1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 out: 122 put_rpccred(cred); 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * we are freeing strings created by nfs_add_to_readdir_array() 167 */ 168 static 169 void nfs_readdir_clear_array(struct page *page) 170 { 171 struct nfs_cache_array *array; 172 int i; 173 174 array = kmap_atomic(page); 175 for (i = 0; i < array->size; i++) 176 kfree(array->array[i].string.name); 177 kunmap_atomic(array); 178 } 179 180 /* 181 * the caller is responsible for freeing qstr.name 182 * when called by nfs_readdir_add_to_array, the strings will be freed in 183 * nfs_clear_readdir_array() 184 */ 185 static 186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 187 { 188 string->len = len; 189 string->name = kmemdup(name, len, GFP_KERNEL); 190 if (string->name == NULL) 191 return -ENOMEM; 192 /* 193 * Avoid a kmemleak false positive. The pointer to the name is stored 194 * in a page cache page which kmemleak does not scan. 195 */ 196 kmemleak_not_leak(string->name); 197 string->hash = full_name_hash(NULL, name, len); 198 return 0; 199 } 200 201 static 202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 203 { 204 struct nfs_cache_array *array = kmap(page); 205 struct nfs_cache_array_entry *cache_entry; 206 int ret; 207 208 cache_entry = &array->array[array->size]; 209 210 /* Check that this entry lies within the page bounds */ 211 ret = -ENOSPC; 212 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 213 goto out; 214 215 cache_entry->cookie = entry->prev_cookie; 216 cache_entry->ino = entry->ino; 217 cache_entry->d_type = entry->d_type; 218 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 219 if (ret) 220 goto out; 221 array->last_cookie = entry->cookie; 222 array->size++; 223 if (entry->eof != 0) 224 array->eof_index = array->size; 225 out: 226 kunmap(page); 227 return ret; 228 } 229 230 static 231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 232 { 233 loff_t diff = desc->ctx->pos - desc->current_index; 234 unsigned int index; 235 236 if (diff < 0) 237 goto out_eof; 238 if (diff >= array->size) { 239 if (array->eof_index >= 0) 240 goto out_eof; 241 return -EAGAIN; 242 } 243 244 index = (unsigned int)diff; 245 *desc->dir_cookie = array->array[index].cookie; 246 desc->cache_entry_index = index; 247 return 0; 248 out_eof: 249 desc->eof = true; 250 return -EBADCOOKIE; 251 } 252 253 static bool 254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 255 { 256 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 257 return false; 258 smp_rmb(); 259 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 260 } 261 262 static 263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 264 { 265 int i; 266 loff_t new_pos; 267 int status = -EAGAIN; 268 269 for (i = 0; i < array->size; i++) { 270 if (array->array[i].cookie == *desc->dir_cookie) { 271 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 272 struct nfs_open_dir_context *ctx = desc->file->private_data; 273 274 new_pos = desc->current_index + i; 275 if (ctx->attr_gencount != nfsi->attr_gencount || 276 !nfs_readdir_inode_mapping_valid(nfsi)) { 277 ctx->duped = 0; 278 ctx->attr_gencount = nfsi->attr_gencount; 279 } else if (new_pos < desc->ctx->pos) { 280 if (ctx->duped > 0 281 && ctx->dup_cookie == *desc->dir_cookie) { 282 if (printk_ratelimit()) { 283 pr_notice("NFS: directory %pD2 contains a readdir loop." 284 "Please contact your server vendor. " 285 "The file: %.*s has duplicate cookie %llu\n", 286 desc->file, array->array[i].string.len, 287 array->array[i].string.name, *desc->dir_cookie); 288 } 289 status = -ELOOP; 290 goto out; 291 } 292 ctx->dup_cookie = *desc->dir_cookie; 293 ctx->duped = -1; 294 } 295 desc->ctx->pos = new_pos; 296 desc->cache_entry_index = i; 297 return 0; 298 } 299 } 300 if (array->eof_index >= 0) { 301 status = -EBADCOOKIE; 302 if (*desc->dir_cookie == array->last_cookie) 303 desc->eof = true; 304 } 305 out: 306 return status; 307 } 308 309 static 310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 311 { 312 struct nfs_cache_array *array; 313 int status; 314 315 array = kmap(desc->page); 316 317 if (*desc->dir_cookie == 0) 318 status = nfs_readdir_search_for_pos(array, desc); 319 else 320 status = nfs_readdir_search_for_cookie(array, desc); 321 322 if (status == -EAGAIN) { 323 desc->last_cookie = array->last_cookie; 324 desc->current_index += array->size; 325 desc->page_index++; 326 } 327 kunmap(desc->page); 328 return status; 329 } 330 331 /* Fill a page with xdr information before transferring to the cache page */ 332 static 333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 334 struct nfs_entry *entry, struct file *file, struct inode *inode) 335 { 336 struct nfs_open_dir_context *ctx = file->private_data; 337 struct rpc_cred *cred = ctx->cred; 338 unsigned long timestamp, gencount; 339 int error; 340 341 again: 342 timestamp = jiffies; 343 gencount = nfs_inc_attr_generation_counter(); 344 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 345 NFS_SERVER(inode)->dtsize, desc->plus); 346 if (error < 0) { 347 /* We requested READDIRPLUS, but the server doesn't grok it */ 348 if (error == -ENOTSUPP && desc->plus) { 349 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 350 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 351 desc->plus = false; 352 goto again; 353 } 354 goto error; 355 } 356 desc->timestamp = timestamp; 357 desc->gencount = gencount; 358 error: 359 return error; 360 } 361 362 static int xdr_decode(nfs_readdir_descriptor_t *desc, 363 struct nfs_entry *entry, struct xdr_stream *xdr) 364 { 365 int error; 366 367 error = desc->decode(xdr, entry, desc->plus); 368 if (error) 369 return error; 370 entry->fattr->time_start = desc->timestamp; 371 entry->fattr->gencount = desc->gencount; 372 return 0; 373 } 374 375 /* Match file and dirent using either filehandle or fileid 376 * Note: caller is responsible for checking the fsid 377 */ 378 static 379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 380 { 381 struct inode *inode; 382 struct nfs_inode *nfsi; 383 384 if (d_really_is_negative(dentry)) 385 return 0; 386 387 inode = d_inode(dentry); 388 if (is_bad_inode(inode) || NFS_STALE(inode)) 389 return 0; 390 391 nfsi = NFS_I(inode); 392 if (entry->fattr->fileid != nfsi->fileid) 393 return 0; 394 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 395 return 0; 396 return 1; 397 } 398 399 static 400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 401 { 402 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 403 return false; 404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 405 return true; 406 if (ctx->pos == 0) 407 return true; 408 return false; 409 } 410 411 /* 412 * This function is called by the lookup and getattr code to request the 413 * use of readdirplus to accelerate any future lookups in the same 414 * directory. 415 */ 416 void nfs_advise_use_readdirplus(struct inode *dir) 417 { 418 struct nfs_inode *nfsi = NFS_I(dir); 419 420 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 421 !list_empty(&nfsi->open_files)) 422 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 423 } 424 425 /* 426 * This function is mainly for use by nfs_getattr(). 427 * 428 * If this is an 'ls -l', we want to force use of readdirplus. 429 * Do this by checking if there is an active file descriptor 430 * and calling nfs_advise_use_readdirplus, then forcing a 431 * cache flush. 432 */ 433 void nfs_force_use_readdirplus(struct inode *dir) 434 { 435 struct nfs_inode *nfsi = NFS_I(dir); 436 437 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 438 !list_empty(&nfsi->open_files)) { 439 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 440 invalidate_mapping_pages(dir->i_mapping, 0, -1); 441 } 442 } 443 444 static 445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 446 { 447 struct qstr filename = QSTR_INIT(entry->name, entry->len); 448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 449 struct dentry *dentry; 450 struct dentry *alias; 451 struct inode *dir = d_inode(parent); 452 struct inode *inode; 453 int status; 454 455 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 456 return; 457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 458 return; 459 if (filename.len == 0) 460 return; 461 /* Validate that the name doesn't contain any illegal '\0' */ 462 if (strnlen(filename.name, filename.len) != filename.len) 463 return; 464 /* ...or '/' */ 465 if (strnchr(filename.name, filename.len, '/')) 466 return; 467 if (filename.name[0] == '.') { 468 if (filename.len == 1) 469 return; 470 if (filename.len == 2 && filename.name[1] == '.') 