1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/smp_lock.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 37 #include "nfs4_fs.h" 38 #include "delegation.h" 39 #include "iostat.h" 40 41 #define NFS_PARANOIA 1 42 /* #define NFS_DEBUG_VERBOSE 1 */ 43 44 static int nfs_opendir(struct inode *, struct file *); 45 static int nfs_readdir(struct file *, void *, filldir_t); 46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 48 static int nfs_mkdir(struct inode *, struct dentry *, int); 49 static int nfs_rmdir(struct inode *, struct dentry *); 50 static int nfs_unlink(struct inode *, struct dentry *); 51 static int nfs_symlink(struct inode *, struct dentry *, const char *); 52 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 54 static int nfs_rename(struct inode *, struct dentry *, 55 struct inode *, struct dentry *); 56 static int nfs_fsync_dir(struct file *, struct dentry *, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .readdir = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_release, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 const struct inode_operations nfs_dir_inode_operations = { 69 .create = nfs_create, 70 .lookup = nfs_lookup, 71 .link = nfs_link, 72 .unlink = nfs_unlink, 73 .symlink = nfs_symlink, 74 .mkdir = nfs_mkdir, 75 .rmdir = nfs_rmdir, 76 .mknod = nfs_mknod, 77 .rename = nfs_rename, 78 .permission = nfs_permission, 79 .getattr = nfs_getattr, 80 .setattr = nfs_setattr, 81 }; 82 83 #ifdef CONFIG_NFS_V3 84 const struct inode_operations nfs3_dir_inode_operations = { 85 .create = nfs_create, 86 .lookup = nfs_lookup, 87 .link = nfs_link, 88 .unlink = nfs_unlink, 89 .symlink = nfs_symlink, 90 .mkdir = nfs_mkdir, 91 .rmdir = nfs_rmdir, 92 .mknod = nfs_mknod, 93 .rename = nfs_rename, 94 .permission = nfs_permission, 95 .getattr = nfs_getattr, 96 .setattr = nfs_setattr, 97 .listxattr = nfs3_listxattr, 98 .getxattr = nfs3_getxattr, 99 .setxattr = nfs3_setxattr, 100 .removexattr = nfs3_removexattr, 101 }; 102 #endif /* CONFIG_NFS_V3 */ 103 104 #ifdef CONFIG_NFS_V4 105 106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 107 const struct inode_operations nfs4_dir_inode_operations = { 108 .create = nfs_create, 109 .lookup = nfs_atomic_lookup, 110 .link = nfs_link, 111 .unlink = nfs_unlink, 112 .symlink = nfs_symlink, 113 .mkdir = nfs_mkdir, 114 .rmdir = nfs_rmdir, 115 .mknod = nfs_mknod, 116 .rename = nfs_rename, 117 .permission = nfs_permission, 118 .getattr = nfs_getattr, 119 .setattr = nfs_setattr, 120 .getxattr = nfs4_getxattr, 121 .setxattr = nfs4_setxattr, 122 .listxattr = nfs4_listxattr, 123 }; 124 125 #endif /* CONFIG_NFS_V4 */ 126 127 /* 128 * Open file 129 */ 130 static int 131 nfs_opendir(struct inode *inode, struct file *filp) 132 { 133 int res; 134 135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n", 136 inode->i_sb->s_id, inode->i_ino); 137 138 lock_kernel(); 139 /* Call generic open code in order to cache credentials */ 140 res = nfs_open(inode, filp); 141 unlock_kernel(); 142 return res; 143 } 144 145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 146 typedef struct { 147 struct file *file; 148 struct page *page; 149 unsigned long page_index; 150 __be32 *ptr; 151 u64 *dir_cookie; 152 loff_t current_index; 153 struct nfs_entry *entry; 154 decode_dirent_t decode; 155 int plus; 156 int error; 157 unsigned long timestamp; 158 int timestamp_valid; 159 } nfs_readdir_descriptor_t; 160 161 /* Now we cache directories properly, by stuffing the dirent 162 * data directly in the page cache. 163 * 164 * Inode invalidation due to refresh etc. takes care of 165 * _everything_, no sloppy entry flushing logic, no extraneous 166 * copying, network direct to page cache, the way it was meant 167 * to be. 168 * 169 * NOTE: Dirent information verification is done always by the 170 * page-in of the RPC reply, nowhere else, this simplies 171 * things substantially. 172 */ 173 static 174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 175 { 176 struct file *file = desc->file; 177 struct inode *inode = file->f_path.dentry->d_inode; 178 struct rpc_cred *cred = nfs_file_cred(file); 179 unsigned long timestamp; 180 int error; 181 182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 183 __FUNCTION__, (long long)desc->entry->cookie, 184 page->index); 185 186 again: 187 timestamp = jiffies; 188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 189 NFS_SERVER(inode)->dtsize, desc->plus); 190 if (error < 0) { 191 /* We requested READDIRPLUS, but the server doesn't grok it */ 192 if (error == -ENOTSUPP && desc->plus) { 193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 195 desc->plus = 0; 196 goto again; 197 } 198 goto error; 199 } 200 desc->timestamp = timestamp; 201 desc->timestamp_valid = 1; 202 SetPageUptodate(page); 203 spin_lock(&inode->i_lock); 204 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 205 spin_unlock(&inode->i_lock); 206 /* Ensure consistent page alignment of the data. 207 * Note: assumes we have exclusive access to this mapping either 208 * through inode->i_mutex or some other mechanism. 209 */ 210 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) { 211 /* Should never happen */ 212 nfs_zap_mapping(inode, inode->i_mapping); 213 } 214 unlock_page(page); 215 return 0; 216 error: 217 SetPageError(page); 218 unlock_page(page); 219 nfs_zap_caches(inode); 220 desc->error = error; 221 return -EIO; 222 } 223 224 static inline 225 int dir_decode(nfs_readdir_descriptor_t *desc) 226 { 227 __be32 *p = desc->ptr; 228 p = desc->decode(p, desc->entry, desc->plus); 229 if (IS_ERR(p)) 230 return PTR_ERR(p); 231 desc->ptr = p; 232 if (desc->timestamp_valid) 233 desc->entry->fattr->time_start = desc->timestamp; 234 else 235 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR; 236 return 0; 237 } 238 239 static inline 240 void dir_page_release(nfs_readdir_descriptor_t *desc) 241 { 242 kunmap(desc->page); 243 page_cache_release(desc->page); 244 desc->page = NULL; 245 desc->ptr = NULL; 246 } 247 248 /* 249 * Given a pointer to a buffer that has already been filled by a call 250 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 251 * 252 * If the end of the buffer has been reached, return -EAGAIN, if not, 253 * return the offset within the buffer of the next entry to be 254 * read. 255 */ 256 static inline 257 int find_dirent(nfs_readdir_descriptor_t *desc) 258 { 259 struct nfs_entry *entry = desc->entry; 260 int loop_count = 0, 261 status; 262 263 while((status = dir_decode(desc)) == 0) { 264 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 265 __FUNCTION__, (unsigned long long)entry->cookie); 266 if (entry->prev_cookie == *desc->dir_cookie) 267 break; 268 if (loop_count++ > 200) { 269 loop_count = 0; 270 schedule(); 271 } 272 } 273 return status; 274 } 275 276 /* 277 * Given a pointer to a buffer that has already been filled by a call 278 * to readdir, find the entry at offset 'desc->file->f_pos'. 