xref: /linux/fs/nfs/dir.c (revision fb1ceb29b27cda91af35851ebab01f298d82162e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60 			 umode_t mode, int open_flags);
61 
62 const struct file_operations nfs_dir_operations = {
63 	.llseek		= nfs_llseek_dir,
64 	.read		= generic_read_dir,
65 	.iterate_shared	= nfs_readdir,
66 	.open		= nfs_opendir,
67 	.release	= nfs_closedir,
68 	.fsync		= nfs_fsync_dir,
69 };
70 
71 const struct address_space_operations nfs_dir_aops = {
72 	.free_folio = nfs_readdir_clear_array,
73 };
74 
75 #define NFS_INIT_DTSIZE PAGE_SIZE
76 
77 static struct nfs_open_dir_context *
78 alloc_nfs_open_dir_context(struct inode *dir)
79 {
80 	struct nfs_inode *nfsi = NFS_I(dir);
81 	struct nfs_open_dir_context *ctx;
82 
83 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
84 	if (ctx != NULL) {
85 		ctx->attr_gencount = nfsi->attr_gencount;
86 		ctx->dtsize = NFS_INIT_DTSIZE;
87 		spin_lock(&dir->i_lock);
88 		if (list_empty(&nfsi->open_files) &&
89 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
90 			nfs_set_cache_invalid(dir,
91 					      NFS_INO_INVALID_DATA |
92 						      NFS_INO_REVAL_FORCED);
93 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
94 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
95 		spin_unlock(&dir->i_lock);
96 		return ctx;
97 	}
98 	return  ERR_PTR(-ENOMEM);
99 }
100 
101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
102 {
103 	spin_lock(&dir->i_lock);
104 	list_del_rcu(&ctx->list);
105 	spin_unlock(&dir->i_lock);
106 	kfree_rcu(ctx, rcu_head);
107 }
108 
109 /*
110  * Open file
111  */
112 static int
113 nfs_opendir(struct inode *inode, struct file *filp)
114 {
115 	int res = 0;
116 	struct nfs_open_dir_context *ctx;
117 
118 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
119 
120 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
121 
122 	ctx = alloc_nfs_open_dir_context(inode);
123 	if (IS_ERR(ctx)) {
124 		res = PTR_ERR(ctx);
125 		goto out;
126 	}
127 	filp->private_data = ctx;
128 out:
129 	return res;
130 }
131 
132 static int
133 nfs_closedir(struct inode *inode, struct file *filp)
134 {
135 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136 	return 0;
137 }
138 
139 struct nfs_cache_array_entry {
140 	u64 cookie;
141 	u64 ino;
142 	const char *name;
143 	unsigned int name_len;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	u64 change_attr;
149 	u64 last_cookie;
150 	unsigned int size;
151 	unsigned char folio_full : 1,
152 		      folio_is_eof : 1,
153 		      cookies_are_ordered : 1;
154 	struct nfs_cache_array_entry array[] __counted_by(size);
155 };
156 
157 struct nfs_readdir_descriptor {
158 	struct file	*file;
159 	struct folio	*folio;
160 	struct dir_context *ctx;
161 	pgoff_t		folio_index;
162 	pgoff_t		folio_index_max;
163 	u64		dir_cookie;
164 	u64		last_cookie;
165 	loff_t		current_index;
166 
167 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
168 	unsigned long	dir_verifier;
169 	unsigned long	timestamp;
170 	unsigned long	gencount;
171 	unsigned long	attr_gencount;
172 	unsigned int	cache_entry_index;
173 	unsigned int	buffer_fills;
174 	unsigned int	dtsize;
175 	bool clear_cache;
176 	bool plus;
177 	bool eob;
178 	bool eof;
179 };
180 
181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
182 {
183 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
184 	unsigned int maxsize = server->dtsize;
185 
186 	if (sz > maxsize)
187 		sz = maxsize;
188 	if (sz < NFS_MIN_FILE_IO_SIZE)
189 		sz = NFS_MIN_FILE_IO_SIZE;
190 	desc->dtsize = sz;
191 }
192 
193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
194 {
195 	nfs_set_dtsize(desc, desc->dtsize >> 1);
196 }
197 
198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
199 {
200 	nfs_set_dtsize(desc, desc->dtsize << 1);
201 }
202 
203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
204 					 u64 change_attr)
205 {
206 	struct nfs_cache_array *array;
207 
208 	array = kmap_local_folio(folio, 0);
209 	array->change_attr = change_attr;
210 	array->last_cookie = last_cookie;
211 	array->size = 0;
212 	array->folio_full = 0;
213 	array->folio_is_eof = 0;
214 	array->cookies_are_ordered = 1;
215 	kunmap_local(array);
216 }
217 
218 /*
219  * we are freeing strings created by nfs_add_to_readdir_array()
220  */
221 static void nfs_readdir_clear_array(struct folio *folio)
222 {
223 	struct nfs_cache_array *array;
224 	unsigned int i;
225 
226 	array = kmap_local_folio(folio, 0);
227 	for (i = 0; i < array->size; i++)
228 		kfree(array->array[i].name);
229 	array->size = 0;
230 	kunmap_local(array);
231 }
232 
233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
234 					   u64 change_attr)
235 {
236 	nfs_readdir_clear_array(folio);
237 	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
238 }
239 
240 static struct folio *
241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
242 {
243 	struct folio *folio = folio_alloc(gfp_flags, 0);
244 	if (folio)
245 		nfs_readdir_folio_init_array(folio, last_cookie, 0);
246 	return folio;
247 }
248 
249 static void nfs_readdir_folio_array_free(struct folio *folio)
250 {
251 	if (folio) {
252 		nfs_readdir_clear_array(folio);
253 		folio_put(folio);
254 	}
255 }
256 
257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
258 {
259 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
260 }
261 
262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
263 {
264 	array->folio_is_eof = 1;
265 	array->folio_full = 1;
266 }
267 
268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
269 {
270 	return array->folio_full;
271 }
272 
273 /*
274  * the caller is responsible for freeing qstr.name
275  * when called by nfs_readdir_add_to_array, the strings will be freed in
276  * nfs_clear_readdir_array()
277  */
278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
279 {
280 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
281 
282 	/*
283 	 * Avoid a kmemleak false positive. The pointer to the name is stored
284 	 * in a page cache page which kmemleak does not scan.
285 	 */
286 	if (ret != NULL)
287 		kmemleak_not_leak(ret);
288 	return ret;
289 }
290 
291 static size_t nfs_readdir_array_maxentries(void)
292 {
293 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
294 	       sizeof(struct nfs_cache_array_entry);
295 }
296 
297 /*
298  * Check that the next array entry lies entirely within the page bounds
299  */
300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
301 {
302 	if (array->folio_full)
303 		return -ENOSPC;
304 	if (array->size == nfs_readdir_array_maxentries()) {
305 		array->folio_full = 1;
306 		return -ENOSPC;
307 	}
308 	return 0;
309 }
310 
311 static int nfs_readdir_folio_array_append(struct folio *folio,
312 					  const struct nfs_entry *entry,
313 					  u64 *cookie)
314 {
315 	struct nfs_cache_array *array;
316 	struct nfs_cache_array_entry *cache_entry;
317 	const char *name;
318 	int ret = -ENOMEM;
319 
320 	name = nfs_readdir_copy_name(entry->name, entry->len);
321 
322 	array = kmap_local_folio(folio, 0);
323 	if (!name)
324 		goto out;
325 	ret = nfs_readdir_array_can_expand(array);
326 	if (ret) {
327 		kfree(name);
328 		goto out;
329 	}
330 
331 	array->size++;
332 	cache_entry = &array->array[array->size - 1];
333 	cache_entry->cookie = array->last_cookie;
334 	cache_entry->ino = entry->ino;
335 	cache_entry->d_type = entry->d_type;
336 	cache_entry->name_len = entry->len;
337 	cache_entry->name = name;
338 	array->last_cookie = entry->cookie;
339 	if (array->last_cookie <= cache_entry->cookie)
340 		array->cookies_are_ordered = 0;
341 	if (entry->eof != 0)
342 		nfs_readdir_array_set_eof(array);
343 out:
344 	*cookie = array->last_cookie;
345 	kunmap_local(array);
346 	return ret;
347 }
348 
349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
350 /*
351  * Hash algorithm allowing content addressible access to sequences
352  * of directory cookies. Content is addressed by the value of the
353  * cookie index of the first readdir entry in a page.
354  *
355  * We select only the first 18 bits to avoid issues with excessive
356  * memory use for the page cache XArray. 18 bits should allow the caching
357  * of 262144 pages of sequences of readdir entries. Since each page holds
358  * 127 readdir entries for a typical 64-bit system, that works out to a
359  * cache of ~ 33 million entries per directory.