471 return; 472 } 473 filename.hash = full_name_hash(parent, filename.name, filename.len); 474 475 dentry = d_lookup(parent, &filename); 476 again: 477 if (!dentry) { 478 dentry = d_alloc_parallel(parent, &filename, &wq); 479 if (IS_ERR(dentry)) 480 return; 481 } 482 if (!d_in_lookup(dentry)) { 483 /* Is there a mountpoint here? If so, just exit */ 484 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 485 &entry->fattr->fsid)) 486 goto out; 487 if (nfs_same_file(dentry, entry)) { 488 if (!entry->fh->size) 489 goto out; 490 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 491 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 492 if (!status) 493 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 494 goto out; 495 } else { 496 d_invalidate(dentry); 497 dput(dentry); 498 dentry = NULL; 499 goto again; 500 } 501 } 502 if (!entry->fh->size) { 503 d_lookup_done(dentry); 504 goto out; 505 } 506 507 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 508 alias = d_splice_alias(inode, dentry); 509 d_lookup_done(dentry); 510 if (alias) { 511 if (IS_ERR(alias)) 512 goto out; 513 dput(dentry); 514 dentry = alias; 515 } 516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 517 out: 518 dput(dentry); 519 } 520 521 /* Perform conversion from xdr to cache array */ 522 static 523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 524 struct page **xdr_pages, struct page *page, unsigned int buflen) 525 { 526 struct xdr_stream stream; 527 struct xdr_buf buf; 528 struct page *scratch; 529 struct nfs_cache_array *array; 530 unsigned int count = 0; 531 int status; 532 533 scratch = alloc_page(GFP_KERNEL); 534 if (scratch == NULL) 535 return -ENOMEM; 536 537 if (buflen == 0) 538 goto out_nopages; 539 540 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 541 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 542 543 do { 544 status = xdr_decode(desc, entry, &stream); 545 if (status != 0) { 546 if (status == -EAGAIN) 547 status = 0; 548 break; 549 } 550 551 count++; 552 553 if (desc->plus) 554 nfs_prime_dcache(file_dentry(desc->file), entry); 555 556 status = nfs_readdir_add_to_array(entry, page); 557 if (status != 0) 558 break; 559 } while (!entry->eof); 560 561 out_nopages: 562 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 563 array = kmap(page); 564 array->eof_index = array->size; 565 status = 0; 566 kunmap(page); 567 } 568 569 put_page(scratch); 570 return status; 571 } 572 573 static 574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 575 { 576 unsigned int i; 577 for (i = 0; i < npages; i++) 578 put_page(pages[i]); 579 } 580 581 /* 582 * nfs_readdir_large_page will allocate pages that must be freed with a call 583 * to nfs_readdir_free_pagearray 584 */ 585 static 586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 587 { 588 unsigned int i; 589 590 for (i = 0; i < npages; i++) { 591 struct page *page = alloc_page(GFP_KERNEL); 592 if (page == NULL) 593 goto out_freepages; 594 pages[i] = page; 595 } 596 return 0; 597 598 out_freepages: 599 nfs_readdir_free_pages(pages, i); 600 return -ENOMEM; 601 } 602 603 static 604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 605 { 606 struct page *pages[NFS_MAX_READDIR_PAGES]; 607 struct nfs_entry entry; 608 struct file *file = desc->file; 609 struct nfs_cache_array *array; 610 int status = -ENOMEM; 611 unsigned int array_size = ARRAY_SIZE(pages); 612 613 entry.prev_cookie = 0; 614 entry.cookie = desc->last_cookie; 615 entry.eof = 0; 616 entry.fh = nfs_alloc_fhandle(); 617 entry.fattr = nfs_alloc_fattr(); 618 entry.server = NFS_SERVER(inode); 619 if (entry.fh == NULL || entry.fattr == NULL) 620 goto out; 621 622 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 623 if (IS_ERR(entry.label)) { 624 status = PTR_ERR(entry.label); 625 goto out; 626 } 627 628 array = kmap(page); 629 memset(array, 0, sizeof(struct nfs_cache_array)); 630 array->eof_index = -1; 631 632 status = nfs_readdir_alloc_pages(pages, array_size); 633 if (status < 0) 634 goto out_release_array; 635 do { 636 unsigned int pglen; 637 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 638 639 if (status < 0) 640 break; 641 pglen = status; 642 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 643 if (status < 0) { 644 if (status == -ENOSPC) 645 status = 0; 646 break; 647 } 648 } while (array->eof_index < 0); 649 650 nfs_readdir_free_pages(pages, array_size); 651 out_release_array: 652 kunmap(page); 653 nfs4_label_free(entry.label); 654 out: 655 nfs_free_fattr(entry.fattr); 656 nfs_free_fhandle(entry.fh); 657 return status; 658 } 659 660 /* 661 * Now we cache directories properly, by converting xdr information 662 * to an array that can be used for lookups later. This results in 663 * fewer cache pages, since we can store more information on each page. 664 * We only need to convert from xdr once so future lookups are much simpler 665 */ 666 static 667 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 668 { 669 struct inode *inode = file_inode(desc->file); 670 int ret; 671 672 ret = nfs_readdir_xdr_to_array(desc, page, inode); 673 if (ret < 0) 674 goto error; 675 SetPageUptodate(page); 676 677 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 678 /* Should never happen */ 679 nfs_zap_mapping(inode, inode->i_mapping); 680 } 681 unlock_page(page); 682 return 0; 683 error: 684 unlock_page(page); 685 return ret; 686 } 687 688 static 689 void cache_page_release(nfs_readdir_descriptor_t *desc) 690 { 691 if (!desc->page->mapping) 692 nfs_readdir_clear_array(desc->page); 693 put_page(desc->page); 694 desc->page = NULL; 695 } 696 697 static 698 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 699 { 700 return read_cache_page(desc->file->f_mapping, 701 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 702 } 703 704 /* 705 * Returns 0 if desc->dir_cookie was found on page desc->page_index 706 */ 707 static 708 int find_cache_page(nfs_readdir_descriptor_t *desc) 709 { 710 int res; 711 712 desc->page = get_cache_page(desc); 713 if (IS_ERR(desc->page)) 714 return PTR_ERR(desc->page); 715 716 res = nfs_readdir_search_array(desc); 717 if (res != 0) 718 cache_page_release(desc); 719 return res; 720 } 721 722 /* Search for desc->dir_cookie from the beginning of the page cache */ 723 static inline 724 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 725 { 726 int res; 727 728 if (desc->page_index == 0) { 729 desc->current_index = 0; 730 desc->last_cookie = 0; 731 } 732 do { 733 res = find_cache_page(desc); 734 } while (res == -EAGAIN); 735 return res; 736 } 737 738 /* 739 * Once we've found the start of the dirent within a page: fill 'er up... 740 */ 741 static 742 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 743 { 744 struct file *file = desc->file; 745 int i = 0; 746 int res = 0; 747 struct nfs_cache_array *array = NULL; 748 struct nfs_open_dir_context *ctx = file->private_data; 749 750 array = kmap(desc->page); 751 for (i = desc->cache_entry_index; i < array->size; i++) { 752 struct nfs_cache_array_entry *ent; 753 754 ent = &array->array[i]; 755 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 756 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 757 desc->eof = true; 758 break; 759 } 760 desc->ctx->pos++; 761 if (i < (array->size-1)) 762 *desc->dir_cookie = array->array[i+1].cookie; 763 else 764 *desc->dir_cookie = array->last_cookie; 765 if (ctx->duped != 0) 766 ctx->duped = 1; 767 } 768 if (array->eof_index >= 0) 769 desc->eof = true; 770 771 kunmap(desc->page); 772 cache_page_release(desc); 773 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 774 (unsigned long long)*desc->dir_cookie, res); 775 return res; 776 } 777 778 /* 779 * If we cannot find a cookie in our cache, we suspect that this is 780 * because it points to a deleted file, so we ask the server to return 781 * whatever it thinks is the next entry. We then feed this to filldir. 