1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_mirror { 70 ssize_t count; 71 }; 72 73 struct nfs_direct_req { 74 struct kref kref; /* release manager */ 75 76 /* I/O parameters */ 77 struct nfs_open_context *ctx; /* file open context info */ 78 struct nfs_lock_context *l_ctx; /* Lock context info */ 79 struct kiocb * iocb; /* controlling i/o request */ 80 struct inode * inode; /* target file of i/o */ 81 82 /* completion state */ 83 atomic_t io_count; /* i/os we're waiting for */ 84 spinlock_t lock; /* protect completion state */ 85 86 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX]; 87 int mirror_count; 88 89 ssize_t count, /* bytes actually processed */ 90 max_count, /* max expected count */ 91 bytes_left, /* bytes left to be sent */ 92 io_start, /* start of IO */ 93 error; /* any reported error */ 94 struct completion completion; /* wait for i/o completion */ 95 96 /* commit state */ 97 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 98 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 99 struct work_struct work; 100 int flags; 101 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 102 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 103 struct nfs_writeverf verf; /* unstable write verifier */ 104 }; 105 106 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 107 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 108 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 109 static void nfs_direct_write_schedule_work(struct work_struct *work); 110 111 static inline void get_dreq(struct nfs_direct_req *dreq) 112 { 113 atomic_inc(&dreq->io_count); 114 } 115 116 static inline int put_dreq(struct nfs_direct_req *dreq) 117 { 118 return atomic_dec_and_test(&dreq->io_count); 119 } 120 121 static void 122 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr) 123 { 124 int i; 125 ssize_t count; 126 127 WARN_ON_ONCE(dreq->count >= dreq->max_count); 128 129 if (dreq->mirror_count == 1) { 130 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes; 131 dreq->count += hdr->good_bytes; 132 } else { 133 /* mirrored writes */ 134 count = dreq->mirrors[hdr->pgio_mirror_idx].count; 135 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) { 136 count = hdr->io_start + hdr->good_bytes - dreq->io_start; 137 dreq->mirrors[hdr->pgio_mirror_idx].count = count; 138 } 139 /* update the dreq->count by finding the minimum agreed count from all 140 * mirrors */ 141 count = dreq->mirrors[0].count; 142 143 for (i = 1; i < dreq->mirror_count; i++) 144 count = min(count, dreq->mirrors[i].count); 145 146 dreq->count = count; 147 } 148 } 149 150 /* 151 * nfs_direct_select_verf - select the right verifier 152 * @dreq - direct request possibly spanning multiple servers 153 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs 154 * @commit_idx - commit bucket index for the DS 155 * 156 * returns the correct verifier to use given the role of the server 157 */ 158 static struct nfs_writeverf * 159 nfs_direct_select_verf(struct nfs_direct_req *dreq, 160 struct nfs_client *ds_clp, 161 int commit_idx) 162 { 163 struct nfs_writeverf *verfp = &dreq->verf; 164 165 #ifdef CONFIG_NFS_V4_1 166 /* 167 * pNFS is in use, use the DS verf except commit_through_mds is set 168 * for layout segment where nbuckets is zero. 169 */ 170 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) { 171 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets) 172 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf; 173 else 174 WARN_ON_ONCE(1); 175 } 176 #endif 177 return verfp; 178 } 179 180 181 /* 182 * nfs_direct_set_hdr_verf - set the write/commit verifier 183 * @dreq - direct request possibly spanning multiple servers 184 * @hdr - pageio header to validate against previously seen verfs 185 * 186 * Set the server's (MDS or DS) "seen" verifier 187 */ 188 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq, 189 struct nfs_pgio_header *hdr) 190 { 191 struct nfs_writeverf *verfp; 192 193 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 194 WARN_ON_ONCE(verfp->committed >= 0); 195 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 196 WARN_ON_ONCE(verfp->committed < 0); 197 } 198 199 /* 200 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header 201 * @dreq - direct request possibly spanning multiple servers 202 * @hdr - pageio header to validate against previously seen verf 203 * 204 * set the server's "seen" verf if not initialized. 