360  */
361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
362 {
363 	if (cookie == 0)
364 		return 0;
365 	return hash_64(cookie, 18);
366 }
367 
368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
369 				       u64 change_attr)
370 {
371 	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
372 	int ret = true;
373 
374 	if (array->change_attr != change_attr)
375 		ret = false;
376 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
377 		ret = false;
378 	kunmap_local(array);
379 	return ret;
380 }
381 
382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
383 {
384 	folio_unlock(folio);
385 	folio_put(folio);
386 }
387 
388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
389 						u64 change_attr)
390 {
391 	if (folio_test_uptodate(folio)) {
392 		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
393 			return;
394 		nfs_readdir_clear_array(folio);
395 	}
396 	nfs_readdir_folio_init_array(folio, cookie, change_attr);
397 	folio_mark_uptodate(folio);
398 }
399 
400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
401 						  u64 cookie, u64 change_attr)
402 {
403 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
404 	struct folio *folio;
405 
406 	folio = filemap_grab_folio(mapping, index);
407 	if (IS_ERR(folio))
408 		return NULL;
409 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
410 	return folio;
411 }
412 
413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
414 {
415 	struct nfs_cache_array *array;
416 	u64 ret;
417 
418 	array = kmap_local_folio(folio, 0);
419 	ret = array->last_cookie;
420 	kunmap_local(array);
421 	return ret;
422 }
423 
424 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
425 {
426 	struct nfs_cache_array *array;
427 	bool ret;
428 
429 	array = kmap_local_folio(folio, 0);
430 	ret = !nfs_readdir_array_is_full(array);
431 	kunmap_local(array);
432 	return ret;
433 }
434 
435 static void nfs_readdir_folio_set_eof(struct folio *folio)
436 {
437 	struct nfs_cache_array *array;
438 
439 	array = kmap_local_folio(folio, 0);
440 	nfs_readdir_array_set_eof(array);
441 	kunmap_local(array);
442 }
443 
444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
445 						u64 cookie, u64 change_attr)
446 {
447 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
448 	struct folio *folio;
449 
450 	folio = __filemap_get_folio(mapping, index,
451 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
452 			mapping_gfp_mask(mapping));
453 	if (IS_ERR(folio))
454 		return NULL;
455 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
456 	if (nfs_readdir_folio_last_cookie(folio) != cookie)
457 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
458 	return folio;
459 }
460 
461 static inline
462 int is_32bit_api(void)
463 {
464 #ifdef CONFIG_COMPAT
465 	return in_compat_syscall();
466 #else
467 	return (BITS_PER_LONG == 32);
468 #endif
469 }
470 
471 static
472 bool nfs_readdir_use_cookie(const struct file *filp)
473 {
474 	if ((filp->f_mode & FMODE_32BITHASH) ||
475 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
476 		return false;
477 	return true;
478 }
479 
480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
481 					struct nfs_readdir_descriptor *desc)
482 {
483 	if (array->folio_full) {
484 		desc->last_cookie = array->last_cookie;
485 		desc->current_index += array->size;
486 		desc->cache_entry_index = 0;
487 		desc->folio_index++;
488 	} else
489 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
490 }
491 
492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
493 {
494 	desc->current_index = 0;
495 	desc->last_cookie = 0;
496 	desc->folio_index = 0;
497 }
498 
499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
500 				      struct nfs_readdir_descriptor *desc)
501 {
502 	loff_t diff = desc->ctx->pos - desc->current_index;
503 	unsigned int index;
504 
505 	if (diff < 0)
506 		goto out_eof;
507 	if (diff >= array->size) {
508 		if (array->folio_is_eof)
509 			goto out_eof;
510 		nfs_readdir_seek_next_array(array, desc);
511 		return -EAGAIN;
512 	}
513 
514 	index = (unsigned int)diff;
515 	desc->dir_cookie = array->array[index].cookie;
516 	desc->cache_entry_index = index;
517 	return 0;
518 out_eof:
519 	desc->eof = true;
520 	return -EBADCOOKIE;
521 }
522 
523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
524 					      u64 cookie)
525 {
526 	if (!array->cookies_are_ordered)
527 		return true;
528 	/* Optimisation for monotonically increasing cookies */
529 	if (cookie >= array->last_cookie)
530 		return false;
531 	if (array->size && cookie < array->array[0].cookie)
532 		return false;
533 	return true;
534 }
535 
536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
537 					 struct nfs_readdir_descriptor *desc)
538 {
539 	unsigned int i;
540 	int status = -EAGAIN;
541 
542 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
543 		goto check_eof;
544 
545 	for (i = 0; i < array->size; i++) {
546 		if (array->array[i].cookie == desc->dir_cookie) {
547 			if (nfs_readdir_use_cookie(desc->file))
548 				desc->ctx->pos = desc->dir_cookie;
549 			else
550 				desc->ctx->pos = desc->current_index + i;
551 			desc->cache_entry_index = i;
552 			return 0;
553 		}
554 	}
555 check_eof:
556 	if (array->folio_is_eof) {
557 		status = -EBADCOOKIE;
558 		if (desc->dir_cookie == array->last_cookie)
559 			desc->eof = true;
560 	} else
561 		nfs_readdir_seek_next_array(array, desc);
562 	return status;
563 }
564 
565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
566 {
567 	struct nfs_cache_array *array;
568 	int status;
569 
570 	array = kmap_local_folio(desc->folio, 0);
571 
572 	if (desc->dir_cookie == 0)
573 		status = nfs_readdir_search_for_pos(array, desc);
574 	else
575 		status = nfs_readdir_search_for_cookie(array, desc);
576 
577 	kunmap_local(array);
578 	return status;
579 }
580 
581 /* Fill a page with xdr information before transferring to the cache page */
582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
583 				  __be32 *verf, u64 cookie,
584 				  struct page **pages, size_t bufsize,
585 				  __be32 *verf_res)
586 {
587 	struct inode *inode = file_inode(desc->file);
588 	struct nfs_readdir_arg arg = {
589 		.dentry = file_dentry(desc->file),
590 		.cred = desc->file->f_cred,
591 		.verf = verf,
592 		.cookie = cookie,
593 		.pages = pages,
594 		.page_len = bufsize,
595 		.plus = desc->plus,
596 	};
597 	struct nfs_readdir_res res = {
598 		.verf = verf_res,
599 	};
600 	unsigned long	timestamp, gencount;
601 	int		error;
602 
603  again:
604 	timestamp = jiffies;
605 	gencount = nfs_inc_attr_generation_counter();
606 	desc->dir_verifier = nfs_save_change_attribute(inode);
607 	error = NFS_PROTO(inode)->readdir(&arg, &res);
608 	if (error < 0) {
609 		/* We requested READDIRPLUS, but the server doesn't grok it */
610 		if (error == -ENOTSUPP && desc->plus) {
611 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
612 			desc->plus = arg.plus = false;
613 			goto again;
614 		}
615 		goto error;
616 	}
617 	desc->timestamp = timestamp;
618 	desc->gencount = gencount;
619 error:
620 	return error;
621 }
622 
623 static int xdr_decode(struct nfs_readdir_descriptor *desc,
624 		      struct nfs_entry *entry, struct xdr_stream *xdr)
625 {
626 	struct inode *inode = file_inode(desc->file);
627 	int error;
628 
629 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
630 	if (error)
631 		return error;
632 	entry->fattr->time_start = desc->timestamp;
633 	entry->fattr->gencount = desc->gencount;
634 	return 0;
635 }
636 
637 /* Match file and dirent using either filehandle or fileid
638  * Note: caller is responsible for checking the fsid
639  */
640 static
641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
642 {
643 	struct inode *inode;
644 	struct nfs_inode *nfsi;
645 
646 	if (d_really_is_negative(dentry))
647 		return 0;
648 
649 	inode = d_inode(dentry);
650 	if (is_bad_inode(inode) || NFS_STALE(inode))
651 		return 0;
652 
653 	nfsi = NFS_I(inode);
654 	if (entry->fattr->fileid != nfsi->fileid)
655 		return 0;
656 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
657 		return 0;
658 	return 1;
659 }
660 
661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
662 
663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
664 				unsigned int cache_hits,
665 				unsigned int cache_misses)
666 {
667 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
668 		return false;
669 	if (ctx->pos == 0 ||
670 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
671 		return true;
672 	return false;
673 }
674 
675 /*
676  * This function is called by the getattr code to request the
677  * use of readdirplus to accelerate any future lookups in the same
678  * directory.
679  */
680 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
681 {
682 	struct nfs_inode *nfsi = NFS_I(dir);
683 	struct nfs_open_dir_context *ctx;
684 
685 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
686 	    S_ISDIR(dir->i_mode)) {
687 		rcu_read_lock();
688 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
689 			atomic_inc(&ctx->cache_hits);
690 		rcu_read_unlock();
691 	}
692 }
693 
694 /*
695  * This function is mainly for use by nfs_getattr().
696  *
697  * If this is an 'ls -l', we want to force use of readdirplus.
698  */
699 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
700 {
701 	struct nfs_inode *nfsi = NFS_I(dir);
702 	struct nfs_open_dir_context *ctx;
703 
704 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
705 	    S_ISDIR(dir->i_mode)) {
706 		rcu_read_lock();
707 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
708 			atomic_inc(&ctx->cache_misses);
709 		rcu_read_unlock();
710 	}
711 }
712 
713 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
714 						unsigned int flags)
715 {
716 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
717 		return;
718 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
719 		return;
720 	nfs_readdir_record_entry_cache_miss(dir);
721 }
722 
723 static
724 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
725 		unsigned long dir_verifier)
726 {
727 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
728 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
729 	struct dentry *dentry;
730 	struct dentry *alias;
731 	struct inode *inode;
732 	int status;
733 
734 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
735 		return;
736 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
737 		return;
738 	if (filename.len == 0)
739 		return;
740 	/* Validate that the name doesn't contain any illegal '\0' */
741 	if (strnlen(filename.name, filename.len) != filename.len)
742 		return;
743 	/* ...or '/' */
744 	if (strnchr(filename.name, filename.len, '/'))
745 		return;
746 	if (filename.name[0] == '.') {
747 		if (filename.len == 1)
748 			return;
749 		if (filename.len == 2 && filename.name[1] == '.')
750 			return;
751 	}
752 	filename.hash = full_name_hash(parent, filename.name, filename.len);
753 
754 	dentry = d_lookup(parent, &filename);
755 again:
756 	if (!dentry) {
757 		dentry = d_alloc_parallel(parent, &filename, &wq);
758 		if (IS_ERR(dentry))
759 			return;
760 	}
761 	if (!d_in_lookup(dentry)) {
762 		/* Is there a mountpoint here? If so, just exit */
763 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
764 					&entry->fattr->fsid))
765 			goto out;
766 		if (nfs_same_file(dentry, entry)) {
767 			if (!entry->fh->size)
768 				goto out;
769 			nfs_set_verifier(dentry, dir_verifier);
770 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
771 			if (!status)
772 				nfs_setsecurity(d_inode(dentry), entry->fattr);
773 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
774 							    dentry, 0, status);
775 			goto out;
776 		} else {
777 			trace_nfs_readdir_lookup_revalidate_failed(
778 				d_inode(parent), dentry, 0);
779 			d_invalidate(dentry);
780 			dput(dentry);
781 			dentry = NULL;
782 			goto again;
783 		}
784 	}
785 	if (!entry->fh->size) {
786 		d_lookup_done(dentry);
787 		goto out;
788 	}
789 
790 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
791 	alias = d_splice_alias(inode, dentry);
792 	d_lookup_done(dentry);
793 	if (alias) {
794 		if (IS_ERR(alias))
795 			goto out;
796 		dput(dentry);
797 		dentry = alias;
798 	}
799 	nfs_set_verifier(dentry, dir_verifier);
800 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
801 out:
802 	dput(dentry);
803 }
804 
805 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
806 				    struct nfs_entry *entry,
807 				    struct xdr_stream *stream)
808 {
809 	int ret;
810 
811 	if (entry->fattr->label)
812 		entry->fattr->label->len = NFS4_MAXLABELLEN;
813 	ret = xdr_decode(desc, entry, stream);
814 	if (ret || !desc->plus)
815 		return ret;
816 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
817 	return 0;
818 }
819 
820 /* Perform conversion from xdr to cache array */
821 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
822 				    struct nfs_entry *entry,
823 				    struct page **xdr_pages, unsigned int buflen,
824 				    struct folio **arrays, size_t narrays,
825 				    u64 change_attr)
826 {
827 	struct address_space *mapping = desc->file->f_mapping;
828 	struct folio *new, *folio = *arrays;
829 	struct xdr_stream stream;
830 	struct page *scratch;
831 	struct xdr_buf buf;
832 	u64 cookie;
833 	int status;
834 
835 	scratch = alloc_page(GFP_KERNEL);
836 	if (scratch == NULL)
837 		return -ENOMEM;
838 
839 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840 	xdr_set_scratch_page(&stream, scratch);
841 
842 	do {
843 		status = nfs_readdir_entry_decode(desc, entry, &stream);
844 		if (status != 0)
845 			break;
846 
847 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
848 		if (status != -ENOSPC)
849 			continue;
850 
851 		if (folio->mapping != mapping) {
852 			if (!--narrays)
853 				break;
854 			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
855 			if (!new)
856 				break;
857 			arrays++;
858 			*arrays = folio = new;
859 		} else {
860 			new = nfs_readdir_folio_get_next(mapping, cookie,
861 							 change_attr);
862 			if (!new)
863 				break;
864 			if (folio != *arrays)
865 				nfs_readdir_folio_unlock_and_put(folio);
866 			folio = new;
867 		}
868 		desc->folio_index_max++;
869 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
870 	} while (!status && !entry->eof);
871 
872 	switch (status) {
873 	case -EBADCOOKIE:
874 		if (!entry->eof)
875 			break;
876 		nfs_readdir_folio_set_eof(folio);
877 		fallthrough;
878 	case -EAGAIN:
879 		status = 0;
880 		break;
881 	case -ENOSPC:
882 		status = 0;
883 		if (!desc->plus)
884 			break;
885 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
886 			;
887 	}
888 
889 	if (folio != *arrays)
890 		nfs_readdir_folio_unlock_and_put(folio);
891 
892 	put_page(scratch);
893 	return status;
894 }
895 
896 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897 {
898 	while (npages--)
899 		put_page(pages[npages]);
900 	kfree(pages);
901 }
902 
903 /*
904  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905  * to nfs_readdir_free_pages()
906  */
907 static struct page **nfs_readdir_alloc_pages(size_t npages)
908 {
909 	struct page **pages;
910 	size_t i;
911 
912 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913 	if (!pages)
914 		return NULL;
915 	for (i = 0; i < npages; i++) {
916 		struct page *page = alloc_page(GFP_KERNEL);
917 		if (page == NULL)
918 			goto out_freepages;
919 		pages[i] = page;
920 	}
921 	return pages;
922 
923 out_freepages:
924 	nfs_readdir_free_pages(pages, i);
925 	return NULL;
926 }
927 
928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929 				    __be32 *verf_arg, __be32 *verf_res,
930 				    struct folio **arrays, size_t narrays)
931 {
932 	u64 change_attr;
933 	struct page **pages;
934 	struct folio *folio = *arrays;
935 	struct nfs_entry *entry;
936 	size_t array_size;
937 	struct inode *inode = file_inode(desc->file);
938 	unsigned int dtsize = desc->dtsize;
939 	unsigned int pglen;
940 	int status = -ENOMEM;
941 
942 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943 	if (!entry)
944 		return -ENOMEM;
945 	entry->cookie = nfs_readdir_folio_last_cookie(folio);
946 	entry->fh = nfs_alloc_fhandle();
947 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948 	entry->server = NFS_SERVER(inode);
949 	if (entry->fh == NULL || entry->fattr == NULL)
950 		goto out;
951 
952 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 	pages = nfs_readdir_alloc_pages(array_size);
954 	if (!pages)
955 		goto out;
956 
957 	change_attr = inode_peek_iversion_raw(inode);
958 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959 					dtsize, verf_res);
960 	if (status < 0)
961 		goto free_pages;
962 
963 	pglen = status;
964 	if (pglen != 0)
965 		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
966 						  arrays, narrays, change_attr);
967 	else
968 		nfs_readdir_folio_set_eof(folio);
969 	desc->buffer_fills++;
970 
971 free_pages:
972 	nfs_readdir_free_pages(pages, array_size);
973 out:
974 	nfs_free_fattr(entry->fattr);
975 	nfs_free_fhandle(entry->fh);
976 	kfree(entry);
977 	return status;
978 }
979 
980 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
981 {
982 	folio_put(desc->folio);
983 	desc->folio = NULL;
984 }
985 
986 static void
987 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988 {
989 	folio_unlock(desc->folio);
990 	nfs_readdir_folio_put(desc);
991 }
992 
993 static struct folio *
994 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
995 {
996 	struct address_space *mapping = desc->file->f_mapping;
997 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
998 	u64 cookie = desc->last_cookie;
999 	struct folio *folio;
1000 
1001 	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1002 	if (!folio)
1003 		return NULL;
1004 	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1005 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1006 	return folio;
1007 }
1008 
1009 /*
1010  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011  * and locks the page to prevent removal from the page cache.