279 * 280 * If the end of the buffer has been reached, return -EAGAIN, if not, 281 * return the offset within the buffer of the next entry to be 282 * read. 283 */ 284 static inline 285 int find_dirent_index(nfs_readdir_descriptor_t *desc) 286 { 287 struct nfs_entry *entry = desc->entry; 288 int loop_count = 0, 289 status; 290 291 for(;;) { 292 status = dir_decode(desc); 293 if (status) 294 break; 295 296 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 297 (unsigned long long)entry->cookie, desc->current_index); 298 299 if (desc->file->f_pos == desc->current_index) { 300 *desc->dir_cookie = entry->cookie; 301 break; 302 } 303 desc->current_index++; 304 if (loop_count++ > 200) { 305 loop_count = 0; 306 schedule(); 307 } 308 } 309 return status; 310 } 311 312 /* 313 * Find the given page, and call find_dirent() or find_dirent_index in 314 * order to try to return the next entry. 315 */ 316 static inline 317 int find_dirent_page(nfs_readdir_descriptor_t *desc) 318 { 319 struct inode *inode = desc->file->f_path.dentry->d_inode; 320 struct page *page; 321 int status; 322 323 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 324 __FUNCTION__, desc->page_index, 325 (long long) *desc->dir_cookie); 326 327 /* If we find the page in the page_cache, we cannot be sure 328 * how fresh the data is, so we will ignore readdir_plus attributes. 329 */ 330 desc->timestamp_valid = 0; 331 page = read_cache_page(inode->i_mapping, desc->page_index, 332 (filler_t *)nfs_readdir_filler, desc); 333 if (IS_ERR(page)) { 334 status = PTR_ERR(page); 335 goto out; 336 } 337 338 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 339 desc->page = page; 340 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 341 if (*desc->dir_cookie != 0) 342 status = find_dirent(desc); 343 else 344 status = find_dirent_index(desc); 345 if (status < 0) 346 dir_page_release(desc); 347 out: 348 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status); 349 return status; 350 } 351 352 /* 353 * Recurse through the page cache pages, and return a 354 * filled nfs_entry structure of the next directory entry if possible. 355 * 356 * The target for the search is '*desc->dir_cookie' if non-0, 357 * 'desc->file->f_pos' otherwise 358 */ 359 static inline 360 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 361 { 362 int loop_count = 0; 363 int res; 364 365 /* Always search-by-index from the beginning of the cache */ 366 if (*desc->dir_cookie == 0) { 367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 368 (long long)desc->file->f_pos); 369 desc->page_index = 0; 370 desc->entry->cookie = desc->entry->prev_cookie = 0; 371 desc->entry->eof = 0; 372 desc->current_index = 0; 373 } else 374 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 375 (unsigned long long)*desc->dir_cookie); 376 377 for (;;) { 378 res = find_dirent_page(desc); 379 if (res != -EAGAIN) 380 break; 381 /* Align to beginning of next page */ 382 desc->page_index ++; 383 if (loop_count++ > 200) { 384 loop_count = 0; 385 schedule(); 386 } 387 } 388 389 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res); 390 return res; 391 } 392 393 static inline unsigned int dt_type(struct inode *inode) 394 { 395 return (inode->i_mode >> 12) & 15; 396 } 397 398 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 399 400 /* 401 * Once we've found the start of the dirent within a page: fill 'er up... 402 */ 403 static 404 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 405 filldir_t filldir) 406 { 407 struct file *file = desc->file; 408 struct nfs_entry *entry = desc->entry; 409 struct dentry *dentry = NULL; 410 unsigned long fileid; 411 int loop_count = 0, 412 res; 413 414 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 415 (unsigned long long)entry->cookie); 416 417 for(;;) { 418 unsigned d_type = DT_UNKNOWN; 419 /* Note: entry->prev_cookie contains the cookie for 420 * retrieving the current dirent on the server */ 421 fileid = nfs_fileid_to_ino_t(entry->ino); 422 423 /* Get a dentry if we have one */ 424 if (dentry != NULL) 425 dput(dentry); 426 dentry = nfs_readdir_lookup(desc); 427 428 /* Use readdirplus info */ 429 if (dentry != NULL && dentry->d_inode != NULL) { 430 d_type = dt_type(dentry->d_inode); 431 fileid = dentry->d_inode->i_ino; 432 } 433 434 res = filldir(dirent, entry->name, entry->len, 435 file->f_pos, fileid, d_type); 436 if (res < 0) 437 break; 438 file->f_pos++; 439 *desc->dir_cookie = entry->cookie; 440 if (dir_decode(desc) != 0) { 441 desc->page_index ++; 442 break; 443 } 444 if (loop_count++ > 200) { 445 loop_count = 0; 446 schedule(); 447 } 448 } 449 dir_page_release(desc); 450 if (dentry != NULL) 451 dput(dentry); 452 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 453 (unsigned long long)*desc->dir_cookie, res); 454 return res; 455 } 456 457 /* 458 * If we cannot find a cookie in our cache, we suspect that this is 459 * because it points to a deleted file, so we ask the server to return 460 * whatever it thinks is the next entry. We then feed this to filldir. 461 * If all goes well, we should then be able to find our way round the 462 * cache on the next call to readdir_search_pagecache(); 463 * 464 * NOTE: we cannot add the anonymous page to the pagecache because 465 * the data it contains might not be page aligned. Besides, 466 * we should already have a complete representation of the 467 * directory in the page cache by the time we get here. 468 */ 469 static inline 470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 471 filldir_t filldir) 472 { 473 struct file *file = desc->file; 474 struct inode *inode = file->f_path.dentry->d_inode; 475 struct rpc_cred *cred = nfs_file_cred(file); 476 struct page *page = NULL; 477 int status; 478 unsigned long timestamp; 479 480 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 481 (unsigned long long)*desc->dir_cookie); 482 483 page = alloc_page(GFP_HIGHUSER); 484 if (!page) { 485 status = -ENOMEM; 486 goto out; 487 } 488 timestamp = jiffies; 489 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie, 490 page, 491 NFS_SERVER(inode)->dtsize, 492 desc->plus); 493 spin_lock(&inode->i_lock); 494 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 495 spin_unlock(&inode->i_lock); 496 desc->page = page; 497 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 498 if (desc->error >= 0) { 499 desc->timestamp = timestamp; 500 desc->timestamp_valid = 1; 501 if ((status = dir_decode(desc)) == 0) 502 desc->entry->prev_cookie = *desc->dir_cookie; 503 } else 504 status = -EIO; 505 if (status < 0) 506 goto out_release; 507 508 status = nfs_do_filldir(desc, dirent, filldir); 509 510 /* Reset read descriptor so it searches the page cache from 511 * the start upon the next call to readdir_search_pagecache() */ 512 desc->page_index = 0; 513 desc->entry->cookie = desc->entry->prev_cookie = 0; 514 desc->entry->eof = 0; 515 out: 516 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 517 __FUNCTION__, status); 518 return status; 519 out_release: 520 dir_page_release(desc); 521 goto out; 522 } 523 524 /* The file offset position represents the dirent entry number. A 525 last cookie cache takes care of the common case of reading the 526 whole directory. 527 */ 528 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 529 { 530 struct dentry *dentry = filp->f_path.dentry; 531 struct inode *inode = dentry->d_inode; 532 nfs_readdir_descriptor_t my_desc, 533 *desc = &my_desc; 534 struct nfs_entry my_entry; 535 struct nfs_fh fh; 536 struct nfs_fattr fattr; 537 long res; 538 539 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n", 540 dentry->d_parent->d_name.name, dentry->d_name.name, 541 (long long)filp->f_pos); 542 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 543 544 lock_kernel(); 545 546 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping); 547 if (res < 0) { 548 unlock_kernel(); 549 return res; 550 } 551 552 /* 553 * filp->f_pos points to the dirent entry number. 