xref: /linux/fs/nfs/direct.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_req {
70 	struct kref		kref;		/* release manager */
71 
72 	/* I/O parameters */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct nfs_lock_context *l_ctx;		/* Lock context info */
75 	struct kiocb *		iocb;		/* controlling i/o request */
76 	struct inode *		inode;		/* target file of i/o */
77 
78 	/* completion state */
79 	atomic_t		io_count;	/* i/os we're waiting for */
80 	spinlock_t		lock;		/* protect completion state */
81 	ssize_t			count,		/* bytes actually processed */
82 				bytes_left,	/* bytes left to be sent */
83 				error;		/* any reported error */
84 	struct completion	completion;	/* wait for i/o completion */
85 
86 	/* commit state */
87 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
88 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
89 	struct work_struct	work;
90 	int			flags;
91 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
93 	struct nfs_writeverf	verf;		/* unstable write verifier */
94 };
95 
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100 
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 	atomic_inc(&dreq->io_count);
104 }
105 
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 	return atomic_dec_and_test(&dreq->io_count);
109 }
110 
111 /**
112  * nfs_direct_IO - NFS address space operation for direct I/O
113  * @rw: direction (read or write)
114  * @iocb: target I/O control block
115  * @iov: array of vectors that define I/O buffer
116  * @pos: offset in file to begin the operation
117  * @nr_segs: size of iovec array
118  *
119  * The presence of this routine in the address space ops vector means
120  * the NFS client supports direct I/O. However, for most direct IO, we
121  * shunt off direct read and write requests before the VFS gets them,
122  * so this method is only ever called for swap.
123  */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
128 			iocb->ki_filp->f_path.dentry->d_name.name,
129 			(long long) pos, nr_segs);
130 
131 	return -EINVAL;
132 #else
133 	VM_BUG_ON(iocb->ki_left != PAGE_SIZE);
134 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
135 
136 	if (rw == READ || rw == KERNEL_READ)
137 		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
138 				rw == READ ? true : false);
139 	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
140 				rw == WRITE ? true : false);
141 #endif /* CONFIG_NFS_SWAP */
142 }
143 
144 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
145 {
146 	unsigned int i;
147 	for (i = 0; i < npages; i++)
148 		page_cache_release(pages[i]);
149 }
150 
151 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
152 			      struct nfs_direct_req *dreq)
153 {
154 	cinfo->lock = &dreq->lock;
155 	cinfo->mds = &dreq->mds_cinfo;
156 	cinfo->ds = &dreq->ds_cinfo;
157 	cinfo->dreq = dreq;
158 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
159 }
160 
161 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
162 {
163 	struct nfs_direct_req *dreq;
164 
165 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
166 	if (!dreq)
167 		return NULL;
168 
169 	kref_init(&dreq->kref);
170 	kref_get(&dreq->kref);
171 	init_completion(&dreq->completion);
172 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
173 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
174 	spin_lock_init(&dreq->lock);
175 
176 	return dreq;
177 }
178 
179 static void nfs_direct_req_free(struct kref *kref)
180 {
181 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
182 
183 	if (dreq->l_ctx != NULL)
184 		nfs_put_lock_context(dreq->l_ctx);
185 	if (dreq->ctx != NULL)
186 		put_nfs_open_context(dreq->ctx);
187 	kmem_cache_free(nfs_direct_cachep, dreq);
188 }
189 
190 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
191 {
192 	kref_put(&dreq->kref, nfs_direct_req_free);
193 }
194 
195 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
196 {
197 	return dreq->bytes_left;
198 }
199 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
200 
201 /*
202  * Collects and returns the final error value/byte-count.
203  */
204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
205 {
206 	ssize_t result = -EIOCBQUEUED;
207 
208 	/* Async requests don't wait here */
209 	if (dreq->iocb)
210 		goto out;
211 
212 	result = wait_for_completion_killable(&dreq->completion);
213 
214 	if (!result)
215 		result = dreq->error;
216 	if (!result)
217 		result = dreq->count;
218 
219 out:
220 	return (ssize_t) result;
221 }
222 
223 /*
224  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
225  * the iocb is still valid here if this is a synchronous request.
