xref: /linux/fs/nfs/dir.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate_shared	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	atomic_t refcount;
149 	int size;
150 	int eof_index;
151 	u64 last_cookie;
152 	struct nfs_cache_array_entry array[0];
153 };
154 
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 	struct file	*file;
158 	struct page	*page;
159 	struct dir_context *ctx;
160 	unsigned long	page_index;
161 	u64		*dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 	decode_dirent_t	decode;
165 
166 	unsigned long	timestamp;
167 	unsigned long	gencount;
168 	unsigned int	cache_entry_index;
169 	unsigned int	plus:1;
170 	unsigned int	eof:1;
171 } nfs_readdir_descriptor_t;
172 
173 /*
174  * The caller is responsible for calling nfs_readdir_release_array(page)
175  */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 	void *ptr;
180 	if (page == NULL)
181 		return ERR_PTR(-EIO);
182 	ptr = kmap(page);
183 	if (ptr == NULL)
184 		return ERR_PTR(-ENOMEM);
185 	return ptr;
186 }
187 
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 	kunmap(page);
192 }
193 
194 /*
195  * we are freeing strings created by nfs_add_to_readdir_array()
196  */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 	struct nfs_cache_array *array;
201 	int i;
202 
203 	array = kmap_atomic(page);
204 	if (atomic_dec_and_test(&array->refcount))
205 		for (i = 0; i < array->size; i++)
206 			kfree(array->array[i].string.name);
207 	kunmap_atomic(array);
208 }
209 
210 static bool grab_page(struct page *page)
211 {
212 	struct nfs_cache_array *array = kmap_atomic(page);
213 	bool res = atomic_inc_not_zero(&array->refcount);
214 	kunmap_atomic(array);
215 	return res;
216 }
217 
218 /*
219  * the caller is responsible for freeing qstr.name
220  * when called by nfs_readdir_add_to_array, the strings will be freed in
221  * nfs_clear_readdir_array()
222  */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 	string->len = len;
227 	string->name = kmemdup(name, len, GFP_KERNEL);
228 	if (string->name == NULL)
229 		return -ENOMEM;
230 	/*
231 	 * Avoid a kmemleak false positive. The pointer to the name is stored
232 	 * in a page cache page which kmemleak does not scan.
233 	 */
234 	kmemleak_not_leak(string->name);
235 	string->hash = full_name_hash(NULL, name, len);
236 	return 0;
237 }
238 
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 	struct nfs_cache_array_entry *cache_entry;
244 	int ret;
245 
246 	if (IS_ERR(array))
247 		return PTR_ERR(array);
248 
249 	cache_entry = &array->array[array->size];
250 
251 	/* Check that this entry lies within the page bounds */
252 	ret = -ENOSPC;
253 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 		goto out;
255 
256 	cache_entry->cookie = entry->prev_cookie;
257 	cache_entry->ino = entry->ino;
258 	cache_entry->d_type = entry->d_type;
259 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 	if (ret)
261 		goto out;
262 	array->last_cookie = entry->cookie;
263 	array->size++;
264 	if (entry->eof != 0)
265 		array->eof_index = array->size;
266 out:
267 	nfs_readdir_release_array(page);
268 	return ret;
269 }
270 
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 	loff_t diff = desc->ctx->pos - desc->current_index;
275 	unsigned int index;
276 
277 	if (diff < 0)
278 		goto out_eof;
279 	if (diff >= array->size) {
280 		if (array->eof_index >= 0)
281 			goto out_eof;
282 		return -EAGAIN;
283 	}
284 
285 	index = (unsigned int)diff;
286 	*desc->dir_cookie = array->array[index].cookie;
287 	desc->cache_entry_index = index;
288 	return 0;
289 out_eof:
290 	desc->eof = 1;
291 	return -EBADCOOKIE;
292 }
293 
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 		return false;
299 	smp_rmb();
300 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302 
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 	int i;
307 	loff_t new_pos;
308 	int status = -EAGAIN;
309 
310 	for (i = 0; i < array->size; i++) {
311 		if (array->array[i].cookie == *desc->dir_cookie) {
312 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 			struct nfs_open_dir_context *ctx = desc->file->private_data;
314 
315 			new_pos = desc->current_index + i;
316 			if (ctx->attr_gencount != nfsi->attr_gencount ||
317 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
318 				ctx->duped = 0;
319 				ctx->attr_gencount = nfsi->attr_gencount;
320 			} else if (new_pos < desc->ctx->pos) {
321 				if (ctx->duped > 0
322 				    && ctx->dup_cookie == *desc->dir_cookie) {
323 					if (printk_ratelimit()) {
324 						pr_notice("NFS: directory %pD2 contains a readdir loop."
325 								"Please contact your server vendor.  "
326 								"The file: %.*s has duplicate cookie %llu\n",
327 								desc->file, array->array[i].string.len,
328 								array->array[i].string.name, *desc->dir_cookie);
329 					}
330 					status = -ELOOP;
331 					goto out;
332 				}
333 				ctx->dup_cookie = *desc->dir_cookie;
334 				ctx->duped = -1;
335 			}
336 			desc->ctx->pos = new_pos;
337 			desc->cache_entry_index = i;
338 			return 0;
339 		}
340 	}
341 	if (array->eof_index >= 0) {
342 		status = -EBADCOOKIE;
343 		if (*desc->dir_cookie == array->last_cookie)
344 			desc->eof = 1;
345 	}
346 out:
347 	return status;
348 }
349 
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 	struct nfs_cache_array *array;
354 	int status;
355 
356 	array = nfs_readdir_get_array(desc->page);
357 	if (IS_ERR(array)) {
358 		status = PTR_ERR(array);
359 		goto out;
360 	}
361 
362 	if (*desc->dir_cookie == 0)
363 		status = nfs_readdir_search_for_pos(array, desc);
364 	else
365 		status = nfs_readdir_search_for_cookie(array, desc);
366 
367 	if (status == -EAGAIN) {
368 		desc->last_cookie = array->last_cookie;
369 		desc->current_index += array->size;
370 		desc->page_index++;
371 	}
372 	nfs_readdir_release_array(desc->page);
373 out:
374 	return status;
375 }
376 
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 			struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 	struct nfs_open_dir_context *ctx = file->private_data;
383 	struct rpc_cred	*cred = ctx->cred;
384 	unsigned long	timestamp, gencount;
385 	int		error;
386 
387  again:
388 	timestamp = jiffies;
389 	gencount = nfs_inc_attr_generation_counter();
390 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 					  NFS_SERVER(inode)->dtsize, desc->plus);
392 	if (error < 0) {
393 		/* We requested READDIRPLUS, but the server doesn't grok it */
394 		if (error == -ENOTSUPP && desc->plus) {
395 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 			desc->plus = 0;
398 			goto again;
399 		}
400 		goto error;
401 	}
402 	desc->timestamp = timestamp;
403 	desc->gencount = gencount;
404 error:
405 	return error;
406 }
407 
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 		      struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 	int error;
412 
413 	error = desc->decode(xdr, entry, desc->plus);
414 	if (error)
415 		return error;
416 	entry->fattr->time_start = desc->timestamp;
417 	entry->fattr->gencount = desc->gencount;
418 	return 0;
419 }
420 
421 /* Match file and dirent using either filehandle or fileid
422  * Note: caller is responsible for checking the fsid
423  */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 	struct inode *inode;
428 	struct nfs_inode *nfsi;
429 
430 	if (d_really_is_negative(dentry))
431 		return 0;
432 
433 	inode = d_inode(dentry);
434 	if (is_bad_inode(inode) || NFS_STALE(inode))
435 		return 0;
436 
437 	nfsi = NFS_I(inode);
438 	if (entry->fattr->fileid != nfsi->fileid)
439 		return 0;
440 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
441 		return 0;
442 	return 1;
443 }
444 
445 static
446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 		return false;
450 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 		return true;
452 	if (ctx->pos == 0)
453 		return true;
454 	return false;
455 }
456 
457 /*
458  * This function is called by the lookup code to request the use of
459  * readdirplus to accelerate any future lookups in the same
460  * directory.
461  */
462 static
463 void nfs_advise_use_readdirplus(struct inode *dir)
464 {
465 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
466 }
467 
468 /*
469  * This function is mainly for use by nfs_getattr().
470  *
471  * If this is an 'ls -l', we want to force use of readdirplus.
472  * Do this by checking if there is an active file descriptor
473  * and calling nfs_advise_use_readdirplus, then forcing a
474  * cache flush.