1012  */
1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014 {
1015 	struct inode *inode = file_inode(desc->file);
1016 	struct nfs_inode *nfsi = NFS_I(inode);
1017 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1018 	int res;
1019 
1020 	desc->folio = nfs_readdir_folio_get_cached(desc);
1021 	if (!desc->folio)
1022 		return -ENOMEM;
1023 	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1024 		/* Grow the dtsize if we had to go back for more pages */
1025 		if (desc->folio_index == desc->folio_index_max)
1026 			nfs_grow_dtsize(desc);
1027 		desc->folio_index_max = desc->folio_index;
1028 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029 					     desc->last_cookie,
1030 					     desc->folio->index, desc->dtsize);
1031 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032 					       &desc->folio, 1);
1033 		if (res < 0) {
1034 			nfs_readdir_folio_unlock_and_put_cached(desc);
1035 			trace_nfs_readdir_cache_fill_done(inode, res);
1036 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037 				invalidate_inode_pages2(desc->file->f_mapping);
1038 				nfs_readdir_rewind_search(desc);
1039 				trace_nfs_readdir_invalidate_cache_range(
1040 					inode, 0, MAX_LFS_FILESIZE);
1041 				return -EAGAIN;
1042 			}
1043 			return res;
1044 		}
1045 		/*
1046 		 * Set the cookie verifier if the page cache was empty
1047 		 */
1048 		if (desc->last_cookie == 0 &&
1049 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050 			memcpy(nfsi->cookieverf, verf,
1051 			       sizeof(nfsi->cookieverf));
1052 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053 						      -1);
1054 			trace_nfs_readdir_invalidate_cache_range(
1055 				inode, 1, MAX_LFS_FILESIZE);
1056 		}
1057 		desc->clear_cache = false;
1058 	}
1059 	res = nfs_readdir_search_array(desc);
1060 	if (res == 0)
1061 		return 0;
1062 	nfs_readdir_folio_unlock_and_put_cached(desc);
1063 	return res;
1064 }
1065 
1066 /* Search for desc->dir_cookie from the beginning of the page cache */
1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068 {
1069 	int res;
1070 
1071 	do {
1072 		res = find_and_lock_cache_page(desc);
1073 	} while (res == -EAGAIN);
1074 	return res;
1075 }
1076 
1077 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078 
1079 /*
1080  * Once we've found the start of the dirent within a page: fill 'er up...
1081  */
1082 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083 			   const __be32 *verf)
1084 {
1085 	struct file	*file = desc->file;
1086 	struct nfs_cache_array *array;
1087 	unsigned int i;
1088 	bool first_emit = !desc->dir_cookie;
1089 
1090 	array = kmap_local_folio(desc->folio, 0);
1091 	for (i = desc->cache_entry_index; i < array->size; i++) {
1092 		struct nfs_cache_array_entry *ent;
1093 
1094 		/*
1095 		 * nfs_readdir_handle_cache_misses return force clear at
1096 		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1097 		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1098 		 * entries need be emitted here.
1099 		 */
1100 		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1101 			desc->eob = true;
1102 			break;
1103 		}
1104 
1105 		ent = &array->array[i];
1106 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1107 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1108 			desc->eob = true;
1109 			break;
1110 		}
1111 		memcpy(desc->verf, verf, sizeof(desc->verf));
1112 		if (i == array->size - 1) {
1113 			desc->dir_cookie = array->last_cookie;
1114 			nfs_readdir_seek_next_array(array, desc);
1115 		} else {
1116 			desc->dir_cookie = array->array[i + 1].cookie;
1117 			desc->last_cookie = array->array[0].cookie;
1118 		}
1119 		if (nfs_readdir_use_cookie(file))
1120 			desc->ctx->pos = desc->dir_cookie;
1121 		else
1122 			desc->ctx->pos++;
1123 	}
1124 	if (array->folio_is_eof)
1125 		desc->eof = !desc->eob;
1126 
1127 	kunmap_local(array);
1128 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1129 			(unsigned long long)desc->dir_cookie);
1130 }
1131 
1132 /*
1133  * If we cannot find a cookie in our cache, we suspect that this is
1134  * because it points to a deleted file, so we ask the server to return
1135  * whatever it thinks is the next entry. We then feed this to filldir.
1136  * If all goes well, we should then be able to find our way round the
1137  * cache on the next call to readdir_search_pagecache();
1138  *
1139  * NOTE: we cannot add the anonymous page to the pagecache because
1140  *	 the data it contains might not be page aligned. Besides,
1141  *	 we should already have a complete representation of the
1142  *	 directory in the page cache by the time we get here.
1143  */
1144 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1145 {
1146 	struct folio	**arrays;
1147 	size_t		i, sz = 512;
1148 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1149 	int		status = -ENOMEM;
1150 
1151 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1152 			(unsigned long long)desc->dir_cookie);
1153 
1154 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1155 	if (!arrays)
1156 		goto out;
1157 	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1158 	if (!arrays[0])
1159 		goto out;
1160 
1161 	desc->folio_index = 0;
1162 	desc->cache_entry_index = 0;
1163 	desc->last_cookie = desc->dir_cookie;
1164 	desc->folio_index_max = 0;
1165 
1166 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1167 				   -1, desc->dtsize);
1168 
1169 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1170 	if (status < 0) {
1171 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1172 		goto out_free;
1173 	}
1174 
1175 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1176 		desc->folio = arrays[i];
1177 		nfs_do_filldir(desc, verf);
1178 	}
1179 	desc->folio = NULL;
1180 
1181 	/*
1182 	 * Grow the dtsize if we have to go back for more pages,
1183 	 * or shrink it if we're reading too many.
1184 	 */
1185 	if (!desc->eof) {
1186 		if (!desc->eob)
1187 			nfs_grow_dtsize(desc);
1188 		else if (desc->buffer_fills == 1 &&
1189 			 i < (desc->folio_index_max >> 1))
1190 			nfs_shrink_dtsize(desc);
1191 	}
1192 out_free:
1193 	for (i = 0; i < sz && arrays[i]; i++)
1194 		nfs_readdir_folio_array_free(arrays[i]);
1195 out:
1196 	if (!nfs_readdir_use_cookie(desc->file))
1197 		nfs_readdir_rewind_search(desc);
1198 	desc->folio_index_max = -1;
1199 	kfree(arrays);
1200 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1201 	return status;
1202 }
1203 
1204 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1205 					    struct nfs_readdir_descriptor *desc,
1206 					    unsigned int cache_misses,
1207 					    bool force_clear)
1208 {
1209 	if (desc->ctx->pos == 0 || !desc->plus)
1210 		return false;
1211 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1212 		return false;
1213 	trace_nfs_readdir_force_readdirplus(inode);
1214 	return true;
1215 }
1216 
1217 /* The file offset position represents the dirent entry number.  A
1218    last cookie cache takes care of the common case of reading the
1219    whole directory.
1220  */
1221 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1222 {
1223 	struct dentry	*dentry = file_dentry(file);
1224 	struct inode	*inode = d_inode(dentry);
1225 	struct nfs_inode *nfsi = NFS_I(inode);
1226 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1227 	struct nfs_readdir_descriptor *desc;
1228 	unsigned int cache_hits, cache_misses;
1229 	bool force_clear;
1230 	int res;
1231 
1232 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1233 			file, (long long)ctx->pos);
1234 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1235 
1236 	/*
1237 	 * ctx->pos points to the dirent entry number.
1238 	 * *desc->dir_cookie has the cookie for the next entry. We have
1239 	 * to either find the entry with the appropriate number or
1240 	 * revalidate the cookie.
1241 	 */
1242 	nfs_revalidate_mapping(inode, file->f_mapping);
1243 
1244 	res = -ENOMEM;
1245 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1246 	if (!desc)
1247 		goto out;
1248 	desc->file = file;
1249 	desc->ctx = ctx;
1250 	desc->folio_index_max = -1;
1251 
1252 	spin_lock(&file->f_lock);
1253 	desc->dir_cookie = dir_ctx->dir_cookie;
1254 	desc->folio_index = dir_ctx->page_index;
1255 	desc->last_cookie = dir_ctx->last_cookie;
1256 	desc->attr_gencount = dir_ctx->attr_gencount;
1257 	desc->eof = dir_ctx->eof;
1258 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1259 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1260 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1261 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1262 	force_clear = dir_ctx->force_clear;
1263 	spin_unlock(&file->f_lock);
1264 
1265 	if (desc->eof) {
1266 		res = 0;
1267 		goto out_free;
1268 	}
1269 
1270 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1271 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1272 						      force_clear);
1273 	desc->clear_cache = force_clear;
1274 
1275 	do {
1276 		res = readdir_search_pagecache(desc);
1277 
1278 		if (res == -EBADCOOKIE) {
1279 			res = 0;
1280 			/* This means either end of directory */
1281 			if (desc->dir_cookie && !desc->eof) {
1282 				/* Or that the server has 'lost' a cookie */
1283 				res = uncached_readdir(desc);
1284 				if (res == 0)
1285 					continue;
1286 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1287 					res = 0;
1288 			}
1289 			break;
1290 		}
1291 		if (res == -ETOOSMALL && desc->plus) {
1292 			nfs_zap_caches(inode);
1293 			desc->plus = false;
1294 			desc->eof = false;
1295 			continue;
1296 		}
1297 		if (res < 0)
1298 			break;
1299 
1300 		nfs_do_filldir(desc, nfsi->cookieverf);
1301 		nfs_readdir_folio_unlock_and_put_cached(desc);
1302 		if (desc->folio_index == desc->folio_index_max)
1303 			desc->clear_cache = force_clear;
1304 	} while (!desc->eob && !desc->eof);
1305 
1306 	spin_lock(&file->f_lock);
1307 	dir_ctx->dir_cookie = desc->dir_cookie;
1308 	dir_ctx->last_cookie = desc->last_cookie;
1309 	dir_ctx->attr_gencount = desc->attr_gencount;
1310 	dir_ctx->page_index = desc->folio_index;
1311 	dir_ctx->force_clear = force_clear;
1312 	dir_ctx->eof = desc->eof;
1313 	dir_ctx->dtsize = desc->dtsize;
1314 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1315 	spin_unlock(&file->f_lock);
1316 out_free:
1317 	kfree(desc);
1318 
1319 out:
1320 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1321 	return res;
1322 }
1323 
1324 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1325 {
1326 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1327 
1328 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1329 			filp, offset, whence);
1330 
1331 	switch (whence) {
1332 	default:
1333 		return -EINVAL;
1334 	case SEEK_SET:
1335 		if (offset < 0)
1336 			return -EINVAL;
1337 		spin_lock(&filp->f_lock);
1338 		break;
1339 	case SEEK_CUR:
1340 		if (offset == 0)
1341 			return filp->f_pos;
1342 		spin_lock(&filp->f_lock);
1343 		offset += filp->f_pos;
1344 		if (offset < 0) {
1345 			spin_unlock(&filp->f_lock);
1346 			return -EINVAL;
1347 		}
1348 	}
1349 	if (offset != filp->f_pos) {
1350 		filp->f_pos = offset;
1351 		dir_ctx->page_index = 0;
1352 		if (!nfs_readdir_use_cookie(filp)) {
1353 			dir_ctx->dir_cookie = 0;
1354 			dir_ctx->last_cookie = 0;
1355 		} else {
1356 			dir_ctx->dir_cookie = offset;
1357 			dir_ctx->last_cookie = offset;
1358 		}
1359 		dir_ctx->eof = false;
1360 	}
1361 	spin_unlock(&filp->f_lock);
1362 	return offset;
1363 }
1364 
1365 /*
1366  * All directory operations under NFS are synchronous, so fsync()
1367  * is a dummy operation.