226  */
227 static void nfs_direct_complete(struct nfs_direct_req *dreq)
228 {
229 	if (dreq->iocb) {
230 		long res = (long) dreq->error;
231 		if (!res)
232 			res = (long) dreq->count;
233 		aio_complete(dreq->iocb, res, 0);
234 	}
235 	complete_all(&dreq->completion);
236 
237 	nfs_direct_req_release(dreq);
238 }
239 
240 static void nfs_direct_readpage_release(struct nfs_page *req)
241 {
242 	dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
243 		req->wb_context->dentry->d_inode->i_sb->s_id,
244 		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
245 		req->wb_bytes,
246 		(long long)req_offset(req));
247 	nfs_release_request(req);
248 }
249 
250 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
251 {
252 	unsigned long bytes = 0;
253 	struct nfs_direct_req *dreq = hdr->dreq;
254 
255 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
256 		goto out_put;
257 
258 	spin_lock(&dreq->lock);
259 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
260 		dreq->error = hdr->error;
261 	else
262 		dreq->count += hdr->good_bytes;
263 	spin_unlock(&dreq->lock);
264 
265 	while (!list_empty(&hdr->pages)) {
266 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
267 		struct page *page = req->wb_page;
268 
269 		if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
270 			if (bytes > hdr->good_bytes)
271 				zero_user(page, 0, PAGE_SIZE);
272 			else if (hdr->good_bytes - bytes < PAGE_SIZE)
273 				zero_user_segment(page,
274 					hdr->good_bytes & ~PAGE_MASK,
275 					PAGE_SIZE);
276 		}
277 		if (!PageCompound(page)) {
278 			if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
279 				if (bytes < hdr->good_bytes)
280 					set_page_dirty(page);
281 			} else
282 				set_page_dirty(page);
283 		}
284 		bytes += req->wb_bytes;
285 		nfs_list_remove_request(req);
286 		nfs_direct_readpage_release(req);
287 	}
288 out_put:
289 	if (put_dreq(dreq))
290 		nfs_direct_complete(dreq);
291 	hdr->release(hdr);
292 }
293 
294 static void nfs_read_sync_pgio_error(struct list_head *head)
295 {
296 	struct nfs_page *req;
297 
298 	while (!list_empty(head)) {
299 		req = nfs_list_entry(head->next);
300 		nfs_list_remove_request(req);
301 		nfs_release_request(req);
302 	}
303 }
304 
305 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
306 {
307 	get_dreq(hdr->dreq);
308 }
309 
310 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
311 	.error_cleanup = nfs_read_sync_pgio_error,
312 	.init_hdr = nfs_direct_pgio_init,
313 	.completion = nfs_direct_read_completion,
314 };
315 
316 /*
317  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
318  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
319  * bail and stop sending more reads.  Read length accounting is
320  * handled automatically by nfs_direct_read_result().  Otherwise, if
321  * no requests have been sent, just return an error.
322  */
323 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
324 						const struct iovec *iov,
325 						loff_t pos, bool uio)
326 {
327 	struct nfs_direct_req *dreq = desc->pg_dreq;
328 	struct nfs_open_context *ctx = dreq->ctx;
329 	struct inode *inode = ctx->dentry->d_inode;
330 	unsigned long user_addr = (unsigned long)iov->iov_base;
331 	size_t count = iov->iov_len;
332 	size_t rsize = NFS_SERVER(inode)->rsize;
333 	unsigned int pgbase;
334 	int result;
335 	ssize_t started = 0;
336 	struct page **pagevec = NULL;
337 	unsigned int npages;
338 
339 	do {
340 		size_t bytes;
341 		int i;
342 
343 		pgbase = user_addr & ~PAGE_MASK;
344 		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
345 
346 		result = -ENOMEM;
347 		npages = nfs_page_array_len(pgbase, bytes);
348 		if (!pagevec)
349 			pagevec = kmalloc(npages * sizeof(struct page *),
350 					  GFP_KERNEL);
351 		if (!pagevec)
352 			break;
353 		if (uio) {
354 			down_read(&current->mm->mmap_sem);
355 			result = get_user_pages(current, current->mm, user_addr,
356 					npages, 1, 0, pagevec, NULL);
357 			up_read(&current->mm->mmap_sem);
358 			if (result < 0)
359 				break;
360 		} else {
361 			WARN_ON(npages != 1);
362 			result = get_kernel_page(user_addr, 1, pagevec);