782 * If all goes well, we should then be able to find our way round the 783 * cache on the next call to readdir_search_pagecache(); 784 * 785 * NOTE: we cannot add the anonymous page to the pagecache because 786 * the data it contains might not be page aligned. Besides, 787 * we should already have a complete representation of the 788 * directory in the page cache by the time we get here. 789 */ 790 static inline 791 int uncached_readdir(nfs_readdir_descriptor_t *desc) 792 { 793 struct page *page = NULL; 794 int status; 795 struct inode *inode = file_inode(desc->file); 796 struct nfs_open_dir_context *ctx = desc->file->private_data; 797 798 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 799 (unsigned long long)*desc->dir_cookie); 800 801 page = alloc_page(GFP_HIGHUSER); 802 if (!page) { 803 status = -ENOMEM; 804 goto out; 805 } 806 807 desc->page_index = 0; 808 desc->last_cookie = *desc->dir_cookie; 809 desc->page = page; 810 ctx->duped = 0; 811 812 status = nfs_readdir_xdr_to_array(desc, page, inode); 813 if (status < 0) 814 goto out_release; 815 816 status = nfs_do_filldir(desc); 817 818 out: 819 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 820 __func__, status); 821 return status; 822 out_release: 823 cache_page_release(desc); 824 goto out; 825 } 826 827 /* The file offset position represents the dirent entry number. A 828 last cookie cache takes care of the common case of reading the 829 whole directory. 830 */ 831 static int nfs_readdir(struct file *file, struct dir_context *ctx) 832 { 833 struct dentry *dentry = file_dentry(file); 834 struct inode *inode = d_inode(dentry); 835 nfs_readdir_descriptor_t my_desc, 836 *desc = &my_desc; 837 struct nfs_open_dir_context *dir_ctx = file->private_data; 838 int res = 0; 839 840 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 841 file, (long long)ctx->pos); 842 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 843 844 /* 845 * ctx->pos points to the dirent entry number. 846 * *desc->dir_cookie has the cookie for the next entry. We have 847 * to either find the entry with the appropriate number or 848 * revalidate the cookie. 849 */ 850 memset(desc, 0, sizeof(*desc)); 851 852 desc->file = file; 853 desc->ctx = ctx; 854 desc->dir_cookie = &dir_ctx->dir_cookie; 855 desc->decode = NFS_PROTO(inode)->decode_dirent; 856 desc->plus = nfs_use_readdirplus(inode, ctx); 857 858 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 859 res = nfs_revalidate_mapping(inode, file->f_mapping); 860 if (res < 0) 861 goto out; 862 863 do { 864 res = readdir_search_pagecache(desc); 865 866 if (res == -EBADCOOKIE) { 867 res = 0; 868 /* This means either end of directory */ 869 if (*desc->dir_cookie && !desc->eof) { 870 /* Or that the server has 'lost' a cookie */ 871 res = uncached_readdir(desc); 872 if (res == 0) 873 continue; 874 } 875 break; 876 } 877 if (res == -ETOOSMALL && desc->plus) { 878 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 879 nfs_zap_caches(inode); 880 desc->page_index = 0; 881 desc->plus = false; 882 desc->eof = false; 883 continue; 884 } 885 if (res < 0) 886 break; 887 888 res = nfs_do_filldir(desc); 889 if (res < 0) 890 break; 891 } while (!desc->eof); 892 out: 893 if (res > 0) 894 res = 0; 895 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 896 return res; 897 } 898 899 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 900 { 901 struct inode *inode = file_inode(filp); 902 struct nfs_open_dir_context *dir_ctx = filp->private_data; 903 904 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 905 filp, offset, whence); 906 907 inode_lock(inode); 908 switch (whence) { 909 case 1: 910 offset += filp->f_pos; 911 case 0: 912 if (offset >= 0) 913 break; 914 default: 915 offset = -EINVAL; 916 goto out; 917 } 918 if (offset != filp->f_pos) { 919 filp->f_pos = offset; 920 dir_ctx->dir_cookie = 0; 921 dir_ctx->duped = 0; 922 } 923 out: 924 inode_unlock(inode); 925 return offset; 926 } 927 928 /* 929 * All directory operations under NFS are synchronous, so fsync() 930 * is a dummy operation. 931 */ 932 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 933 int datasync) 934 { 935 struct inode *inode = file_inode(filp); 936 937 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 938 939 inode_lock(inode); 940 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 941 inode_unlock(inode); 942 return 0; 943 } 944 945 /** 946 * nfs_force_lookup_revalidate - Mark the directory as having changed 947 * @dir - pointer to directory inode 948 * 949 * This forces the revalidation code in nfs_lookup_revalidate() to do a 950 * full lookup on all child dentries of 'dir' whenever a change occurs 951 * on the server that might have invalidated our dcache. 952 * 953 * The caller should be holding dir->i_lock 954 */ 955 void nfs_force_lookup_revalidate(struct inode *dir) 956 { 957 NFS_I(dir)->cache_change_attribute++; 958 } 959 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 960 961 /* 962 * A check for whether or not the parent directory has changed. 963 * In the case it has, we assume that the dentries are untrustworthy 964 * and may need to be looked up again. 965 * If rcu_walk prevents us from performing a full check, return 0. 966 */ 967 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 968 int rcu_walk) 969 { 970 if (IS_ROOT(dentry)) 971 return 1; 972 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 973 return 0; 974 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 975 return 0; 976 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 977 if (nfs_mapping_need_revalidate_inode(dir)) { 978 if (rcu_walk) 979 return 0; 980 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 981 return 0; 982 } 983 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 984 return 0; 985 return 1; 986 } 987 988 /* 989 * Use intent information to check whether or not we're going to do 990 * an O_EXCL create using this path component. 991 */ 992 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 993 { 994 if (NFS_PROTO(dir)->version == 2) 995 return 0; 996 return flags & LOOKUP_EXCL; 997 } 998 999 /* 1000 * Inode and filehandle revalidation for lookups. 1001 * 1002 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1003 * or if the intent information indicates that we're about to open this 1004 * particular file and the "nocto" mount flag is not set. 1005 * 1006 */ 1007 static 1008 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1009 { 1010 struct nfs_server *server = NFS_SERVER(inode); 1011 int ret; 1012 1013 if (IS_AUTOMOUNT(inode)) 1014 return 0; 1015 /* VFS wants an on-the-wire revalidation */ 1016 if (flags & LOOKUP_REVAL) 1017 goto out_force; 1018 /* This is an open(2) */ 1019 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1020 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1021 goto out_force; 1022 out: 1023 return (inode->i_nlink == 0) ? -ENOENT : 0; 1024 out_force: 1025 if (flags & LOOKUP_RCU) 1026 return -ECHILD; 1027 ret = __nfs_revalidate_inode(server, inode); 1028 if (ret != 0) 1029 return ret; 1030 goto out; 1031 } 1032 1033 /* 1034 * We judge how long we want to trust negative 1035 * dentries by looking at the parent inode mtime. 1036 * 1037 * If parent mtime has changed, we revalidate, else we wait for a 1038 * period corresponding to the parent's attribute cache timeout value. 1039 * 1040 * If LOOKUP_RCU prevents us from performing a full check, return 1 1041 * suggesting a reval is needed. 1042 */ 1043 static inline 1044 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1045 unsigned int flags) 1046 { 1047 /* Don't revalidate a negative dentry if we're creating a new file */ 1048 if (flags & LOOKUP_CREATE) 1049 return 0; 1050 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1051 return 1; 1052 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1053 } 1054 1055 /* 1056 * This is called every time the dcache has a lookup hit, 1057 * and we should check whether we can really trust that 1058 * lookup. 1059 * 1060 * NOTE! The hit can be a negative hit too, don't assume 1061 * we have an inode! 1062 * 1063 * If the parent directory is seen to have changed, we throw out the 1064 * cached dentry and do a new lookup. 