1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_clear_array(struct folio *); 59 60 const struct file_operations nfs_dir_operations = { 61 .llseek = nfs_llseek_dir, 62 .read = generic_read_dir, 63 .iterate_shared = nfs_readdir, 64 .open = nfs_opendir, 65 .release = nfs_closedir, 66 .fsync = nfs_fsync_dir, 67 }; 68 69 const struct address_space_operations nfs_dir_aops = { 70 .free_folio = nfs_readdir_clear_array, 71 }; 72 73 #define NFS_INIT_DTSIZE PAGE_SIZE 74 75 static struct nfs_open_dir_context * 76 alloc_nfs_open_dir_context(struct inode *dir) 77 { 78 struct nfs_inode *nfsi = NFS_I(dir); 79 struct nfs_open_dir_context *ctx; 80 81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 82 if (ctx != NULL) { 83 ctx->attr_gencount = nfsi->attr_gencount; 84 ctx->dtsize = NFS_INIT_DTSIZE; 85 spin_lock(&dir->i_lock); 86 if (list_empty(&nfsi->open_files) && 87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 88 nfs_set_cache_invalid(dir, 89 NFS_INO_INVALID_DATA | 90 NFS_INO_REVAL_FORCED); 91 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 93 spin_unlock(&dir->i_lock); 94 return ctx; 95 } 96 return ERR_PTR(-ENOMEM); 97 } 98 99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 100 { 101 spin_lock(&dir->i_lock); 102 list_del_rcu(&ctx->list); 103 spin_unlock(&dir->i_lock); 104 kfree_rcu(ctx, rcu_head); 105 } 106 107 /* 108 * Open file 109 */ 110 static int 111 nfs_opendir(struct inode *inode, struct file *filp) 112 { 113 int res = 0; 114 struct nfs_open_dir_context *ctx; 115 116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 117 118 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 119 120 ctx = alloc_nfs_open_dir_context(inode); 121 if (IS_ERR(ctx)) { 122 res = PTR_ERR(ctx); 123 goto out; 124 } 125 filp->private_data = ctx; 126 out: 127 return res; 128 } 129 130 static int 131 nfs_closedir(struct inode *inode, struct file *filp) 132 { 133 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 134 return 0; 135 } 136 137 struct nfs_cache_array_entry { 138 u64 cookie; 139 u64 ino; 140 const char *name; 141 unsigned int name_len; 142 unsigned char d_type; 143 }; 144 145 struct nfs_cache_array { 146 u64 change_attr; 147 u64 last_cookie; 148 unsigned int size; 149 unsigned char folio_full : 1, 150 folio_is_eof : 1, 151 cookies_are_ordered : 1; 152 struct nfs_cache_array_entry array[]; 153 }; 154 155 struct nfs_readdir_descriptor { 156 struct file *file; 157 struct folio *folio; 158 struct dir_context *ctx; 159 pgoff_t folio_index; 160 pgoff_t folio_index_max; 161 u64 dir_cookie; 162 u64 last_cookie; 163 loff_t current_index; 164 165 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 166 unsigned long dir_verifier; 167 unsigned long timestamp; 168 unsigned long gencount; 169 unsigned long attr_gencount; 170 unsigned int cache_entry_index; 171 unsigned int buffer_fills; 172 unsigned int dtsize; 173 bool clear_cache; 174 bool plus; 175 bool eob; 176 bool eof; 177 }; 178 179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 180 { 181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 182 unsigned int maxsize = server->dtsize; 183 184 if (sz > maxsize) 185 sz = maxsize; 186 if (sz < NFS_MIN_FILE_IO_SIZE) 187 sz = NFS_MIN_FILE_IO_SIZE; 188 desc->dtsize = sz; 189 } 190 191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 192 { 193 nfs_set_dtsize(desc, desc->dtsize >> 1); 194 } 195 196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 197 { 198 nfs_set_dtsize(desc, desc->dtsize << 1); 199 } 200 201 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, 202 u64 change_attr) 203 { 204 struct nfs_cache_array *array; 205 206 array = kmap_local_folio(folio, 0); 207 array->change_attr = change_attr; 208 array->last_cookie = last_cookie; 209 array->size = 0; 210 array->folio_full = 0; 211 array->folio_is_eof = 0; 212 array->cookies_are_ordered = 1; 213 kunmap_local(array); 214 } 215 216 /* 217 * we are freeing strings created by nfs_add_to_readdir_array() 218 */ 219 static void nfs_readdir_clear_array(struct folio *folio) 220 { 221 struct nfs_cache_array *array; 222 unsigned int i; 223 