205 * returns result of comparison between @hdr->verf and the "seen" 206 * verf of the server used by @hdr (DS or MDS) 207 */ 208 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq, 209 struct nfs_pgio_header *hdr) 210 { 211 struct nfs_writeverf *verfp; 212 213 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 214 if (verfp->committed < 0) { 215 nfs_direct_set_hdr_verf(dreq, hdr); 216 return 0; 217 } 218 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 219 } 220 221 /* 222 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data 223 * @dreq - direct request possibly spanning multiple servers 224 * @data - commit data to validate against previously seen verf 225 * 226 * returns result of comparison between @data->verf and the verf of 227 * the server used by @data (DS or MDS) 228 */ 229 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq, 230 struct nfs_commit_data *data) 231 { 232 struct nfs_writeverf *verfp; 233 234 verfp = nfs_direct_select_verf(dreq, data->ds_clp, 235 data->ds_commit_index); 236 237 /* verifier not set so always fail */ 238 if (verfp->committed < 0) 239 return 1; 240 241 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf)); 242 } 243 244 /** 245 * nfs_direct_IO - NFS address space operation for direct I/O 246 * @iocb: target I/O control block 247 * @iov: array of vectors that define I/O buffer 248 * @pos: offset in file to begin the operation 249 * @nr_segs: size of iovec array 250 * 251 * The presence of this routine in the address space ops vector means 252 * the NFS client supports direct I/O. However, for most direct IO, we 253 * shunt off direct read and write requests before the VFS gets them, 254 * so this method is only ever called for swap. 255 */ 256 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 257 { 258 struct inode *inode = iocb->ki_filp->f_mapping->host; 259 260 /* we only support swap file calling nfs_direct_IO */ 261 if (!IS_SWAPFILE(inode)) 262 return 0; 263 264 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 265 266 if (iov_iter_rw(iter) == READ) 267 return nfs_file_direct_read(iocb, iter); 268 return nfs_file_direct_write(iocb, iter); 269 } 270 271 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 272 { 273 unsigned int i; 274 for (i = 0; i < npages; i++) 275 put_page(pages[i]); 276 } 277 278 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 279 struct nfs_direct_req *dreq) 280 { 281 cinfo->inode = dreq->inode; 282 cinfo->mds = &dreq->mds_cinfo; 283 cinfo->ds = &dreq->ds_cinfo; 284 cinfo->dreq = dreq; 285 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 286 } 287 288 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq, 289 struct nfs_pageio_descriptor *pgio, 290 struct nfs_page *req) 291 { 292 int mirror_count = 1; 293 294 if (pgio->pg_ops->pg_get_mirror_count) 295 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req); 296 297 dreq->mirror_count = mirror_count; 298 } 299 300 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 301 { 302 struct nfs_direct_req *dreq; 303 304 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 305 if (!dreq) 306 return NULL; 307 308 kref_init(&dreq->kref); 309 kref_get(&dreq->kref); 310 init_completion(&dreq->completion); 311 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 312 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */ 313 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 314 dreq->mirror_count = 1; 315 spin_lock_init(&dreq->lock); 316 317 return dreq; 318 } 319 320 static void nfs_direct_req_free(struct kref *kref) 321 { 322 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 323 324 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo); 325 if (dreq->l_ctx != NULL) 326 nfs_put_lock_context(dreq->l_ctx); 327 if (dreq->ctx != NULL) 328 put_nfs_open_context(dreq->ctx); 329 kmem_cache_free(nfs_direct_cachep, dreq); 330 } 331 332 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 333 { 334 kref_put(&dreq->kref, nfs_direct_req_free); 335 } 336 337 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 338 { 339 return dreq->bytes_left; 340 } 341 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 342 343 /* 344 * Collects and returns the final error value/byte-count. 