1065 */ 1066 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1067 { 1068 struct inode *dir; 1069 struct inode *inode; 1070 struct dentry *parent; 1071 struct nfs_fh *fhandle = NULL; 1072 struct nfs_fattr *fattr = NULL; 1073 struct nfs4_label *label = NULL; 1074 int error; 1075 1076 if (flags & LOOKUP_RCU) { 1077 parent = READ_ONCE(dentry->d_parent); 1078 dir = d_inode_rcu(parent); 1079 if (!dir) 1080 return -ECHILD; 1081 } else { 1082 parent = dget_parent(dentry); 1083 dir = d_inode(parent); 1084 } 1085 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1086 inode = d_inode(dentry); 1087 1088 if (!inode) { 1089 if (nfs_neg_need_reval(dir, dentry, flags)) { 1090 if (flags & LOOKUP_RCU) 1091 return -ECHILD; 1092 goto out_bad; 1093 } 1094 goto out_valid; 1095 } 1096 1097 if (is_bad_inode(inode)) { 1098 if (flags & LOOKUP_RCU) 1099 return -ECHILD; 1100 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1101 __func__, dentry); 1102 goto out_bad; 1103 } 1104 1105 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1106 goto out_set_verifier; 1107 1108 /* Force a full look up iff the parent directory has changed */ 1109 if (!nfs_is_exclusive_create(dir, flags) && 1110 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1111 error = nfs_lookup_verify_inode(inode, flags); 1112 if (error) { 1113 if (flags & LOOKUP_RCU) 1114 return -ECHILD; 1115 if (error == -ESTALE) 1116 goto out_zap_parent; 1117 goto out_error; 1118 } 1119 nfs_advise_use_readdirplus(dir); 1120 goto out_valid; 1121 } 1122 1123 if (flags & LOOKUP_RCU) 1124 return -ECHILD; 1125 1126 if (NFS_STALE(inode)) 1127 goto out_bad; 1128 1129 error = -ENOMEM; 1130 fhandle = nfs_alloc_fhandle(); 1131 fattr = nfs_alloc_fattr(); 1132 if (fhandle == NULL || fattr == NULL) 1133 goto out_error; 1134 1135 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1136 if (IS_ERR(label)) 1137 goto out_error; 1138 1139 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1140 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1141 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1142 if (error == -ESTALE || error == -ENOENT) 1143 goto out_bad; 1144 if (error) 1145 goto out_error; 1146 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1147 goto out_bad; 1148 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1149 goto out_bad; 1150 1151 nfs_setsecurity(inode, fattr, label); 1152 1153 nfs_free_fattr(fattr); 1154 nfs_free_fhandle(fhandle); 1155 nfs4_label_free(label); 1156 1157 /* set a readdirplus hint that we had a cache miss */ 1158 nfs_force_use_readdirplus(dir); 1159 1160 out_set_verifier: 1161 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1162 out_valid: 1163 if (flags & LOOKUP_RCU) { 1164 if (parent != READ_ONCE(dentry->d_parent)) 1165 return -ECHILD; 1166 } else 1167 dput(parent); 1168 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1169 __func__, dentry); 1170 return 1; 1171 out_zap_parent: 1172 nfs_zap_caches(dir); 1173 out_bad: 1174 WARN_ON(flags & LOOKUP_RCU); 1175 nfs_free_fattr(fattr); 1176 nfs_free_fhandle(fhandle); 1177 nfs4_label_free(label); 1178 nfs_mark_for_revalidate(dir); 1179 if (inode && S_ISDIR(inode->i_mode)) { 1180 /* Purge readdir caches. */ 1181 nfs_zap_caches(inode); 1182 /* 1183 * We can't d_drop the root of a disconnected tree: 1184 * its d_hash is on the s_anon list and d_drop() would hide 1185 * it from shrink_dcache_for_unmount(), leading to busy 1186 * inodes on unmount and further oopses. 1187 */ 1188 if (IS_ROOT(dentry)) 1189 goto out_valid; 1190 } 1191 dput(parent); 1192 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1193 __func__, dentry); 1194 return 0; 1195 out_error: 1196 WARN_ON(flags & LOOKUP_RCU); 1197 nfs_free_fattr(fattr); 1198 nfs_free_fhandle(fhandle); 1199 nfs4_label_free(label); 1200 dput(parent); 1201 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1202 __func__, dentry, error); 1203 return error; 1204 } 1205 1206 /* 1207 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1208 * when we don't really care about the dentry name. This is called when a 1209 * pathwalk ends on a dentry that was not found via a normal lookup in the 1210 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1211 * 1212 * In this situation, we just want to verify that the inode itself is OK 1213 * since the dentry might have changed on the server. 1214 */ 1215 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1216 { 1217 struct inode *inode = d_inode(dentry); 1218 int error = 0; 1219 1220 /* 1221 * I believe we can only get a negative dentry here in the case of a 1222 * procfs-style symlink. Just assume it's correct for now, but we may 1223 * eventually need to do something more here. 1224 */ 1225 if (!inode) { 1226 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1227 __func__, dentry); 1228 return 1; 1229 } 1230 1231 if (is_bad_inode(inode)) { 1232 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1233 __func__, dentry); 1234 return 0; 1235 } 1236 1237 error = nfs_lookup_verify_inode(inode, flags); 1238 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1239 __func__, inode->i_ino, error ? "invalid" : "valid"); 1240 return !error; 1241 } 1242 1243 /* 1244 * This is called from dput() when d_count is going to 0. 1245 */ 1246 static int nfs_dentry_delete(const struct dentry *dentry) 1247 { 1248 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1249 dentry, dentry->d_flags); 1250 1251 /* Unhash any dentry with a stale inode */ 1252 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1253 return 1; 1254 1255 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1256 /* Unhash it, so that ->d_iput() would be called */ 1257 return 1; 1258 } 1259 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1260 /* Unhash it, so that ancestors of killed async unlink 1261 * files will be cleaned up during umount */ 1262 return 1; 1263 } 1264 return 0; 1265 1266 } 1267 1268 /* Ensure that we revalidate inode->i_nlink */ 1269 static void nfs_drop_nlink(struct inode *inode) 1270 { 1271 spin_lock(&inode->i_lock); 1272 /* drop the inode if we're reasonably sure this is the last link */ 1273 if (inode->i_nlink == 1) 1274 clear_nlink(inode); 1275 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1276 spin_unlock(&inode->i_lock); 1277 } 1278 1279 /* 1280 * Called when the dentry loses inode. 1281 * We use it to clean up silly-renamed files. 1282 */ 1283 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1284 { 1285 if (S_ISDIR(inode->i_mode)) 1286 /* drop any readdir cache as it could easily be old */ 1287 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1288 1289 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1290 nfs_complete_unlink(dentry, inode); 1291 nfs_drop_nlink(inode); 1292 } 1293 iput(inode); 1294 } 1295 1296 static void nfs_d_release(struct dentry *dentry) 1297 { 1298 /* free cached devname value, if it survived that far */ 1299 if (unlikely(dentry->d_fsdata)) { 1300 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1301 WARN_ON(1); 1302 else 1303 kfree(dentry->d_fsdata); 1304 } 1305 } 1306 1307 const struct dentry_operations nfs_dentry_operations = { 1308 .d_revalidate = nfs_lookup_revalidate, 1309 .d_weak_revalidate = nfs_weak_revalidate, 1310 .d_delete = nfs_dentry_delete, 1311 .d_iput = nfs_dentry_iput, 1312 .d_automount = nfs_d_automount, 1313 .d_release = nfs_d_release, 1314 }; 1315 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1316 1317 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1318 { 1319 struct dentry *res; 1320 struct inode *inode = NULL; 1321 struct nfs_fh *fhandle = NULL; 1322 struct nfs_fattr *fattr = NULL; 1323 struct nfs4_label *label = NULL; 1324 int error; 1325 1326 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1327 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1328 1329 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1330 return ERR_PTR(-ENAMETOOLONG); 1331 1332 /* 1333 * If we're doing an exclusive create, optimize away the lookup 1334 * but don't hash the dentry. 1335 */ 1336 if (nfs_is_exclusive_create(dir, flags)) 1337 return NULL; 1338 1339 res = ERR_PTR(-ENOMEM); 1340 fhandle = nfs_alloc_fhandle(); 1341 fattr = nfs_alloc_fattr(); 1342 if (fhandle == NULL || fattr == NULL) 1343 goto out; 1344 1345 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1346 if (IS_ERR(label)) 1347 goto out; 1348 1349 trace_nfs_lookup_enter(dir, dentry, flags); 1350 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1351 if (error == -ENOENT) 1352 goto no_entry; 1353 if (error < 0) { 1354 res = ERR_PTR(error); 1355 goto out_label; 1356 } 1357 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1358 res = ERR_CAST(inode); 1359 if (IS_ERR(res)) 1360 goto out_label; 1361 1362 /* Notify readdir to use READDIRPLUS */ 1363 nfs_force_use_readdirplus(dir); 1364 1365 no_entry: 1366 res = d_splice_alias(inode, dentry); 1367 if (res != NULL) { 1368 if (IS_ERR(res)) 1369 goto out_label; 1370 dentry = res; 1371 } 1372 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1373 out_label: 1374 trace_nfs_lookup_exit(dir, dentry, flags, error); 1375 nfs4_label_free(label); 1376 out: 1377 nfs_free_fattr(fattr); 1378 nfs_free_fhandle(fhandle); 1379 return res; 1380 } 1381 EXPORT_SYMBOL_GPL(nfs_lookup); 1382 1383 #if IS_ENABLED(CONFIG_NFS_V4) 1384 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1385 1386 const struct dentry_operations nfs4_dentry_operations = { 1387 .d_revalidate = nfs4_lookup_revalidate, 1388 .d_weak_revalidate = nfs_weak_revalidate, 1389 .d_delete = nfs_dentry_delete, 1390 .d_iput = nfs_dentry_iput, 1391 .d_automount = nfs_d_automount, 1392 .d_release = nfs_d_release, 1393 }; 1394 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1395 1396 static fmode_t flags_to_mode(int flags) 1397 { 1398 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1399 if ((flags & O_ACCMODE) != O_WRONLY) 1400 res |= FMODE_READ; 1401 if ((flags & O_ACCMODE) != O_RDONLY) 1402 res |= FMODE_WRITE; 1403 return res; 1404 } 1405 1406 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1407 { 1408 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1409 } 1410 1411 static int do_open(struct inode *inode, struct file *filp) 1412 { 1413 nfs_fscache_open_file(inode, filp); 1414 return 0; 1415 } 1416 1417 static int nfs_finish_open(struct nfs_open_context *ctx, 1418 struct dentry *dentry, 1419 struct file *file, unsigned open_flags, 1420 int *opened) 1421 { 1422 int err; 1423 1424 err = finish_open(file, dentry, do_open, opened); 1425 if (err) 1426 goto out; 1427 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1428 nfs_file_set_open_context(file, ctx); 1429 else 1430 err = -ESTALE; 1431 out: 1432 return err; 1433 } 1434 1435 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1436 struct file *file, unsigned open_flags, 1437 umode_t mode, int *opened) 1438 { 1439 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1440 struct nfs_open_context *ctx; 1441 struct dentry *res; 1442 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1443 struct inode *inode; 1444 unsigned int lookup_flags = 0; 1445 bool switched = false; 1446 int err; 1447 1448 /* Expect a negative dentry */ 1449 BUG_ON(d_inode(dentry)); 1450 1451 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1452 dir->i_sb->s_id, dir->i_ino, dentry); 1453 1454 err = nfs_check_flags(open_flags); 1455 if (err) 1456 return err; 1457 1458 /* NFS only supports OPEN on regular files */ 1459 if ((open_flags & O_DIRECTORY)) { 1460 if (!d_in_lookup(dentry)) { 1461 /* 1462 * Hashed negative dentry with O_DIRECTORY: dentry was 1463 * revalidated and is fine, no need to perform lookup 1464 * again 1465 */ 1466 return -ENOENT; 1467 } 1468 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1469 goto no_open; 1470 } 1471 1472 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1473 return -ENAMETOOLONG; 1474 1475 if (open_flags & O_CREAT) { 1476 struct nfs_server *server = NFS_SERVER(dir); 1477 1478 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1479 mode &= ~current_umask(); 1480 1481 attr.ia_valid |= ATTR_MODE; 1482 attr.ia_mode = mode; 1483 } 1484 if (open_flags & O_TRUNC) { 1485 attr.ia_valid |= ATTR_SIZE; 1486 attr.ia_size = 0; 1487 } 1488 1489 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1490 d_drop(dentry); 1491 switched = true; 1492 dentry = d_alloc_parallel(dentry->d_parent, 1493 &dentry->d_name, &wq); 1494 if (IS_ERR(dentry)) 1495 return PTR_ERR(dentry); 1496 if (unlikely(!d_in_lookup(dentry))) 1497 return finish_no_open(file, dentry); 1498 } 1499 1500 ctx = create_nfs_open_context(dentry, open_flags, file); 1501 err = PTR_ERR(ctx); 1502 if (IS_ERR(ctx)) 1503 goto out; 1504 1505 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1506 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1507 if (IS_ERR(inode)) { 1508 err = PTR_ERR(inode); 1509 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1510 put_nfs_open_context(ctx); 1511 d_drop(dentry); 1512 switch (err) { 1513 case -ENOENT: 1514 d_splice_alias(NULL, dentry); 1515 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1516 break; 1517 case -EISDIR: 1518 case -ENOTDIR: 1519 goto no_open; 1520 case -ELOOP: 1521 if (!(open_flags & O_NOFOLLOW)) 1522 goto no_open; 1523 break; 1524 /* case -EINVAL: */ 1525 default: 1526 break; 1527 } 1528 goto out; 1529 } 1530 1531 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1532 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1533 put_nfs_open_context(ctx); 1534 out: 1535 if (unlikely(switched)) { 1536 d_lookup_done(dentry); 1537 dput(dentry); 1538 } 1539 return err; 1540 1541 no_open: 1542 res = nfs_lookup(dir, dentry, lookup_flags); 1543 if (switched) { 1544 d_lookup_done(dentry); 1545 if (!res) 1546 res = dentry; 1547 else 1548 dput(dentry); 1549 } 1550 if (IS_ERR(res)) 1551 return PTR_ERR(res); 1552 return finish_no_open(file, res); 1553 } 1554 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1555 1556 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1557 { 1558 struct inode *inode; 1559 int ret = 0; 1560 1561 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1562 goto no_open; 1563 if (d_mountpoint(dentry)) 1564 goto no_open; 1565 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1566 goto no_open; 1567 1568 inode = d_inode(dentry); 1569 1570 /* We can't create new files in nfs_open_revalidate(), so we 1571 * optimize away revalidation of negative dentries. 1572 */ 1573 if (inode == NULL) { 1574 struct dentry *parent; 1575 struct inode *dir; 1576 1577 if (flags & LOOKUP_RCU) { 1578 parent = READ_ONCE(dentry->d_parent); 1579 dir = d_inode_rcu(parent); 1580 if (!dir) 1581 return -ECHILD; 1582 } else { 1583 parent = dget_parent(dentry); 1584 dir = d_inode(parent); 1585 } 1586 if (!nfs_neg_need_reval(dir, dentry, flags)) 1587 ret = 1; 1588 else if (flags & LOOKUP_RCU) 1589 ret = -ECHILD; 1590 if (!(flags & LOOKUP_RCU)) 1591 dput(parent); 1592 else if (parent != READ_ONCE(dentry->d_parent)) 1593 return -ECHILD; 1594 goto out; 1595 } 1596 1597 /* NFS only supports OPEN on regular files */ 1598 if (!S_ISREG(inode->i_mode)) 1599 goto no_open; 1600 /* We cannot do exclusive creation on a positive dentry */ 1601 if (flags & LOOKUP_EXCL) 1602 goto no_open; 1603 1604 /* Let f_op->open() actually open (and revalidate) the file */ 1605 ret = 1; 1606 1607 out: 1608 return ret; 1609 1610 no_open: 1611 return nfs_lookup_revalidate(dentry, flags); 1612 } 1613 1614 #endif /* CONFIG_NFSV4 */ 1615 1616 /* 1617 * Code common to create, mkdir, and mknod. 1618 */ 1619 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1620 struct nfs_fattr *fattr, 1621 struct nfs4_label *label) 1622 { 1623 struct dentry *parent = dget_parent(dentry); 1624 struct inode *dir = d_inode(parent); 1625 struct inode *inode; 1626 int error = -EACCES; 1627 1628 d_drop(dentry); 1629 1630 /* We may have been initialized further down */ 1631 if (d_really_is_positive(dentry)) 1632 goto out; 1633 if (fhandle->size == 0) { 1634 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1635 if (error) 1636 goto out_error; 1637 } 1638 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1639 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1640 struct nfs_server *server = NFS_SB(dentry->d_sb); 1641 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1642 if (error < 0) 1643 goto out_error; 1644 } 1645 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1646 error = PTR_ERR(inode); 1647 if (IS_ERR(inode)) 1648 goto out_error; 1649 d_add(dentry, inode); 1650 out: 1651 dput(parent); 1652 return 0; 1653 out_error: 1654 nfs_mark_for_revalidate(dir); 1655 dput(parent); 1656 return error; 1657 } 1658 EXPORT_SYMBOL_GPL(nfs_instantiate); 1659 1660 /* 1661 * Following a failed create operation, we drop the dentry rather 1662 * than retain a negative dentry. This avoids a problem in the event 1663 * that the operation succeeded on the server, but an error in the 1664 * reply path made it appear to have failed. 1665 */ 1666 int nfs_create(struct inode *dir, struct dentry *dentry, 1667 umode_t mode, bool excl) 1668 { 1669 struct iattr attr; 1670 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1671 int error; 1672 1673 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1674 dir->i_sb->s_id, dir->i_ino, dentry); 1675 1676 attr.ia_mode = mode; 1677 attr.ia_valid = ATTR_MODE; 1678 1679 trace_nfs_create_enter(dir, dentry, open_flags); 1680 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1681 trace_nfs_create_exit(dir, dentry, open_flags, error); 1682 if (error != 0) 1683 goto out_err; 1684 return 0; 1685 out_err: 1686 d_drop(dentry); 1687 return error; 1688 } 1689 EXPORT_SYMBOL_GPL(nfs_create); 1690 1691 /* 1692 * See comments for nfs_proc_create regarding failed operations. 