224 array = kmap_local_folio(folio, 0); 225 for (i = 0; i < array->size; i++) 226 kfree(array->array[i].name); 227 array->size = 0; 228 kunmap_local(array); 229 } 230 231 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, 232 u64 change_attr) 233 { 234 nfs_readdir_clear_array(folio); 235 nfs_readdir_folio_init_array(folio, last_cookie, change_attr); 236 } 237 238 static struct folio * 239 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) 240 { 241 struct folio *folio = folio_alloc(gfp_flags, 0); 242 if (folio) 243 nfs_readdir_folio_init_array(folio, last_cookie, 0); 244 return folio; 245 } 246 247 static void nfs_readdir_folio_array_free(struct folio *folio) 248 { 249 if (folio) { 250 nfs_readdir_clear_array(folio); 251 folio_put(folio); 252 } 253 } 254 255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 256 { 257 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 258 } 259 260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 261 { 262 array->folio_is_eof = 1; 263 array->folio_full = 1; 264 } 265 266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 267 { 268 return array->folio_full; 269 } 270 271 /* 272 * the caller is responsible for freeing qstr.name 273 * when called by nfs_readdir_add_to_array, the strings will be freed in 274 * nfs_clear_readdir_array() 275 */ 276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 277 { 278 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 279 280 /* 281 * Avoid a kmemleak false positive. The pointer to the name is stored 282 * in a page cache page which kmemleak does not scan. 283 */ 284 if (ret != NULL) 285 kmemleak_not_leak(ret); 286 return ret; 287 } 288 289 static size_t nfs_readdir_array_maxentries(void) 290 { 291 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 292 sizeof(struct nfs_cache_array_entry); 293 } 294 295 /* 296 * Check that the next array entry lies entirely within the page bounds 297 */ 298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 299 { 300 if (array->folio_full) 301 return -ENOSPC; 302 if (array->size == nfs_readdir_array_maxentries()) { 303 array->folio_full = 1; 304 return -ENOSPC; 305 } 306 return 0; 307 } 308 309 static int nfs_readdir_folio_array_append(struct folio *folio, 310 const struct nfs_entry *entry, 311 u64 *cookie) 312 { 313 struct nfs_cache_array *array; 314 struct nfs_cache_array_entry *cache_entry; 315 const char *name; 316 int ret = -ENOMEM; 317 318 name = nfs_readdir_copy_name(entry->name, entry->len); 319 320 array = kmap_local_folio(folio, 0); 321 if (!name) 322 goto out; 323 ret = nfs_readdir_array_can_expand(array); 324 if (ret) { 325 kfree(name); 326 goto out; 327 } 328 329 cache_entry = &array->array[array->size]; 330 cache_entry->cookie = array->last_cookie; 331 cache_entry->ino = entry->ino; 332 cache_entry->d_type = entry->d_type; 333 cache_entry->name_len = entry->len; 334 cache_entry->name = name; 335 array->last_cookie = entry->cookie; 336 if (array->last_cookie <= cache_entry->cookie) 337 array->cookies_are_ordered = 0; 338 array->size++; 339 if (entry->eof != 0) 340 nfs_readdir_array_set_eof(array); 341 out: 342 *cookie = array->last_cookie; 343 kunmap_local(array); 344 return ret; 345 } 346 347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 348 /* 349 * Hash algorithm allowing content addressible access to sequences 350 * of directory cookies. Content is addressed by the value of the 351 * cookie index of the first readdir entry in a page. 352 * 353 * We select only the first 18 bits to avoid issues with excessive 354 * memory use for the page cache XArray. 18 bits should allow the caching 355 * of 262144 pages of sequences of readdir entries. Since each page holds 356 * 127 readdir entries for a typical 64-bit system, that works out to a 357 * cache of ~ 33 million entries per directory. 