554 * *desc->dir_cookie has the cookie for the next entry. We have 555 * to either find the entry with the appropriate number or 556 * revalidate the cookie. 557 */ 558 memset(desc, 0, sizeof(*desc)); 559 560 desc->file = filp; 561 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie; 562 desc->decode = NFS_PROTO(inode)->decode_dirent; 563 desc->plus = NFS_USE_READDIRPLUS(inode); 564 565 my_entry.cookie = my_entry.prev_cookie = 0; 566 my_entry.eof = 0; 567 my_entry.fh = &fh; 568 my_entry.fattr = &fattr; 569 nfs_fattr_init(&fattr); 570 desc->entry = &my_entry; 571 572 while(!desc->entry->eof) { 573 res = readdir_search_pagecache(desc); 574 575 if (res == -EBADCOOKIE) { 576 /* This means either end of directory */ 577 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 578 /* Or that the server has 'lost' a cookie */ 579 res = uncached_readdir(desc, dirent, filldir); 580 if (res >= 0) 581 continue; 582 } 583 res = 0; 584 break; 585 } 586 if (res == -ETOOSMALL && desc->plus) { 587 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 588 nfs_zap_caches(inode); 589 desc->plus = 0; 590 desc->entry->eof = 0; 591 continue; 592 } 593 if (res < 0) 594 break; 595 596 res = nfs_do_filldir(desc, dirent, filldir); 597 if (res < 0) { 598 res = 0; 599 break; 600 } 601 } 602 unlock_kernel(); 603 if (res > 0) 604 res = 0; 605 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n", 606 dentry->d_parent->d_name.name, dentry->d_name.name, 607 res); 608 return res; 609 } 610 611 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 612 { 613 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 614 switch (origin) { 615 case 1: 616 offset += filp->f_pos; 617 case 0: 618 if (offset >= 0) 619 break; 620 default: 621 offset = -EINVAL; 622 goto out; 623 } 624 if (offset != filp->f_pos) { 625 filp->f_pos = offset; 626 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0; 627 } 628 out: 629 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 630 return offset; 631 } 632 633 /* 634 * All directory operations under NFS are synchronous, so fsync() 635 * is a dummy operation. 636 */ 637 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 638 { 639 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n", 640 dentry->d_parent->d_name.name, dentry->d_name.name, 641 datasync); 642 643 return 0; 644 } 645 646 /* 647 * A check for whether or not the parent directory has changed. 648 * In the case it has, we assume that the dentries are untrustworthy 649 * and may need to be looked up again. 650 */ 651 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 652 { 653 if (IS_ROOT(dentry)) 654 return 1; 655 if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0 656 || nfs_attribute_timeout(dir)) 657 return 0; 658 return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata); 659 } 660 661 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf) 662 { 663 dentry->d_fsdata = (void *)verf; 664 } 665 666 static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf) 667 { 668 if (time_after(verf, (unsigned long)dentry->d_fsdata)) 669 nfs_set_verifier(dentry, verf); 670 } 671 672 /* 673 * Whenever an NFS operation succeeds, we know that the dentry 674 * is valid, so we update the revalidation timestamp. 675 */ 676 static inline void nfs_renew_times(struct dentry * dentry) 677 { 678 dentry->d_time = jiffies; 679 } 680 681 /* 682 * Return the intent data that applies to this particular path component 683 * 684 * Note that the current set of intents only apply to the very last 685 * component of the path. 686 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 687 */ 688 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 689 { 690 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 691 return 0; 692 return nd->flags & mask; 693 } 694 695 /* 696 * Inode and filehandle revalidation for lookups. 697 * 698 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 699 * or if the intent information indicates that we're about to open this 700 * particular file and the "nocto" mount flag is not set. 701 * 702 */ 703 static inline 704 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 705 { 706 struct nfs_server *server = NFS_SERVER(inode); 707 708 if (nd != NULL) { 709 /* VFS wants an on-the-wire revalidation */ 710 if (nd->flags & LOOKUP_REVAL) 711 goto out_force; 712 /* This is an open(2) */ 713 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 714 !(server->flags & NFS_MOUNT_NOCTO) && 715 (S_ISREG(inode->i_mode) || 716 S_ISDIR(inode->i_mode))) 717 goto out_force; 718 } 719 return nfs_revalidate_inode(server, inode); 720 out_force: 721 return __nfs_revalidate_inode(server, inode); 722 } 723 724 /* 725 * We judge how long we want to trust negative 726 * dentries by looking at the parent inode mtime. 727 * 728 * If parent mtime has changed, we revalidate, else we wait for a 729 * period corresponding to the parent's attribute cache timeout value. 730 */ 731 static inline 732 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 733 struct nameidata *nd) 734 { 735 /* Don't revalidate a negative dentry if we're creating a new file */ 736 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 737 return 0; 738 return !nfs_check_verifier(dir, dentry); 739 } 740 741 /* 742 * This is called every time the dcache has a lookup hit, 743 * and we should check whether we can really trust that 744 * lookup. 745 * 746 * NOTE! The hit can be a negative hit too, don't assume 747 * we have an inode! 748 * 749 * If the parent directory is seen to have changed, we throw out the 750 * cached dentry and do a new lookup. 751 */ 752 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 753 { 754 struct inode *dir; 755 struct inode *inode; 756 struct dentry *parent; 757 int error; 758 struct nfs_fh fhandle; 759 struct nfs_fattr fattr; 760 unsigned long verifier; 761 762 parent = dget_parent(dentry); 763 lock_kernel(); 764 dir = parent->d_inode; 765 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 766 inode = dentry->d_inode; 767 768 if (!inode) { 769 if (nfs_neg_need_reval(dir, dentry, nd)) 770 goto out_bad; 771 goto out_valid; 772 } 773 774 if (is_bad_inode(inode)) { 775 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 776 __FUNCTION__, dentry->d_parent->d_name.name, 777 dentry->d_name.name); 778 goto out_bad; 779 } 780 781 /* Revalidate parent directory attribute cache */ 782 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 783 goto out_zap_parent; 784 785 /* Force a full look up iff the parent directory has changed */ 786 if (nfs_check_verifier(dir, dentry)) { 787 if (nfs_lookup_verify_inode(inode, nd)) 788 goto out_zap_parent; 789 goto out_valid; 790 } 791 792 if (NFS_STALE(inode)) 793 goto out_bad; 794 795 verifier = nfs_save_change_attribute(dir); 796 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 797 if (error) 798 goto out_bad; 799 if (nfs_compare_fh(NFS_FH(inode), &fhandle)) 800 goto out_bad; 801 if ((error = nfs_refresh_inode(inode, &fattr)) != 0) 802 goto out_bad; 803 804 nfs_renew_times(dentry); 805 nfs_refresh_verifier(dentry, verifier); 806 out_valid: 807 unlock_kernel(); 808 dput(parent); 809 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 810 __FUNCTION__, dentry->d_parent->d_name.name, 811 dentry->d_name.name); 812 return 1; 813 out_zap_parent: 814 nfs_zap_caches(dir); 815 out_bad: 816 NFS_CACHEINV(dir); 817 if (inode && S_ISDIR(inode->i_mode)) { 818 /* Purge readdir caches. */ 819 nfs_zap_caches(inode); 820 /* If we have submounts, don't unhash ! */ 821 if (have_submounts(dentry)) 822 goto out_valid; 823 shrink_dcache_parent(dentry); 824 } 825 d_drop(dentry); 826 unlock_kernel(); 827 dput(parent); 828 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 829 __FUNCTION__, dentry->d_parent->d_name.name, 830 dentry->d_name.name); 831 return 0; 832 } 833 834 /* 835 * This is called from dput() when d_count is going to 0. 