475  */
476 void nfs_force_use_readdirplus(struct inode *dir)
477 {
478 	if (!list_empty(&NFS_I(dir)->open_files)) {
479 		nfs_advise_use_readdirplus(dir);
480 		nfs_zap_mapping(dir, dir->i_mapping);
481 	}
482 }
483 
484 static
485 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
486 {
487 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
488 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
489 	struct dentry *dentry;
490 	struct dentry *alias;
491 	struct inode *dir = d_inode(parent);
492 	struct inode *inode;
493 	int status;
494 
495 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
496 		return;
497 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
498 		return;
499 	if (filename.len == 0)
500 		return;
501 	/* Validate that the name doesn't contain any illegal '\0' */
502 	if (strnlen(filename.name, filename.len) != filename.len)
503 		return;
504 	/* ...or '/' */
505 	if (strnchr(filename.name, filename.len, '/'))
506 		return;
507 	if (filename.name[0] == '.') {
508 		if (filename.len == 1)
509 			return;
510 		if (filename.len == 2 && filename.name[1] == '.')
511 			return;
512 	}
513 	filename.hash = full_name_hash(parent, filename.name, filename.len);
514 
515 	dentry = d_lookup(parent, &filename);
516 again:
517 	if (!dentry) {
518 		dentry = d_alloc_parallel(parent, &filename, &wq);
519 		if (IS_ERR(dentry))
520 			return;
521 	}
522 	if (!d_in_lookup(dentry)) {
523 		/* Is there a mountpoint here? If so, just exit */
524 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
525 					&entry->fattr->fsid))
526 			goto out;
527 		if (nfs_same_file(dentry, entry)) {
528 			if (!entry->fh->size)
529 				goto out;
530 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
531 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
532 			if (!status)
533 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
534 			goto out;
535 		} else {
536 			d_invalidate(dentry);
537 			dput(dentry);
538 			dentry = NULL;
539 			goto again;
540 		}
541 	}
542 	if (!entry->fh->size) {
543 		d_lookup_done(dentry);
544 		goto out;
545 	}
546 
547 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
548 	alias = d_splice_alias(inode, dentry);
549 	d_lookup_done(dentry);
550 	if (alias) {
551 		if (IS_ERR(alias))
552 			goto out;
553 		dput(dentry);
554 		dentry = alias;
555 	}
556 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
557 out:
558 	dput(dentry);
559 }
560 
561 /* Perform conversion from xdr to cache array */
562 static
563 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
564 				struct page **xdr_pages, struct page *page, unsigned int buflen)
565 {
566 	struct xdr_stream stream;
567 	struct xdr_buf buf;
568 	struct page *scratch;
569 	struct nfs_cache_array *array;
570 	unsigned int count = 0;
571 	int status;
572 
573 	scratch = alloc_page(GFP_KERNEL);
574 	if (scratch == NULL)
575 		return -ENOMEM;
576 
577 	if (buflen == 0)
578 		goto out_nopages;
579 
580 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
581 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
582 
583 	do {
584 		status = xdr_decode(desc, entry, &stream);
585 		if (status != 0) {
586 			if (status == -EAGAIN)
587 				status = 0;
588 			break;
589 		}
590 
591 		count++;
592 
593 		if (desc->plus != 0)
594 			nfs_prime_dcache(file_dentry(desc->file), entry);
595 
596 		status = nfs_readdir_add_to_array(entry, page);
597 		if (status != 0)
598 			break;
599 	} while (!entry->eof);
600 
601 out_nopages:
602 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
603 		array = nfs_readdir_get_array(page);
604 		if (!IS_ERR(array)) {
605 			array->eof_index = array->size;
606 			status = 0;
607 			nfs_readdir_release_array(page);
608 		} else
609 			status = PTR_ERR(array);
610 	}
611 
612 	put_page(scratch);
613 	return status;
614 }
615 
616 static
617 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
618 {
619 	unsigned int i;
620 	for (i = 0; i < npages; i++)
621 		put_page(pages[i]);
622 }
623 
624 /*
625  * nfs_readdir_large_page will allocate pages that must be freed with a call
626  * to nfs_readdir_free_pagearray
627  */
628 static
629 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
630 {
631 	unsigned int i;
632 
633 	for (i = 0; i < npages; i++) {
634 		struct page *page = alloc_page(GFP_KERNEL);
635 		if (page == NULL)
636 			goto out_freepages;
637 		pages[i] = page;
638 	}
639 	return 0;
640 
641 out_freepages:
642 	nfs_readdir_free_pages(pages, i);
643 	return -ENOMEM;
644 }
645 
646 static
647 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
648 {
649 	struct page *pages[NFS_MAX_READDIR_PAGES];
650 	struct nfs_entry entry;
651 	struct file	*file = desc->file;
652 	struct nfs_cache_array *array;
653 	int status = -ENOMEM;
654 	unsigned int array_size = ARRAY_SIZE(pages);
655 
656 	entry.prev_cookie = 0;
657 	entry.cookie = desc->last_cookie;
658 	entry.eof = 0;
659 	entry.fh = nfs_alloc_fhandle();
660 	entry.fattr = nfs_alloc_fattr();
661 	entry.server = NFS_SERVER(inode);
662 	if (entry.fh == NULL || entry.fattr == NULL)
663 		goto out;
664 
665 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
666 	if (IS_ERR(entry.label)) {
667 		status = PTR_ERR(entry.label);
668 		goto out;
669 	}
670 
671 	array = nfs_readdir_get_array(page);
672 	if (IS_ERR(array)) {
673 		status = PTR_ERR(array);
674 		goto out_label_free;
675 	}
676 	memset(array, 0, sizeof(struct nfs_cache_array));
677 	atomic_set(&array->refcount, 1);
678 	array->eof_index = -1;
679 
680 	status = nfs_readdir_alloc_pages(pages, array_size);
681 	if (status < 0)
682 		goto out_release_array;
683 	do {
684 		unsigned int pglen;
685 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
686 
687 		if (status < 0)
688 			break;
689 		pglen = status;
690 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
691 		if (status < 0) {
692 			if (status == -ENOSPC)
693 				status = 0;
694 			break;
695 		}
696 	} while (array->eof_index < 0);
697 
698 	nfs_readdir_free_pages(pages, array_size);
699 out_release_array:
700 	nfs_readdir_release_array(page);
701 out_label_free:
702 	nfs4_label_free(entry.label);
703 out:
704 	nfs_free_fattr(entry.fattr);
705 	nfs_free_fhandle(entry.fh);
706 	return status;
707 }
708 
709 /*
710  * Now we cache directories properly, by converting xdr information
711  * to an array that can be used for lookups later.  This results in
712  * fewer cache pages, since we can store more information on each page.
713  * We only need to convert from xdr once so future lookups are much simpler
714  */
715 static
716 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
717 {
718 	struct inode	*inode = file_inode(desc->file);
719 	int ret;
720 
721 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
722 	if (ret < 0)
723 		goto error;
724 	SetPageUptodate(page);
725 
726 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
727 		/* Should never happen */
728 		nfs_zap_mapping(inode, inode->i_mapping);
729 	}
730 	unlock_page(page);
731 	return 0;
732  error:
733 	unlock_page(page);
734 	return ret;
735 }
736 
737 static
738 void cache_page_release(nfs_readdir_descriptor_t *desc)
739 {
740 	nfs_readdir_clear_array(desc->page);
741 	put_page(desc->page);
742 	desc->page = NULL;
743 }
744 
745 static
746 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
747 {
748 	struct page *page;
749 
750 	for (;;) {
751 		page = read_cache_page(desc->file->f_mapping,
752 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
753 		if (IS_ERR(page) || grab_page(page))
754 			break;
755 		put_page(page);
756 	}
757 	return page;
758 }
759 
760 /*
761  * Returns 0 if desc->dir_cookie was found on page desc->page_index
762  */
763 static
764 int find_cache_page(nfs_readdir_descriptor_t *desc)
765 {
766 	int res;
767 
768 	desc->page = get_cache_page(desc);
769 	if (IS_ERR(desc->page))
770 		return PTR_ERR(desc->page);
771 
772 	res = nfs_readdir_search_array(desc);
773 	if (res != 0)
774 		cache_page_release(desc);
775 	return res;
776 }
777 
778 /* Search for desc->dir_cookie from the beginning of the page cache */
779 static inline
780 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
781 {
782 	int res;
783 
784 	if (desc->page_index == 0) {
785 		desc->current_index = 0;
786 		desc->last_cookie = 0;
787 	}
788 	do {
789 		res = find_cache_page(desc);
790 	} while (res == -EAGAIN);
791 	return res;
792 }
793 
794 /*
795  * Once we've found the start of the dirent within a page: fill 'er up...