345 */ 346 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 347 { 348 ssize_t result = -EIOCBQUEUED; 349 350 /* Async requests don't wait here */ 351 if (dreq->iocb) 352 goto out; 353 354 result = wait_for_completion_killable(&dreq->completion); 355 356 if (!result) 357 result = dreq->error; 358 if (!result) 359 result = dreq->count; 360 361 out: 362 return (ssize_t) result; 363 } 364 365 /* 366 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 367 * the iocb is still valid here if this is a synchronous request. 368 */ 369 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write) 370 { 371 struct inode *inode = dreq->inode; 372 373 if (dreq->iocb && write) { 374 loff_t pos = dreq->iocb->ki_pos + dreq->count; 375 376 spin_lock(&inode->i_lock); 377 if (i_size_read(inode) < pos) 378 i_size_write(inode, pos); 379 spin_unlock(&inode->i_lock); 380 } 381 382 if (write) 383 nfs_zap_mapping(inode, inode->i_mapping); 384 385 inode_dio_end(inode); 386 387 if (dreq->iocb) { 388 long res = (long) dreq->error; 389 if (!res) 390 res = (long) dreq->count; 391 dreq->iocb->ki_complete(dreq->iocb, res, 0); 392 } 393 394 complete_all(&dreq->completion); 395 396 nfs_direct_req_release(dreq); 397 } 398 399 static void nfs_direct_readpage_release(struct nfs_page *req) 400 { 401 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n", 402 req->wb_context->dentry->d_sb->s_id, 403 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)), 404 req->wb_bytes, 405 (long long)req_offset(req)); 406 nfs_release_request(req); 407 } 408 409 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 410 { 411 unsigned long bytes = 0; 412 struct nfs_direct_req *dreq = hdr->dreq; 413 414 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 415 goto out_put; 416 417 spin_lock(&dreq->lock); 418 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 419 dreq->error = hdr->error; 420 else 421 nfs_direct_good_bytes(dreq, hdr); 422 423 spin_unlock(&dreq->lock); 424 425 while (!list_empty(&hdr->pages)) { 426 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 427 struct page *page = req->wb_page; 428 429 if (!PageCompound(page) && bytes < hdr->good_bytes) 430 set_page_dirty(page); 431 bytes += req->wb_bytes; 432 nfs_list_remove_request(req); 433 nfs_direct_readpage_release(req); 434 } 435 out_put: 436 if (put_dreq(dreq)) 437 nfs_direct_complete(dreq, false); 438 hdr->release(hdr); 439 } 440 441 static void nfs_read_sync_pgio_error(struct list_head *head) 442 { 443 struct nfs_page *req; 444 445 while (!list_empty(head)) { 446 req = nfs_list_entry(head->next); 447 nfs_list_remove_request(req); 448 nfs_release_request(req); 449 } 450 } 451 452 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 453 { 454 get_dreq(hdr->dreq); 455 } 456 457 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 458 .error_cleanup = nfs_read_sync_pgio_error, 459 .init_hdr = nfs_direct_pgio_init, 460 .completion = nfs_direct_read_completion, 461 }; 462 463 /* 464 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 465 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 466 * bail and stop sending more reads. Read length accounting is 467 * handled automatically by nfs_direct_read_result(). Otherwise, if 468 * no requests have been sent, just return an error. 469 */ 470 471 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 472 struct iov_iter *iter, 473 loff_t pos) 474 { 475 struct nfs_pageio_descriptor desc; 476 struct inode *inode = dreq->inode; 477 ssize_t result = -EINVAL; 478 size_t requested_bytes = 0; 479 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 480 481 nfs_pageio_init_read(&desc, dreq->inode, false, 482 &nfs_direct_read_completion_ops); 483 get_dreq(dreq); 484 desc.pg_dreq = dreq; 485 inode_dio_begin(inode); 486 487 while (iov_iter_count(iter)) { 488 struct page **pagevec; 489 size_t bytes; 490 size_t pgbase; 491 unsigned npages, i; 492 493 result = iov_iter_get_pages_alloc(iter, &pagevec, 494 rsize, &pgbase); 495 if (result < 0) 496 break; 497 498 bytes = result; 499 iov_iter_advance(iter, bytes); 500 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 501 for (i = 0; i < npages; i++) { 