1368  */
1369 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1370 			 int datasync)
1371 {
1372 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1373 
1374 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1375 	return 0;
1376 }
1377 
1378 /**
1379  * nfs_force_lookup_revalidate - Mark the directory as having changed
1380  * @dir: pointer to directory inode
1381  *
1382  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1383  * full lookup on all child dentries of 'dir' whenever a change occurs
1384  * on the server that might have invalidated our dcache.
1385  *
1386  * Note that we reserve bit '0' as a tag to let us know when a dentry
1387  * was revalidated while holding a delegation on its inode.
1388  *
1389  * The caller should be holding dir->i_lock
1390  */
1391 void nfs_force_lookup_revalidate(struct inode *dir)
1392 {
1393 	NFS_I(dir)->cache_change_attribute += 2;
1394 }
1395 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1396 
1397 /**
1398  * nfs_verify_change_attribute - Detects NFS remote directory changes
1399  * @dir: pointer to parent directory inode
1400  * @verf: previously saved change attribute
1401  *
1402  * Return "false" if the verifiers doesn't match the change attribute.
1403  * This would usually indicate that the directory contents have changed on
1404  * the server, and that any dentries need revalidating.
1405  */
1406 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1407 {
1408 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1409 }
1410 
1411 static void nfs_set_verifier_delegated(unsigned long *verf)
1412 {
1413 	*verf |= 1UL;
1414 }
1415 
1416 #if IS_ENABLED(CONFIG_NFS_V4)
1417 static void nfs_unset_verifier_delegated(unsigned long *verf)
1418 {
1419 	*verf &= ~1UL;
1420 }
1421 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1422 
1423 static bool nfs_test_verifier_delegated(unsigned long verf)
1424 {
1425 	return verf & 1;
1426 }
1427 
1428 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1429 {
1430 	return nfs_test_verifier_delegated(dentry->d_time);
1431 }
1432 
1433 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1434 {
1435 	struct inode *inode = d_inode(dentry);
1436 	struct inode *dir = d_inode_rcu(dentry->d_parent);
1437 
1438 	if (!dir || !nfs_verify_change_attribute(dir, verf))
1439 		return;
1440 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))
1441 		nfs_set_verifier_delegated(&verf);
1442 	dentry->d_time = verf;
1443 }
1444 
1445 /**
1446  * nfs_set_verifier - save a parent directory verifier in the dentry
1447  * @dentry: pointer to dentry
1448  * @verf: verifier to save
1449  *
1450  * Saves the parent directory verifier in @dentry. If the inode has
1451  * a delegation, we also tag the dentry as having been revalidated
1452  * while holding a delegation so that we know we don't have to
1453  * look it up again after a directory change.
1454  */
1455 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1456 {
1457 
1458 	spin_lock(&dentry->d_lock);
1459 	nfs_set_verifier_locked(dentry, verf);
1460 	spin_unlock(&dentry->d_lock);
1461 }
1462 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1463 
1464 #if IS_ENABLED(CONFIG_NFS_V4)
1465 /**
1466  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1467  * @inode: pointer to inode
1468  *
1469  * Iterates through the dentries in the inode alias list and clears
1470  * the tag used to indicate that the dentry has been revalidated
1471  * while holding a delegation.
1472  * This function is intended for use when the delegation is being
1473  * returned or revoked.
1474  */
1475 void nfs_clear_verifier_delegated(struct inode *inode)
1476 {
1477 	struct dentry *alias;
1478 
1479 	if (!inode)
1480 		return;
1481 	spin_lock(&inode->i_lock);
1482 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1483 		spin_lock(&alias->d_lock);
1484 		nfs_unset_verifier_delegated(&alias->d_time);
1485 		spin_unlock(&alias->d_lock);
1486 	}
1487 	spin_unlock(&inode->i_lock);
1488 }
1489 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1490 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1491 
1492 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1493 {
1494 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1495 	    d_really_is_negative(dentry))
1496 		return dentry->d_time == inode_peek_iversion_raw(dir);
1497 	return nfs_verify_change_attribute(dir, dentry->d_time);
1498 }
1499 
1500 /*
1501  * A check for whether or not the parent directory has changed.
1502  * In the case it has, we assume that the dentries are untrustworthy
1503  * and may need to be looked up again.
1504  * If rcu_walk prevents us from performing a full check, return 0.
1505  */
1506 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1507 			      int rcu_walk)
1508 {
1509 	if (IS_ROOT(dentry))
1510 		return 1;
1511 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1512 		return 0;
1513 	if (!nfs_dentry_verify_change(dir, dentry))
1514 		return 0;
1515 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1516 	if (nfs_mapping_need_revalidate_inode(dir)) {
1517 		if (rcu_walk)
1518 			return 0;
1519 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1520 			return 0;
1521 	}
1522 	if (!nfs_dentry_verify_change(dir, dentry))
1523 		return 0;
1524 	return 1;
1525 }
1526 
1527 /*
1528  * Use intent information to check whether or not we're going to do
1529  * an O_EXCL create using this path component.
1530  */
1531 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1532 {
1533 	if (NFS_PROTO(dir)->version == 2)
1534 		return 0;
1535 	return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) ==
1536 		(LOOKUP_CREATE | LOOKUP_EXCL);
1537 }
1538 
1539 /*
1540  * Inode and filehandle revalidation for lookups.
1541  *
1542  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1543  * or if the intent information indicates that we're about to open this
1544  * particular file and the "nocto" mount flag is not set.
1545  *
1546  */
1547 static
1548 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1549 {
1550 	struct nfs_server *server = NFS_SERVER(inode);
1551 	int ret;
1552 
1553 	if (IS_AUTOMOUNT(inode))
1554 		return 0;
1555 
1556 	if (flags & LOOKUP_OPEN) {
1557 		switch (inode->i_mode & S_IFMT) {
1558 		case S_IFREG:
1559 			/* A NFSv4 OPEN will revalidate later */
1560 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1561 				goto out;
1562 			fallthrough;
1563 		case S_IFDIR:
1564 			if (server->flags & NFS_MOUNT_NOCTO)
1565 				break;
1566 			/* NFS close-to-open cache consistency validation */
1567 			goto out_force;
1568 		}
1569 	}
1570 
1571 	/* VFS wants an on-the-wire revalidation */
1572 	if (flags & LOOKUP_REVAL)
1573 		goto out_force;
1574 out:
1575 	if (inode->i_nlink > 0 ||
1576 	    (inode->i_nlink == 0 &&
1577 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1578 		return 0;
1579 	else
1580 		return -ESTALE;
1581 out_force:
1582 	if (flags & LOOKUP_RCU)
1583 		return -ECHILD;
1584 	ret = __nfs_revalidate_inode(server, inode);
1585 	if (ret != 0)
1586 		return ret;
1587 	goto out;
1588 }
1589 
1590 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1591 {
1592 	spin_lock(&inode->i_lock);
1593 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1594 	spin_unlock(&inode->i_lock);
1595 }
1596 
1597 /*
1598  * We judge how long we want to trust negative
1599  * dentries by looking at the parent inode mtime.
1600  *
1601  * If parent mtime has changed, we revalidate, else we wait for a
1602  * period corresponding to the parent's attribute cache timeout value.
1603  *
1604  * If LOOKUP_RCU prevents us from performing a full check, return 1
1605  * suggesting a reval is needed.
1606  *
1607  * Note that when creating a new file, or looking up a rename target,
1608  * then it shouldn't be necessary to revalidate a negative dentry.
1609  */
1610 static inline
1611 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1612 		       unsigned int flags)
1613 {
1614 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1615 		return 0;
1616 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1617 		return 1;
1618 	/* Case insensitive server? Revalidate negative dentries */
1619 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1620 		return 1;
1621 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1622 }
1623 
1624 static int
1625 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1626 			   struct inode *inode, int error)
1627 {
1628 	switch (error) {
1629 	case 1:
1630 		break;
1631 	case -ETIMEDOUT:
1632 		if (inode && (IS_ROOT(dentry) ||
1633 			      NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1634 			error = 1;
1635 		break;
1636 	case -ESTALE:
1637 	case -ENOENT:
1638 		error = 0;
1639 		fallthrough;
1640 	default:
1641 		/*
1642 		 * We can't d_drop the root of a disconnected tree:
1643 		 * its d_hash is on the s_anon list and d_drop() would hide
1644 		 * it from shrink_dcache_for_unmount(), leading to busy
1645 		 * inodes on unmount and further oopses.
1646 		 */
1647 		if (inode && IS_ROOT(dentry))
1648 			error = 1;
1649 		break;
1650 	}
1651 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1652 	return error;
1653 }
1654 
1655 static int
1656 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1657 			       unsigned int flags)
1658 {
1659 	int ret = 1;
1660 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1661 		if (flags & LOOKUP_RCU)
1662 			return -ECHILD;
1663 		ret = 0;
1664 	}
1665 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1666 }
1667 
1668 static int
1669 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1670 				struct inode *inode)
1671 {
1672 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1673 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1674 }
1675 
1676 static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name,
1677 					struct dentry *dentry,
1678 					struct inode *inode, unsigned int flags)
1679 {
1680 	struct nfs_fh *fhandle;
1681 	struct nfs_fattr *fattr;
1682 	unsigned long dir_verifier;
1683 	int ret;
1684 
1685 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1686 
1687 	ret = -ENOMEM;
1688 	fhandle = nfs_alloc_fhandle();
1689 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1690 	if (fhandle == NULL || fattr == NULL)
1691 		goto out;
1692 
1693 	dir_verifier = nfs_save_change_attribute(dir);
1694 	ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr);
1695 	if (ret < 0)
1696 		goto out;
1697 
1698 	/* Request help from readdirplus */
1699 	nfs_lookup_advise_force_readdirplus(dir, flags);
1700 
1701 	ret = 0;
1702 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1703 		goto out;
1704 	if (nfs_refresh_inode(inode, fattr) < 0)
1705 		goto out;
1706 
1707 	nfs_setsecurity(inode, fattr);
1708 	nfs_set_verifier(dentry, dir_verifier);
1709 
1710 	ret = 1;
1711 out:
1712 	nfs_free_fattr(fattr);
1713 	nfs_free_fhandle(fhandle);
1714 
1715 	/*
1716 	 * If the lookup failed despite the dentry change attribute being
1717 	 * a match, then we should revalidate the directory cache.
1718 	 */
1719 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1720 		nfs_mark_dir_for_revalidate(dir);
1721 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1722 }
1723 
1724 /*
1725  * This is called every time the dcache has a lookup hit,
1726  * and we should check whether we can really trust that
1727  * lookup.
1728  *
1729  * NOTE! The hit can be a negative hit too, don't assume
1730  * we have an inode!
1731  *
1732  * If the parent directory is seen to have changed, we throw out the
1733  * cached dentry and do a new lookup.