836 */ 837 static int nfs_dentry_delete(struct dentry *dentry) 838 { 839 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 840 dentry->d_parent->d_name.name, dentry->d_name.name, 841 dentry->d_flags); 842 843 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 844 /* Unhash it, so that ->d_iput() would be called */ 845 return 1; 846 } 847 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 848 /* Unhash it, so that ancestors of killed async unlink 849 * files will be cleaned up during umount */ 850 return 1; 851 } 852 return 0; 853 854 } 855 856 /* 857 * Called when the dentry loses inode. 858 * We use it to clean up silly-renamed files. 859 */ 860 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 861 { 862 nfs_inode_return_delegation(inode); 863 if (S_ISDIR(inode->i_mode)) 864 /* drop any readdir cache as it could easily be old */ 865 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 866 867 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 868 lock_kernel(); 869 drop_nlink(inode); 870 nfs_complete_unlink(dentry); 871 unlock_kernel(); 872 } 873 /* When creating a negative dentry, we want to renew d_time */ 874 nfs_renew_times(dentry); 875 iput(inode); 876 } 877 878 struct dentry_operations nfs_dentry_operations = { 879 .d_revalidate = nfs_lookup_revalidate, 880 .d_delete = nfs_dentry_delete, 881 .d_iput = nfs_dentry_iput, 882 }; 883 884 /* 885 * Use intent information to check whether or not we're going to do 886 * an O_EXCL create using this path component. 887 */ 888 static inline 889 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 890 { 891 if (NFS_PROTO(dir)->version == 2) 892 return 0; 893 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0) 894 return 0; 895 return (nd->intent.open.flags & O_EXCL) != 0; 896 } 897 898 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir, 899 struct nfs_fh *fh, struct nfs_fattr *fattr) 900 { 901 struct nfs_server *server = NFS_SERVER(dir); 902 903 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid)) 904 /* Revalidate fsid on root dir */ 905 return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode); 906 return 0; 907 } 908 909 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 910 { 911 struct dentry *res; 912 struct inode *inode = NULL; 913 int error; 914 struct nfs_fh fhandle; 915 struct nfs_fattr fattr; 916 917 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 918 dentry->d_parent->d_name.name, dentry->d_name.name); 919 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 920 921 res = ERR_PTR(-ENAMETOOLONG); 922 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 923 goto out; 924 925 res = ERR_PTR(-ENOMEM); 926 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 927 928 lock_kernel(); 929 930 /* 931 * If we're doing an exclusive create, optimize away the lookup 932 * but don't hash the dentry. 933 */ 934 if (nfs_is_exclusive_create(dir, nd)) { 935 d_instantiate(dentry, NULL); 936 res = NULL; 937 goto out_unlock; 938 } 939 940 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 941 if (error == -ENOENT) 942 goto no_entry; 943 if (error < 0) { 944 res = ERR_PTR(error); 945 goto out_unlock; 946 } 947 error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr); 948 if (error < 0) { 949 res = ERR_PTR(error); 950 goto out_unlock; 951 } 952 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr); 953 res = (struct dentry *)inode; 954 if (IS_ERR(res)) 955 goto out_unlock; 956 957 no_entry: 958 res = d_materialise_unique(dentry, inode); 959 if (res != NULL) { 960 struct dentry *parent; 961 if (IS_ERR(res)) 962 goto out_unlock; 963 /* Was a directory renamed! */ 964 parent = dget_parent(res); 965 if (!IS_ROOT(parent)) 966 nfs_mark_for_revalidate(parent->d_inode); 967 dput(parent); 968 dentry = res; 969 } 970 nfs_renew_times(dentry); 971 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 972 out_unlock: 973 unlock_kernel(); 974 out: 975 return res; 976 } 977 978 #ifdef CONFIG_NFS_V4 979 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 980 981 struct dentry_operations nfs4_dentry_operations = { 982 .d_revalidate = nfs_open_revalidate, 983 .d_delete = nfs_dentry_delete, 984 .d_iput = nfs_dentry_iput, 985 }; 986 987 /* 988 * Use intent information to determine whether we need to substitute 989 * the NFSv4-style stateful OPEN for the LOOKUP call 990 */ 991 static int is_atomic_open(struct inode *dir, struct nameidata *nd) 992 { 993 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 994 return 0; 995 /* NFS does not (yet) have a stateful open for directories */ 996 if (nd->flags & LOOKUP_DIRECTORY) 997 return 0; 998 /* Are we trying to write to a read only partition? */ 999 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 1000 return 0; 1001 return 1; 1002 } 1003 1004 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1005 { 1006 struct dentry *res = NULL; 1007 int error; 1008 1009 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 1010 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1011 1012 /* Check that we are indeed trying to open this file */ 1013 if (!is_atomic_open(dir, nd)) 1014 goto no_open; 1015 1016 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1017 res = ERR_PTR(-ENAMETOOLONG); 1018 goto out; 1019 } 1020 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1021 1022 /* Let vfs_create() deal with O_EXCL */ 1023 if (nd->intent.open.flags & O_EXCL) { 1024 d_add(dentry, NULL); 1025 goto out; 1026 } 1027 1028 /* Open the file on the server */ 1029 lock_kernel(); 1030 /* Revalidate parent directory attribute cache */ 1031 error = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1032 if (error < 0) { 1033 res = ERR_PTR(error); 1034 unlock_kernel(); 1035 goto out; 1036 } 1037 1038 if (nd->intent.open.flags & O_CREAT) { 1039 nfs_begin_data_update(dir); 1040 res = nfs4_atomic_open(dir, dentry, nd); 1041 nfs_end_data_update(dir); 1042 } else 1043 res = nfs4_atomic_open(dir, dentry, nd); 1044 unlock_kernel(); 1045 if (IS_ERR(res)) { 1046 error = PTR_ERR(res); 1047 switch (error) { 1048 /* Make a negative dentry */ 1049 case -ENOENT: 1050 res = NULL; 1051 goto out; 1052 /* This turned out not to be a regular file */ 1053 case -EISDIR: 1054 case -ENOTDIR: 1055 goto no_open; 1056 case -ELOOP: 1057 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1058 goto no_open; 1059 /* case -EINVAL: */ 1060 default: 1061 goto out; 1062 } 1063 } else if (res != NULL) 1064 dentry = res; 1065 nfs_renew_times(dentry); 1066 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1067 out: 1068 return res; 1069 no_open: 1070 return nfs_lookup(dir, dentry, nd); 1071 } 1072 1073 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1074 { 1075 struct dentry *parent = NULL; 1076 struct inode *inode = dentry->d_inode; 1077 struct inode *dir; 1078 unsigned long verifier; 1079 int openflags, ret = 0; 1080 1081 parent = dget_parent(dentry); 1082 dir = parent->d_inode; 1083 if (!is_atomic_open(dir, nd)) 1084 goto no_open; 1085 /* We can't create new files in nfs_open_revalidate(), so we 1086 * optimize away revalidation of negative dentries. 