363 			if (WARN_ON(result != 1))
364 				break;
365 		}
366 
367 		if ((unsigned)result < npages) {
368 			bytes = result * PAGE_SIZE;
369 			if (bytes <= pgbase) {
370 				nfs_direct_release_pages(pagevec, result);
371 				break;
372 			}
373 			bytes -= pgbase;
374 			npages = result;
375 		}
376 
377 		for (i = 0; i < npages; i++) {
378 			struct nfs_page *req;
379 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
380 			/* XXX do we need to do the eof zeroing found in async_filler? */
381 			req = nfs_create_request(dreq->ctx, dreq->inode,
382 						 pagevec[i],
383 						 pgbase, req_len);
384 			if (IS_ERR(req)) {
385 				result = PTR_ERR(req);
386 				break;
387 			}
388 			req->wb_index = pos >> PAGE_SHIFT;
389 			req->wb_offset = pos & ~PAGE_MASK;
390 			if (!nfs_pageio_add_request(desc, req)) {
391 				result = desc->pg_error;
392 				nfs_release_request(req);
393 				break;
394 			}
395 			pgbase = 0;
396 			bytes -= req_len;
397 			started += req_len;
398 			user_addr += req_len;
399 			pos += req_len;
400 			count -= req_len;
401 			dreq->bytes_left -= req_len;
402 		}
403 		/* The nfs_page now hold references to these pages */
404 		nfs_direct_release_pages(pagevec, npages);
405 	} while (count != 0 && result >= 0);
406 
407 	kfree(pagevec);
408 
409 	if (started)
410 		return started;
411 	return result < 0 ? (ssize_t) result : -EFAULT;
412 }
413 
414 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
415 					      const struct iovec *iov,
416 					      unsigned long nr_segs,
417 					      loff_t pos, bool uio)
418 {
419 	struct nfs_pageio_descriptor desc;
420 	ssize_t result = -EINVAL;
421 	size_t requested_bytes = 0;
422 	unsigned long seg;
423 
424 	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
425 			     &nfs_direct_read_completion_ops);
426 	get_dreq(dreq);
427 	desc.pg_dreq = dreq;
428 
429 	for (seg = 0; seg < nr_segs; seg++) {
430 		const struct iovec *vec = &iov[seg];
431 		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
432 		if (result < 0)
433 			break;
434 		requested_bytes += result;
435 		if ((size_t)result < vec->iov_len)
436 			break;
437 		pos += vec->iov_len;
438 	}
439 
440 	nfs_pageio_complete(&desc);
441 
442 	/*
443 	 * If no bytes were started, return the error, and let the
444 	 * generic layer handle the completion.
445 	 */
446 	if (requested_bytes == 0) {
447 		nfs_direct_req_release(dreq);
448 		return result < 0 ? result : -EIO;
449 	}
450 
451 	if (put_dreq(dreq))
452 		nfs_direct_complete(dreq);
453 	return 0;
454 }
455 
456 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
457 			       unsigned long nr_segs, loff_t pos, bool uio)
458 {
459 	ssize_t result = -ENOMEM;
460 	struct inode *inode = iocb->ki_filp->f_mapping->host;
461 	struct nfs_direct_req *dreq;
462 	struct nfs_lock_context *l_ctx;
463 
464 	dreq = nfs_direct_req_alloc();
465 	if (dreq == NULL)
466 		goto out;
467 
468 	dreq->inode = inode;
469 	dreq->bytes_left = iov_length(iov, nr_segs);
470 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
471 	l_ctx = nfs_get_lock_context(dreq->ctx);
472 	if (IS_ERR(l_ctx)) {
473 		result = PTR_ERR(l_ctx);
474 		goto out_release;
475 	}
476 	dreq->l_ctx = l_ctx;
477 	if (!is_sync_kiocb(iocb))
478 		dreq->iocb = iocb;
479 
480 	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
481 	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
482 	if (!result)
483 		result = nfs_direct_wait(dreq);
484 out_release:
485 	nfs_direct_req_release(dreq);
486 out:
487 	return result;
488 }
489 
490 static void nfs_inode_dio_write_done(struct inode *inode)
491 {
492 	nfs_zap_mapping(inode, inode->i_mapping);
493 	inode_dio_done(inode);
494 }
495 
496 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
497 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
498 {
499 	struct nfs_pageio_descriptor desc;
500 	struct nfs_page *req, *tmp;
501 	LIST_HEAD(reqs);
502 	struct nfs_commit_info cinfo;
503 	LIST_HEAD(failed);
504 
505 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
506 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
507 	spin_lock(cinfo.lock);
508 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