358 */ 359 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) 360 { 361 if (cookie == 0) 362 return 0; 363 return hash_64(cookie, 18); 364 } 365 366 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, 367 u64 change_attr) 368 { 369 struct nfs_cache_array *array = kmap_local_folio(folio, 0); 370 int ret = true; 371 372 if (array->change_attr != change_attr) 373 ret = false; 374 if (nfs_readdir_array_index_cookie(array) != last_cookie) 375 ret = false; 376 kunmap_local(array); 377 return ret; 378 } 379 380 static void nfs_readdir_folio_unlock_and_put(struct folio *folio) 381 { 382 folio_unlock(folio); 383 folio_put(folio); 384 } 385 386 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, 387 u64 change_attr) 388 { 389 if (folio_test_uptodate(folio)) { 390 if (nfs_readdir_folio_validate(folio, cookie, change_attr)) 391 return; 392 nfs_readdir_clear_array(folio); 393 } 394 nfs_readdir_folio_init_array(folio, cookie, change_attr); 395 folio_mark_uptodate(folio); 396 } 397 398 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, 399 u64 cookie, u64 change_attr) 400 { 401 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 402 struct folio *folio; 403 404 folio = filemap_grab_folio(mapping, index); 405 if (IS_ERR(folio)) 406 return NULL; 407 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 408 return folio; 409 } 410 411 static u64 nfs_readdir_folio_last_cookie(struct folio *folio) 412 { 413 struct nfs_cache_array *array; 414 u64 ret; 415 416 array = kmap_local_folio(folio, 0); 417 ret = array->last_cookie; 418 kunmap_local(array); 419 return ret; 420 } 421 422 static bool nfs_readdir_folio_needs_filling(struct folio *folio) 423 { 424 struct nfs_cache_array *array; 425 bool ret; 426 427 array = kmap_local_folio(folio, 0); 428 ret = !nfs_readdir_array_is_full(array); 429 kunmap_local(array); 430 return ret; 431 } 432 433 static void nfs_readdir_folio_set_eof(struct folio *folio) 434 { 435 struct nfs_cache_array *array; 436 437 array = kmap_local_folio(folio, 0); 438 nfs_readdir_array_set_eof(array); 439 kunmap_local(array); 440 } 441 442 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, 443 u64 cookie, u64 change_attr) 444 { 445 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 446 struct folio *folio; 447 448 folio = __filemap_get_folio(mapping, index, 449 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 450 mapping_gfp_mask(mapping)); 451 if (IS_ERR(folio)) 452 return NULL; 453 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 454 if (nfs_readdir_folio_last_cookie(folio) != cookie) 455 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 456 return folio; 457 } 458 459 static inline 460 int is_32bit_api(void) 461 { 462 #ifdef CONFIG_COMPAT 463 return in_compat_syscall(); 464 #else 465 return (BITS_PER_LONG == 32); 466 #endif 467 } 468 469 static 470 bool nfs_readdir_use_cookie(const struct file *filp) 471 { 472 if ((filp->f_mode & FMODE_32BITHASH) || 473 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 474 return false; 475 return true; 476 } 477 478 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 479 struct nfs_readdir_descriptor *desc) 480 { 481 if (array->folio_full) { 482 desc->last_cookie = array->last_cookie; 483 desc->current_index += array->size; 484 desc->cache_entry_index = 0; 485 desc->folio_index++; 486 } else 487 desc->last_cookie = nfs_readdir_array_index_cookie(array); 488 } 489 490 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 491 { 492 desc->current_index = 0; 493 desc->last_cookie = 0; 494 desc->folio_index = 0; 495 } 496 497 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 498 struct nfs_readdir_descriptor *desc) 499 { 500 loff_t diff = desc->ctx->pos - desc->current_index; 501 unsigned int index; 502 503 if (diff < 0) 504 goto out_eof; 505 if (diff >= array->size) { 506 if (array->folio_is_eof) 507 goto out_eof; 508 nfs_readdir_seek_next_array(array, desc); 509 return -EAGAIN; 510 } 511 512 index = (unsigned int)diff; 513 desc->dir_cookie = array->array[index].cookie; 514 desc->cache_entry_index = index; 515 return 0; 516 out_eof: 517 desc->eof = true; 518 return -EBADCOOKIE; 519 } 520 521 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 522 u64 cookie) 523 { 524 if (!array->cookies_are_ordered) 525 return true; 526 /* Optimisation for monotonically increasing cookies */ 527 if (cookie >= array->last_cookie) 528 return false; 529 if (array->size && cookie < array->array[0].cookie) 530 return false; 531 return true; 532 } 533 534 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 535 struct nfs_readdir_descriptor *desc) 536 { 537 unsigned int i; 538 int status = -EAGAIN; 539 540 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 541 goto check_eof; 542 543 for (i = 0; i < array->size; i++) { 544 if (array->array[i].cookie == desc->dir_cookie) { 545 if (nfs_readdir_use_cookie(desc->file)) 546 desc->ctx->pos = desc->dir_cookie; 547 else 548 desc->ctx->pos = desc->current_index + i; 549 desc->cache_entry_index = i; 550 return 0; 551 } 552 } 553 check_eof: 554 if (array->folio_is_eof) { 555 status = -EBADCOOKIE; 556 if (desc->dir_cookie == array->last_cookie) 557 desc->eof = true; 558 } else 559 nfs_readdir_seek_next_array(array, desc); 560 return status; 561 } 562 563 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 564 { 565 struct nfs_cache_array *array; 566 int status; 567 568 array = kmap_local_folio(desc->folio, 0); 569 570 if (desc->dir_cookie == 0) 571 status = nfs_readdir_search_for_pos(array, desc); 572 else 573 status = nfs_readdir_search_for_cookie(array, desc); 574 575 kunmap_local(array); 576 return status; 577 } 578 579 /* Fill a page with xdr information before transferring to the cache page */ 580 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 581 __be32 *verf, u64 cookie, 582 struct page **pages, size_t bufsize, 583 __be32 *verf_res) 584 { 585 struct inode *inode = file_inode(desc->file); 586 struct nfs_readdir_arg arg = { 587 .dentry = file_dentry(desc->file), 588 .cred = desc->file->f_cred, 589 .verf = verf, 590 .cookie = cookie, 591 .pages = pages, 592 .page_len = bufsize, 593 .plus = desc->plus, 594 }; 595 struct nfs_readdir_res res = { 596 .verf = verf_res, 597 }; 598 unsigned long timestamp, gencount; 599 int error; 600 601 again: 602 timestamp = jiffies; 603 gencount = nfs_inc_attr_generation_counter(); 604 desc->dir_verifier = nfs_save_change_attribute(inode); 605 error = NFS_PROTO(inode)->readdir(&arg, &res); 606 if (error < 0) { 607 /* We requested READDIRPLUS, but the server doesn't grok it */ 608 if (error == -ENOTSUPP && desc->plus) { 609 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 610 desc->plus = arg.plus = false; 611 goto again; 612 } 613 goto error; 614 } 615 desc->timestamp = timestamp; 616 desc->gencount = gencount; 617 error: 618 return error; 619 } 620 621 static int xdr_decode(struct nfs_readdir_descriptor *desc, 622 struct nfs_entry *entry, struct xdr_stream *xdr) 623 { 624 struct inode *inode = file_inode(desc->file); 625 int error; 626 627 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 628 if (error) 629 return error; 630 entry->fattr->time_start = desc->timestamp; 631 entry->fattr->gencount = desc->gencount; 632 return 0; 633 } 634 635 /* Match file and dirent using either filehandle or fileid 636 * Note: caller is responsible for checking the fsid 637 */ 638 static 639 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 640 { 641 struct inode *inode; 642 struct nfs_inode *nfsi; 643 644 if (d_really_is_negative(dentry)) 645 return 0; 646 647 inode = d_inode(dentry); 648 if (is_bad_inode(inode) || NFS_STALE(inode)) 649 return 0; 650 651 nfsi = NFS_I(inode); 652 if (entry->fattr->fileid != nfsi->fileid) 653 return 0; 654 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 655 return 0; 656 return 1; 657 } 658 659 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 660 661 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 662 unsigned int cache_hits, 663 unsigned int cache_misses) 664 { 665 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 666 return false; 667 if (ctx->pos == 0 || 668 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 669 return true; 670 return false; 671 } 672 673 /* 674 * This function is called by the getattr code to request the 675 * use of readdirplus to accelerate any future lookups in the same 676 * directory. 