1087 */ 1088 if (inode == NULL) 1089 goto out; 1090 /* NFS only supports OPEN on regular files */ 1091 if (!S_ISREG(inode->i_mode)) 1092 goto no_open; 1093 openflags = nd->intent.open.flags; 1094 /* We cannot do exclusive creation on a positive dentry */ 1095 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1096 goto no_open; 1097 /* We can't create new files, or truncate existing ones here */ 1098 openflags &= ~(O_CREAT|O_TRUNC); 1099 1100 /* 1101 * Note: we're not holding inode->i_mutex and so may be racing with 1102 * operations that change the directory. We therefore save the 1103 * change attribute *before* we do the RPC call. 1104 */ 1105 lock_kernel(); 1106 verifier = nfs_save_change_attribute(dir); 1107 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1108 if (!ret) 1109 nfs_refresh_verifier(dentry, verifier); 1110 unlock_kernel(); 1111 out: 1112 dput(parent); 1113 if (!ret) 1114 d_drop(dentry); 1115 return ret; 1116 no_open: 1117 dput(parent); 1118 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ)) 1119 return 1; 1120 return nfs_lookup_revalidate(dentry, nd); 1121 } 1122 #endif /* CONFIG_NFSV4 */ 1123 1124 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1125 { 1126 struct dentry *parent = desc->file->f_path.dentry; 1127 struct inode *dir = parent->d_inode; 1128 struct nfs_entry *entry = desc->entry; 1129 struct dentry *dentry, *alias; 1130 struct qstr name = { 1131 .name = entry->name, 1132 .len = entry->len, 1133 }; 1134 struct inode *inode; 1135 1136 switch (name.len) { 1137 case 2: 1138 if (name.name[0] == '.' && name.name[1] == '.') 1139 return dget_parent(parent); 1140 break; 1141 case 1: 1142 if (name.name[0] == '.') 1143 return dget(parent); 1144 } 1145 name.hash = full_name_hash(name.name, name.len); 1146 dentry = d_lookup(parent, &name); 1147 if (dentry != NULL) { 1148 /* Is this a positive dentry that matches the readdir info? */ 1149 if (dentry->d_inode != NULL && 1150 (NFS_FILEID(dentry->d_inode) == entry->ino || 1151 d_mountpoint(dentry))) { 1152 if (!desc->plus || entry->fh->size == 0) 1153 return dentry; 1154 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1155 entry->fh) == 0) 1156 goto out_renew; 1157 } 1158 /* No, so d_drop to allow one to be created */ 1159 d_drop(dentry); 1160 dput(dentry); 1161 } 1162 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1163 return NULL; 1164 /* Note: caller is already holding the dir->i_mutex! */ 1165 dentry = d_alloc(parent, &name); 1166 if (dentry == NULL) 1167 return NULL; 1168 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1169 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1170 if (IS_ERR(inode)) { 1171 dput(dentry); 1172 return NULL; 1173 } 1174 1175 alias = d_materialise_unique(dentry, inode); 1176 if (alias != NULL) { 1177 dput(dentry); 1178 if (IS_ERR(alias)) 1179 return NULL; 1180 dentry = alias; 1181 } 1182 1183 nfs_renew_times(dentry); 1184 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1185 return dentry; 1186 out_renew: 1187 nfs_renew_times(dentry); 1188 nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir)); 1189 return dentry; 1190 } 1191 1192 /* 1193 * Code common to create, mkdir, and mknod. 1194 */ 1195 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1196 struct nfs_fattr *fattr) 1197 { 1198 struct inode *inode; 1199 int error = -EACCES; 1200 1201 /* We may have been initialized further down */ 1202 if (dentry->d_inode) 1203 return 0; 1204 if (fhandle->size == 0) { 1205 struct inode *dir = dentry->d_parent->d_inode; 1206 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1207 if (error) 1208 return error; 1209 } 1210 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1211 struct nfs_server *server = NFS_SB(dentry->d_sb); 1212 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1213 if (error < 0) 1214 return error; 1215 } 1216 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1217 error = PTR_ERR(inode); 1218 if (IS_ERR(inode)) 1219 return error; 1220 d_instantiate(dentry, inode); 1221 if (d_unhashed(dentry)) 1222 d_rehash(dentry); 1223 return 0; 1224 } 1225 1226 /* 1227 * Following a failed create operation, we drop the dentry rather 1228 * than retain a negative dentry. This avoids a problem in the event 1229 * that the operation succeeded on the server, but an error in the 1230 * reply path made it appear to have failed. 1231 */ 1232 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1233 struct nameidata *nd) 1234 { 1235 struct iattr attr; 1236 int error; 1237 int open_flags = 0; 1238 1239 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1240 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1241 1242 attr.ia_mode = mode; 1243 attr.ia_valid = ATTR_MODE; 1244 1245 if (nd && (nd->flags & LOOKUP_CREATE)) 1246 open_flags = nd->intent.open.flags; 1247 1248 lock_kernel(); 1249 nfs_begin_data_update(dir); 1250 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1251 nfs_end_data_update(dir); 1252 if (error != 0) 1253 goto out_err; 1254 nfs_renew_times(dentry); 1255 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1256 unlock_kernel(); 1257 return 0; 1258 out_err: 1259 unlock_kernel(); 1260 d_drop(dentry); 1261 return error; 1262 } 1263 1264 /* 1265 * See comments for nfs_proc_create regarding failed operations. 1266 */ 1267 static int 1268 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1269 { 1270 struct iattr attr; 1271 int status; 1272 1273 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1274 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1275 1276 if (!new_valid_dev(rdev)) 1277 return -EINVAL; 1278 1279 attr.ia_mode = mode; 1280 attr.ia_valid = ATTR_MODE; 1281 1282 lock_kernel(); 1283 nfs_begin_data_update(dir); 1284 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1285 nfs_end_data_update(dir); 1286 if (status != 0) 1287 goto out_err; 1288 nfs_renew_times(dentry); 1289 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1290 unlock_kernel(); 1291 return 0; 1292 out_err: 1293 unlock_kernel(); 1294 d_drop(dentry); 1295 return status; 1296 } 1297 1298 /* 1299 * See comments for nfs_proc_create regarding failed operations. 