509 	spin_unlock(cinfo.lock);
510 
511 	dreq->count = 0;
512 	get_dreq(dreq);
513 
514 	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
515 			      &nfs_direct_write_completion_ops);
516 	desc.pg_dreq = dreq;
517 
518 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
519 		if (!nfs_pageio_add_request(&desc, req)) {
520 			nfs_list_remove_request(req);
521 			nfs_list_add_request(req, &failed);
522 			spin_lock(cinfo.lock);
523 			dreq->flags = 0;
524 			dreq->error = -EIO;
525 			spin_unlock(cinfo.lock);
526 		}
527 		nfs_release_request(req);
528 	}
529 	nfs_pageio_complete(&desc);
530 
531 	while (!list_empty(&failed)) {
532 		req = nfs_list_entry(failed.next);
533 		nfs_list_remove_request(req);
534 		nfs_unlock_and_release_request(req);
535 	}
536 
537 	if (put_dreq(dreq))
538 		nfs_direct_write_complete(dreq, dreq->inode);
539 }
540 
541 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
542 {
543 	struct nfs_direct_req *dreq = data->dreq;
544 	struct nfs_commit_info cinfo;
545 	struct nfs_page *req;
546 	int status = data->task.tk_status;
547 
548 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
549 	if (status < 0) {
550 		dprintk("NFS: %5u commit failed with error %d.\n",
551 			data->task.tk_pid, status);
552 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
553 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
554 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
555 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
556 	}
557 
558 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
559 	while (!list_empty(&data->pages)) {
560 		req = nfs_list_entry(data->pages.next);
561 		nfs_list_remove_request(req);
562 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
563 			/* Note the rewrite will go through mds */
564 			nfs_mark_request_commit(req, NULL, &cinfo);
565 		} else
566 			nfs_release_request(req);
567 		nfs_unlock_and_release_request(req);
568 	}
569 
570 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
571 		nfs_direct_write_complete(dreq, data->inode);
572 }
573 
574 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
575 {
576 	/* There is no lock to clear */
577 }
578 
579 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
580 	.completion = nfs_direct_commit_complete,
581 	.error_cleanup = nfs_direct_error_cleanup,
582 };
583 
584 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
585 {
586 	int res;
587 	struct nfs_commit_info cinfo;
588 	LIST_HEAD(mds_list);
589 
590 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
591 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
592 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
593 	if (res < 0) /* res == -ENOMEM */
594 		nfs_direct_write_reschedule(dreq);
595 }
596 
597 static void nfs_direct_write_schedule_work(struct work_struct *work)
598 {
599 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
600 	int flags = dreq->flags;
601 
602 	dreq->flags = 0;
603 	switch (flags) {
604 		case NFS_ODIRECT_DO_COMMIT:
605 			nfs_direct_commit_schedule(dreq);
606 			break;
607 		case NFS_ODIRECT_RESCHED_WRITES:
608 			nfs_direct_write_reschedule(dreq);
609 			break;
610 		default:
611 			nfs_inode_dio_write_done(dreq->inode);
612 			nfs_direct_complete(dreq);
613 	}
614 }
615 
616 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
617 {
618 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
619 }
620 
621 #else
622 static void nfs_direct_write_schedule_work(struct work_struct *work)
623 {
624 }
625 
626 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
627 {
628 	nfs_inode_dio_write_done(inode);
629 	nfs_direct_complete(dreq);
630 }
631 #endif
632 
633 /*
634  * NB: Return the value of the first error return code.  Subsequent
635  *     errors after the first one are ignored.
636  */
637 /*
638  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
639  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
640  * bail and stop sending more writes.  Write length accounting is
641  * handled automatically by nfs_direct_write_result().  Otherwise, if
642  * no requests have been sent, just return an error.