1734  */
1735 static int
1736 nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name,
1737 			 struct dentry *dentry, unsigned int flags)
1738 {
1739 	struct inode *inode;
1740 	int error = 0;
1741 
1742 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1743 	inode = d_inode(dentry);
1744 
1745 	if (!inode)
1746 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1747 
1748 	if (is_bad_inode(inode)) {
1749 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1750 				__func__, dentry);
1751 		goto out_bad;
1752 	}
1753 
1754 	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1755 	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1756 		goto out_bad;
1757 
1758 	if (nfs_verifier_is_delegated(dentry))
1759 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1760 
1761 	/* Force a full look up iff the parent directory has changed */
1762 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1763 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1764 		error = nfs_lookup_verify_inode(inode, flags);
1765 		if (error) {
1766 			if (error == -ESTALE)
1767 				nfs_mark_dir_for_revalidate(dir);
1768 			goto out_bad;
1769 		}
1770 		goto out_valid;
1771 	}
1772 
1773 	if (flags & LOOKUP_RCU)
1774 		return -ECHILD;
1775 
1776 	if (NFS_STALE(inode))
1777 		goto out_bad;
1778 
1779 	return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
1780 out_valid:
1781 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1782 out_bad:
1783 	if (flags & LOOKUP_RCU)
1784 		return -ECHILD;
1785 	return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1786 }
1787 
1788 static int
1789 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1790 {
1791 	if (flags & LOOKUP_RCU) {
1792 		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1793 			return -ECHILD;
1794 	} else {
1795 		/* Wait for unlink to complete - see unblock_revalidate() */
1796 		wait_var_event(&dentry->d_fsdata,
1797 			       smp_load_acquire(&dentry->d_fsdata)
1798 			       != NFS_FSDATA_BLOCKED);
1799 	}
1800 	return 0;
1801 }
1802 
1803 static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name,
1804 				 struct dentry *dentry, unsigned int flags)
1805 {
1806 	if (__nfs_lookup_revalidate(dentry, flags))
1807 		return -ECHILD;
1808 	return nfs_do_lookup_revalidate(dir, name, dentry, flags);
1809 }
1810 
1811 static void block_revalidate(struct dentry *dentry)
1812 {
1813 	/* old devname - just in case */
1814 	kfree(dentry->d_fsdata);
1815 
1816 	/* Any new reference that could lead to an open
1817 	 * will take ->d_lock in lookup_open() -> d_lookup().
1818 	 * Holding this lock ensures we cannot race with
1819 	 * __nfs_lookup_revalidate() and removes and need
1820 	 * for further barriers.
1821 	 */
1822 	lockdep_assert_held(&dentry->d_lock);
1823 
1824 	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1825 }
1826 
1827 static void unblock_revalidate(struct dentry *dentry)
1828 {
1829 	/* store_release ensures wait_var_event() sees the update */
1830 	smp_store_release(&dentry->d_fsdata, NULL);
1831 	wake_up_var(&dentry->d_fsdata);
1832 }
1833 
1834 /*
1835  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1836  * when we don't really care about the dentry name. This is called when a
1837  * pathwalk ends on a dentry that was not found via a normal lookup in the
1838  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1839  *
1840  * In this situation, we just want to verify that the inode itself is OK
1841  * since the dentry might have changed on the server.
1842  */
1843 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1844 {
1845 	struct inode *inode = d_inode(dentry);
1846 	int error = 0;
1847 
1848 	/*
1849 	 * I believe we can only get a negative dentry here in the case of a
1850 	 * procfs-style symlink. Just assume it's correct for now, but we may
1851 	 * eventually need to do something more here.
1852 	 */
1853 	if (!inode) {
1854 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1855 				__func__, dentry);
1856 		return 1;
1857 	}
1858 
1859 	if (is_bad_inode(inode)) {
1860 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1861 				__func__, dentry);
1862 		return 0;
1863 	}
1864 
1865 	error = nfs_lookup_verify_inode(inode, flags);
1866 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1867 			__func__, inode->i_ino, error ? "invalid" : "valid");
1868 	return !error;
1869 }
1870 
1871 /*
1872  * This is called from dput() when d_count is going to 0.
1873  */
1874 static int nfs_dentry_delete(const struct dentry *dentry)
1875 {
1876 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1877 		dentry, dentry->d_flags);
1878 
1879 	/* Unhash any dentry with a stale inode */
1880 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1881 		return 1;
1882 
1883 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1884 		/* Unhash it, so that ->d_iput() would be called */
1885 		return 1;
1886 	}
1887 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1888 		/* Unhash it, so that ancestors of killed async unlink
1889 		 * files will be cleaned up during umount */
1890 		return 1;
1891 	}
1892 	return 0;
1893 
1894 }
1895 
1896 /* Ensure that we revalidate inode->i_nlink */
1897 static void nfs_drop_nlink(struct inode *inode)
1898 {
1899 	spin_lock(&inode->i_lock);
1900 	/* drop the inode if we're reasonably sure this is the last link */
1901 	if (inode->i_nlink > 0)
1902 		drop_nlink(inode);
1903 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1904 	nfs_set_cache_invalid(
1905 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1906 			       NFS_INO_INVALID_NLINK);
1907 	spin_unlock(&inode->i_lock);
1908 }
1909 
1910 /*
1911  * Called when the dentry loses inode.
1912  * We use it to clean up silly-renamed files.
1913  */
1914 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1915 {
1916 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1917 		nfs_complete_unlink(dentry, inode);
1918 		nfs_drop_nlink(inode);
1919 	}
1920 	iput(inode);
1921 }
1922 
1923 static void nfs_d_release(struct dentry *dentry)
1924 {
1925 	/* free cached devname value, if it survived that far */
1926 	if (unlikely(dentry->d_fsdata)) {
1927 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1928 			WARN_ON(1);
1929 		else
1930 			kfree(dentry->d_fsdata);
1931 	}
1932 }
1933 
1934 const struct dentry_operations nfs_dentry_operations = {
1935 	.d_revalidate	= nfs_lookup_revalidate,
1936 	.d_weak_revalidate	= nfs_weak_revalidate,
1937 	.d_delete	= nfs_dentry_delete,
1938 	.d_iput		= nfs_dentry_iput,
1939 	.d_automount	= nfs_d_automount,
1940 	.d_release	= nfs_d_release,
1941 };
1942 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1943 
1944 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1945 {
1946 	struct dentry *res;
1947 	struct inode *inode = NULL;
1948 	struct nfs_fh *fhandle = NULL;
1949 	struct nfs_fattr *fattr = NULL;
1950 	unsigned long dir_verifier;
1951 	int error;
1952 
1953 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1954 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1955 
1956 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1957 		return ERR_PTR(-ENAMETOOLONG);
1958 
1959 	/*
1960 	 * If we're doing an exclusive create, optimize away the lookup
1961 	 * but don't hash the dentry.
1962 	 */
1963 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1964 		return NULL;
1965 
1966 	res = ERR_PTR(-ENOMEM);
1967 	fhandle = nfs_alloc_fhandle();
1968 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1969 	if (fhandle == NULL || fattr == NULL)
1970 		goto out;
1971 
1972 	dir_verifier = nfs_save_change_attribute(dir);
1973 	trace_nfs_lookup_enter(dir, dentry, flags);
1974 	error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
1975 				       fhandle, fattr);
1976 	if (error == -ENOENT) {
1977 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1978 			dir_verifier = inode_peek_iversion_raw(dir);
1979 		goto no_entry;
1980 	}
1981 	if (error < 0) {
1982 		res = ERR_PTR(error);
1983 		goto out;
1984 	}
1985 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1986 	res = ERR_CAST(inode);
1987 	if (IS_ERR(res))
1988 		goto out;
1989 
1990 	/* Notify readdir to use READDIRPLUS */
1991 	nfs_lookup_advise_force_readdirplus(dir, flags);
1992 
1993 no_entry:
1994 	res = d_splice_alias(inode, dentry);
1995 	if (res != NULL) {
1996 		if (IS_ERR(res))
1997 			goto out;
1998 		dentry = res;
1999 	}
2000 	nfs_set_verifier(dentry, dir_verifier);
2001 out:
2002 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2003 	nfs_free_fattr(fattr);
2004 	nfs_free_fhandle(fhandle);
2005 	return res;
2006 }
2007 EXPORT_SYMBOL_GPL(nfs_lookup);
2008 
2009 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2010 {
2011 	/* Case insensitive server? Revalidate dentries */
2012 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2013 		d_prune_aliases(inode);
2014 }
2015 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2016 
2017 #if IS_ENABLED(CONFIG_NFS_V4)
2018 static int nfs4_lookup_revalidate(struct inode *, const struct qstr *,
2019 				  struct dentry *, unsigned int);
2020 
2021 const struct dentry_operations nfs4_dentry_operations = {
2022 	.d_revalidate	= nfs4_lookup_revalidate,
2023 	.d_weak_revalidate	= nfs_weak_revalidate,
2024 	.d_delete	= nfs_dentry_delete,
2025 	.d_iput		= nfs_dentry_iput,
2026 	.d_automount	= nfs_d_automount,
2027 	.d_release	= nfs_d_release,
2028 };
2029 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2030 
2031 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2032 {
2033 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2034 }
2035 
2036 static int do_open(struct inode *inode, struct file *filp)
2037 {
2038 	nfs_fscache_open_file(inode, filp);
2039 	return 0;
2040 }
2041 
2042 static int nfs_finish_open(struct nfs_open_context *ctx,
2043 			   struct dentry *dentry,
2044 			   struct file *file, unsigned open_flags)
2045 {
2046 	int err;
2047 
2048 	err = finish_open(file, dentry, do_open);
2049 	if (err)
2050 		goto out;
2051 	if (S_ISREG(file_inode(file)->i_mode))
2052 		nfs_file_set_open_context(file, ctx);
2053 	else
2054 		err = -EOPENSTALE;
2055 out:
2056 	return err;
2057 }
2058 
2059 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2060 		    struct file *file, unsigned open_flags,
2061 		    umode_t mode)
2062 {
2063 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2064 	struct nfs_open_context *ctx;
2065 	struct dentry *res;
2066 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2067 	struct inode *inode;
2068 	unsigned int lookup_flags = 0;
2069 	unsigned long dir_verifier;
2070 	bool switched = false;
2071 	int created = 0;
2072 	int err;
2073 
2074 	/* Expect a negative dentry */
2075 	BUG_ON(d_inode(dentry));
2076 
2077 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2078 			dir->i_sb->s_id, dir->i_ino, dentry);
2079 
2080 	err = nfs_check_flags(open_flags);
2081 	if (err)
2082 		return err;
2083 
2084 	/* NFS only supports OPEN on regular files */
2085 	if ((open_flags & O_DIRECTORY)) {
2086 		if (!d_in_lookup(dentry)) {
2087 			/*
2088 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2089 			 * revalidated and is fine, no need to perform lookup
2090 			 * again
2091 			 */
2092 			return -ENOENT;
2093 		}
2094 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2095 		goto no_open;
2096 	}
2097 
2098 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2099 		return -ENAMETOOLONG;
2100 
2101 	if (open_flags & O_CREAT) {
2102 		struct nfs_server *server = NFS_SERVER(dir);
2103 
2104 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2105 			mode &= ~current_umask();
2106 
2107 		attr.ia_valid |= ATTR_MODE;
2108 		attr.ia_mode = mode;
2109 	}
2110 	if (open_flags & O_TRUNC) {
2111 		attr.ia_valid |= ATTR_SIZE;
2112 		attr.ia_size = 0;
2113 	}
2114 
2115 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2116 		d_drop(dentry);
2117 		switched = true;
2118 		dentry = d_alloc_parallel(dentry->d_parent,
2119 					  &dentry->d_name, &wq);
2120 		if (IS_ERR(dentry))
2121 			return PTR_ERR(dentry);
2122 		if (unlikely(!d_in_lookup(dentry)))
2123 			return finish_no_open(file, dentry);
2124 	}
2125 
2126 	ctx = create_nfs_open_context(dentry, open_flags, file);
2127 	err = PTR_ERR(ctx);
2128 	if (IS_ERR(ctx))
2129 		goto out;
2130 
2131 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2132 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2133 	if (created)
2134 		file->f_mode |= FMODE_CREATED;
2135 	if (IS_ERR(inode)) {
2136 		err = PTR_ERR(inode);
2137 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2138 		put_nfs_open_context(ctx);
2139 		d_drop(dentry);
2140 		switch (err) {
2141 		case -ENOENT:
2142 			d_splice_alias(NULL, dentry);
2143 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2144 				dir_verifier = inode_peek_iversion_raw(dir);
2145 			else
2146 				dir_verifier = nfs_save_change_attribute(dir);
2147 			nfs_set_verifier(dentry, dir_verifier);
2148 			break;
2149 		case -EISDIR:
2150 		case -ENOTDIR:
2151 			goto no_open;
2152 		case -ELOOP:
2153 			if (!(open_flags & O_NOFOLLOW))
2154 				goto no_open;
2155 			break;
2156 			/* case -EINVAL: */
2157 		default:
2158 			break;
2159 		}
2160 		goto out;
2161 	}
2162 	file->f_mode |= FMODE_CAN_ODIRECT;
2163 
2164 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2165 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2166 	put_nfs_open_context(ctx);
2167 out:
2168 	if (unlikely(switched)) {
2169 		d_lookup_done(dentry);
2170 		dput(dentry);
2171 	}
2172 	return err;
2173 
2174 no_open:
2175 	res = nfs_lookup(dir, dentry, lookup_flags);
2176 	if (!res) {
2177 		inode = d_inode(dentry);
2178 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2179 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2180 			res = ERR_PTR(-ENOTDIR);
2181 		else if (inode && S_ISREG(inode->i_mode))
2182 			res = ERR_PTR(-EOPENSTALE);
2183 	} else if (!IS_ERR(res)) {
2184 		inode = d_inode(res);
2185 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2186 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2187 			dput(res);
2188 			res = ERR_PTR(-ENOTDIR);
2189 		} else if (inode && S_ISREG(inode->i_mode)) {
2190 			dput(res);
2191 			res = ERR_PTR(-EOPENSTALE);
2192 		}
2193 	}
2194 	if (switched) {
2195 		d_lookup_done(dentry);
2196 		if (!res)
2197 			res = dentry;
2198 		else
2199 			dput(dentry);
2200 	}
2201 	if (IS_ERR(res))
2202 		return PTR_ERR(res);
2203 	return finish_no_open(file, res);
2204 }
2205 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2206 
2207 static int
2208 nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name,
2209 		       struct dentry *dentry, unsigned int flags)
2210 {
2211 	struct inode *inode;
2212 
2213 	if (__nfs_lookup_revalidate(dentry, flags))
2214 		return -ECHILD;
2215 
2216 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2217 
2218 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2219 		goto full_reval;
2220 	if (d_mountpoint(dentry))
2221 		goto full_reval;
2222 
2223 	inode = d_inode(dentry);
2224 
2225 	/* We can't create new files in nfs_open_revalidate(), so we
2226 	 * optimize away revalidation of negative dentries.