677 */ 678 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 679 { 680 struct nfs_inode *nfsi = NFS_I(dir); 681 struct nfs_open_dir_context *ctx; 682 683 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 684 S_ISDIR(dir->i_mode)) { 685 rcu_read_lock(); 686 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 687 atomic_inc(&ctx->cache_hits); 688 rcu_read_unlock(); 689 } 690 } 691 692 /* 693 * This function is mainly for use by nfs_getattr(). 694 * 695 * If this is an 'ls -l', we want to force use of readdirplus. 696 */ 697 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 698 { 699 struct nfs_inode *nfsi = NFS_I(dir); 700 struct nfs_open_dir_context *ctx; 701 702 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 703 S_ISDIR(dir->i_mode)) { 704 rcu_read_lock(); 705 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 706 atomic_inc(&ctx->cache_misses); 707 rcu_read_unlock(); 708 } 709 } 710 711 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 712 unsigned int flags) 713 { 714 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 715 return; 716 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 717 return; 718 nfs_readdir_record_entry_cache_miss(dir); 719 } 720 721 static 722 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 723 unsigned long dir_verifier) 724 { 725 struct qstr filename = QSTR_INIT(entry->name, entry->len); 726 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 727 struct dentry *dentry; 728 struct dentry *alias; 729 struct inode *inode; 730 int status; 731 732 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 733 return; 734 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 735 return; 736 if (filename.len == 0) 737 return; 738 /* Validate that the name doesn't contain any illegal '\0' */ 739 if (strnlen(filename.name, filename.len) != filename.len) 740 return; 741 /* ...or '/' */ 742 if (strnchr(filename.name, filename.len, '/')) 743 return; 744 if (filename.name[0] == '.') { 745 if (filename.len == 1) 746 return; 747 if (filename.len == 2 && filename.name[1] == '.') 748 return; 749 } 750 filename.hash = full_name_hash(parent, filename.name, filename.len); 751 752 dentry = d_lookup(parent, &filename); 753 again: 754 if (!dentry) { 755 dentry = d_alloc_parallel(parent, &filename, &wq); 756 if (IS_ERR(dentry)) 757 return; 758 } 759 if (!d_in_lookup(dentry)) { 760 /* Is there a mountpoint here? If so, just exit */ 761 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 762 &entry->fattr->fsid)) 763 goto out; 764 if (nfs_same_file(dentry, entry)) { 765 if (!entry->fh->size) 766 goto out; 767 nfs_set_verifier(dentry, dir_verifier); 768 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 769 if (!status) 770 nfs_setsecurity(d_inode(dentry), entry->fattr); 771 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 772 dentry, 0, status); 773 goto out; 774 } else { 775 trace_nfs_readdir_lookup_revalidate_failed( 776 d_inode(parent), dentry, 0); 777 d_invalidate(dentry); 778 dput(dentry); 779 dentry = NULL; 780 goto again; 781 } 782 } 783 if (!entry->fh->size) { 784 d_lookup_done(dentry); 785 goto out; 786 } 787 788 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 789 alias = d_splice_alias(inode, dentry); 790 d_lookup_done(dentry); 791 if (alias) { 792 if (IS_ERR(alias)) 793 goto out; 794 dput(dentry); 795 dentry = alias; 796 } 797 nfs_set_verifier(dentry, dir_verifier); 798 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 799 out: 800 dput(dentry); 801 } 802 803 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 804 struct nfs_entry *entry, 805 struct xdr_stream *stream) 806 { 807 int ret; 808 809 if (entry->fattr->label) 810 entry->fattr->label->len = NFS4_MAXLABELLEN; 811 ret = xdr_decode(desc, entry, stream); 812 if (ret || !desc->plus) 813 return ret; 814 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 815 return 0; 816 } 817 818 /* Perform conversion from xdr to cache array */ 819 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, 820 struct nfs_entry *entry, 821 struct page **xdr_pages, unsigned int buflen, 822 struct folio **arrays, size_t narrays, 823 u64 change_attr) 