643  */
644 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
645 						 const struct iovec *iov,
646 						 loff_t pos, bool uio)
647 {
648 	struct nfs_direct_req *dreq = desc->pg_dreq;
649 	struct nfs_open_context *ctx = dreq->ctx;
650 	struct inode *inode = ctx->dentry->d_inode;
651 	unsigned long user_addr = (unsigned long)iov->iov_base;
652 	size_t count = iov->iov_len;
653 	size_t wsize = NFS_SERVER(inode)->wsize;
654 	unsigned int pgbase;
655 	int result;
656 	ssize_t started = 0;
657 	struct page **pagevec = NULL;
658 	unsigned int npages;
659 
660 	do {
661 		size_t bytes;
662 		int i;
663 
664 		pgbase = user_addr & ~PAGE_MASK;
665 		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
666 
667 		result = -ENOMEM;
668 		npages = nfs_page_array_len(pgbase, bytes);
669 		if (!pagevec)
670 			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
671 		if (!pagevec)
672 			break;
673 
674 		if (uio) {
675 			down_read(&current->mm->mmap_sem);
676 			result = get_user_pages(current, current->mm, user_addr,
677 						npages, 0, 0, pagevec, NULL);
678 			up_read(&current->mm->mmap_sem);
679 			if (result < 0)
680 				break;
681 		} else {
682 			WARN_ON(npages != 1);
683 			result = get_kernel_page(user_addr, 0, pagevec);
684 			if (WARN_ON(result != 1))
685 				break;
686 		}
687 
688 		if ((unsigned)result < npages) {
689 			bytes = result * PAGE_SIZE;
690 			if (bytes <= pgbase) {
691 				nfs_direct_release_pages(pagevec, result);
692 				break;
693 			}
694 			bytes -= pgbase;
695 			npages = result;
696 		}
697 
698 		for (i = 0; i < npages; i++) {
699 			struct nfs_page *req;
700 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
701 
702 			req = nfs_create_request(dreq->ctx, dreq->inode,
703 						 pagevec[i],
704 						 pgbase, req_len);
705 			if (IS_ERR(req)) {
706 				result = PTR_ERR(req);
707 				break;
708 			}
709 			nfs_lock_request(req);
710 			req->wb_index = pos >> PAGE_SHIFT;
711 			req->wb_offset = pos & ~PAGE_MASK;
712 			if (!nfs_pageio_add_request(desc, req)) {
713 				result = desc->pg_error;
714 				nfs_unlock_and_release_request(req);
715 				break;
716 			}
717 			pgbase = 0;
718 			bytes -= req_len;
719 			started += req_len;
720 			user_addr += req_len;
721 			pos += req_len;
722 			count -= req_len;
723 			dreq->bytes_left -= req_len;
724 		}
725 		/* The nfs_page now hold references to these pages */
726 		nfs_direct_release_pages(pagevec, npages);
727 	} while (count != 0 && result >= 0);
728 
729 	kfree(pagevec);
730 
731 	if (started)
732 		return started;
733 	return result < 0 ? (ssize_t) result : -EFAULT;
734 }
735 
736 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
737 {
738 	struct nfs_direct_req *dreq = hdr->dreq;
739 	struct nfs_commit_info cinfo;
740 	int bit = -1;
741 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
742 
743 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
744 		goto out_put;
745 
746 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
747 
748 	spin_lock(&dreq->lock);
749 
750 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
751 		dreq->flags = 0;
752 		dreq->error = hdr->error;
753 	}
754 	if (dreq->error != 0)
755 		bit = NFS_IOHDR_ERROR;
756 	else {
757 		dreq->count += hdr->good_bytes;
758 		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
759 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
760 			bit = NFS_IOHDR_NEED_RESCHED;
761 		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
762 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
763 				bit = NFS_IOHDR_NEED_RESCHED;
764 			else if (dreq->flags == 0) {
765 				memcpy(&dreq->verf, hdr->verf,
766 				       sizeof(dreq->verf));
767 				bit = NFS_IOHDR_NEED_COMMIT;
768 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
769 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
770 				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
771 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
772 					bit = NFS_IOHDR_NEED_RESCHED;
773 				} else
774 					bit = NFS_IOHDR_NEED_COMMIT;
775 			}
776 		}
777 	}