1693 */ 1694 int 1695 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1696 { 1697 struct iattr attr; 1698 int status; 1699 1700 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1701 dir->i_sb->s_id, dir->i_ino, dentry); 1702 1703 attr.ia_mode = mode; 1704 attr.ia_valid = ATTR_MODE; 1705 1706 trace_nfs_mknod_enter(dir, dentry); 1707 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1708 trace_nfs_mknod_exit(dir, dentry, status); 1709 if (status != 0) 1710 goto out_err; 1711 return 0; 1712 out_err: 1713 d_drop(dentry); 1714 return status; 1715 } 1716 EXPORT_SYMBOL_GPL(nfs_mknod); 1717 1718 /* 1719 * See comments for nfs_proc_create regarding failed operations. 1720 */ 1721 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1722 { 1723 struct iattr attr; 1724 int error; 1725 1726 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1727 dir->i_sb->s_id, dir->i_ino, dentry); 1728 1729 attr.ia_valid = ATTR_MODE; 1730 attr.ia_mode = mode | S_IFDIR; 1731 1732 trace_nfs_mkdir_enter(dir, dentry); 1733 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1734 trace_nfs_mkdir_exit(dir, dentry, error); 1735 if (error != 0) 1736 goto out_err; 1737 return 0; 1738 out_err: 1739 d_drop(dentry); 1740 return error; 1741 } 1742 EXPORT_SYMBOL_GPL(nfs_mkdir); 1743 1744 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1745 { 1746 if (simple_positive(dentry)) 1747 d_delete(dentry); 1748 } 1749 1750 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1751 { 1752 int error; 1753 1754 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1755 dir->i_sb->s_id, dir->i_ino, dentry); 1756 1757 trace_nfs_rmdir_enter(dir, dentry); 1758 if (d_really_is_positive(dentry)) { 1759 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1760 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1761 /* Ensure the VFS deletes this inode */ 1762 switch (error) { 1763 case 0: 1764 clear_nlink(d_inode(dentry)); 1765 break; 1766 case -ENOENT: 1767 nfs_dentry_handle_enoent(dentry); 1768 } 1769 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1770 } else 1771 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1772 trace_nfs_rmdir_exit(dir, dentry, error); 1773 1774 return error; 1775 } 1776 EXPORT_SYMBOL_GPL(nfs_rmdir); 1777 1778 /* 1779 * Remove a file after making sure there are no pending writes, 1780 * and after checking that the file has only one user. 1781 * 1782 * We invalidate the attribute cache and free the inode prior to the operation 1783 * to avoid possible races if the server reuses the inode. 1784 */ 1785 static int nfs_safe_remove(struct dentry *dentry) 1786 { 1787 struct inode *dir = d_inode(dentry->d_parent); 1788 struct inode *inode = d_inode(dentry); 1789 int error = -EBUSY; 1790 1791 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1792 1793 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1794 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1795 error = 0; 1796 goto out; 1797 } 1798 1799 trace_nfs_remove_enter(dir, dentry); 1800 if (inode != NULL) { 1801 NFS_PROTO(inode)->return_delegation(inode); 1802 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1803 if (error == 0) 1804 nfs_drop_nlink(inode); 1805 } else 1806 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1807 if (error == -ENOENT) 1808 nfs_dentry_handle_enoent(dentry); 1809 trace_nfs_remove_exit(dir, dentry, error); 1810 out: 1811 return error; 1812 } 1813 1814 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1815 * belongs to an active ".nfs..." file and we return -EBUSY. 1816 * 1817 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1818 */ 1819 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1820 { 1821 int error; 1822 int need_rehash = 0; 1823 1824 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1825 dir->i_ino, dentry); 1826 1827 trace_nfs_unlink_enter(dir, dentry); 1828 spin_lock(&dentry->d_lock); 1829 if (d_count(dentry) > 1) { 1830 spin_unlock(&dentry->d_lock); 1831 /* Start asynchronous writeout of the inode */ 1832 write_inode_now(d_inode(dentry), 0); 1833 error = nfs_sillyrename(dir, dentry); 1834 goto out; 1835 } 1836 if (!d_unhashed(dentry)) { 1837 __d_drop(dentry); 1838 need_rehash = 1; 1839 } 1840 spin_unlock(&dentry->d_lock); 1841 error = nfs_safe_remove(dentry); 1842 if (!error || error == -ENOENT) { 1843 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1844 } else if (need_rehash) 1845 d_rehash(dentry); 1846 out: 1847 trace_nfs_unlink_exit(dir, dentry, error); 1848 return error; 1849 } 1850 EXPORT_SYMBOL_GPL(nfs_unlink); 1851 1852 /* 1853 * To create a symbolic link, most file systems instantiate a new inode, 1854 * add a page to it containing the path, then write it out to the disk 1855 * using prepare_write/commit_write. 1856 * 1857 * Unfortunately the NFS client can't create the in-core inode first 1858 * because it needs a file handle to create an in-core inode (see 1859 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1860 * symlink request has completed on the server. 1861 * 1862 * So instead we allocate a raw page, copy the symname into it, then do 1863 * the SYMLINK request with the page as the buffer. If it succeeds, we 1864 * now have a new file handle and can instantiate an in-core NFS inode 1865 * and move the raw page into its mapping. 1866 */ 1867 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1868 { 1869 struct page *page; 1870 char *kaddr; 1871 struct iattr attr; 1872 unsigned int pathlen = strlen(symname); 1873 int error; 1874 1875 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1876 dir->i_ino, dentry, symname); 1877 1878 if (pathlen > PAGE_SIZE) 1879 return -ENAMETOOLONG; 1880 1881 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1882 attr.ia_valid = ATTR_MODE; 1883 1884 page = alloc_page(GFP_USER); 1885 if (!page) 1886 return -ENOMEM; 1887 1888 kaddr = page_address(page); 1889 memcpy(kaddr, symname, pathlen); 1890 if (pathlen < PAGE_SIZE) 1891 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1892 1893 trace_nfs_symlink_enter(dir, dentry); 1894 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1895 trace_nfs_symlink_exit(dir, dentry, error); 1896 if (error != 0) { 1897 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1898 dir->i_sb->s_id, dir->i_ino, 1899 dentry, symname, error); 1900 d_drop(dentry); 1901 __free_page(page); 1902 return error; 1903 } 1904 1905 /* 1906 * No big deal if we can't add this page to the page cache here. 1907 * READLINK will get the missing page from the server if needed. 1908 */ 1909 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1910 GFP_KERNEL)) { 1911 SetPageUptodate(page); 1912 unlock_page(page); 1913 /* 1914 * add_to_page_cache_lru() grabs an extra page refcount. 1915 * Drop it here to avoid leaking this page later. 1916 */ 1917 put_page(page); 1918 } else 1919 __free_page(page); 1920 1921 return 0; 1922 } 1923 EXPORT_SYMBOL_GPL(nfs_symlink); 1924 1925 int 1926 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1927 { 1928 struct inode *inode = d_inode(old_dentry); 1929 int error; 1930 1931 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1932 old_dentry, dentry); 1933 1934 trace_nfs_link_enter(inode, dir, dentry); 1935 NFS_PROTO(inode)->return_delegation(inode); 1936 1937 d_drop(dentry); 1938 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1939 if (error == 0) { 1940 ihold(inode); 1941 d_add(dentry, inode); 1942 } 1943 trace_nfs_link_exit(inode, dir, dentry, error); 1944 return error; 1945 } 1946 EXPORT_SYMBOL_GPL(nfs_link); 1947 1948 /* 1949 * RENAME 1950 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1951 * different file handle for the same inode after a rename (e.g. when 1952 * moving to a different directory). A fail-safe method to do so would 1953 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1954 * rename the old file using the sillyrename stuff. This way, the original 1955 * file in old_dir will go away when the last process iput()s the inode. 1956 * 1957 * FIXED. 1958 * 1959 * It actually works quite well. One needs to have the possibility for 1960 * at least one ".nfs..." file in each directory the file ever gets 1961 * moved or linked to which happens automagically with the new 1962 * implementation that only depends on the dcache stuff instead of 1963 * using the inode layer 1964 * 1965 * Unfortunately, things are a little more complicated than indicated 1966 * above. For a cross-directory move, we want to make sure we can get 1967 * rid of the old inode after the operation. This means there must be 1968 * no pending writes (if it's a file), and the use count must be 1. 1969 * If these conditions are met, we can drop the dentries before doing 1970 * the rename. 