796  */
797 static
798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 	struct file	*file = desc->file;
801 	int i = 0;
802 	int res = 0;
803 	struct nfs_cache_array *array = NULL;
804 	struct nfs_open_dir_context *ctx = file->private_data;
805 
806 	array = nfs_readdir_get_array(desc->page);
807 	if (IS_ERR(array)) {
808 		res = PTR_ERR(array);
809 		goto out;
810 	}
811 
812 	for (i = desc->cache_entry_index; i < array->size; i++) {
813 		struct nfs_cache_array_entry *ent;
814 
815 		ent = &array->array[i];
816 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
817 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
818 			desc->eof = 1;
819 			break;
820 		}
821 		desc->ctx->pos++;
822 		if (i < (array->size-1))
823 			*desc->dir_cookie = array->array[i+1].cookie;
824 		else
825 			*desc->dir_cookie = array->last_cookie;
826 		if (ctx->duped != 0)
827 			ctx->duped = 1;
828 	}
829 	if (array->eof_index >= 0)
830 		desc->eof = 1;
831 
832 	nfs_readdir_release_array(desc->page);
833 out:
834 	cache_page_release(desc);
835 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
836 			(unsigned long long)*desc->dir_cookie, res);
837 	return res;
838 }
839 
840 /*
841  * If we cannot find a cookie in our cache, we suspect that this is
842  * because it points to a deleted file, so we ask the server to return
843  * whatever it thinks is the next entry. We then feed this to filldir.
844  * If all goes well, we should then be able to find our way round the
845  * cache on the next call to readdir_search_pagecache();
846  *
847  * NOTE: we cannot add the anonymous page to the pagecache because
848  *	 the data it contains might not be page aligned. Besides,
849  *	 we should already have a complete representation of the
850  *	 directory in the page cache by the time we get here.
851  */
852 static inline
853 int uncached_readdir(nfs_readdir_descriptor_t *desc)
854 {
855 	struct page	*page = NULL;
856 	int		status;
857 	struct inode *inode = file_inode(desc->file);
858 	struct nfs_open_dir_context *ctx = desc->file->private_data;
859 
860 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
861 			(unsigned long long)*desc->dir_cookie);
862 
863 	page = alloc_page(GFP_HIGHUSER);
864 	if (!page) {
865 		status = -ENOMEM;
866 		goto out;
867 	}
868 
869 	desc->page_index = 0;
870 	desc->last_cookie = *desc->dir_cookie;
871 	desc->page = page;
872 	ctx->duped = 0;
873 
874 	status = nfs_readdir_xdr_to_array(desc, page, inode);
875 	if (status < 0)
876 		goto out_release;
877 
878 	status = nfs_do_filldir(desc);
879 
880  out:
881 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
882 			__func__, status);
883 	return status;
884  out_release:
885 	cache_page_release(desc);
886 	goto out;
887 }
888 
889 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
890 {
891 	struct nfs_inode *nfsi = NFS_I(dir);
892 
893 	if (nfs_attribute_cache_expired(dir))
894 		return true;
895 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
896 		return true;
897 	return false;
898 }
899 
900 /* The file offset position represents the dirent entry number.  A
901    last cookie cache takes care of the common case of reading the
902    whole directory.
903  */
904 static int nfs_readdir(struct file *file, struct dir_context *ctx)
905 {
906 	struct dentry	*dentry = file_dentry(file);
907 	struct inode	*inode = d_inode(dentry);
908 	nfs_readdir_descriptor_t my_desc,
909 			*desc = &my_desc;
910 	struct nfs_open_dir_context *dir_ctx = file->private_data;
911 	int res = 0;
912 
913 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
914 			file, (long long)ctx->pos);
915 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
916 
917 	/*
918 	 * ctx->pos points to the dirent entry number.
919 	 * *desc->dir_cookie has the cookie for the next entry. We have
920 	 * to either find the entry with the appropriate number or
921 	 * revalidate the cookie.
922 	 */
923 	memset(desc, 0, sizeof(*desc));
924 
925 	desc->file = file;
926 	desc->ctx = ctx;
927 	desc->dir_cookie = &dir_ctx->dir_cookie;
928 	desc->decode = NFS_PROTO(inode)->decode_dirent;
929 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
930 
931 	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
932 		res = nfs_revalidate_mapping(inode, file->f_mapping);
933 	if (res < 0)
934 		goto out;
935 
936 	do {
937 		res = readdir_search_pagecache(desc);
938 
939 		if (res == -EBADCOOKIE) {
940 			res = 0;
941 			/* This means either end of directory */
942 			if (*desc->dir_cookie && desc->eof == 0) {
943 				/* Or that the server has 'lost' a cookie */
944 				res = uncached_readdir(desc);
945 				if (res == 0)
946 					continue;
947 			}
948 			break;
949 		}
950 		if (res == -ETOOSMALL && desc->plus) {
951 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
952 			nfs_zap_caches(inode);
953 			desc->page_index = 0;
954 			desc->plus = 0;
955 			desc->eof = 0;
956 			continue;
957 		}
958 		if (res < 0)
959 			break;
960 
961 		res = nfs_do_filldir(desc);
962 		if (res < 0)
963 			break;
964 	} while (!desc->eof);
965 out:
966 	if (res > 0)
967 		res = 0;
968 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
969 	return res;
970 }
971 
972 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
973 {
974 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
975 
976 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
977 			filp, offset, whence);
978 
979 	switch (whence) {
980 		case 1:
981 			offset += filp->f_pos;
982 		case 0:
983 			if (offset >= 0)
984 				break;
985 		default:
986 			return -EINVAL;
987 	}
988 	if (offset != filp->f_pos) {
989 		filp->f_pos = offset;
990 		dir_ctx->dir_cookie = 0;
991 		dir_ctx->duped = 0;
992 	}
993 	return offset;
994 }
995 
996 /*
997  * All directory operations under NFS are synchronous, so fsync()
998  * is a dummy operation.
999  */
1000 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1001 			 int datasync)
1002 {
1003 	struct inode *inode = file_inode(filp);
1004 
1005 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1006 
1007 	inode_lock(inode);
1008 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1009 	inode_unlock(inode);
1010 	return 0;
1011 }
1012 
1013 /**
1014  * nfs_force_lookup_revalidate - Mark the directory as having changed
1015  * @dir - pointer to directory inode
1016  *
1017  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1018  * full lookup on all child dentries of 'dir' whenever a change occurs
1019  * on the server that might have invalidated our dcache.
1020  *
1021  * The caller should be holding dir->i_lock
1022  */
1023 void nfs_force_lookup_revalidate(struct inode *dir)
1024 {
1025 	NFS_I(dir)->cache_change_attribute++;
1026 }
1027 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1028 
1029 /*
1030  * A check for whether or not the parent directory has changed.
1031  * In the case it has, we assume that the dentries are untrustworthy
1032  * and may need to be looked up again.
1033  * If rcu_walk prevents us from performing a full check, return 0.
1034  */
1035 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1036 			      int rcu_walk)
1037 {
1038 	int ret;
1039 
1040 	if (IS_ROOT(dentry))
1041 		return 1;
1042 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1043 		return 0;
1044 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1045 		return 0;
1046 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1047 	if (rcu_walk)
1048 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1049 	else
1050 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1051 	if (ret < 0)
1052 		return 0;
1053 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1054 		return 0;
1055 	return 1;
1056 }
1057 
1058 /*
1059  * Use intent information to check whether or not we're going to do
1060  * an O_EXCL create using this path component.
1061  */
1062 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1063 {
1064 	if (NFS_PROTO(dir)->version == 2)
1065 		return 0;
1066 	return flags & LOOKUP_EXCL;
1067 }
1068 
1069 /*
1070  * Inode and filehandle revalidation for lookups.
1071  *
1072  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1073  * or if the intent information indicates that we're about to open this
1074  * particular file and the "nocto" mount flag is not set.
1075  *
1076  */
1077 static
1078 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1079 {
1080 	struct nfs_server *server = NFS_SERVER(inode);
1081 	int ret;
1082 
1083 	if (IS_AUTOMOUNT(inode))
1084 		return 0;
1085 	/* VFS wants an on-the-wire revalidation */
1086 	if (flags & LOOKUP_REVAL)
1087 		goto out_force;
1088 	/* This is an open(2) */
1089 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1090 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1091 		goto out_force;
1092 out:
1093 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1094 out_force:
1095 	if (flags & LOOKUP_RCU)
1096 		return -ECHILD;
1097 	ret = __nfs_revalidate_inode(server, inode);
1098 	if (ret != 0)
1099 		return ret;
1100 	goto out;
1101 }
1102 
1103 /*
1104  * We judge how long we want to trust negative
1105  * dentries by looking at the parent inode mtime.
1106  *
1107  * If parent mtime has changed, we revalidate, else we wait for a
1108  * period corresponding to the parent's attribute cache timeout value.
1109  *
1110  * If LOOKUP_RCU prevents us from performing a full check, return 1
1111  * suggesting a reval is needed.
1112  */
1113 static inline
1114 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1115 		       unsigned int flags)
1116 {
1117 	/* Don't revalidate a negative dentry if we're creating a new file */
1118 	if (flags & LOOKUP_CREATE)
1119 		return 0;
1120 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1121 		return 1;
1122 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1123 }
1124 
1125 /*
1126  * This is called every time the dcache has a lookup hit,
1127  * and we should check whether we can really trust that
1128  * lookup.
1129  *
1130  * NOTE! The hit can be a negative hit too, don't assume
1131  * we have an inode!
1132  *
1133  * If the parent directory is seen to have changed, we throw out the
1134  * cached dentry and do a new lookup.