1300 */ 1301 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1302 { 1303 struct iattr attr; 1304 int error; 1305 1306 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1307 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1308 1309 attr.ia_valid = ATTR_MODE; 1310 attr.ia_mode = mode | S_IFDIR; 1311 1312 lock_kernel(); 1313 nfs_begin_data_update(dir); 1314 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1315 nfs_end_data_update(dir); 1316 if (error != 0) 1317 goto out_err; 1318 nfs_renew_times(dentry); 1319 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1320 unlock_kernel(); 1321 return 0; 1322 out_err: 1323 d_drop(dentry); 1324 unlock_kernel(); 1325 return error; 1326 } 1327 1328 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1329 { 1330 int error; 1331 1332 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1333 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1334 1335 lock_kernel(); 1336 nfs_begin_data_update(dir); 1337 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1338 /* Ensure the VFS deletes this inode */ 1339 if (error == 0 && dentry->d_inode != NULL) 1340 clear_nlink(dentry->d_inode); 1341 nfs_end_data_update(dir); 1342 unlock_kernel(); 1343 1344 return error; 1345 } 1346 1347 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1348 { 1349 static unsigned int sillycounter; 1350 const int i_inosize = sizeof(dir->i_ino)*2; 1351 const int countersize = sizeof(sillycounter)*2; 1352 const int slen = sizeof(".nfs") + i_inosize + countersize - 1; 1353 char silly[slen+1]; 1354 struct qstr qsilly; 1355 struct dentry *sdentry; 1356 int error = -EIO; 1357 1358 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1359 dentry->d_parent->d_name.name, dentry->d_name.name, 1360 atomic_read(&dentry->d_count)); 1361 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1362 1363 #ifdef NFS_PARANOIA 1364 if (!dentry->d_inode) 1365 printk("NFS: silly-renaming %s/%s, negative dentry??\n", 1366 dentry->d_parent->d_name.name, dentry->d_name.name); 1367 #endif 1368 /* 1369 * We don't allow a dentry to be silly-renamed twice. 1370 */ 1371 error = -EBUSY; 1372 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1373 goto out; 1374 1375 sprintf(silly, ".nfs%*.*lx", 1376 i_inosize, i_inosize, dentry->d_inode->i_ino); 1377 1378 /* Return delegation in anticipation of the rename */ 1379 nfs_inode_return_delegation(dentry->d_inode); 1380 1381 sdentry = NULL; 1382 do { 1383 char *suffix = silly + slen - countersize; 1384 1385 dput(sdentry); 1386 sillycounter++; 1387 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1388 1389 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1390 dentry->d_name.name, silly); 1391 1392 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1393 /* 1394 * N.B. Better to return EBUSY here ... it could be 1395 * dangerous to delete the file while it's in use. 1396 */ 1397 if (IS_ERR(sdentry)) 1398 goto out; 1399 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1400 1401 qsilly.name = silly; 1402 qsilly.len = strlen(silly); 1403 nfs_begin_data_update(dir); 1404 if (dentry->d_inode) { 1405 nfs_begin_data_update(dentry->d_inode); 1406 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1407 dir, &qsilly); 1408 nfs_mark_for_revalidate(dentry->d_inode); 1409 nfs_end_data_update(dentry->d_inode); 1410 } else 1411 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1412 dir, &qsilly); 1413 nfs_end_data_update(dir); 1414 if (!error) { 1415 nfs_renew_times(dentry); 1416 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1417 d_move(dentry, sdentry); 1418 error = nfs_async_unlink(dentry); 1419 /* If we return 0 we don't unlink */ 1420 } 1421 dput(sdentry); 1422 out: 1423 return error; 1424 } 1425 1426 /* 1427 * Remove a file after making sure there are no pending writes, 1428 * and after checking that the file has only one user. 1429 * 1430 * We invalidate the attribute cache and free the inode prior to the operation 1431 * to avoid possible races if the server reuses the inode. 1432 */ 1433 static int nfs_safe_remove(struct dentry *dentry) 1434 { 1435 struct inode *dir = dentry->d_parent->d_inode; 1436 struct inode *inode = dentry->d_inode; 1437 int error = -EBUSY; 1438 1439 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1440 dentry->d_parent->d_name.name, dentry->d_name.name); 1441 1442 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1443 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1444 error = 0; 1445 goto out; 1446 } 1447 1448 nfs_begin_data_update(dir); 1449 if (inode != NULL) { 1450 nfs_inode_return_delegation(inode); 1451 nfs_begin_data_update(inode); 1452 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1453 /* The VFS may want to delete this inode */ 1454 if (error == 0) 1455 drop_nlink(inode); 1456 nfs_mark_for_revalidate(inode); 1457 nfs_end_data_update(inode); 1458 } else 1459 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1460 nfs_end_data_update(dir); 1461 out: 1462 return error; 1463 } 1464 1465 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1466 * belongs to an active ".nfs..." file and we return -EBUSY. 1467 * 1468 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1469 */ 1470 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1471 { 1472 int error; 1473 int need_rehash = 0; 1474 1475 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1476 dir->i_ino, dentry->d_name.name); 1477 1478 lock_kernel(); 1479 spin_lock(&dcache_lock); 1480 spin_lock(&dentry->d_lock); 1481 if (atomic_read(&dentry->d_count) > 1) { 1482 spin_unlock(&dentry->d_lock); 1483 spin_unlock(&dcache_lock); 1484 /* Start asynchronous writeout of the inode */ 1485 write_inode_now(dentry->d_inode, 0); 1486 error = nfs_sillyrename(dir, dentry); 1487 unlock_kernel(); 1488 return error; 1489 } 1490 if (!d_unhashed(dentry)) { 1491 __d_drop(dentry); 1492 need_rehash = 1; 1493 } 1494 spin_unlock(&dentry->d_lock); 1495 spin_unlock(&dcache_lock); 1496 error = nfs_safe_remove(dentry); 1497 if (!error) { 1498 nfs_renew_times(dentry); 1499 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1500 } else if (need_rehash) 1501 d_rehash(dentry); 1502 unlock_kernel(); 1503 return error; 1504 } 1505 1506 /* 1507 * To create a symbolic link, most file systems instantiate a new inode, 1508 * add a page to it containing the path, then write it out to the disk 1509 * using prepare_write/commit_write. 1510 * 1511 * Unfortunately the NFS client can't create the in-core inode first 1512 * because it needs a file handle to create an in-core inode (see 1513 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1514 * symlink request has completed on the server. 1515 * 1516 * So instead we allocate a raw page, copy the symname into it, then do 1517 * the SYMLINK request with the page as the buffer. If it succeeds, we 1518 * now have a new file handle and can instantiate an in-core NFS inode 1519 * and move the raw page into its mapping. 1520 */ 1521 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1522 { 1523 struct pagevec lru_pvec; 1524 struct page *page; 1525 char *kaddr; 1526 struct iattr attr; 1527 unsigned int pathlen = strlen(symname); 1528 int error; 1529 1530 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1531 dir->i_ino, dentry->d_name.name, symname); 1532 1533 if (pathlen > PAGE_SIZE) 1534 return -ENAMETOOLONG; 1535 1536 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1537 attr.ia_valid = ATTR_MODE; 1538 1539 lock_kernel(); 1540 1541 page = alloc_page(GFP_KERNEL); 1542 if (!page) { 1543 unlock_kernel(); 1544 return -ENOMEM; 1545 } 1546 1547 kaddr = kmap_atomic(page, KM_USER0); 1548 memcpy(kaddr, symname, pathlen); 1549 if (pathlen < PAGE_SIZE) 1550 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1551 kunmap_atomic(kaddr, KM_USER0); 1552 1553 nfs_begin_data_update(dir); 1554 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1555 nfs_end_data_update(dir); 1556 if (error != 0) { 1557 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1558 dir->i_sb->s_id, dir->i_ino, 1559 dentry->d_name.name, symname, error); 1560 d_drop(dentry); 1561 __free_page(page); 1562 unlock_kernel(); 1563 return error; 1564 } 1565 1566 /* 1567 * No big deal if we can't add this page to the page cache here. 1568 * READLINK will get the missing page from the server if needed. 