502 struct nfs_page *req; 503 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 504 /* XXX do we need to do the eof zeroing found in async_filler? */ 505 req = nfs_create_request(dreq->ctx, pagevec[i], NULL, 506 pgbase, req_len); 507 if (IS_ERR(req)) { 508 result = PTR_ERR(req); 509 break; 510 } 511 req->wb_index = pos >> PAGE_SHIFT; 512 req->wb_offset = pos & ~PAGE_MASK; 513 if (!nfs_pageio_add_request(&desc, req)) { 514 result = desc.pg_error; 515 nfs_release_request(req); 516 break; 517 } 518 pgbase = 0; 519 bytes -= req_len; 520 requested_bytes += req_len; 521 pos += req_len; 522 dreq->bytes_left -= req_len; 523 } 524 nfs_direct_release_pages(pagevec, npages); 525 kvfree(pagevec); 526 if (result < 0) 527 break; 528 } 529 530 nfs_pageio_complete(&desc); 531 532 /* 533 * If no bytes were started, return the error, and let the 534 * generic layer handle the completion. 535 */ 536 if (requested_bytes == 0) { 537 inode_dio_end(inode); 538 nfs_direct_req_release(dreq); 539 return result < 0 ? result : -EIO; 540 } 541 542 if (put_dreq(dreq)) 543 nfs_direct_complete(dreq, false); 544 return 0; 545 } 546 547 /** 548 * nfs_file_direct_read - file direct read operation for NFS files 549 * @iocb: target I/O control block 550 * @iter: vector of user buffers into which to read data 551 * 552 * We use this function for direct reads instead of calling 553 * generic_file_aio_read() in order to avoid gfar's check to see if 554 * the request starts before the end of the file. For that check 555 * to work, we must generate a GETATTR before each direct read, and 556 * even then there is a window between the GETATTR and the subsequent 557 * READ where the file size could change. Our preference is simply 558 * to do all reads the application wants, and the server will take 559 * care of managing the end of file boundary. 560 * 561 * This function also eliminates unnecessarily updating the file's 562 * atime locally, as the NFS server sets the file's atime, and this 563 * client must read the updated atime from the server back into its 564 * cache. 565 */ 566 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter) 567 { 568 struct file *file = iocb->ki_filp; 569 struct address_space *mapping = file->f_mapping; 570 struct inode *inode = mapping->host; 571 struct nfs_direct_req *dreq; 572 struct nfs_lock_context *l_ctx; 573 ssize_t result = -EINVAL; 574 size_t count = iov_iter_count(iter); 575 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 576 577 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 578 file, count, (long long) iocb->ki_pos); 579 580 result = 0; 581 if (!count) 582 goto out; 583 584 inode_lock(inode); 585 result = nfs_sync_mapping(mapping); 586 if (result) 587 goto out_unlock; 588 589 task_io_account_read(count); 590 591 result = -ENOMEM; 592 dreq = nfs_direct_req_alloc(); 593 if (dreq == NULL) 594 goto out_unlock; 595 596 dreq->inode = inode; 597 dreq->bytes_left = dreq->max_count = count; 598 dreq->io_start = iocb->ki_pos; 599 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 600 l_ctx = nfs_get_lock_context(dreq->ctx); 601 if (IS_ERR(l_ctx)) { 602 result = PTR_ERR(l_ctx); 603 goto out_release; 604 } 605 dreq->l_ctx = l_ctx; 606 if (!is_sync_kiocb(iocb)) 607 dreq->iocb = iocb; 608 609 NFS_I(inode)->read_io += count; 610 result = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 611 612 inode_unlock(inode); 613 614 if (!result) { 615 result = nfs_direct_wait(dreq); 616 if (result > 0) 617 iocb->ki_pos += result; 618 } 619 620 nfs_direct_req_release(dreq); 621 return result; 622 623 out_release: 624 nfs_direct_req_release(dreq); 625 out_unlock: 626 inode_unlock(inode); 627 out: 628 return result; 629 } 630 631 static void 632 nfs_direct_write_scan_commit_list(struct inode *inode, 633 struct list_head *list, 634 struct nfs_commit_info *cinfo) 635 { 636 spin_lock(&cinfo->inode->i_lock); 637 #ifdef CONFIG_NFS_V4_1 638 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0) 639 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo); 640 #endif 641 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 642 spin_unlock(&cinfo->inode->i_lock); 643 } 644 645 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 646 { 647 struct nfs_pageio_descriptor desc; 