1135  */
1136 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1137 {
1138 	struct inode *dir;
1139 	struct inode *inode;
1140 	struct dentry *parent;
1141 	struct nfs_fh *fhandle = NULL;
1142 	struct nfs_fattr *fattr = NULL;
1143 	struct nfs4_label *label = NULL;
1144 	int error;
1145 
1146 	if (flags & LOOKUP_RCU) {
1147 		parent = ACCESS_ONCE(dentry->d_parent);
1148 		dir = d_inode_rcu(parent);
1149 		if (!dir)
1150 			return -ECHILD;
1151 	} else {
1152 		parent = dget_parent(dentry);
1153 		dir = d_inode(parent);
1154 	}
1155 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1156 	inode = d_inode(dentry);
1157 
1158 	if (!inode) {
1159 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1160 			if (flags & LOOKUP_RCU)
1161 				return -ECHILD;
1162 			goto out_bad;
1163 		}
1164 		goto out_valid_noent;
1165 	}
1166 
1167 	if (is_bad_inode(inode)) {
1168 		if (flags & LOOKUP_RCU)
1169 			return -ECHILD;
1170 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1171 				__func__, dentry);
1172 		goto out_bad;
1173 	}
1174 
1175 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1176 		goto out_set_verifier;
1177 
1178 	/* Force a full look up iff the parent directory has changed */
1179 	if (!nfs_is_exclusive_create(dir, flags) &&
1180 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1181 
1182 		if (nfs_lookup_verify_inode(inode, flags)) {
1183 			if (flags & LOOKUP_RCU)
1184 				return -ECHILD;
1185 			goto out_zap_parent;
1186 		}
1187 		goto out_valid;
1188 	}
1189 
1190 	if (flags & LOOKUP_RCU)
1191 		return -ECHILD;
1192 
1193 	if (NFS_STALE(inode))
1194 		goto out_bad;
1195 
1196 	error = -ENOMEM;
1197 	fhandle = nfs_alloc_fhandle();
1198 	fattr = nfs_alloc_fattr();
1199 	if (fhandle == NULL || fattr == NULL)
1200 		goto out_error;
1201 
1202 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1203 	if (IS_ERR(label))
1204 		goto out_error;
1205 
1206 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1207 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1208 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1209 	if (error)
1210 		goto out_bad;
1211 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1212 		goto out_bad;
1213 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1214 		goto out_bad;
1215 
1216 	nfs_setsecurity(inode, fattr, label);
1217 
1218 	nfs_free_fattr(fattr);
1219 	nfs_free_fhandle(fhandle);
1220 	nfs4_label_free(label);
1221 
1222 out_set_verifier:
1223 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1224  out_valid:
1225 	/* Success: notify readdir to use READDIRPLUS */
1226 	nfs_advise_use_readdirplus(dir);
1227  out_valid_noent:
1228 	if (flags & LOOKUP_RCU) {
1229 		if (parent != ACCESS_ONCE(dentry->d_parent))
1230 			return -ECHILD;
1231 	} else
1232 		dput(parent);
1233 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1234 			__func__, dentry);
1235 	return 1;
1236 out_zap_parent:
1237 	nfs_zap_caches(dir);
1238  out_bad:
1239 	WARN_ON(flags & LOOKUP_RCU);
1240 	nfs_free_fattr(fattr);
1241 	nfs_free_fhandle(fhandle);
1242 	nfs4_label_free(label);
1243 	nfs_mark_for_revalidate(dir);
1244 	if (inode && S_ISDIR(inode->i_mode)) {
1245 		/* Purge readdir caches. */
1246 		nfs_zap_caches(inode);
1247 		/*
1248 		 * We can't d_drop the root of a disconnected tree:
1249 		 * its d_hash is on the s_anon list and d_drop() would hide
1250 		 * it from shrink_dcache_for_unmount(), leading to busy
1251 		 * inodes on unmount and further oopses.
1252 		 */
1253 		if (IS_ROOT(dentry))
1254 			goto out_valid;
1255 	}
1256 	dput(parent);
1257 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1258 			__func__, dentry);
1259 	return 0;
1260 out_error:
1261 	WARN_ON(flags & LOOKUP_RCU);
1262 	nfs_free_fattr(fattr);
1263 	nfs_free_fhandle(fhandle);
1264 	nfs4_label_free(label);
1265 	dput(parent);
1266 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1267 			__func__, dentry, error);
1268 	return error;
1269 }
1270 
1271 /*
1272  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1273  * when we don't really care about the dentry name. This is called when a
1274  * pathwalk ends on a dentry that was not found via a normal lookup in the
1275  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1276  *
1277  * In this situation, we just want to verify that the inode itself is OK
1278  * since the dentry might have changed on the server.
1279  */
1280 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1281 {
1282 	int error;
1283 	struct inode *inode = d_inode(dentry);
1284 
1285 	/*
1286 	 * I believe we can only get a negative dentry here in the case of a
1287 	 * procfs-style symlink. Just assume it's correct for now, but we may
1288 	 * eventually need to do something more here.
1289 	 */
1290 	if (!inode) {
1291 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1292 				__func__, dentry);
1293 		return 1;
1294 	}
1295 
1296 	if (is_bad_inode(inode)) {
1297 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1298 				__func__, dentry);
1299 		return 0;
1300 	}
1301 
1302 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1303 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1304 			__func__, inode->i_ino, error ? "invalid" : "valid");
1305 	return !error;
1306 }
1307 
1308 /*
1309  * This is called from dput() when d_count is going to 0.
1310  */
1311 static int nfs_dentry_delete(const struct dentry *dentry)
1312 {
1313 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1314 		dentry, dentry->d_flags);
1315 
1316 	/* Unhash any dentry with a stale inode */
1317 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1318 		return 1;
1319 
1320 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1321 		/* Unhash it, so that ->d_iput() would be called */
1322 		return 1;
1323 	}
1324 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1325 		/* Unhash it, so that ancestors of killed async unlink
1326 		 * files will be cleaned up during umount */
1327 		return 1;
1328 	}
1329 	return 0;
1330 
1331 }
1332 
1333 /* Ensure that we revalidate inode->i_nlink */
1334 static void nfs_drop_nlink(struct inode *inode)
1335 {
1336 	spin_lock(&inode->i_lock);
1337 	/* drop the inode if we're reasonably sure this is the last link */
1338 	if (inode->i_nlink == 1)
1339 		clear_nlink(inode);
1340 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1341 	spin_unlock(&inode->i_lock);
1342 }
1343 
1344 /*
1345  * Called when the dentry loses inode.
1346  * We use it to clean up silly-renamed files.
1347  */
1348 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1349 {
1350 	if (S_ISDIR(inode->i_mode))
1351 		/* drop any readdir cache as it could easily be old */
1352 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1353 
1354 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1355 		nfs_complete_unlink(dentry, inode);
1356 		nfs_drop_nlink(inode);
1357 	}
1358 	iput(inode);
1359 }
1360 
1361 static void nfs_d_release(struct dentry *dentry)
1362 {
1363 	/* free cached devname value, if it survived that far */
1364 	if (unlikely(dentry->d_fsdata)) {
1365 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1366 			WARN_ON(1);
1367 		else
1368 			kfree(dentry->d_fsdata);
1369 	}
1370 }
1371 
1372 const struct dentry_operations nfs_dentry_operations = {
1373 	.d_revalidate	= nfs_lookup_revalidate,
1374 	.d_weak_revalidate	= nfs_weak_revalidate,
1375 	.d_delete	= nfs_dentry_delete,
1376 	.d_iput		= nfs_dentry_iput,
1377 	.d_automount	= nfs_d_automount,
1378 	.d_release	= nfs_d_release,
1379 };
1380 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1381 
1382 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1383 {
1384 	struct dentry *res;
1385 	struct inode *inode = NULL;
1386 	struct nfs_fh *fhandle = NULL;
1387 	struct nfs_fattr *fattr = NULL;
1388 	struct nfs4_label *label = NULL;
1389 	int error;
1390 
1391 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1392 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1393 
1394 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1395 		return ERR_PTR(-ENAMETOOLONG);
1396 
1397 	/*
1398 	 * If we're doing an exclusive create, optimize away the lookup
1399 	 * but don't hash the dentry.