778 	spin_unlock(&dreq->lock);
779 
780 	while (!list_empty(&hdr->pages)) {
781 		req = nfs_list_entry(hdr->pages.next);
782 		nfs_list_remove_request(req);
783 		switch (bit) {
784 		case NFS_IOHDR_NEED_RESCHED:
785 		case NFS_IOHDR_NEED_COMMIT:
786 			kref_get(&req->wb_kref);
787 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
788 		}
789 		nfs_unlock_and_release_request(req);
790 	}
791 
792 out_put:
793 	if (put_dreq(dreq))
794 		nfs_direct_write_complete(dreq, hdr->inode);
795 	hdr->release(hdr);
796 }
797 
798 static void nfs_write_sync_pgio_error(struct list_head *head)
799 {
800 	struct nfs_page *req;
801 
802 	while (!list_empty(head)) {
803 		req = nfs_list_entry(head->next);
804 		nfs_list_remove_request(req);
805 		nfs_unlock_and_release_request(req);
806 	}
807 }
808 
809 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
810 	.error_cleanup = nfs_write_sync_pgio_error,
811 	.init_hdr = nfs_direct_pgio_init,
812 	.completion = nfs_direct_write_completion,
813 };
814 
815 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
816 					       const struct iovec *iov,
817 					       unsigned long nr_segs,
818 					       loff_t pos, bool uio)
819 {
820 	struct nfs_pageio_descriptor desc;
821 	struct inode *inode = dreq->inode;
822 	ssize_t result = 0;
823 	size_t requested_bytes = 0;
824 	unsigned long seg;
825 
826 	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
827 			      &nfs_direct_write_completion_ops);
828 	desc.pg_dreq = dreq;
829 	get_dreq(dreq);
830 	atomic_inc(&inode->i_dio_count);
831 
832 	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
833 	for (seg = 0; seg < nr_segs; seg++) {
834 		const struct iovec *vec = &iov[seg];
835 		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
836 		if (result < 0)
837 			break;
838 		requested_bytes += result;
839 		if ((size_t)result < vec->iov_len)
840 			break;
841 		pos += vec->iov_len;
842 	}
843 	nfs_pageio_complete(&desc);
844 
845 	/*
846 	 * If no bytes were started, return the error, and let the
847 	 * generic layer handle the completion.
848 	 */
849 	if (requested_bytes == 0) {
850 		inode_dio_done(inode);
851 		nfs_direct_req_release(dreq);
852 		return result < 0 ? result : -EIO;
853 	}
854 
855 	if (put_dreq(dreq))
856 		nfs_direct_write_complete(dreq, dreq->inode);
857 	return 0;
858 }
859 
860 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
861 				unsigned long nr_segs, loff_t pos,
862 				size_t count, bool uio)
863 {
864 	ssize_t result = -ENOMEM;
865 	struct inode *inode = iocb->ki_filp->f_mapping->host;
866 	struct nfs_direct_req *dreq;
867 	struct nfs_lock_context *l_ctx;
868 
869 	dreq = nfs_direct_req_alloc();
870 	if (!dreq)
871 		goto out;
872 
873 	dreq->inode = inode;
874 	dreq->bytes_left = count;
875 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
876 	l_ctx = nfs_get_lock_context(dreq->ctx);
877 	if (IS_ERR(l_ctx)) {
878 		result = PTR_ERR(l_ctx);
879 		goto out_release;
880 	}
881 	dreq->l_ctx = l_ctx;
882 	if (!is_sync_kiocb(iocb))
883 		dreq->iocb = iocb;
884 
885 	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
886 	if (!result)
887 		result = nfs_direct_wait(dreq);
888 out_release:
889 	nfs_direct_req_release(dreq);
890 out:
891 	return result;
892 }
893 
894 /**
895  * nfs_file_direct_read - file direct read operation for NFS files
896  * @iocb: target I/O control block
897  * @iov: vector of user buffers into which to read data
898  * @nr_segs: size of iov vector
899  * @pos: byte offset in file where reading starts
900  *
901  * We use this function for direct reads instead of calling
902  * generic_file_aio_read() in order to avoid gfar's check to see if
903  * the request starts before the end of the file.  For that check
904  * to work, we must generate a GETATTR before each direct read, and
905  * even then there is a window between the GETATTR and the subsequent
906  * READ where the file size could change.  Our preference is simply
907  * to do all reads the application wants, and the server will take
908  * care of managing the end of file boundary.