1569 */ 1570 pagevec_init(&lru_pvec, 0); 1571 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1572 GFP_KERNEL)) { 1573 pagevec_add(&lru_pvec, page); 1574 pagevec_lru_add(&lru_pvec); 1575 SetPageUptodate(page); 1576 unlock_page(page); 1577 } else 1578 __free_page(page); 1579 1580 unlock_kernel(); 1581 return 0; 1582 } 1583 1584 static int 1585 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1586 { 1587 struct inode *inode = old_dentry->d_inode; 1588 int error; 1589 1590 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1591 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1592 dentry->d_parent->d_name.name, dentry->d_name.name); 1593 1594 lock_kernel(); 1595 nfs_begin_data_update(dir); 1596 nfs_begin_data_update(inode); 1597 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1598 if (error == 0) { 1599 atomic_inc(&inode->i_count); 1600 d_instantiate(dentry, inode); 1601 } 1602 nfs_end_data_update(inode); 1603 nfs_end_data_update(dir); 1604 unlock_kernel(); 1605 return error; 1606 } 1607 1608 /* 1609 * RENAME 1610 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1611 * different file handle for the same inode after a rename (e.g. when 1612 * moving to a different directory). A fail-safe method to do so would 1613 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1614 * rename the old file using the sillyrename stuff. This way, the original 1615 * file in old_dir will go away when the last process iput()s the inode. 1616 * 1617 * FIXED. 1618 * 1619 * It actually works quite well. One needs to have the possibility for 1620 * at least one ".nfs..." file in each directory the file ever gets 1621 * moved or linked to which happens automagically with the new 1622 * implementation that only depends on the dcache stuff instead of 1623 * using the inode layer 1624 * 1625 * Unfortunately, things are a little more complicated than indicated 1626 * above. For a cross-directory move, we want to make sure we can get 1627 * rid of the old inode after the operation. This means there must be 1628 * no pending writes (if it's a file), and the use count must be 1. 1629 * If these conditions are met, we can drop the dentries before doing 1630 * the rename. 1631 */ 1632 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1633 struct inode *new_dir, struct dentry *new_dentry) 1634 { 1635 struct inode *old_inode = old_dentry->d_inode; 1636 struct inode *new_inode = new_dentry->d_inode; 1637 struct dentry *dentry = NULL, *rehash = NULL; 1638 int error = -EBUSY; 1639 1640 /* 1641 * To prevent any new references to the target during the rename, 1642 * we unhash the dentry and free the inode in advance. 1643 */ 1644 lock_kernel(); 1645 if (!d_unhashed(new_dentry)) { 1646 d_drop(new_dentry); 1647 rehash = new_dentry; 1648 } 1649 1650 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1651 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1652 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1653 atomic_read(&new_dentry->d_count)); 1654 1655 /* 1656 * First check whether the target is busy ... we can't 1657 * safely do _any_ rename if the target is in use. 1658 * 1659 * For files, make a copy of the dentry and then do a 1660 * silly-rename. If the silly-rename succeeds, the 1661 * copied dentry is hashed and becomes the new target. 1662 */ 1663 if (!new_inode) 1664 goto go_ahead; 1665 if (S_ISDIR(new_inode->i_mode)) { 1666 error = -EISDIR; 1667 if (!S_ISDIR(old_inode->i_mode)) 1668 goto out; 1669 } else if (atomic_read(&new_dentry->d_count) > 2) { 1670 int err; 1671 /* copy the target dentry's name */ 1672 dentry = d_alloc(new_dentry->d_parent, 1673 &new_dentry->d_name); 1674 if (!dentry) 1675 goto out; 1676 1677 /* silly-rename the existing target ... */ 1678 err = nfs_sillyrename(new_dir, new_dentry); 1679 if (!err) { 1680 new_dentry = rehash = dentry; 1681 new_inode = NULL; 1682 /* instantiate the replacement target */ 1683 d_instantiate(new_dentry, NULL); 1684 } else if (atomic_read(&new_dentry->d_count) > 1) { 1685 /* dentry still busy? */ 1686 #ifdef NFS_PARANOIA 1687 printk("nfs_rename: target %s/%s busy, d_count=%d\n", 1688 new_dentry->d_parent->d_name.name, 1689 new_dentry->d_name.name, 1690 atomic_read(&new_dentry->d_count)); 1691 #endif 1692 goto out; 1693 } 1694 } else 1695 drop_nlink(new_inode); 1696 1697 go_ahead: 1698 /* 1699 * ... prune child dentries and writebacks if needed. 1700 */ 1701 if (atomic_read(&old_dentry->d_count) > 1) { 1702 if (S_ISREG(old_inode->i_mode)) 1703 nfs_wb_all(old_inode); 1704 shrink_dcache_parent(old_dentry); 1705 } 1706 nfs_inode_return_delegation(old_inode); 1707 1708 if (new_inode != NULL) { 1709 nfs_inode_return_delegation(new_inode); 1710 d_delete(new_dentry); 1711 } 1712 1713 nfs_begin_data_update(old_dir); 1714 nfs_begin_data_update(new_dir); 1715 nfs_begin_data_update(old_inode); 1716 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1717 new_dir, &new_dentry->d_name); 1718 nfs_mark_for_revalidate(old_inode); 1719 nfs_end_data_update(old_inode); 1720 nfs_end_data_update(new_dir); 1721 nfs_end_data_update(old_dir); 1722 out: 1723 if (rehash) 1724 d_rehash(rehash); 1725 if (!error) { 1726 d_move(old_dentry, new_dentry); 1727 nfs_renew_times(new_dentry); 1728 nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir)); 1729 } 1730 1731 /* new dentry created? */ 1732 if (dentry) 1733 dput(dentry); 1734 unlock_kernel(); 1735 return error; 1736 } 1737 1738 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1739 static LIST_HEAD(nfs_access_lru_list); 1740 static atomic_long_t nfs_access_nr_entries; 1741 1742 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1743 { 1744 put_rpccred(entry->cred); 1745 kfree(entry); 1746 smp_mb__before_atomic_dec(); 1747 atomic_long_dec(&nfs_access_nr_entries); 1748 smp_mb__after_atomic_dec(); 1749 } 1750 1751 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1752 { 1753 LIST_HEAD(head); 1754 struct nfs_inode *nfsi; 1755 struct nfs_access_entry *cache; 1756 1757 spin_lock(&nfs_access_lru_lock); 1758 restart: 1759 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1760 struct inode *inode; 1761 1762 if (nr_to_scan-- == 0) 1763 break; 1764 inode = igrab(&nfsi->vfs_inode); 1765 if (inode == NULL) 1766 continue; 1767 spin_lock(&inode->i_lock); 1768 if (list_empty(&nfsi->access_cache_entry_lru)) 1769 goto remove_lru_entry; 1770 cache = list_entry(nfsi->access_cache_entry_lru.next, 1771 struct nfs_access_entry, lru); 1772 list_move(&cache->lru, &head); 1773 rb_erase(&cache->rb_node, &nfsi->access_cache); 1774 if (!list_empty(&nfsi->access_cache_entry_lru)) 