648 struct nfs_page *req, *tmp; 649 LIST_HEAD(reqs); 650 struct nfs_commit_info cinfo; 651 LIST_HEAD(failed); 652 int i; 653 654 nfs_init_cinfo_from_dreq(&cinfo, dreq); 655 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 656 657 dreq->count = 0; 658 for (i = 0; i < dreq->mirror_count; i++) 659 dreq->mirrors[i].count = 0; 660 get_dreq(dreq); 661 662 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 663 &nfs_direct_write_completion_ops); 664 desc.pg_dreq = dreq; 665 666 req = nfs_list_entry(reqs.next); 667 nfs_direct_setup_mirroring(dreq, &desc, req); 668 if (desc.pg_error < 0) { 669 list_splice_init(&reqs, &failed); 670 goto out_failed; 671 } 672 673 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 674 if (!nfs_pageio_add_request(&desc, req)) { 675 nfs_list_remove_request(req); 676 nfs_list_add_request(req, &failed); 677 spin_lock(&cinfo.inode->i_lock); 678 dreq->flags = 0; 679 if (desc.pg_error < 0) 680 dreq->error = desc.pg_error; 681 else 682 dreq->error = -EIO; 683 spin_unlock(&cinfo.inode->i_lock); 684 } 685 nfs_release_request(req); 686 } 687 nfs_pageio_complete(&desc); 688 689 out_failed: 690 while (!list_empty(&failed)) { 691 req = nfs_list_entry(failed.next); 692 nfs_list_remove_request(req); 693 nfs_unlock_and_release_request(req); 694 } 695 696 if (put_dreq(dreq)) 697 nfs_direct_write_complete(dreq, dreq->inode); 698 } 699 700 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 701 { 702 struct nfs_direct_req *dreq = data->dreq; 703 struct nfs_commit_info cinfo; 704 struct nfs_page *req; 705 int status = data->task.tk_status; 706 707 nfs_init_cinfo_from_dreq(&cinfo, dreq); 708 if (status < 0) { 709 dprintk("NFS: %5u commit failed with error %d.\n", 710 data->task.tk_pid, status); 711 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 712 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) { 713 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 714 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 715 } 716 717 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 718 while (!list_empty(&data->pages)) { 719 req = nfs_list_entry(data->pages.next); 720 nfs_list_remove_request(req); 721 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 722 /* Note the rewrite will go through mds */ 723 nfs_mark_request_commit(req, NULL, &cinfo, 0); 724 } else 725 nfs_release_request(req); 726 nfs_unlock_and_release_request(req); 727 } 728 729 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 730 nfs_direct_write_complete(dreq, data->inode); 731 } 732 733 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 734 struct nfs_page *req) 735 { 736 struct nfs_direct_req *dreq = cinfo->dreq; 737 738 spin_lock(&dreq->lock); 739 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 740 spin_unlock(&dreq->lock); 741 nfs_mark_request_commit(req, NULL, cinfo, 0); 742 } 743 744 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 745 .completion = nfs_direct_commit_complete, 746 .resched_write = nfs_direct_resched_write, 747 }; 748 749 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 750 { 751 int res; 752 struct nfs_commit_info cinfo; 753 LIST_HEAD(mds_list); 754 755 nfs_init_cinfo_from_dreq(&cinfo, dreq); 756 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 757 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 758 if (res < 0) /* res == -ENOMEM */ 759 nfs_direct_write_reschedule(dreq); 760 } 761 762 static void nfs_direct_write_schedule_work(struct work_struct *work) 763 { 764 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 765 int flags = dreq->flags; 766 767 dreq->flags = 0; 768 switch (flags) { 769 case NFS_ODIRECT_DO_COMMIT: 770 nfs_direct_commit_schedule(dreq); 771 break; 772 case NFS_ODIRECT_RESCHED_WRITES: 773 nfs_direct_write_reschedule(dreq); 774 break; 775 default: 776 nfs_direct_complete(dreq, true); 777 } 778 } 779 780 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 781 { 782 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 783 } 784 785 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 786 { 787 struct nfs_direct_req *dreq = hdr->dreq; 788 struct nfs_commit_info cinfo; 789 bool request_commit = false; 790 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 791 792 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 