2227 	 */
2228 	if (inode == NULL)
2229 		goto full_reval;
2230 
2231 	if (nfs_verifier_is_delegated(dentry))
2232 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2233 
2234 	/* NFS only supports OPEN on regular files */
2235 	if (!S_ISREG(inode->i_mode))
2236 		goto full_reval;
2237 
2238 	/* We cannot do exclusive creation on a positive dentry */
2239 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2240 		goto reval_dentry;
2241 
2242 	/* Check if the directory changed */
2243 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2244 		goto reval_dentry;
2245 
2246 	/* Let f_op->open() actually open (and revalidate) the file */
2247 	return 1;
2248 reval_dentry:
2249 	if (flags & LOOKUP_RCU)
2250 		return -ECHILD;
2251 	return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags);
2252 
2253 full_reval:
2254 	return nfs_do_lookup_revalidate(dir, name, dentry, flags);
2255 }
2256 
2257 #endif /* CONFIG_NFSV4 */
2258 
2259 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2260 			struct file *file, unsigned int open_flags,
2261 			umode_t mode)
2262 {
2263 
2264 	/* Same as look+open from lookup_open(), but with different O_TRUNC
2265 	 * handling.
2266 	 */
2267 	int error = 0;
2268 
2269 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2270 		return -ENAMETOOLONG;
2271 
2272 	if (open_flags & O_CREAT) {
2273 		file->f_mode |= FMODE_CREATED;
2274 		error = nfs_do_create(dir, dentry, mode, open_flags);
2275 		if (error)
2276 			return error;
2277 		return finish_open(file, dentry, NULL);
2278 	} else if (d_in_lookup(dentry)) {
2279 		/* The only flags nfs_lookup considers are
2280 		 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2281 		 * we want those to be zero so the lookup isn't skipped.
2282 		 */
2283 		struct dentry *res = nfs_lookup(dir, dentry, 0);
2284 
2285 		d_lookup_done(dentry);
2286 		if (unlikely(res)) {
2287 			if (IS_ERR(res))
2288 				return PTR_ERR(res);
2289 			return finish_no_open(file, res);
2290 		}
2291 	}
2292 	return finish_no_open(file, NULL);
2293 
2294 }
2295 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2296 
2297 struct dentry *
2298 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2299 				struct nfs_fattr *fattr)
2300 {
2301 	struct dentry *parent = dget_parent(dentry);
2302 	struct inode *dir = d_inode(parent);
2303 	struct inode *inode;
2304 	struct dentry *d;
2305 	int error;
2306 
2307 	d_drop(dentry);
2308 
2309 	if (fhandle->size == 0) {
2310 		error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name,
2311 					       fhandle, fattr);
2312 		if (error)
2313 			goto out_error;
2314 	}
2315 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2316 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2317 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2318 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2319 				fattr, NULL);
2320 		if (error < 0)
2321 			goto out_error;
2322 	}
2323 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2324 	d = d_splice_alias(inode, dentry);
2325 out:
2326 	dput(parent);
2327 	return d;
2328 out_error:
2329 	d = ERR_PTR(error);
2330 	goto out;
2331 }
2332 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2333 
2334 /*
2335  * Code common to create, mkdir, and mknod.
2336  */
2337 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2338 				struct nfs_fattr *fattr)
2339 {
2340 	struct dentry *d;
2341 
2342 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2343 	if (IS_ERR(d))
2344 		return PTR_ERR(d);
2345 
2346 	/* Callers don't care */
2347 	dput(d);
2348 	return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(nfs_instantiate);
2351 
2352 /*
2353  * Following a failed create operation, we drop the dentry rather
2354  * than retain a negative dentry. This avoids a problem in the event
2355  * that the operation succeeded on the server, but an error in the
2356  * reply path made it appear to have failed.
2357  */
2358 static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2359 			 umode_t mode, int open_flags)
2360 {
2361 	struct iattr attr;
2362 	int error;
2363 
2364 	open_flags |= O_CREAT;
2365 
2366 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2367 			dir->i_sb->s_id, dir->i_ino, dentry);
2368 
2369 	attr.ia_mode = mode;
2370 	attr.ia_valid = ATTR_MODE;
2371 	if (open_flags & O_TRUNC) {
2372 		attr.ia_size = 0;
2373 		attr.ia_valid |= ATTR_SIZE;
2374 	}
2375 
2376 	trace_nfs_create_enter(dir, dentry, open_flags);
2377 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2378 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2379 	if (error != 0)
2380 		goto out_err;
2381 	return 0;
2382 out_err:
2383 	d_drop(dentry);
2384 	return error;
2385 }
2386 
2387 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2388 	       struct dentry *dentry, umode_t mode, bool excl)
2389 {
2390 	return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2391 }
2392 EXPORT_SYMBOL_GPL(nfs_create);
2393 
2394 /*
2395  * See comments for nfs_proc_create regarding failed operations.
2396  */
2397 int
2398 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2399 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2400 {
2401 	struct iattr attr;
2402 	int status;
2403 
2404 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2405 			dir->i_sb->s_id, dir->i_ino, dentry);
2406 
2407 	attr.ia_mode = mode;
2408 	attr.ia_valid = ATTR_MODE;
2409 
2410 	trace_nfs_mknod_enter(dir, dentry);
2411 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2412 	trace_nfs_mknod_exit(dir, dentry, status);
2413 	if (status != 0)
2414 		goto out_err;
2415 	return 0;
2416 out_err:
2417 	d_drop(dentry);
2418 	return status;
2419 }
2420 EXPORT_SYMBOL_GPL(nfs_mknod);
2421 
2422 /*
2423  * See comments for nfs_proc_create regarding failed operations.
2424  */
2425 struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2426 			 struct dentry *dentry, umode_t mode)
2427 {
2428 	struct iattr attr;
2429 	struct dentry *ret;
2430 
2431 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2432 			dir->i_sb->s_id, dir->i_ino, dentry);
2433 
2434 	attr.ia_valid = ATTR_MODE;
2435 	attr.ia_mode = mode | S_IFDIR;
2436 
2437 	trace_nfs_mkdir_enter(dir, dentry);
2438 	ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2439 	trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret));
2440 	return ret;
2441 }
2442 EXPORT_SYMBOL_GPL(nfs_mkdir);
2443 
2444 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2445 {
2446 	if (simple_positive(dentry))
2447 		d_delete(dentry);
2448 }
2449 
2450 static void nfs_dentry_remove_handle_error(struct inode *dir,
2451 					   struct dentry *dentry, int error)
2452 {
2453 	switch (error) {
2454 	case -ENOENT:
2455 		if (d_really_is_positive(dentry))
2456 			d_delete(dentry);
2457 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2458 		break;
2459 	case 0:
2460 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2461 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2462 	}
2463 }
2464 
2465 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2466 {
2467 	int error;
2468 
2469 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2470 			dir->i_sb->s_id, dir->i_ino, dentry);
2471 
2472 	trace_nfs_rmdir_enter(dir, dentry);
2473 	if (d_really_is_positive(dentry)) {
2474 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2475 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2476 		/* Ensure the VFS deletes this inode */
2477 		switch (error) {
2478 		case 0:
2479 			clear_nlink(d_inode(dentry));
2480 			break;
2481 		case -ENOENT:
2482 			nfs_dentry_handle_enoent(dentry);
2483 		}
2484 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2485 	} else
2486 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2487 	nfs_dentry_remove_handle_error(dir, dentry, error);
2488 	trace_nfs_rmdir_exit(dir, dentry, error);
2489 
2490 	return error;
2491 }
2492 EXPORT_SYMBOL_GPL(nfs_rmdir);
2493 
2494 /*
2495  * Remove a file after making sure there are no pending writes,
2496  * and after checking that the file has only one user.
2497  *
2498  * We invalidate the attribute cache and free the inode prior to the operation
2499  * to avoid possible races if the server reuses the inode.
2500  */
2501 static int nfs_safe_remove(struct dentry *dentry)
2502 {
2503 	struct inode *dir = d_inode(dentry->d_parent);
2504 	struct inode *inode = d_inode(dentry);
2505 	int error = -EBUSY;
2506 
2507 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2508 
2509 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2510 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2511 		error = 0;
2512 		goto out;
2513 	}
2514 
2515 	trace_nfs_remove_enter(dir, dentry);
2516 	if (inode != NULL) {
2517 		error = NFS_PROTO(dir)->remove(dir, dentry);
2518 		if (error == 0)
2519 			nfs_drop_nlink(inode);
2520 	} else
2521 		error = NFS_PROTO(dir)->remove(dir, dentry);
2522 	if (error == -ENOENT)
2523 		nfs_dentry_handle_enoent(dentry);
2524 	trace_nfs_remove_exit(dir, dentry, error);
2525 out:
2526 	return error;
2527 }
2528 
2529 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2530  *  belongs to an active ".nfs..." file and we return -EBUSY.
2531  *
2532  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2533  */
2534 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2535 {
2536 	int error;
2537 
2538 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2539 		dir->i_ino, dentry);
2540 
2541 	trace_nfs_unlink_enter(dir, dentry);
2542 	spin_lock(&dentry->d_lock);
2543 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2544 					     &NFS_I(d_inode(dentry))->flags)) {
2545 		spin_unlock(&dentry->d_lock);
2546 		/* Start asynchronous writeout of the inode */
2547 		write_inode_now(d_inode(dentry), 0);
2548 		error = nfs_sillyrename(dir, dentry);
2549 		goto out;
2550 	}
2551 	/* We must prevent any concurrent open until the unlink
2552 	 * completes.  ->d_revalidate will wait for ->d_fsdata
2553 	 * to clear.  We set it here to ensure no lookup succeeds until
2554 	 * the unlink is complete on the server.
2555 	 */
2556 	error = -ETXTBSY;
2557 	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2558 	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2559 		spin_unlock(&dentry->d_lock);
2560 		goto out;
2561 	}
2562 	block_revalidate(dentry);
2563 
2564 	spin_unlock(&dentry->d_lock);
2565 	error = nfs_safe_remove(dentry);
2566 	nfs_dentry_remove_handle_error(dir, dentry, error);
2567 	unblock_revalidate(dentry);
2568 out:
2569 	trace_nfs_unlink_exit(dir, dentry, error);
2570 	return error;
2571 }
2572 EXPORT_SYMBOL_GPL(nfs_unlink);
2573 
2574 /*
2575  * To create a symbolic link, most file systems instantiate a new inode,
2576  * add a page to it containing the path, then write it out to the disk
2577  * using prepare_write/commit_write.
2578  *
2579  * Unfortunately the NFS client can't create the in-core inode first
2580  * because it needs a file handle to create an in-core inode (see
2581  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2582  * symlink request has completed on the server.