1775 list_move_tail(&nfsi->access_cache_inode_lru, 1776 &nfs_access_lru_list); 1777 else { 1778 remove_lru_entry: 1779 list_del_init(&nfsi->access_cache_inode_lru); 1780 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1781 } 1782 spin_unlock(&inode->i_lock); 1783 iput(inode); 1784 goto restart; 1785 } 1786 spin_unlock(&nfs_access_lru_lock); 1787 while (!list_empty(&head)) { 1788 cache = list_entry(head.next, struct nfs_access_entry, lru); 1789 list_del(&cache->lru); 1790 nfs_access_free_entry(cache); 1791 } 1792 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1793 } 1794 1795 static void __nfs_access_zap_cache(struct inode *inode) 1796 { 1797 struct nfs_inode *nfsi = NFS_I(inode); 1798 struct rb_root *root_node = &nfsi->access_cache; 1799 struct rb_node *n, *dispose = NULL; 1800 struct nfs_access_entry *entry; 1801 1802 /* Unhook entries from the cache */ 1803 while ((n = rb_first(root_node)) != NULL) { 1804 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1805 rb_erase(n, root_node); 1806 list_del(&entry->lru); 1807 n->rb_left = dispose; 1808 dispose = n; 1809 } 1810 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1811 spin_unlock(&inode->i_lock); 1812 1813 /* Now kill them all! */ 1814 while (dispose != NULL) { 1815 n = dispose; 1816 dispose = n->rb_left; 1817 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1818 } 1819 } 1820 1821 void nfs_access_zap_cache(struct inode *inode) 1822 { 1823 /* Remove from global LRU init */ 1824 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1825 spin_lock(&nfs_access_lru_lock); 1826 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1827 spin_unlock(&nfs_access_lru_lock); 1828 } 1829 1830 spin_lock(&inode->i_lock); 1831 /* This will release the spinlock */ 1832 __nfs_access_zap_cache(inode); 1833 } 1834 1835 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1836 { 1837 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1838 struct nfs_access_entry *entry; 1839 1840 while (n != NULL) { 1841 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1842 1843 if (cred < entry->cred) 1844 n = n->rb_left; 1845 else if (cred > entry->cred) 1846 n = n->rb_right; 1847 else 1848 return entry; 1849 } 1850 return NULL; 1851 } 1852 1853 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1854 { 1855 struct nfs_inode *nfsi = NFS_I(inode); 1856 struct nfs_access_entry *cache; 1857 int err = -ENOENT; 1858 1859 spin_lock(&inode->i_lock); 1860 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1861 goto out_zap; 1862 cache = nfs_access_search_rbtree(inode, cred); 1863 if (cache == NULL) 1864 goto out; 1865 if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode))) 1866 goto out_stale; 1867 res->jiffies = cache->jiffies; 1868 res->cred = cache->cred; 1869 res->mask = cache->mask; 1870 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1871 err = 0; 1872 out: 1873 spin_unlock(&inode->i_lock); 1874 return err; 1875 out_stale: 1876 rb_erase(&cache->rb_node, &nfsi->access_cache); 1877 list_del(&cache->lru); 1878 spin_unlock(&inode->i_lock); 1879 nfs_access_free_entry(cache); 1880 return -ENOENT; 1881 out_zap: 1882 /* This will release the spinlock */ 1883 __nfs_access_zap_cache(inode); 1884 return -ENOENT; 1885 } 1886 1887 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1888 { 1889 struct nfs_inode *nfsi = NFS_I(inode); 1890 struct rb_root *root_node = &nfsi->access_cache; 1891 struct rb_node **p = &root_node->rb_node; 1892 struct rb_node *parent = NULL; 1893 struct nfs_access_entry *entry; 1894 1895 spin_lock(&inode->i_lock); 1896 while (*p != NULL) { 1897 parent = *p; 1898 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1899 1900 if (set->cred < entry->cred) 1901 p = &parent->rb_left; 1902 else if (set->cred > entry->cred) 1903 p = &parent->rb_right; 1904 else 1905 goto found; 1906 } 1907 rb_link_node(&set->rb_node, parent, p); 1908 rb_insert_color(&set->rb_node, root_node); 1909 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1910 spin_unlock(&inode->i_lock); 1911 return; 1912 found: 1913 rb_replace_node(parent, &set->rb_node, root_node); 1914 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1915 list_del(&entry->lru); 1916 spin_unlock(&inode->i_lock); 1917 nfs_access_free_entry(entry); 1918 } 1919 1920 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1921 { 1922 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1923 if (cache == NULL) 1924 return; 1925 RB_CLEAR_NODE(&cache->rb_node); 1926 cache->jiffies = set->jiffies; 1927 cache->cred = get_rpccred(set->cred); 1928 cache->mask = set->mask; 1929 1930 nfs_access_add_rbtree(inode, cache); 1931 1932 /* Update accounting */ 1933 smp_mb__before_atomic_inc(); 1934 atomic_long_inc(&nfs_access_nr_entries); 1935 smp_mb__after_atomic_inc(); 1936 1937 /* Add inode to global LRU list */ 1938 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1939 spin_lock(&nfs_access_lru_lock); 1940 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1941 spin_unlock(&nfs_access_lru_lock); 1942 } 1943 } 1944 1945 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1946 { 1947 struct nfs_access_entry cache; 1948 int status; 1949 1950 status = nfs_access_get_cached(inode, cred, &cache); 1951 if (status == 0) 1952 goto out; 1953 1954 /* Be clever: ask server to check for all possible rights */ 1955 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1956 cache.cred = cred; 1957 cache.jiffies = jiffies; 1958 status = NFS_PROTO(inode)->access(inode, &cache); 1959 if (status != 0) 1960 return status; 1961 nfs_access_add_cache(inode, &cache); 1962 out: 1963 if ((cache.mask & mask) == mask) 1964 return 0; 1965 return -EACCES; 1966 } 1967 1968 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd) 1969 { 1970 struct rpc_cred *cred; 1971 int res = 0; 1972 1973 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1974 1975 if (mask == 0) 1976 goto out; 1977 /* Is this sys_access() ? */ 1978 if (nd != NULL && (nd->flags & LOOKUP_ACCESS)) 1979 goto force_lookup; 1980 1981 switch (inode->i_mode & S_IFMT) { 1982 case S_IFLNK: 1983 goto out; 1984 case S_IFREG: 1985 /* NFSv4 has atomic_open... */ 1986 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1987 && nd != NULL 1988 && (nd->flags & LOOKUP_OPEN)) 1989 goto out; 1990 break; 1991 case S_IFDIR: 1992 /* 1993 * Optimize away all write operations, since the server 1994 * will check permissions when we perform the op. 1995 */ 1996 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1997 goto out; 1998 } 1999 2000 force_lookup: 2001 lock_kernel(); 2002 2003 if (!NFS_PROTO(inode)->access) 2004 goto out_notsup; 2005 2006 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0); 2007 if (!IS_ERR(cred)) { 2008 res = nfs_do_access(inode, cred, mask); 2009 put_rpccred(cred); 2010 } else 2011 res = PTR_ERR(cred); 2012 unlock_kernel(); 2013 out: 2014 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2015 inode->i_sb->s_id, inode->i_ino, mask, res); 2016 return res; 2017 out_notsup: 2018 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2019 if (res == 0) 2020 res = generic_permission(inode, mask, NULL); 2021 unlock_kernel(); 2022 goto out; 2023 } 2024 2025 /* 2026 * Local variables: 2027 * version-control: t 2028 * kept-new-versions: 5 2029 * End: 2030 */ 2031