1971 */ 1972 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1973 struct inode *new_dir, struct dentry *new_dentry, 1974 unsigned int flags) 1975 { 1976 struct inode *old_inode = d_inode(old_dentry); 1977 struct inode *new_inode = d_inode(new_dentry); 1978 struct dentry *dentry = NULL, *rehash = NULL; 1979 struct rpc_task *task; 1980 int error = -EBUSY; 1981 1982 if (flags) 1983 return -EINVAL; 1984 1985 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 1986 old_dentry, new_dentry, 1987 d_count(new_dentry)); 1988 1989 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 1990 /* 1991 * For non-directories, check whether the target is busy and if so, 1992 * make a copy of the dentry and then do a silly-rename. If the 1993 * silly-rename succeeds, the copied dentry is hashed and becomes 1994 * the new target. 1995 */ 1996 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1997 /* 1998 * To prevent any new references to the target during the 1999 * rename, we unhash the dentry in advance. 2000 */ 2001 if (!d_unhashed(new_dentry)) { 2002 d_drop(new_dentry); 2003 rehash = new_dentry; 2004 } 2005 2006 if (d_count(new_dentry) > 2) { 2007 int err; 2008 2009 /* copy the target dentry's name */ 2010 dentry = d_alloc(new_dentry->d_parent, 2011 &new_dentry->d_name); 2012 if (!dentry) 2013 goto out; 2014 2015 /* silly-rename the existing target ... */ 2016 err = nfs_sillyrename(new_dir, new_dentry); 2017 if (err) 2018 goto out; 2019 2020 new_dentry = dentry; 2021 rehash = NULL; 2022 new_inode = NULL; 2023 } 2024 } 2025 2026 NFS_PROTO(old_inode)->return_delegation(old_inode); 2027 if (new_inode != NULL) 2028 NFS_PROTO(new_inode)->return_delegation(new_inode); 2029 2030 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2031 if (IS_ERR(task)) { 2032 error = PTR_ERR(task); 2033 goto out; 2034 } 2035 2036 error = rpc_wait_for_completion_task(task); 2037 if (error != 0) { 2038 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2039 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2040 smp_wmb(); 2041 } else 2042 error = task->tk_status; 2043 rpc_put_task(task); 2044 nfs_mark_for_revalidate(old_inode); 2045 out: 2046 if (rehash) 2047 d_rehash(rehash); 2048 trace_nfs_rename_exit(old_dir, old_dentry, 2049 new_dir, new_dentry, error); 2050 if (!error) { 2051 if (new_inode != NULL) 2052 nfs_drop_nlink(new_inode); 2053 /* 2054 * The d_move() should be here instead of in an async RPC completion 2055 * handler because we need the proper locks to move the dentry. If 2056 * we're interrupted by a signal, the async RPC completion handler 2057 * should mark the directories for revalidation. 2058 */ 2059 d_move(old_dentry, new_dentry); 2060 nfs_set_verifier(old_dentry, 2061 nfs_save_change_attribute(new_dir)); 2062 } else if (error == -ENOENT) 2063 nfs_dentry_handle_enoent(old_dentry); 2064 2065 /* new dentry created? */ 2066 if (dentry) 2067 dput(dentry); 2068 return error; 2069 } 2070 EXPORT_SYMBOL_GPL(nfs_rename); 2071 2072 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2073 static LIST_HEAD(nfs_access_lru_list); 2074 static atomic_long_t nfs_access_nr_entries; 2075 2076 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2077 module_param(nfs_access_max_cachesize, ulong, 0644); 2078 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2079 2080 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2081 { 2082 put_rpccred(entry->cred); 2083 kfree_rcu(entry, rcu_head); 2084 smp_mb__before_atomic(); 2085 atomic_long_dec(&nfs_access_nr_entries); 2086 smp_mb__after_atomic(); 2087 } 2088 2089 static void nfs_access_free_list(struct list_head *head) 2090 { 2091 struct nfs_access_entry *cache; 2092 2093 while (!list_empty(head)) { 2094 cache = list_entry(head->next, struct nfs_access_entry, lru); 2095 list_del(&cache->lru); 2096 nfs_access_free_entry(cache); 2097 } 2098 } 2099 2100 static unsigned long 2101 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2102 { 2103 LIST_HEAD(head); 2104 struct nfs_inode *nfsi, *next; 2105 struct nfs_access_entry *cache; 2106 long freed = 0; 2107 2108 spin_lock(&nfs_access_lru_lock); 2109 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2110 struct inode *inode; 2111 2112 if (nr_to_scan-- == 0) 2113 break; 2114 inode = &nfsi->vfs_inode; 2115 spin_lock(&inode->i_lock); 2116 if (list_empty(&nfsi->access_cache_entry_lru)) 2117 goto remove_lru_entry; 2118 cache = list_entry(nfsi->access_cache_entry_lru.next, 2119 struct nfs_access_entry, lru); 2120 list_move(&cache->lru, &head); 2121 rb_erase(&cache->rb_node, &nfsi->access_cache); 2122 freed++; 2123 if (!list_empty(&nfsi->access_cache_entry_lru)) 2124 list_move_tail(&nfsi->access_cache_inode_lru, 2125 &nfs_access_lru_list); 2126 else { 2127 remove_lru_entry: 2128 list_del_init(&nfsi->access_cache_inode_lru); 2129 smp_mb__before_atomic(); 2130 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2131 smp_mb__after_atomic(); 2132 } 2133 spin_unlock(&inode->i_lock); 2134 } 2135 spin_unlock(&nfs_access_lru_lock); 2136 nfs_access_free_list(&head); 2137 return freed; 2138 } 2139 2140 unsigned long 2141 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2142 { 2143 int nr_to_scan = sc->nr_to_scan; 2144 gfp_t gfp_mask = sc->gfp_mask; 2145 2146 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2147 return SHRINK_STOP; 2148 return nfs_do_access_cache_scan(nr_to_scan); 2149 } 2150 2151 2152 unsigned long 2153 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2154 { 2155 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2156 } 2157 2158 static void 2159 nfs_access_cache_enforce_limit(void) 2160 { 2161 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2162 unsigned long diff; 2163 unsigned int nr_to_scan; 2164 2165 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2166 return; 2167 nr_to_scan = 100; 2168 diff = nr_entries - nfs_access_max_cachesize; 2169 if (diff < nr_to_scan) 2170 nr_to_scan = diff; 2171 nfs_do_access_cache_scan(nr_to_scan); 2172 } 2173 2174 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2175 { 2176 struct rb_root *root_node = &nfsi->access_cache; 2177 struct rb_node *n; 2178 struct nfs_access_entry *entry; 2179 2180 /* Unhook entries from the cache */ 2181 while ((n = rb_first(root_node)) != NULL) { 2182 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2183 rb_erase(n, root_node); 2184 list_move(&entry->lru, head); 2185 } 2186 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2187 } 2188 2189 void nfs_access_zap_cache(struct inode *inode) 2190 { 2191 LIST_HEAD(head); 2192 2193 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2194 return; 2195 /* Remove from global LRU init */ 2196 spin_lock(&nfs_access_lru_lock); 2197 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2198 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2199 2200 spin_lock(&inode->i_lock); 2201 __nfs_access_zap_cache(NFS_I(inode), &head); 2202 spin_unlock(&inode->i_lock); 2203 spin_unlock(&nfs_access_lru_lock); 2204 nfs_access_free_list(&head); 2205 } 2206 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2207 2208 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2209 { 2210 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2211 struct nfs_access_entry *entry; 2212 2213 while (n != NULL) { 2214 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2215 2216 if (cred < entry->cred) 2217 n = n->rb_left; 2218 else if (cred > entry->cred) 2219 n = n->rb_right; 2220 else 2221 return entry; 2222 } 2223 return NULL; 2224 } 2225 2226 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block) 2227 { 2228 struct nfs_inode *nfsi = NFS_I(inode); 2229 struct nfs_access_entry *cache; 2230 bool retry = true; 2231 int err; 2232 2233 spin_lock(&inode->i_lock); 2234 for(;;) { 2235 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2236 goto out_zap; 2237 cache = nfs_access_search_rbtree(inode, cred); 2238 err = -ENOENT; 2239 if (cache == NULL) 2240 goto out; 2241 /* Found an entry, is our attribute cache valid? */ 2242 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2243 break; 2244 err = -ECHILD; 2245 if (!may_block) 2246 goto out; 2247 if (!retry) 2248 goto out_zap; 2249 spin_unlock(&inode->i_lock); 2250 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2251 if (err) 2252 return err; 2253 spin_lock(&inode->i_lock); 2254 retry = false; 2255 } 2256 res->cred = cache->cred; 2257 res->mask = cache->mask; 2258 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2259 err = 0; 2260 out: 2261 spin_unlock(&inode->i_lock); 2262 return err; 2263 out_zap: 2264 spin_unlock(&inode->i_lock); 2265 nfs_access_zap_cache(inode); 2266 return -ENOENT; 2267 } 2268 2269 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2270 { 2271 /* Only check the most recently returned cache entry, 2272 * but do it without locking. 