2583  *
2584  * So instead we allocate a raw page, copy the symname into it, then do
2585  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2586  * now have a new file handle and can instantiate an in-core NFS inode
2587  * and move the raw page into its mapping.
2588  */
2589 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2590 		struct dentry *dentry, const char *symname)
2591 {
2592 	struct folio *folio;
2593 	char *kaddr;
2594 	struct iattr attr;
2595 	unsigned int pathlen = strlen(symname);
2596 	int error;
2597 
2598 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2599 		dir->i_ino, dentry, symname);
2600 
2601 	if (pathlen > PAGE_SIZE)
2602 		return -ENAMETOOLONG;
2603 
2604 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2605 	attr.ia_valid = ATTR_MODE;
2606 
2607 	folio = folio_alloc(GFP_USER, 0);
2608 	if (!folio)
2609 		return -ENOMEM;
2610 
2611 	kaddr = folio_address(folio);
2612 	memcpy(kaddr, symname, pathlen);
2613 	if (pathlen < PAGE_SIZE)
2614 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2615 
2616 	trace_nfs_symlink_enter(dir, dentry);
2617 	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2618 	trace_nfs_symlink_exit(dir, dentry, error);
2619 	if (error != 0) {
2620 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2621 			dir->i_sb->s_id, dir->i_ino,
2622 			dentry, symname, error);
2623 		d_drop(dentry);
2624 		folio_put(folio);
2625 		return error;
2626 	}
2627 
2628 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2629 
2630 	/*
2631 	 * No big deal if we can't add this page to the page cache here.
2632 	 * READLINK will get the missing page from the server if needed.
2633 	 */
2634 	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2635 							GFP_KERNEL) == 0) {
2636 		folio_mark_uptodate(folio);
2637 		folio_unlock(folio);
2638 	}
2639 
2640 	folio_put(folio);
2641 	return 0;
2642 }
2643 EXPORT_SYMBOL_GPL(nfs_symlink);
2644 
2645 int
2646 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2647 {
2648 	struct inode *inode = d_inode(old_dentry);
2649 	int error;
2650 
2651 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2652 		old_dentry, dentry);
2653 
2654 	trace_nfs_link_enter(inode, dir, dentry);
2655 	d_drop(dentry);
2656 	if (S_ISREG(inode->i_mode))
2657 		nfs_sync_inode(inode);
2658 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2659 	if (error == 0) {
2660 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2661 		ihold(inode);
2662 		d_add(dentry, inode);
2663 	}
2664 	trace_nfs_link_exit(inode, dir, dentry, error);
2665 	return error;
2666 }
2667 EXPORT_SYMBOL_GPL(nfs_link);
2668 
2669 static void
2670 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2671 {
2672 	struct dentry *new_dentry = data->new_dentry;
2673 
2674 	unblock_revalidate(new_dentry);
2675 }
2676 
2677 /*
2678  * RENAME
2679  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2680  * different file handle for the same inode after a rename (e.g. when
2681  * moving to a different directory). A fail-safe method to do so would
2682  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2683  * rename the old file using the sillyrename stuff. This way, the original
2684  * file in old_dir will go away when the last process iput()s the inode.
2685  *
2686  * FIXED.
2687  *
2688  * It actually works quite well. One needs to have the possibility for
2689  * at least one ".nfs..." file in each directory the file ever gets
2690  * moved or linked to which happens automagically with the new
2691  * implementation that only depends on the dcache stuff instead of
2692  * using the inode layer
2693  *
2694  * Unfortunately, things are a little more complicated than indicated
2695  * above. For a cross-directory move, we want to make sure we can get
2696  * rid of the old inode after the operation.  This means there must be
2697  * no pending writes (if it's a file), and the use count must be 1.
2698  * If these conditions are met, we can drop the dentries before doing
2699  * the rename.
2700  */
2701 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2702 	       struct dentry *old_dentry, struct inode *new_dir,
2703 	       struct dentry *new_dentry, unsigned int flags)
2704 {
2705 	struct inode *old_inode = d_inode(old_dentry);
2706 	struct inode *new_inode = d_inode(new_dentry);
2707 	struct dentry *dentry = NULL;
2708 	struct rpc_task *task;
2709 	bool must_unblock = false;
2710 	int error = -EBUSY;
2711 
2712 	if (flags)
2713 		return -EINVAL;
2714 
2715 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2716 		 old_dentry, new_dentry,
2717 		 d_count(new_dentry));
2718 
2719 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2720 	/*
2721 	 * For non-directories, check whether the target is busy and if so,
2722 	 * make a copy of the dentry and then do a silly-rename. If the
2723 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2724 	 * the new target.
2725 	 */
2726 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2727 		/* We must prevent any concurrent open until the unlink
2728 		 * completes.  ->d_revalidate will wait for ->d_fsdata
2729 		 * to clear.  We set it here to ensure no lookup succeeds until
2730 		 * the unlink is complete on the server.
2731 		 */
2732 		error = -ETXTBSY;
2733 		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2734 		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2735 			goto out;
2736 
2737 		spin_lock(&new_dentry->d_lock);
2738 		if (d_count(new_dentry) > 2) {
2739 			int err;
2740 
2741 			spin_unlock(&new_dentry->d_lock);
2742 
2743 			/* copy the target dentry's name */
2744 			dentry = d_alloc(new_dentry->d_parent,
2745 					 &new_dentry->d_name);
2746 			if (!dentry)
2747 				goto out;
2748 
2749 			/* silly-rename the existing target ... */
2750 			err = nfs_sillyrename(new_dir, new_dentry);
2751 			if (err)
2752 				goto out;
2753 
2754 			new_dentry = dentry;
2755 			new_inode = NULL;
2756 		} else {
2757 			block_revalidate(new_dentry);
2758 			must_unblock = true;
2759 			spin_unlock(&new_dentry->d_lock);
2760 		}
2761 
2762 	}
2763 
2764 	if (S_ISREG(old_inode->i_mode))
2765 		nfs_sync_inode(old_inode);
2766 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2767 				must_unblock ? nfs_unblock_rename : NULL);
2768 	if (IS_ERR(task)) {
2769 		if (must_unblock)
2770 			unblock_revalidate(new_dentry);
2771 		error = PTR_ERR(task);
2772 		goto out;
2773 	}
2774 
2775 	error = rpc_wait_for_completion_task(task);
2776 	if (error != 0) {
2777 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2778 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2779 		smp_wmb();
2780 	} else
2781 		error = task->tk_status;
2782 	rpc_put_task(task);
2783 	/* Ensure the inode attributes are revalidated */
2784 	if (error == 0) {
2785 		spin_lock(&old_inode->i_lock);
2786 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2787 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2788 							 NFS_INO_INVALID_CTIME |
2789 							 NFS_INO_REVAL_FORCED);
2790 		spin_unlock(&old_inode->i_lock);
2791 	}
2792 out:
2793 	trace_nfs_rename_exit(old_dir, old_dentry,
2794 			new_dir, new_dentry, error);
2795 	if (!error) {
2796 		if (new_inode != NULL)
2797 			nfs_drop_nlink(new_inode);
2798 		/*
2799 		 * The d_move() should be here instead of in an async RPC completion
2800 		 * handler because we need the proper locks to move the dentry.  If
2801 		 * we're interrupted by a signal, the async RPC completion handler
2802 		 * should mark the directories for revalidation.
2803 		 */
2804 		d_move(old_dentry, new_dentry);
2805 		nfs_set_verifier(old_dentry,
2806 					nfs_save_change_attribute(new_dir));
2807 	} else if (error == -ENOENT)
2808 		nfs_dentry_handle_enoent(old_dentry);
2809 
2810 	/* new dentry created? */
2811 	if (dentry)
2812 		dput(dentry);
2813 	return error;
2814 }
2815 EXPORT_SYMBOL_GPL(nfs_rename);
2816 
2817 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2818 static LIST_HEAD(nfs_access_lru_list);
2819 static atomic_long_t nfs_access_nr_entries;
2820 
2821 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2822 module_param(nfs_access_max_cachesize, ulong, 0644);
2823 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2824 
2825 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2826 {
2827 	put_group_info(entry->group_info);
2828 	kfree_rcu(entry, rcu_head);
2829 	smp_mb__before_atomic();
2830 	atomic_long_dec(&nfs_access_nr_entries);
2831 	smp_mb__after_atomic();
2832 }
2833 
2834 static void nfs_access_free_list(struct list_head *head)
2835 {
2836 	struct nfs_access_entry *cache;
2837 
2838 	while (!list_empty(head)) {
2839 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2840 		list_del(&cache->lru);
2841 		nfs_access_free_entry(cache);
2842 	}
2843 }
2844 
2845 static unsigned long
2846 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2847 {
2848 	LIST_HEAD(head);
2849 	struct nfs_inode *nfsi, *next;
2850 	struct nfs_access_entry *cache;
2851 	long freed = 0;
2852 
2853 	spin_lock(&nfs_access_lru_lock);
2854 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2855 		struct inode *inode;
2856 
2857 		if (nr_to_scan-- == 0)
2858 			break;
2859 		inode = &nfsi->vfs_inode;
2860 		spin_lock(&inode->i_lock);
2861 		if (list_empty(&nfsi->access_cache_entry_lru))
2862 			goto remove_lru_entry;
2863 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2864 				struct nfs_access_entry, lru);
2865 		list_move(&cache->lru, &head);
2866 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2867 		freed++;
2868 		if (!list_empty(&nfsi->access_cache_entry_lru))
2869 			list_move_tail(&nfsi->access_cache_inode_lru,
2870 					&nfs_access_lru_list);
2871 		else {
2872 remove_lru_entry:
2873 			list_del_init(&nfsi->access_cache_inode_lru);
2874 			smp_mb__before_atomic();
2875 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2876 			smp_mb__after_atomic();
2877 		}
2878 		spin_unlock(&inode->i_lock);
2879 	}
2880 	spin_unlock(&nfs_access_lru_lock);
2881 	nfs_access_free_list(&head);
2882 	return freed;
2883 }
2884 
2885 unsigned long
2886 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2887 {
2888 	int nr_to_scan = sc->nr_to_scan;
2889 	gfp_t gfp_mask = sc->gfp_mask;
2890 
2891 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2892 		return SHRINK_STOP;
2893 	return nfs_do_access_cache_scan(nr_to_scan);
2894 }
2895 
2896 
2897 unsigned long
2898 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2899 {
2900 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2901 }
2902 
2903 static void
2904 nfs_access_cache_enforce_limit(void)
2905 {
2906 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2907 	unsigned long diff;
2908 	unsigned int nr_to_scan;
2909 
2910 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2911 		return;
2912 	nr_to_scan = 100;
2913 	diff = nr_entries - nfs_access_max_cachesize;
2914 	if (diff < nr_to_scan)
2915 		nr_to_scan = diff;
2916 	nfs_do_access_cache_scan(nr_to_scan);
2917 }
2918 
2919 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2920 {
2921 	struct rb_root *root_node = &nfsi->access_cache;
2922 	struct rb_node *n;
2923 	struct nfs_access_entry *entry;
2924 
2925 	/* Unhook entries from the cache */
2926 	while ((n = rb_first(root_node)) != NULL) {
2927 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2928 		rb_erase(n, root_node);
2929 		list_move(&entry->lru, head);
2930 	}
2931 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2932 }
2933 
2934 void nfs_access_zap_cache(struct inode *inode)
2935 {
2936 	LIST_HEAD(head);
2937 
2938 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2939 		return;
2940 	/* Remove from global LRU init */
2941 	spin_lock(&nfs_access_lru_lock);
2942 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2943 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2944 
2945 	spin_lock(&inode->i_lock);
2946 	__nfs_access_zap_cache(NFS_I(inode), &head);
2947 	spin_unlock(&inode->i_lock);
2948 	spin_unlock(&nfs_access_lru_lock);
2949 	nfs_access_free_list(&head);
2950 }
2951 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2952 
2953 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2954 {
2955 	struct group_info *ga, *gb;
2956 	int g;
2957 
2958 	if (uid_lt(a->fsuid, b->fsuid))
2959 		return -1;
2960 	if (uid_gt(a->fsuid, b->fsuid))
2961 		return 1;
2962 
2963 	if (gid_lt(a->fsgid, b->fsgid))
2964 		return -1;
2965 	if (gid_gt(a->fsgid, b->fsgid))
2966 		return 1;
2967 
2968 	ga = a->group_info;
2969 	gb = b->group_info;
2970 	if (ga == gb)
2971 		return 0;
2972 	if (ga == NULL)
2973 		return -1;
2974 	if (gb == NULL)
2975 		return 1;
2976 	if (ga->ngroups < gb->ngroups)
2977 		return -1;
2978 	if (ga->ngroups > gb->ngroups)
2979 		return 1;
2980 
2981 	for (g = 0; g < ga->ngroups; g++) {
2982 		if (gid_lt(ga->gid[g], gb->gid[g]))
2983 			return -1;
2984 		if (gid_gt(ga->gid[g], gb->gid[g]))
2985 			return 1;
2986 	}
2987 	return 0;
2988 }
2989 
2990 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2991 {
2992 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2993 
2994 	while (n != NULL) {
2995 		struct nfs_access_entry *entry =
2996 			rb_entry(n, struct nfs_access_entry, rb_node);
2997 		int cmp = access_cmp(cred, entry);
2998 
2999 		if (cmp < 0)
3000 			n = n->rb_left;
3001 		else if (cmp > 0)
3002 			n = n->rb_right;
3003 		else
3004 			return entry;
3005 	}
3006 	return NULL;
3007 }
3008 
3009 static u64 nfs_access_login_time(const struct task_struct *task,
3010 				 const struct cred *cred)
3011 {
3012 	const struct task_struct *parent;
3013 	const struct cred *pcred;
3014 	u64 ret;
3015 
3016 	rcu_read_lock();
3017 	for (;;) {
3018 		parent = rcu_dereference(task->real_parent);
3019 		pcred = __task_cred(parent);
3020 		if (parent == task || cred_fscmp(pcred, cred) != 0)
3021 			break;
3022 		task = parent;
3023 	}
3024 	ret = task->start_time;
3025 	rcu_read_unlock();
3026 	return ret;
3027 }
3028 
3029 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3030 {
3031 	struct nfs_inode *nfsi = NFS_I(inode);
3032 	u64 login_time = nfs_access_login_time(current, cred);
3033 	struct nfs_access_entry *cache;
3034 	bool retry = true;
3035 	int err;
3036 
3037 	spin_lock(&inode->i_lock);
3038 	for(;;) {
3039 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3040 			goto out_zap;
3041 		cache = nfs_access_search_rbtree(inode, cred);
3042 		err = -ENOENT;
3043 		if (cache == NULL)
3044 			goto out;
3045 		/* Found an entry, is our attribute cache valid? */
3046 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3047 			break;
3048 		if (!retry)
3049 			break;
3050 		err = -ECHILD;
3051 		if (!may_block)
3052 			goto out;
3053 		spin_unlock(&inode->i_lock);
3054 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3055 		if (err)
3056 			return err;
3057 		spin_lock(&inode->i_lock);
3058 		retry = false;
3059 	}
3060 	err = -ENOENT;
3061 	if ((s64)(login_time - cache->timestamp) > 0)
3062 		goto out;
3063 	*mask = cache->mask;
3064 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3065 	err = 0;
3066 out:
3067 	spin_unlock(&inode->i_lock);
3068 	return err;
3069 out_zap:
3070 	spin_unlock(&inode->i_lock);
3071 	nfs_access_zap_cache(inode);
3072 	return -ENOENT;
3073 }
3074 
3075 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3076 {
3077 	/* Only check the most recently returned cache entry,
3078 	 * but do it without locking.