1400 	 */
1401 	if (nfs_is_exclusive_create(dir, flags))
1402 		return NULL;
1403 
1404 	res = ERR_PTR(-ENOMEM);
1405 	fhandle = nfs_alloc_fhandle();
1406 	fattr = nfs_alloc_fattr();
1407 	if (fhandle == NULL || fattr == NULL)
1408 		goto out;
1409 
1410 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1411 	if (IS_ERR(label))
1412 		goto out;
1413 
1414 	trace_nfs_lookup_enter(dir, dentry, flags);
1415 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1416 	if (error == -ENOENT)
1417 		goto no_entry;
1418 	if (error < 0) {
1419 		res = ERR_PTR(error);
1420 		goto out_label;
1421 	}
1422 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1423 	res = ERR_CAST(inode);
1424 	if (IS_ERR(res))
1425 		goto out_label;
1426 
1427 	/* Success: notify readdir to use READDIRPLUS */
1428 	nfs_advise_use_readdirplus(dir);
1429 
1430 no_entry:
1431 	res = d_splice_alias(inode, dentry);
1432 	if (res != NULL) {
1433 		if (IS_ERR(res))
1434 			goto out_label;
1435 		dentry = res;
1436 	}
1437 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1438 out_label:
1439 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1440 	nfs4_label_free(label);
1441 out:
1442 	nfs_free_fattr(fattr);
1443 	nfs_free_fhandle(fhandle);
1444 	return res;
1445 }
1446 EXPORT_SYMBOL_GPL(nfs_lookup);
1447 
1448 #if IS_ENABLED(CONFIG_NFS_V4)
1449 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1450 
1451 const struct dentry_operations nfs4_dentry_operations = {
1452 	.d_revalidate	= nfs4_lookup_revalidate,
1453 	.d_delete	= nfs_dentry_delete,
1454 	.d_iput		= nfs_dentry_iput,
1455 	.d_automount	= nfs_d_automount,
1456 	.d_release	= nfs_d_release,
1457 };
1458 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1459 
1460 static fmode_t flags_to_mode(int flags)
1461 {
1462 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1463 	if ((flags & O_ACCMODE) != O_WRONLY)
1464 		res |= FMODE_READ;
1465 	if ((flags & O_ACCMODE) != O_RDONLY)
1466 		res |= FMODE_WRITE;
1467 	return res;
1468 }
1469 
1470 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1471 {
1472 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1473 }
1474 
1475 static int do_open(struct inode *inode, struct file *filp)
1476 {
1477 	nfs_fscache_open_file(inode, filp);
1478 	return 0;
1479 }
1480 
1481 static int nfs_finish_open(struct nfs_open_context *ctx,
1482 			   struct dentry *dentry,
1483 			   struct file *file, unsigned open_flags,
1484 			   int *opened)
1485 {
1486 	int err;
1487 
1488 	err = finish_open(file, dentry, do_open, opened);
1489 	if (err)
1490 		goto out;
1491 	nfs_file_set_open_context(file, ctx);
1492 
1493 out:
1494 	return err;
1495 }
1496 
1497 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1498 		    struct file *file, unsigned open_flags,
1499 		    umode_t mode, int *opened)
1500 {
1501 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1502 	struct nfs_open_context *ctx;
1503 	struct dentry *res;
1504 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1505 	struct inode *inode;
1506 	unsigned int lookup_flags = 0;
1507 	bool switched = false;
1508 	int err;
1509 
1510 	/* Expect a negative dentry */
1511 	BUG_ON(d_inode(dentry));
1512 
1513 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1514 			dir->i_sb->s_id, dir->i_ino, dentry);
1515 
1516 	err = nfs_check_flags(open_flags);
1517 	if (err)
1518 		return err;
1519 
1520 	/* NFS only supports OPEN on regular files */
1521 	if ((open_flags & O_DIRECTORY)) {
1522 		if (!d_in_lookup(dentry)) {
1523 			/*
1524 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1525 			 * revalidated and is fine, no need to perform lookup
1526 			 * again
1527 			 */
1528 			return -ENOENT;
1529 		}
1530 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1531 		goto no_open;
1532 	}
1533 
1534 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1535 		return -ENAMETOOLONG;
1536 
1537 	if (open_flags & O_CREAT) {
1538 		attr.ia_valid |= ATTR_MODE;
1539 		attr.ia_mode = mode & ~current_umask();
1540 	}
1541 	if (open_flags & O_TRUNC) {
1542 		attr.ia_valid |= ATTR_SIZE;
1543 		attr.ia_size = 0;
1544 	}
1545 
1546 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1547 		d_drop(dentry);
1548 		switched = true;
1549 		dentry = d_alloc_parallel(dentry->d_parent,
1550 					  &dentry->d_name, &wq);
1551 		if (IS_ERR(dentry))
1552 			return PTR_ERR(dentry);
1553 		if (unlikely(!d_in_lookup(dentry)))
1554 			return finish_no_open(file, dentry);
1555 	}
1556 
1557 	ctx = create_nfs_open_context(dentry, open_flags);
1558 	err = PTR_ERR(ctx);
1559 	if (IS_ERR(ctx))
1560 		goto out;
1561 
1562 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1563 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1564 	if (IS_ERR(inode)) {
1565 		err = PTR_ERR(inode);
1566 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567 		put_nfs_open_context(ctx);
1568 		d_drop(dentry);
1569 		switch (err) {
1570 		case -ENOENT:
1571 			d_add(dentry, NULL);
1572 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573 			break;
1574 		case -EISDIR:
1575 		case -ENOTDIR:
1576 			goto no_open;
1577 		case -ELOOP:
1578 			if (!(open_flags & O_NOFOLLOW))
1579 				goto no_open;
1580 			break;
1581 			/* case -EINVAL: */
1582 		default:
1583 			break;
1584 		}
1585 		goto out;
1586 	}
1587 
1588 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1589 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1590 	put_nfs_open_context(ctx);
1591 out:
1592 	if (unlikely(switched)) {
1593 		d_lookup_done(dentry);
1594 		dput(dentry);
1595 	}
1596 	return err;
1597 
1598 no_open:
1599 	res = nfs_lookup(dir, dentry, lookup_flags);
1600 	if (switched) {
1601 		d_lookup_done(dentry);
1602 		if (!res)
1603 			res = dentry;
1604 		else
1605 			dput(dentry);
1606 	}
1607 	if (IS_ERR(res))
1608 		return PTR_ERR(res);
1609 	return finish_no_open(file, res);
1610 }
1611 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1612 
1613 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1614 {
1615 	struct inode *inode;
1616 	int ret = 0;
1617 
1618 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1619 		goto no_open;
1620 	if (d_mountpoint(dentry))
1621 		goto no_open;
1622 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1623 		goto no_open;
1624 
1625 	inode = d_inode(dentry);
1626 
1627 	/* We can't create new files in nfs_open_revalidate(), so we
1628 	 * optimize away revalidation of negative dentries.
1629 	 */
1630 	if (inode == NULL) {
1631 		struct dentry *parent;
1632 		struct inode *dir;
1633 
1634 		if (flags & LOOKUP_RCU) {
1635 			parent = ACCESS_ONCE(dentry->d_parent);
1636 			dir = d_inode_rcu(parent);
1637 			if (!dir)
1638 				return -ECHILD;
1639 		} else {
1640 			parent = dget_parent(dentry);
1641 			dir = d_inode(parent);
1642 		}
1643 		if (!nfs_neg_need_reval(dir, dentry, flags))
1644 			ret = 1;
1645 		else if (flags & LOOKUP_RCU)
1646 			ret = -ECHILD;
1647 		if (!(flags & LOOKUP_RCU))
1648 			dput(parent);
1649 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1650 			return -ECHILD;
1651 		goto out;
1652 	}
1653 
1654 	/* NFS only supports OPEN on regular files */
1655 	if (!S_ISREG(inode->i_mode))
1656 		goto no_open;
1657 	/* We cannot do exclusive creation on a positive dentry */
1658 	if (flags & LOOKUP_EXCL)
1659 		goto no_open;
1660 
1661 	/* Let f_op->open() actually open (and revalidate) the file */
1662 	ret = 1;
1663 
1664 out:
1665 	return ret;
1666 
1667 no_open:
1668 	return nfs_lookup_revalidate(dentry, flags);
1669 }
1670 
1671 #endif /* CONFIG_NFSV4 */
1672 
1673 /*
1674  * Code common to create, mkdir, and mknod.
1675  */
1676 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1677 				struct nfs_fattr *fattr,
1678 				struct nfs4_label *label)
1679 {
1680 	struct dentry *parent = dget_parent(dentry);
1681 	struct inode *dir = d_inode(parent);
1682 	struct inode *inode;
1683 	int error = -EACCES;
1684 
1685 	d_drop(dentry);
1686 
1687 	/* We may have been initialized further down */
1688 	if (d_really_is_positive(dentry))
1689 		goto out;
1690 	if (fhandle->size == 0) {
1691 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1692 		if (error)
1693 			goto out_error;
1694 	}
1695 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1696 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1697 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1698 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1699 		if (error < 0)
1700 			goto out_error;
1701 	}
1702 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1703 	error = PTR_ERR(inode);
1704 	if (IS_ERR(inode))
1705 		goto out_error;
1706 	d_add(dentry, inode);
1707 out:
1708 	dput(parent);
1709 	return 0;
1710 out_error:
1711 	nfs_mark_for_revalidate(dir);
1712 	dput(parent);
1713 	return error;
1714 }
1715 EXPORT_SYMBOL_GPL(nfs_instantiate);
1716 
1717 /*
1718  * Following a failed create operation, we drop the dentry rather
1719  * than retain a negative dentry. This avoids a problem in the event
1720  * that the operation succeeded on the server, but an error in the
1721  * reply path made it appear to have failed.
