 { 864 ssize_t result = -ENOMEM; 865 struct inode *inode = iocb->ki_filp->f_mapping->host; 866 struct nfs_direct_req *dreq; 867 struct nfs_lock_context *l_ctx; 868 869 dreq = nfs_direct_req_alloc(); 870 if (!dreq) 871 goto out; 872 873 dreq->inode = inode; 874 dreq->bytes_left = count; 875 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 876 l_ctx = nfs_get_lock_context(dreq->ctx); 877 if (IS_ERR(l_ctx)) { 878 result = PTR_ERR(l_ctx); 879 goto out_release; 880 } 881 dreq->l_ctx = l_ctx; 882 if (!is_sync_kiocb(iocb)) 883 dreq->iocb = iocb; 884 885 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio); 886 if (!result) 887 result = nfs_direct_wait(dreq); 888 out_release: 889 nfs_direct_req_release(dreq); 890 out: 891 return result; 892 } 893 894 /** 895 * nfs_file_direct_read - file direct read operation for NFS files 896 * @iocb: target I/O control block 897 * @iov: vector of user buffers into which to read data 898 * @nr_segs: size of iov vector 899 * @pos: byte offset in file where reading starts 900 * 901 * We use this function for direct reads instead of calling 902 * generic_file_aio_read() in order to avoid gfar's check to see if 903 * the request starts before the end of the file. For that check 904 * to work, we must generate a GETATTR before each direct read, and 905 * even then there is a window between the GETATTR and the subsequent 906 * READ where the file size could change. Our preference is simply 907 * to do all reads the application wants, and the server will take 908 * care of managing the end of file boundary. 909 * 910 * This function also eliminates unnecessarily updating the file's 911 * atime locally, as the NFS server sets the file's atime, and this 912 * client must read the updated atime from the server back into its 913 * cache. 914 */ 915 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 916 unsigned long nr_segs, loff_t pos, bool uio) 917 { 918 ssize_t retval = -EINVAL; 919 struct file *file = iocb->ki_filp; 920 struct address_space *mapping = file->f_mapping; 921 size_t count; 922 923 count = iov_length(iov, nr_segs); 924 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 925 926 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n", 927 file->f_path.dentry->d_parent->d_name.name, 928 file->f_path.dentry->d_name.name, 929 count, (long long) pos); 930 931 retval = 0; 932 if (!count) 933 goto out; 934 935 retval = nfs_sync_mapping(mapping); 936 if (retval) 937 goto out; 938 939 task_io_account_read(count); 940 941 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio); 942 if (retval > 0) 943 iocb->ki_pos = pos + retval; 944 945 out: 946 return retval; 947 } 948 949 /** 950 * nfs_file_direct_write - file direct write operation for NFS files 951 * @iocb: target I/O control block 952 * @iov: vector of user buffers from which to write data 953 * @nr_segs: size of iov vector 954 * @pos: byte offset in file where writing starts 955 * 956 * We use this function for direct writes instead of calling 957 * generic_file_aio_write() in order to avoid taking the inode 958 * semaphore and updating the i_size. The NFS server will set 959 * the new i_size and this client must read the updated size 960 * back into its cache. We let the server do generic write 961 * parameter checking and report problems. 962 * 963 * We eliminate local atime updates, see direct read above. 964 * 965 * We avoid unnecessary page cache invalidations for normal cached 966 * readers of this file. 967 * 968 * Note that O_APPEND is not supported for NFS direct writes, as there 969 * is no atomic O_APPEND write facility in the NFS protocol. 970 */ 971 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 972 unsigned long nr_segs, loff_t pos, bool uio) 973 { 974 ssize_t retval = -EINVAL; 975 struct file *file = iocb->ki_filp; 976 struct address_space *mapping = file->f_mapping; 977 size_t count; 978 979 count = iov_length(iov, nr_segs); 980 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 981 982 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n", 983 file->f_path.dentry->d_parent->d_name.name, 984 file->f_path.dentry->d_name.name, 985 count, (long long) pos); 986 987 retval = generic_write_checks(file, &pos, &count, 0); 988 if (retval) 989 goto out; 990 991 retval = -EINVAL; 992 if ((ssize_t) count < 0) 993 goto out; 994 retval = 0; 995 if (!count) 996 goto out; 997 998 retval = nfs_sync_mapping(mapping); 999 if (retval) 1000 goto out; 1001 1002 task_io_account_write(count); 1003 1004 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio); 1005 if (retval > 0) { 1006 struct inode *inode = mapping->host; 1007 1008 iocb->ki_pos = pos + retval; 1009 spin_lock(&inode->i_lock); 1010 if (i_size_read(inode) < iocb->ki_pos) 1011 i_size_write(inode, iocb->ki_pos); 1012 spin_unlock(&inode->i_lock); 1013 } 1014 out: 1015 return retval; 1016 } 1017 1018 /** 1019 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1020 * 1021 */ 1022 int __init nfs_init_directcache(void) 1023 { 1024 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1025 sizeof(struct nfs_direct_req), 1026 0, (SLAB_RECLAIM_ACCOUNT| 1027 SLAB_MEM_SPREAD), 1028 NULL); 1029 if (nfs_direct_cachep == NULL) 1030 return -ENOMEM; 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1037 * 1038 */ 1039 void nfs_destroy_directcache(void) 1040 { 1041 kmem_cache_destroy(nfs_direct_cachep); 1042 } 1043