3079 	 */
3080 	struct nfs_inode *nfsi = NFS_I(inode);
3081 	u64 login_time = nfs_access_login_time(current, cred);
3082 	struct nfs_access_entry *cache;
3083 	int err = -ECHILD;
3084 	struct list_head *lh;
3085 
3086 	rcu_read_lock();
3087 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3088 		goto out;
3089 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3090 	cache = list_entry(lh, struct nfs_access_entry, lru);
3091 	if (lh == &nfsi->access_cache_entry_lru ||
3092 	    access_cmp(cred, cache) != 0)
3093 		cache = NULL;
3094 	if (cache == NULL)
3095 		goto out;
3096 	if ((s64)(login_time - cache->timestamp) > 0)
3097 		goto out;
3098 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3099 		goto out;
3100 	*mask = cache->mask;
3101 	err = 0;
3102 out:
3103 	rcu_read_unlock();
3104 	return err;
3105 }
3106 
3107 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3108 			  u32 *mask, bool may_block)
3109 {
3110 	int status;
3111 
3112 	status = nfs_access_get_cached_rcu(inode, cred, mask);
3113 	if (status != 0)
3114 		status = nfs_access_get_cached_locked(inode, cred, mask,
3115 		    may_block);
3116 
3117 	return status;
3118 }
3119 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3120 
3121 static void nfs_access_add_rbtree(struct inode *inode,
3122 				  struct nfs_access_entry *set,
3123 				  const struct cred *cred)
3124 {
3125 	struct nfs_inode *nfsi = NFS_I(inode);
3126 	struct rb_root *root_node = &nfsi->access_cache;
3127 	struct rb_node **p = &root_node->rb_node;
3128 	struct rb_node *parent = NULL;
3129 	struct nfs_access_entry *entry;
3130 	int cmp;
3131 
3132 	spin_lock(&inode->i_lock);
3133 	while (*p != NULL) {
3134 		parent = *p;
3135 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3136 		cmp = access_cmp(cred, entry);
3137 
3138 		if (cmp < 0)
3139 			p = &parent->rb_left;
3140 		else if (cmp > 0)
3141 			p = &parent->rb_right;
3142 		else
3143 			goto found;
3144 	}
3145 	rb_link_node(&set->rb_node, parent, p);
3146 	rb_insert_color(&set->rb_node, root_node);
3147 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3148 	spin_unlock(&inode->i_lock);
3149 	return;
3150 found:
3151 	rb_replace_node(parent, &set->rb_node, root_node);
3152 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3153 	list_del(&entry->lru);
3154 	spin_unlock(&inode->i_lock);
3155 	nfs_access_free_entry(entry);
3156 }
3157 
3158 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3159 			  const struct cred *cred)
3160 {
3161 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3162 	if (cache == NULL)
3163 		return;
3164 	RB_CLEAR_NODE(&cache->rb_node);
3165 	cache->fsuid = cred->fsuid;
3166 	cache->fsgid = cred->fsgid;
3167 	cache->group_info = get_group_info(cred->group_info);
3168 	cache->mask = set->mask;
3169 	cache->timestamp = ktime_get_ns();
3170 
3171 	/* The above field assignments must be visible
3172 	 * before this item appears on the lru.  We cannot easily
3173 	 * use rcu_assign_pointer, so just force the memory barrier.
3174 	 */
3175 	smp_wmb();
3176 	nfs_access_add_rbtree(inode, cache, cred);
3177 
3178 	/* Update accounting */
3179 	smp_mb__before_atomic();
3180 	atomic_long_inc(&nfs_access_nr_entries);
3181 	smp_mb__after_atomic();
3182 
3183 	/* Add inode to global LRU list */
3184 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3185 		spin_lock(&nfs_access_lru_lock);
3186 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3187 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3188 					&nfs_access_lru_list);
3189 		spin_unlock(&nfs_access_lru_lock);
3190 	}
3191 	nfs_access_cache_enforce_limit();
3192 }
3193 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3194 
3195 #define NFS_MAY_READ (NFS_ACCESS_READ)
3196 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3197 		NFS_ACCESS_EXTEND | \
3198 		NFS_ACCESS_DELETE)
3199 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3200 		NFS_ACCESS_EXTEND)
3201 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3202 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3203 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3204 static int
3205 nfs_access_calc_mask(u32 access_result, umode_t umode)
3206 {
3207 	int mask = 0;
3208 
3209 	if (access_result & NFS_MAY_READ)
3210 		mask |= MAY_READ;
3211 	if (S_ISDIR(umode)) {
3212 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3213 			mask |= MAY_WRITE;
3214 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3215 			mask |= MAY_EXEC;
3216 	} else if (S_ISREG(umode)) {
3217 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3218 			mask |= MAY_WRITE;
3219 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3220 			mask |= MAY_EXEC;
3221 	} else if (access_result & NFS_MAY_WRITE)
3222 			mask |= MAY_WRITE;
3223 	return mask;
3224 }
3225 
3226 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3227 {
3228 	entry->mask = access_result;
3229 }
3230 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3231 
3232 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3233 {
3234 	struct nfs_access_entry cache;
3235 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3236 	int cache_mask = -1;
3237 	int status;
3238 
3239 	trace_nfs_access_enter(inode);
3240 
3241 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3242 	if (status == 0)
3243 		goto out_cached;
3244 
3245 	status = -ECHILD;
3246 	if (!may_block)
3247 		goto out;
3248 
3249 	/*
3250 	 * Determine which access bits we want to ask for...
3251 	 */
3252 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3253 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3254 	if (S_ISDIR(inode->i_mode))
3255 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3256 	else
3257 		cache.mask |= NFS_ACCESS_EXECUTE;
3258 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3259 	if (status != 0) {
3260 		if (status == -ESTALE) {
3261 			if (!S_ISDIR(inode->i_mode))
3262 				nfs_set_inode_stale(inode);
3263 			else
3264 				nfs_zap_caches(inode);
3265 		}
3266 		goto out;
3267 	}
3268 	nfs_access_add_cache(inode, &cache, cred);
3269 out_cached:
3270 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3271 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3272 		status = -EACCES;
3273 out:
3274 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3275 	return status;
3276 }
3277 
3278 static int nfs_open_permission_mask(int openflags)
3279 {
3280 	int mask = 0;
3281 
3282 	if (openflags & __FMODE_EXEC) {
3283 		/* ONLY check exec rights */
3284 		mask = MAY_EXEC;
3285 	} else {
3286 		if ((openflags & O_ACCMODE) != O_WRONLY)
3287 			mask |= MAY_READ;
3288 		if ((openflags & O_ACCMODE) != O_RDONLY)
3289 			mask |= MAY_WRITE;
3290 	}
3291 
3292 	return mask;
3293 }
3294 
3295 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3296 {
3297 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3298 }
3299 EXPORT_SYMBOL_GPL(nfs_may_open);
3300 
3301 static int nfs_execute_ok(struct inode *inode, int mask)
3302 {
3303 	struct nfs_server *server = NFS_SERVER(inode);
3304 	int ret = 0;
3305 
3306 	if (S_ISDIR(inode->i_mode))
3307 		return 0;
3308 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3309 		if (mask & MAY_NOT_BLOCK)
3310 			return -ECHILD;
3311 		ret = __nfs_revalidate_inode(server, inode);
3312 	}
3313 	if (ret == 0 && !execute_ok(inode))
3314 		ret = -EACCES;
3315 	return ret;
3316 }
3317 
3318 int nfs_permission(struct mnt_idmap *idmap,
3319 		   struct inode *inode,
3320 		   int mask)
3321 {
3322 	const struct cred *cred = current_cred();
3323 	int res = 0;
3324 
3325 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3326 
3327 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3328 		goto out;
3329 	/* Is this sys_access() ? */
3330 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3331 		goto force_lookup;
3332 
3333 	switch (inode->i_mode & S_IFMT) {
3334 		case S_IFLNK:
3335 			goto out;
3336 		case S_IFREG:
3337 			if ((mask & MAY_OPEN) &&
3338 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3339 				return 0;
3340 			break;
3341 		case S_IFDIR:
3342 			/*
3343 			 * Optimize away all write operations, since the server
3344 			 * will check permissions when we perform the op.
3345 			 */
3346 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3347 				goto out;
3348 	}
3349 
3350 force_lookup:
3351 	if (!NFS_PROTO(inode)->access)
3352 		goto out_notsup;
3353 
3354 	res = nfs_do_access(inode, cred, mask);
3355 out:
3356 	if (!res && (mask & MAY_EXEC))
3357 		res = nfs_execute_ok(inode, mask);
3358 
3359 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3360 		inode->i_sb->s_id, inode->i_ino, mask, res);
3361 	return res;
3362 out_notsup:
3363 	if (mask & MAY_NOT_BLOCK)
3364 		return -ECHILD;
3365 
3366 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3367 						  NFS_INO_INVALID_OTHER);
3368 	if (res == 0)
3369 		res = generic_permission(&nop_mnt_idmap, inode, mask);
3370 	goto out;
3371 }
3372 EXPORT_SYMBOL_GPL(nfs_permission);
3373