2273 */ 2274 struct nfs_inode *nfsi = NFS_I(inode); 2275 struct nfs_access_entry *cache; 2276 int err = -ECHILD; 2277 struct list_head *lh; 2278 2279 rcu_read_lock(); 2280 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2281 goto out; 2282 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2283 cache = list_entry(lh, struct nfs_access_entry, lru); 2284 if (lh == &nfsi->access_cache_entry_lru || 2285 cred != cache->cred) 2286 cache = NULL; 2287 if (cache == NULL) 2288 goto out; 2289 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2290 goto out; 2291 res->cred = cache->cred; 2292 res->mask = cache->mask; 2293 err = 0; 2294 out: 2295 rcu_read_unlock(); 2296 return err; 2297 } 2298 2299 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2300 { 2301 struct nfs_inode *nfsi = NFS_I(inode); 2302 struct rb_root *root_node = &nfsi->access_cache; 2303 struct rb_node **p = &root_node->rb_node; 2304 struct rb_node *parent = NULL; 2305 struct nfs_access_entry *entry; 2306 2307 spin_lock(&inode->i_lock); 2308 while (*p != NULL) { 2309 parent = *p; 2310 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2311 2312 if (set->cred < entry->cred) 2313 p = &parent->rb_left; 2314 else if (set->cred > entry->cred) 2315 p = &parent->rb_right; 2316 else 2317 goto found; 2318 } 2319 rb_link_node(&set->rb_node, parent, p); 2320 rb_insert_color(&set->rb_node, root_node); 2321 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2322 spin_unlock(&inode->i_lock); 2323 return; 2324 found: 2325 rb_replace_node(parent, &set->rb_node, root_node); 2326 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2327 list_del(&entry->lru); 2328 spin_unlock(&inode->i_lock); 2329 nfs_access_free_entry(entry); 2330 } 2331 2332 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2333 { 2334 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2335 if (cache == NULL) 2336 return; 2337 RB_CLEAR_NODE(&cache->rb_node); 2338 cache->cred = get_rpccred(set->cred); 2339 cache->mask = set->mask; 2340 2341 /* The above field assignments must be visible 2342 * before this item appears on the lru. We cannot easily 2343 * use rcu_assign_pointer, so just force the memory barrier. 2344 */ 2345 smp_wmb(); 2346 nfs_access_add_rbtree(inode, cache); 2347 2348 /* Update accounting */ 2349 smp_mb__before_atomic(); 2350 atomic_long_inc(&nfs_access_nr_entries); 2351 smp_mb__after_atomic(); 2352 2353 /* Add inode to global LRU list */ 2354 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2355 spin_lock(&nfs_access_lru_lock); 2356 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2357 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2358 &nfs_access_lru_list); 2359 spin_unlock(&nfs_access_lru_lock); 2360 } 2361 nfs_access_cache_enforce_limit(); 2362 } 2363 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2364 2365 #define NFS_MAY_READ (NFS_ACCESS_READ) 2366 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2367 NFS_ACCESS_EXTEND | \ 2368 NFS_ACCESS_DELETE) 2369 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2370 NFS_ACCESS_EXTEND) 2371 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2372 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2373 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2374 static int 2375 nfs_access_calc_mask(u32 access_result, umode_t umode) 2376 { 2377 int mask = 0; 2378 2379 if (access_result & NFS_MAY_READ) 2380 mask |= MAY_READ; 2381 if (S_ISDIR(umode)) { 2382 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2383 mask |= MAY_WRITE; 2384 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2385 mask |= MAY_EXEC; 2386 } else if (S_ISREG(umode)) { 2387 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2388 mask |= MAY_WRITE; 2389 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2390 mask |= MAY_EXEC; 2391 } else if (access_result & NFS_MAY_WRITE) 2392 mask |= MAY_WRITE; 2393 return mask; 2394 } 2395 2396 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2397 { 2398 entry->mask = access_result; 2399 } 2400 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2401 2402 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2403 { 2404 struct nfs_access_entry cache; 2405 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2406 int cache_mask; 2407 int status; 2408 2409 trace_nfs_access_enter(inode); 2410 2411 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2412 if (status != 0) 2413 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2414 if (status == 0) 2415 goto out_cached; 2416 2417 status = -ECHILD; 2418 if (!may_block) 2419 goto out; 2420 2421 /* 2422 * Determine which access bits we want to ask for... 2423 */ 2424 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2425 if (S_ISDIR(inode->i_mode)) 2426 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2427 else 2428 cache.mask |= NFS_ACCESS_EXECUTE; 2429 cache.cred = cred; 2430 status = NFS_PROTO(inode)->access(inode, &cache); 2431 if (status != 0) { 2432 if (status == -ESTALE) { 2433 nfs_zap_caches(inode); 2434 if (!S_ISDIR(inode->i_mode)) 2435 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2436 } 2437 goto out; 2438 } 2439 nfs_access_add_cache(inode, &cache); 2440 out_cached: 2441 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2442 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2443 status = -EACCES; 2444 out: 2445 trace_nfs_access_exit(inode, status); 2446 return status; 2447 } 2448 2449 static int nfs_open_permission_mask(int openflags) 2450 { 2451 int mask = 0; 2452 2453 if (openflags & __FMODE_EXEC) { 2454 /* ONLY check exec rights */ 2455 mask = MAY_EXEC; 2456 } else { 2457 if ((openflags & O_ACCMODE) != O_WRONLY) 2458 mask |= MAY_READ; 2459 if ((openflags & O_ACCMODE) != O_RDONLY) 2460 mask |= MAY_WRITE; 2461 } 2462 2463 return mask; 2464 } 2465 2466 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2467 { 2468 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2469 } 2470 EXPORT_SYMBOL_GPL(nfs_may_open); 2471 2472 static int nfs_execute_ok(struct inode *inode, int mask) 2473 { 2474 struct nfs_server *server = NFS_SERVER(inode); 2475 int ret = 0; 2476 2477 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) { 2478 if (mask & MAY_NOT_BLOCK) 2479 return -ECHILD; 2480 ret = __nfs_revalidate_inode(server, inode); 2481 } 2482 if (ret == 0 && !execute_ok(inode)) 2483 ret = -EACCES; 2484 return ret; 2485 } 2486 2487 int nfs_permission(struct inode *inode, int mask) 2488 { 2489 struct rpc_cred *cred; 2490 int res = 0; 2491 2492 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2493 2494 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2495 goto out; 2496 /* Is this sys_access() ? */ 2497 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2498 goto force_lookup; 2499 2500 switch (inode->i_mode & S_IFMT) { 2501 case S_IFLNK: 2502 goto out; 2503 case S_IFREG: 2504 if ((mask & MAY_OPEN) && 2505 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2506 return 0; 2507 break; 2508 case S_IFDIR: 2509 /* 2510 * Optimize away all write operations, since the server 2511 * will check permissions when we perform the op. 2512 */ 2513 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2514 goto out; 2515 } 2516 2517 force_lookup: 2518 if (!NFS_PROTO(inode)->access) 2519 goto out_notsup; 2520 2521 /* Always try fast lookups first */ 2522 rcu_read_lock(); 2523 cred = rpc_lookup_cred_nonblock(); 2524 if (!IS_ERR(cred)) 2525 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2526 else 2527 res = PTR_ERR(cred); 2528 rcu_read_unlock(); 2529 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2530 /* Fast lookup failed, try the slow way */ 2531 cred = rpc_lookup_cred(); 2532 if (!IS_ERR(cred)) { 2533 res = nfs_do_access(inode, cred, mask); 2534 put_rpccred(cred); 2535 } else 2536 res = PTR_ERR(cred); 2537 } 2538 out: 2539 if (!res && (mask & MAY_EXEC)) 2540 res = nfs_execute_ok(inode, mask); 2541 2542 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2543 inode->i_sb->s_id, inode->i_ino, mask, res); 2544 return res; 2545 out_notsup: 2546 if (mask & MAY_NOT_BLOCK) 2547 return -ECHILD; 2548 2549 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2550 if (res == 0) 2551 res = generic_permission(inode, mask); 2552 goto out; 2553 } 2554 EXPORT_SYMBOL_GPL(nfs_permission); 2555 2556 /* 2557 * Local variables: 2558 * version-control: t 2559 * kept-new-versions: 5 2560 * End: 2561 */ 2562