1722  */
1723 int nfs_create(struct inode *dir, struct dentry *dentry,
1724 		umode_t mode, bool excl)
1725 {
1726 	struct iattr attr;
1727 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1728 	int error;
1729 
1730 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1731 			dir->i_sb->s_id, dir->i_ino, dentry);
1732 
1733 	attr.ia_mode = mode;
1734 	attr.ia_valid = ATTR_MODE;
1735 
1736 	trace_nfs_create_enter(dir, dentry, open_flags);
1737 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1738 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1739 	if (error != 0)
1740 		goto out_err;
1741 	return 0;
1742 out_err:
1743 	d_drop(dentry);
1744 	return error;
1745 }
1746 EXPORT_SYMBOL_GPL(nfs_create);
1747 
1748 /*
1749  * See comments for nfs_proc_create regarding failed operations.
1750  */
1751 int
1752 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1753 {
1754 	struct iattr attr;
1755 	int status;
1756 
1757 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1758 			dir->i_sb->s_id, dir->i_ino, dentry);
1759 
1760 	attr.ia_mode = mode;
1761 	attr.ia_valid = ATTR_MODE;
1762 
1763 	trace_nfs_mknod_enter(dir, dentry);
1764 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1765 	trace_nfs_mknod_exit(dir, dentry, status);
1766 	if (status != 0)
1767 		goto out_err;
1768 	return 0;
1769 out_err:
1770 	d_drop(dentry);
1771 	return status;
1772 }
1773 EXPORT_SYMBOL_GPL(nfs_mknod);
1774 
1775 /*
1776  * See comments for nfs_proc_create regarding failed operations.
1777  */
1778 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1779 {
1780 	struct iattr attr;
1781 	int error;
1782 
1783 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1784 			dir->i_sb->s_id, dir->i_ino, dentry);
1785 
1786 	attr.ia_valid = ATTR_MODE;
1787 	attr.ia_mode = mode | S_IFDIR;
1788 
1789 	trace_nfs_mkdir_enter(dir, dentry);
1790 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1791 	trace_nfs_mkdir_exit(dir, dentry, error);
1792 	if (error != 0)
1793 		goto out_err;
1794 	return 0;
1795 out_err:
1796 	d_drop(dentry);
1797 	return error;
1798 }
1799 EXPORT_SYMBOL_GPL(nfs_mkdir);
1800 
1801 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1802 {
1803 	if (simple_positive(dentry))
1804 		d_delete(dentry);
1805 }
1806 
1807 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1808 {
1809 	int error;
1810 
1811 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1812 			dir->i_sb->s_id, dir->i_ino, dentry);
1813 
1814 	trace_nfs_rmdir_enter(dir, dentry);
1815 	if (d_really_is_positive(dentry)) {
1816 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1817 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1818 		/* Ensure the VFS deletes this inode */
1819 		switch (error) {
1820 		case 0:
1821 			clear_nlink(d_inode(dentry));
1822 			break;
1823 		case -ENOENT:
1824 			nfs_dentry_handle_enoent(dentry);
1825 		}
1826 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1827 	} else
1828 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1829 	trace_nfs_rmdir_exit(dir, dentry, error);
1830 
1831 	return error;
1832 }
1833 EXPORT_SYMBOL_GPL(nfs_rmdir);
1834 
1835 /*
1836  * Remove a file after making sure there are no pending writes,
1837  * and after checking that the file has only one user.
1838  *
1839  * We invalidate the attribute cache and free the inode prior to the operation
1840  * to avoid possible races if the server reuses the inode.
1841  */
1842 static int nfs_safe_remove(struct dentry *dentry)
1843 {
1844 	struct inode *dir = d_inode(dentry->d_parent);
1845 	struct inode *inode = d_inode(dentry);
1846 	int error = -EBUSY;
1847 
1848 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1849 
1850 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1851 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1852 		error = 0;
1853 		goto out;
1854 	}
1855 
1856 	trace_nfs_remove_enter(dir, dentry);
1857 	if (inode != NULL) {
1858 		NFS_PROTO(inode)->return_delegation(inode);
1859 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1860 		if (error == 0)
1861 			nfs_drop_nlink(inode);
1862 	} else
1863 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1864 	if (error == -ENOENT)
1865 		nfs_dentry_handle_enoent(dentry);
1866 	trace_nfs_remove_exit(dir, dentry, error);
1867 out:
1868 	return error;
1869 }
1870 
1871 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1872  *  belongs to an active ".nfs..." file and we return -EBUSY.
1873  *
1874  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1875  */
1876 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1877 {
1878 	int error;
1879 	int need_rehash = 0;
1880 
1881 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1882 		dir->i_ino, dentry);
1883 
1884 	trace_nfs_unlink_enter(dir, dentry);
1885 	spin_lock(&dentry->d_lock);
1886 	if (d_count(dentry) > 1) {
1887 		spin_unlock(&dentry->d_lock);
1888 		/* Start asynchronous writeout of the inode */
1889 		write_inode_now(d_inode(dentry), 0);
1890 		error = nfs_sillyrename(dir, dentry);
1891 		goto out;
1892 	}
1893 	if (!d_unhashed(dentry)) {
1894 		__d_drop(dentry);
1895 		need_rehash = 1;
1896 	}
1897 	spin_unlock(&dentry->d_lock);
1898 	error = nfs_safe_remove(dentry);
1899 	if (!error || error == -ENOENT) {
1900 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1901 	} else if (need_rehash)
1902 		d_rehash(dentry);
1903 out:
1904 	trace_nfs_unlink_exit(dir, dentry, error);
1905 	return error;
1906 }
1907 EXPORT_SYMBOL_GPL(nfs_unlink);
1908 
1909 /*
1910  * To create a symbolic link, most file systems instantiate a new inode,
1911  * add a page to it containing the path, then write it out to the disk
1912  * using prepare_write/commit_write.
1913  *
1914  * Unfortunately the NFS client can't create the in-core inode first
1915  * because it needs a file handle to create an in-core inode (see
1916  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1917  * symlink request has completed on the server.
1918  *
1919  * So instead we allocate a raw page, copy the symname into it, then do
1920  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1921  * now have a new file handle and can instantiate an in-core NFS inode
1922  * and move the raw page into its mapping.
1923  */
1924 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1925 {
1926 	struct page *page;
1927 	char *kaddr;
1928 	struct iattr attr;
1929 	unsigned int pathlen = strlen(symname);
1930 	int error;
1931 
1932 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1933 		dir->i_ino, dentry, symname);
1934 
1935 	if (pathlen > PAGE_SIZE)
1936 		return -ENAMETOOLONG;
1937 
1938 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1939 	attr.ia_valid = ATTR_MODE;
1940 
1941 	page = alloc_page(GFP_USER);
1942 	if (!page)
1943 		return -ENOMEM;
1944 
1945 	kaddr = page_address(page);
1946 	memcpy(kaddr, symname, pathlen);
1947 	if (pathlen < PAGE_SIZE)
1948 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1949 
1950 	trace_nfs_symlink_enter(dir, dentry);
1951 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1952 	trace_nfs_symlink_exit(dir, dentry, error);
1953 	if (error != 0) {
1954 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1955 			dir->i_sb->s_id, dir->i_ino,
1956 			dentry, symname, error);
1957 		d_drop(dentry);
1958 		__free_page(page);
1959 		return error;
1960 	}
1961 
1962 	/*
1963 	 * No big deal if we can't add this page to the page cache here.
1964 	 * READLINK will get the missing page from the server if needed.
1965 	 */
1966 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1967 							GFP_KERNEL)) {
1968 		SetPageUptodate(page);
1969 		unlock_page(page);
1970 		/*
1971 		 * add_to_page_cache_lru() grabs an extra page refcount.
1972 		 * Drop it here to avoid leaking this page later.
1973 		 */
1974 		put_page(page);
1975 	} else
1976 		__free_page(page);
1977 
1978 	return 0;
1979 }
1980 EXPORT_SYMBOL_GPL(nfs_symlink);
1981 
1982 int
1983 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1984 {
1985 	struct inode *inode = d_inode(old_dentry);
1986 	int error;
1987 
1988 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1989 		old_dentry, dentry);
1990 
1991 	trace_nfs_link_enter(inode, dir, dentry);
1992 	NFS_PROTO(inode)->return_delegation(inode);
1993 
1994 	d_drop(dentry);
1995 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1996 	if (error == 0) {
1997 		ihold(inode);
1998 		d_add(dentry, inode);
1999 	}
2000 	trace_nfs_link_exit(inode, dir, dentry, error);
2001 	return error;
2002 }
2003 EXPORT_SYMBOL_GPL(nfs_link);
2004 
2005 /*
2006  * RENAME
2007  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2008  * different file handle for the same inode after a rename (e.g. when
2009  * moving to a different directory). A fail-safe method to do so would
2010  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2011  * rename the old file using the sillyrename stuff. This way, the original
2012  * file in old_dir will go away when the last process iput()s the inode.