793 goto out_put; 794 795 nfs_init_cinfo_from_dreq(&cinfo, dreq); 796 797 spin_lock(&dreq->lock); 798 799 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 800 dreq->flags = 0; 801 dreq->error = hdr->error; 802 } 803 if (dreq->error == 0) { 804 nfs_direct_good_bytes(dreq, hdr); 805 if (nfs_write_need_commit(hdr)) { 806 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 807 request_commit = true; 808 else if (dreq->flags == 0) { 809 nfs_direct_set_hdr_verf(dreq, hdr); 810 request_commit = true; 811 dreq->flags = NFS_ODIRECT_DO_COMMIT; 812 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 813 request_commit = true; 814 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) 815 dreq->flags = 816 NFS_ODIRECT_RESCHED_WRITES; 817 } 818 } 819 } 820 spin_unlock(&dreq->lock); 821 822 while (!list_empty(&hdr->pages)) { 823 824 req = nfs_list_entry(hdr->pages.next); 825 nfs_list_remove_request(req); 826 if (request_commit) { 827 kref_get(&req->wb_kref); 828 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 829 hdr->ds_commit_idx); 830 } 831 nfs_unlock_and_release_request(req); 832 } 833 834 out_put: 835 if (put_dreq(dreq)) 836 nfs_direct_write_complete(dreq, hdr->inode); 837 hdr->release(hdr); 838 } 839 840 static void nfs_write_sync_pgio_error(struct list_head *head) 841 { 842 struct nfs_page *req; 843 844 while (!list_empty(head)) { 845 req = nfs_list_entry(head->next); 846 nfs_list_remove_request(req); 847 nfs_unlock_and_release_request(req); 848 } 849 } 850 851 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 852 { 853 struct nfs_direct_req *dreq = hdr->dreq; 854 855 spin_lock(&dreq->lock); 856 if (dreq->error == 0) { 857 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 858 /* fake unstable write to let common nfs resend pages */ 859 hdr->verf.committed = NFS_UNSTABLE; 860 hdr->good_bytes = hdr->args.count; 861 } 862 spin_unlock(&dreq->lock); 863 } 864 865 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 866 .error_cleanup = nfs_write_sync_pgio_error, 867 .init_hdr = nfs_direct_pgio_init, 868 .completion = nfs_direct_write_completion, 869 .reschedule_io = nfs_direct_write_reschedule_io, 870 }; 871 872 873 /* 874 * NB: Return the value of the first error return code. Subsequent 875 * errors after the first one are ignored. 876 */ 877 /* 878 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 879 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 880 * bail and stop sending more writes. Write length accounting is 881 * handled automatically by nfs_direct_write_result(). Otherwise, if 882 * no requests have been sent, just return an error. 883 */ 884 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 885 struct iov_iter *iter, 886 loff_t pos) 887 { 888 struct nfs_pageio_descriptor desc; 889 struct inode *inode = dreq->inode; 890 ssize_t result = 0; 891 size_t requested_bytes = 0; 892 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 893 894 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 895 &nfs_direct_write_completion_ops); 896 desc.pg_dreq = dreq; 897 get_dreq(dreq); 898 inode_dio_begin(inode); 899 900 NFS_I(inode)->write_io += iov_iter_count(iter); 901 while (iov_iter_count(iter)) { 902 struct page **pagevec; 903 size_t bytes; 904 size_t pgbase; 905 unsigned npages, i; 906 907 result = iov_iter_get_pages_alloc(iter, &pagevec, 908 wsize, &pgbase); 909 if (result < 0) 910 break; 911 912 bytes = result; 913 iov_iter_advance(iter, bytes); 914 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 915 for (i = 0; i < npages; i++) { 916 struct nfs_page *req; 917 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 918 919 req = nfs_create_request(dreq->ctx, pagevec[i], NULL, 920 pgbase, req_len); 921 if (IS_ERR(req)) { 922 result = PTR_ERR(req); 923 break; 924 } 925 926 nfs_direct_setup_mirroring(dreq, &desc, req); 927 if (desc.pg_error < 0) { 928 nfs_free_request(req); 929 result = desc.pg_error; 930 break; 931 } 932 933 nfs_lock_request(req); 934 req->wb_index = pos >> PAGE_SHIFT; 935 req->wb_offset = pos & ~PAGE_MASK; 936 if (!nfs_pageio_add_request(&desc, req)) { 937 result = desc.pg_error; 938 nfs_unlock_and_release_request(req); 939 break; 940 } 941 pgbase = 0; 942 bytes -= req_len; 943 requested_bytes += req_len; 944 pos += req_len; 945 dreq->bytes_left -= req_len; 946 } 947 nfs_direct_release_pages(pagevec, npages); 948 kvfree(pagevec); 949 if (result < 0) 950 break; 951 } 952 nfs_pageio_complete(&desc); 953 954 /* 955 * If no bytes were started, return the error, and let the 956 * generic layer handle the completion. 