909  *
910  * This function also eliminates unnecessarily updating the file's
911  * atime locally, as the NFS server sets the file's atime, and this
912  * client must read the updated atime from the server back into its
913  * cache.
914  */
915 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
916 				unsigned long nr_segs, loff_t pos, bool uio)
917 {
918 	ssize_t retval = -EINVAL;
919 	struct file *file = iocb->ki_filp;
920 	struct address_space *mapping = file->f_mapping;
921 	size_t count;
922 
923 	count = iov_length(iov, nr_segs);
924 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
925 
926 	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
927 		file->f_path.dentry->d_parent->d_name.name,
928 		file->f_path.dentry->d_name.name,
929 		count, (long long) pos);
930 
931 	retval = 0;
932 	if (!count)
933 		goto out;
934 
935 	retval = nfs_sync_mapping(mapping);
936 	if (retval)
937 		goto out;
938 
939 	task_io_account_read(count);
940 
941 	retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
942 	if (retval > 0)
943 		iocb->ki_pos = pos + retval;
944 
945 out:
946 	return retval;
947 }
948 
949 /**
950  * nfs_file_direct_write - file direct write operation for NFS files
951  * @iocb: target I/O control block
952  * @iov: vector of user buffers from which to write data
953  * @nr_segs: size of iov vector
954  * @pos: byte offset in file where writing starts
955  *
956  * We use this function for direct writes instead of calling
957  * generic_file_aio_write() in order to avoid taking the inode
958  * semaphore and updating the i_size.  The NFS server will set
959  * the new i_size and this client must read the updated size
960  * back into its cache.  We let the server do generic write
961  * parameter checking and report problems.
962  *
963  * We eliminate local atime updates, see direct read above.
964  *
965  * We avoid unnecessary page cache invalidations for normal cached
966  * readers of this file.
967  *
968  * Note that O_APPEND is not supported for NFS direct writes, as there
969  * is no atomic O_APPEND write facility in the NFS protocol.
970  */
971 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
972 				unsigned long nr_segs, loff_t pos, bool uio)
973 {
974 	ssize_t retval = -EINVAL;
975 	struct file *file = iocb->ki_filp;
976 	struct address_space *mapping = file->f_mapping;
977 	size_t count;
978 
979 	count = iov_length(iov, nr_segs);
980 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
981 
982 	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
983 		file->f_path.dentry->d_parent->d_name.name,
984 		file->f_path.dentry->d_name.name,
985 		count, (long long) pos);
986 
987 	retval = generic_write_checks(file, &pos, &count, 0);
988 	if (retval)
989 		goto out;
990 
991 	retval = -EINVAL;
992 	if ((ssize_t) count < 0)
993 		goto out;
994 	retval = 0;
995 	if (!count)
996 		goto out;
997 
998 	retval = nfs_sync_mapping(mapping);
999 	if (retval)
1000 		goto out;
1001 
1002 	task_io_account_write(count);
1003 
1004 	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
1005 	if (retval > 0) {
1006 		struct inode *inode = mapping->host;
1007 
1008 		iocb->ki_pos = pos + retval;
1009 		spin_lock(&inode->i_lock);
1010 		if (i_size_read(inode) < iocb->ki_pos)
1011 			i_size_write(inode, iocb->ki_pos);
1012 		spin_unlock(&inode->i_lock);
1013 	}
1014 out:
1015 	return retval;
1016 }
1017 
1018 /**
1019  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1020  *
1021  */
1022 int __init nfs_init_directcache(void)
1023 {
1024 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1025 						sizeof(struct nfs_direct_req),
1026 						0, (SLAB_RECLAIM_ACCOUNT|
1027 							SLAB_MEM_SPREAD),
1028 						NULL);
1029 	if (nfs_direct_cachep == NULL)
1030 		return -ENOMEM;
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1037  *
1038  */
1039 void nfs_destroy_directcache(void)
1040 {
1041 	kmem_cache_destroy(nfs_direct_cachep);
1042 }
1043