2013  *
2014  * FIXED.
2015  *
2016  * It actually works quite well. One needs to have the possibility for
2017  * at least one ".nfs..." file in each directory the file ever gets
2018  * moved or linked to which happens automagically with the new
2019  * implementation that only depends on the dcache stuff instead of
2020  * using the inode layer
2021  *
2022  * Unfortunately, things are a little more complicated than indicated
2023  * above. For a cross-directory move, we want to make sure we can get
2024  * rid of the old inode after the operation.  This means there must be
2025  * no pending writes (if it's a file), and the use count must be 1.
2026  * If these conditions are met, we can drop the dentries before doing
2027  * the rename.
2028  */
2029 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2030 	       struct inode *new_dir, struct dentry *new_dentry,
2031 	       unsigned int flags)
2032 {
2033 	struct inode *old_inode = d_inode(old_dentry);
2034 	struct inode *new_inode = d_inode(new_dentry);
2035 	struct dentry *dentry = NULL, *rehash = NULL;
2036 	struct rpc_task *task;
2037 	int error = -EBUSY;
2038 
2039 	if (flags)
2040 		return -EINVAL;
2041 
2042 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2043 		 old_dentry, new_dentry,
2044 		 d_count(new_dentry));
2045 
2046 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2047 	/*
2048 	 * For non-directories, check whether the target is busy and if so,
2049 	 * make a copy of the dentry and then do a silly-rename. If the
2050 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2051 	 * the new target.
2052 	 */
2053 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2054 		/*
2055 		 * To prevent any new references to the target during the
2056 		 * rename, we unhash the dentry in advance.
2057 		 */
2058 		if (!d_unhashed(new_dentry)) {
2059 			d_drop(new_dentry);
2060 			rehash = new_dentry;
2061 		}
2062 
2063 		if (d_count(new_dentry) > 2) {
2064 			int err;
2065 
2066 			/* copy the target dentry's name */
2067 			dentry = d_alloc(new_dentry->d_parent,
2068 					 &new_dentry->d_name);
2069 			if (!dentry)
2070 				goto out;
2071 
2072 			/* silly-rename the existing target ... */
2073 			err = nfs_sillyrename(new_dir, new_dentry);
2074 			if (err)
2075 				goto out;
2076 
2077 			new_dentry = dentry;
2078 			rehash = NULL;
2079 			new_inode = NULL;
2080 		}
2081 	}
2082 
2083 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2084 	if (new_inode != NULL)
2085 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2086 
2087 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2088 	if (IS_ERR(task)) {
2089 		error = PTR_ERR(task);
2090 		goto out;
2091 	}
2092 
2093 	error = rpc_wait_for_completion_task(task);
2094 	if (error == 0)
2095 		error = task->tk_status;
2096 	rpc_put_task(task);
2097 	nfs_mark_for_revalidate(old_inode);
2098 out:
2099 	if (rehash)
2100 		d_rehash(rehash);
2101 	trace_nfs_rename_exit(old_dir, old_dentry,
2102 			new_dir, new_dentry, error);
2103 	if (!error) {
2104 		if (new_inode != NULL)
2105 			nfs_drop_nlink(new_inode);
2106 		d_move(old_dentry, new_dentry);
2107 		nfs_set_verifier(new_dentry,
2108 					nfs_save_change_attribute(new_dir));
2109 	} else if (error == -ENOENT)
2110 		nfs_dentry_handle_enoent(old_dentry);
2111 
2112 	/* new dentry created? */
2113 	if (dentry)
2114 		dput(dentry);
2115 	return error;
2116 }
2117 EXPORT_SYMBOL_GPL(nfs_rename);
2118 
2119 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2120 static LIST_HEAD(nfs_access_lru_list);
2121 static atomic_long_t nfs_access_nr_entries;
2122 
2123 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2124 module_param(nfs_access_max_cachesize, ulong, 0644);
2125 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2126 
2127 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2128 {
2129 	put_rpccred(entry->cred);
2130 	kfree_rcu(entry, rcu_head);
2131 	smp_mb__before_atomic();
2132 	atomic_long_dec(&nfs_access_nr_entries);
2133 	smp_mb__after_atomic();
2134 }
2135 
2136 static void nfs_access_free_list(struct list_head *head)
2137 {
2138 	struct nfs_access_entry *cache;
2139 
2140 	while (!list_empty(head)) {
2141 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2142 		list_del(&cache->lru);
2143 		nfs_access_free_entry(cache);
2144 	}
2145 }
2146 
2147 static unsigned long
2148 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2149 {
2150 	LIST_HEAD(head);
2151 	struct nfs_inode *nfsi, *next;
2152 	struct nfs_access_entry *cache;
2153 	long freed = 0;
2154 
2155 	spin_lock(&nfs_access_lru_lock);
2156 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2157 		struct inode *inode;
2158 
2159 		if (nr_to_scan-- == 0)
2160 			break;
2161 		inode = &nfsi->vfs_inode;
2162 		spin_lock(&inode->i_lock);
2163 		if (list_empty(&nfsi->access_cache_entry_lru))
2164 			goto remove_lru_entry;
2165 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2166 				struct nfs_access_entry, lru);
2167 		list_move(&cache->lru, &head);
2168 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2169 		freed++;
2170 		if (!list_empty(&nfsi->access_cache_entry_lru))
2171 			list_move_tail(&nfsi->access_cache_inode_lru,
2172 					&nfs_access_lru_list);
2173 		else {
2174 remove_lru_entry:
2175 			list_del_init(&nfsi->access_cache_inode_lru);
2176 			smp_mb__before_atomic();
2177 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2178 			smp_mb__after_atomic();
2179 		}
2180 		spin_unlock(&inode->i_lock);
2181 	}
2182 	spin_unlock(&nfs_access_lru_lock);
2183 	nfs_access_free_list(&head);
2184 	return freed;
2185 }
2186 
2187 unsigned long
2188 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2189 {
2190 	int nr_to_scan = sc->nr_to_scan;
2191 	gfp_t gfp_mask = sc->gfp_mask;
2192 
2193 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2194 		return SHRINK_STOP;
2195 	return nfs_do_access_cache_scan(nr_to_scan);
2196 }
2197 
2198 
2199 unsigned long
2200 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2201 {
2202 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2203 }
2204 
2205 static void
2206 nfs_access_cache_enforce_limit(void)
2207 {
2208 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2209 	unsigned long diff;
2210 	unsigned int nr_to_scan;
2211 
2212 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2213 		return;
2214 	nr_to_scan = 100;
2215 	diff = nr_entries - nfs_access_max_cachesize;
2216 	if (diff < nr_to_scan)
2217 		nr_to_scan = diff;
2218 	nfs_do_access_cache_scan(nr_to_scan);
2219 }
2220 
2221 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2222 {
2223 	struct rb_root *root_node = &nfsi->access_cache;
2224 	struct rb_node *n;
2225 	struct nfs_access_entry *entry;
2226 
2227 	/* Unhook entries from the cache */
2228 	while ((n = rb_first(root_node)) != NULL) {
2229 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2230 		rb_erase(n, root_node);
2231 		list_move(&entry->lru, head);
2232 	}
2233 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2234 }
2235 
2236 void nfs_access_zap_cache(struct inode *inode)
2237 {
2238 	LIST_HEAD(head);
2239 
2240 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2241 		return;
2242 	/* Remove from global LRU init */
2243 	spin_lock(&nfs_access_lru_lock);
2244 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2245 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2246 
2247 	spin_lock(&inode->i_lock);
2248 	__nfs_access_zap_cache(NFS_I(inode), &head);
2249 	spin_unlock(&inode->i_lock);
2250 	spin_unlock(&nfs_access_lru_lock);
2251 	nfs_access_free_list(&head);
2252 }
2253 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2254 
2255 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2256 {
2257 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2258 	struct nfs_access_entry *entry;
2259 
2260 	while (n != NULL) {
2261 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2262 
2263 		if (cred < entry->cred)
2264 			n = n->rb_left;
2265 		else if (cred > entry->cred)
2266 			n = n->rb_right;
2267 		else
2268 			return entry;
2269 	}
2270 	return NULL;
2271 }
2272 
2273 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2274 {
2275 	struct nfs_inode *nfsi = NFS_I(inode);
2276 	struct nfs_access_entry *cache;
2277 	bool retry = true;
2278 	int err;
2279 
2280 	spin_lock(&inode->i_lock);
2281 	for(;;) {
2282 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2283 			goto out_zap;
2284 		cache = nfs_access_search_rbtree(inode, cred);
2285 		err = -ENOENT;
2286 		if (cache == NULL)
2287 			goto out;
2288 		/* Found an entry, is our attribute cache valid? */
2289 		if (!nfs_attribute_cache_expired(inode) &&
2290 		    !(nfsi->cache_validity & NFS_INO_INVALID_ATTR))
2291 			break;
2292 		err = -ECHILD;
2293 		if (!may_block)
2294 			goto out;
2295 		if (!retry)
2296 			goto out_zap;
2297 		spin_unlock(&inode->i_lock);
2298 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2299 		if (err)
2300 			return err;
2301 		spin_lock(&inode->i_lock);
2302 		retry = false;
2303 	}
2304 	res->jiffies = cache->jiffies;
2305 	res->cred = cache->cred;
2306 	res->mask = cache->mask;
2307 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2308 	err = 0;
2309 out:
2310 	spin_unlock(&inode->i_lock);
2311 	return err;
2312 out_zap:
2313 	spin_unlock(&inode->i_lock);
2314 	nfs_access_zap_cache(inode);
2315 	return -ENOENT;
2316 }
2317 
2318 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2319 {
2320 	/* Only check the most recently returned cache entry,
2321 	 * but do it without locking.