957 */ 958 if (requested_bytes == 0) { 959 inode_dio_end(inode); 960 nfs_direct_req_release(dreq); 961 return result < 0 ? result : -EIO; 962 } 963 964 if (put_dreq(dreq)) 965 nfs_direct_write_complete(dreq, dreq->inode); 966 return 0; 967 } 968 969 /** 970 * nfs_file_direct_write - file direct write operation for NFS files 971 * @iocb: target I/O control block 972 * @iter: vector of user buffers from which to write data 973 * 974 * We use this function for direct writes instead of calling 975 * generic_file_aio_write() in order to avoid taking the inode 976 * semaphore and updating the i_size. The NFS server will set 977 * the new i_size and this client must read the updated size 978 * back into its cache. We let the server do generic write 979 * parameter checking and report problems. 980 * 981 * We eliminate local atime updates, see direct read above. 982 * 983 * We avoid unnecessary page cache invalidations for normal cached 984 * readers of this file. 985 * 986 * Note that O_APPEND is not supported for NFS direct writes, as there 987 * is no atomic O_APPEND write facility in the NFS protocol. 988 */ 989 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter) 990 { 991 ssize_t result = -EINVAL; 992 struct file *file = iocb->ki_filp; 993 struct address_space *mapping = file->f_mapping; 994 struct inode *inode = mapping->host; 995 struct nfs_direct_req *dreq; 996 struct nfs_lock_context *l_ctx; 997 loff_t pos, end; 998 999 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 1000 file, iov_iter_count(iter), (long long) iocb->ki_pos); 1001 1002 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, 1003 iov_iter_count(iter)); 1004 1005 pos = iocb->ki_pos; 1006 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 1007 1008 inode_lock(inode); 1009 1010 result = nfs_sync_mapping(mapping); 1011 if (result) 1012 goto out_unlock; 1013 1014 if (mapping->nrpages) { 1015 result = invalidate_inode_pages2_range(mapping, 1016 pos >> PAGE_SHIFT, end); 1017 if (result) 1018 goto out_unlock; 1019 } 1020 1021 task_io_account_write(iov_iter_count(iter)); 1022 1023 result = -ENOMEM; 1024 dreq = nfs_direct_req_alloc(); 1025 if (!dreq) 1026 goto out_unlock; 1027 1028 dreq->inode = inode; 1029 dreq->bytes_left = dreq->max_count = iov_iter_count(iter); 1030 dreq->io_start = pos; 1031 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 1032 l_ctx = nfs_get_lock_context(dreq->ctx); 1033 if (IS_ERR(l_ctx)) { 1034 result = PTR_ERR(l_ctx); 1035 goto out_release; 1036 } 1037 dreq->l_ctx = l_ctx; 1038 if (!is_sync_kiocb(iocb)) 1039 dreq->iocb = iocb; 1040 1041 result = nfs_direct_write_schedule_iovec(dreq, iter, pos); 1042 1043 if (mapping->nrpages) { 1044 invalidate_inode_pages2_range(mapping, 1045 pos >> PAGE_SHIFT, end); 1046 } 1047 1048 inode_unlock(inode); 1049 1050 if (!result) { 1051 result = nfs_direct_wait(dreq); 1052 if (result > 0) { 1053 struct inode *inode = mapping->host; 1054 1055 iocb->ki_pos = pos + result; 1056 spin_lock(&inode->i_lock); 1057 if (i_size_read(inode) < iocb->ki_pos) 1058 i_size_write(inode, iocb->ki_pos); 1059 spin_unlock(&inode->i_lock); 1060 1061 /* XXX: should check the generic_write_sync retval */ 1062 generic_write_sync(iocb, result); 1063 } 1064 } 1065 nfs_direct_req_release(dreq); 1066 return result; 1067 1068 out_release: 1069 nfs_direct_req_release(dreq); 1070 out_unlock: 1071 inode_unlock(inode); 1072 return result; 1073 } 1074 1075 /** 1076 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1077 * 1078 */ 1079 int __init nfs_init_directcache(void) 1080 { 1081 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1082 sizeof(struct nfs_direct_req), 1083 0, (SLAB_RECLAIM_ACCOUNT| 1084 SLAB_MEM_SPREAD), 1085 NULL); 1086 if (nfs_direct_cachep == NULL) 1087 return -ENOMEM; 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1094 * 1095 */ 1096 void nfs_destroy_directcache(void) 1097 { 1098 kmem_cache_destroy(nfs_direct_cachep); 1099 } 1100