2322 	 */
2323 	struct nfs_inode *nfsi = NFS_I(inode);
2324 	struct nfs_access_entry *cache;
2325 	int err = -ECHILD;
2326 	struct list_head *lh;
2327 
2328 	rcu_read_lock();
2329 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2330 		goto out;
2331 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2332 	cache = list_entry(lh, struct nfs_access_entry, lru);
2333 	if (lh == &nfsi->access_cache_entry_lru ||
2334 	    cred != cache->cred)
2335 		cache = NULL;
2336 	if (cache == NULL)
2337 		goto out;
2338 	err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode);
2339 	if (err)
2340 		goto out;
2341 	res->jiffies = cache->jiffies;
2342 	res->cred = cache->cred;
2343 	res->mask = cache->mask;
2344 out:
2345 	rcu_read_unlock();
2346 	return err;
2347 }
2348 
2349 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2350 {
2351 	struct nfs_inode *nfsi = NFS_I(inode);
2352 	struct rb_root *root_node = &nfsi->access_cache;
2353 	struct rb_node **p = &root_node->rb_node;
2354 	struct rb_node *parent = NULL;
2355 	struct nfs_access_entry *entry;
2356 
2357 	spin_lock(&inode->i_lock);
2358 	while (*p != NULL) {
2359 		parent = *p;
2360 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2361 
2362 		if (set->cred < entry->cred)
2363 			p = &parent->rb_left;
2364 		else if (set->cred > entry->cred)
2365 			p = &parent->rb_right;
2366 		else
2367 			goto found;
2368 	}
2369 	rb_link_node(&set->rb_node, parent, p);
2370 	rb_insert_color(&set->rb_node, root_node);
2371 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2372 	spin_unlock(&inode->i_lock);
2373 	return;
2374 found:
2375 	rb_replace_node(parent, &set->rb_node, root_node);
2376 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2377 	list_del(&entry->lru);
2378 	spin_unlock(&inode->i_lock);
2379 	nfs_access_free_entry(entry);
2380 }
2381 
2382 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2383 {
2384 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2385 	if (cache == NULL)
2386 		return;
2387 	RB_CLEAR_NODE(&cache->rb_node);
2388 	cache->jiffies = set->jiffies;
2389 	cache->cred = get_rpccred(set->cred);
2390 	cache->mask = set->mask;
2391 
2392 	/* The above field assignments must be visible
2393 	 * before this item appears on the lru.  We cannot easily
2394 	 * use rcu_assign_pointer, so just force the memory barrier.
2395 	 */
2396 	smp_wmb();
2397 	nfs_access_add_rbtree(inode, cache);
2398 
2399 	/* Update accounting */
2400 	smp_mb__before_atomic();
2401 	atomic_long_inc(&nfs_access_nr_entries);
2402 	smp_mb__after_atomic();
2403 
2404 	/* Add inode to global LRU list */
2405 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2406 		spin_lock(&nfs_access_lru_lock);
2407 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2408 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2409 					&nfs_access_lru_list);
2410 		spin_unlock(&nfs_access_lru_lock);
2411 	}
2412 	nfs_access_cache_enforce_limit();
2413 }
2414 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2415 
2416 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2417 {
2418 	entry->mask = 0;
2419 	if (access_result & NFS4_ACCESS_READ)
2420 		entry->mask |= MAY_READ;
2421 	if (access_result &
2422 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2423 		entry->mask |= MAY_WRITE;
2424 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2425 		entry->mask |= MAY_EXEC;
2426 }
2427 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2428 
2429 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2430 {
2431 	struct nfs_access_entry cache;
2432 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2433 	int status;
2434 
2435 	trace_nfs_access_enter(inode);
2436 
2437 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2438 	if (status != 0)
2439 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2440 	if (status == 0)
2441 		goto out_cached;
2442 
2443 	status = -ECHILD;
2444 	if (!may_block)
2445 		goto out;
2446 
2447 	/* Be clever: ask server to check for all possible rights */
2448 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2449 	cache.cred = cred;
2450 	cache.jiffies = jiffies;
2451 	status = NFS_PROTO(inode)->access(inode, &cache);
2452 	if (status != 0) {
2453 		if (status == -ESTALE) {
2454 			nfs_zap_caches(inode);
2455 			if (!S_ISDIR(inode->i_mode))
2456 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2457 		}
2458 		goto out;
2459 	}
2460 	nfs_access_add_cache(inode, &cache);
2461 out_cached:
2462 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2463 		status = -EACCES;
2464 out:
2465 	trace_nfs_access_exit(inode, status);
2466 	return status;
2467 }
2468 
2469 static int nfs_open_permission_mask(int openflags)
2470 {
2471 	int mask = 0;
2472 
2473 	if (openflags & __FMODE_EXEC) {
2474 		/* ONLY check exec rights */
2475 		mask = MAY_EXEC;
2476 	} else {
2477 		if ((openflags & O_ACCMODE) != O_WRONLY)
2478 			mask |= MAY_READ;
2479 		if ((openflags & O_ACCMODE) != O_RDONLY)
2480 			mask |= MAY_WRITE;
2481 	}
2482 
2483 	return mask;
2484 }
2485 
2486 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2487 {
2488 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2489 }
2490 EXPORT_SYMBOL_GPL(nfs_may_open);
2491 
2492 static int nfs_execute_ok(struct inode *inode, int mask)
2493 {
2494 	struct nfs_server *server = NFS_SERVER(inode);
2495 	int ret;
2496 
2497 	if (mask & MAY_NOT_BLOCK)
2498 		ret = nfs_revalidate_inode_rcu(server, inode);
2499 	else
2500 		ret = nfs_revalidate_inode(server, inode);
2501 	if (ret == 0 && !execute_ok(inode))
2502 		ret = -EACCES;
2503 	return ret;
2504 }
2505 
2506 int nfs_permission(struct inode *inode, int mask)
2507 {
2508 	struct rpc_cred *cred;
2509 	int res = 0;
2510 
2511 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2512 
2513 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2514 		goto out;
2515 	/* Is this sys_access() ? */
2516 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2517 		goto force_lookup;
2518 
2519 	switch (inode->i_mode & S_IFMT) {
2520 		case S_IFLNK:
2521 			goto out;
2522 		case S_IFREG:
2523 			if ((mask & MAY_OPEN) &&
2524 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2525 				return 0;
2526 			break;
2527 		case S_IFDIR:
2528 			/*
2529 			 * Optimize away all write operations, since the server
2530 			 * will check permissions when we perform the op.
2531 			 */
2532 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2533 				goto out;
2534 	}
2535 
2536 force_lookup:
2537 	if (!NFS_PROTO(inode)->access)
2538 		goto out_notsup;
2539 
2540 	/* Always try fast lookups first */
2541 	rcu_read_lock();
2542 	cred = rpc_lookup_cred_nonblock();
2543 	if (!IS_ERR(cred))
2544 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2545 	else
2546 		res = PTR_ERR(cred);
2547 	rcu_read_unlock();
2548 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2549 		/* Fast lookup failed, try the slow way */
2550 		cred = rpc_lookup_cred();
2551 		if (!IS_ERR(cred)) {
2552 			res = nfs_do_access(inode, cred, mask);
2553 			put_rpccred(cred);
2554 		} else
2555 			res = PTR_ERR(cred);
2556 	}
2557 out:
2558 	if (!res && (mask & MAY_EXEC))
2559 		res = nfs_execute_ok(inode, mask);
2560 
2561 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2562 		inode->i_sb->s_id, inode->i_ino, mask, res);
2563 	return res;
2564 out_notsup:
2565 	if (mask & MAY_NOT_BLOCK)
2566 		return -ECHILD;
2567 
2568 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2569 	if (res == 0)
2570 		res = generic_permission(inode, mask);
2571 	goto out;
2572 }
2573 EXPORT_SYMBOL_GPL(nfs_permission);
2574 
2575 /*
2576  * Local variables:
2577  *  version-control: t
2578  *  kept-new-versions: 5
2579  * End:
2580  */
2581