824 { 825 struct address_space *mapping = desc->file->f_mapping; 826 struct folio *new, *folio = *arrays; 827 struct xdr_stream stream; 828 struct page *scratch; 829 struct xdr_buf buf; 830 u64 cookie; 831 int status; 832 833 scratch = alloc_page(GFP_KERNEL); 834 if (scratch == NULL) 835 return -ENOMEM; 836 837 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 838 xdr_set_scratch_page(&stream, scratch); 839 840 do { 841 status = nfs_readdir_entry_decode(desc, entry, &stream); 842 if (status != 0) 843 break; 844 845 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 846 if (status != -ENOSPC) 847 continue; 848 849 if (folio->mapping != mapping) { 850 if (!--narrays) 851 break; 852 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); 853 if (!new) 854 break; 855 arrays++; 856 *arrays = folio = new; 857 } else { 858 new = nfs_readdir_folio_get_next(mapping, cookie, 859 change_attr); 860 if (!new) 861 break; 862 if (folio != *arrays) 863 nfs_readdir_folio_unlock_and_put(folio); 864 folio = new; 865 } 866 desc->folio_index_max++; 867 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 868 } while (!status && !entry->eof); 869 870 switch (status) { 871 case -EBADCOOKIE: 872 if (!entry->eof) 873 break; 874 nfs_readdir_folio_set_eof(folio); 875 fallthrough; 876 case -EAGAIN: 877 status = 0; 878 break; 879 case -ENOSPC: 880 status = 0; 881 if (!desc->plus) 882 break; 883 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 884 ; 885 } 886 887 if (folio != *arrays) 888 nfs_readdir_folio_unlock_and_put(folio); 889 890 put_page(scratch); 891 return status; 892 } 893 894 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 895 { 896 while (npages--) 897 put_page(pages[npages]); 898 kfree(pages); 899 } 900 901 /* 902 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 903 * to nfs_readdir_free_pages() 904 */ 905 static struct page **nfs_readdir_alloc_pages(size_t npages) 906 { 907 struct page **pages; 908 size_t i; 909 910 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 911 if (!pages) 912 return NULL; 913 for (i = 0; i < npages; i++) { 914 struct page *page = alloc_page(GFP_KERNEL); 915 if (page == NULL) 916 goto out_freepages; 917 pages[i] = page; 918 } 919 return pages; 920 921 out_freepages: 922 nfs_readdir_free_pages(pages, i); 923 return NULL; 924 } 925 926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 927 __be32 *verf_arg, __be32 *verf_res, 928 struct folio **arrays, size_t narrays) 929 { 930 u64 change_attr; 931 struct page **pages; 932 struct folio *folio = *arrays; 933 struct nfs_entry *entry; 934 size_t array_size; 935 struct inode *inode = file_inode(desc->file); 936 unsigned int dtsize = desc->dtsize; 937 unsigned int pglen; 938 int status = -ENOMEM; 939 940 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 941 if (!entry) 942 return -ENOMEM; 943 entry->cookie = nfs_readdir_folio_last_cookie(folio); 944 entry->fh = nfs_alloc_fhandle(); 945 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 946 entry->server = NFS_SERVER(inode); 947 if (entry->fh == NULL || entry->fattr == NULL) 948 goto out; 949 950 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 951 pages = nfs_readdir_alloc_pages(array_size); 952 if (!pages) 953 goto out; 954 955 change_attr = inode_peek_iversion_raw(inode); 956 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 957 dtsize, verf_res); 958 if (status < 0) 959 goto free_pages; 960 961 pglen = status; 962 if (pglen != 0) 963 status = nfs_readdir_folio_filler(desc, entry, pages, pglen, 964 arrays, narrays, change_attr); 965 else 966 nfs_readdir_folio_set_eof(folio); 967 desc->buffer_fills++; 968 969 free_pages: 970 nfs_readdir_free_pages(pages, array_size); 971 out: 972 nfs_free_fattr(entry->fattr); 973 nfs_free_fhandle(entry->fh); 974 kfree(entry); 975 return status; 976 } 977 978 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) 979 { 980 folio_put(desc->folio); 981 desc->folio = NULL; 982 } 983 984 static void 985 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 986 { 987 folio_unlock(desc->folio); 988 nfs_readdir_folio_put(desc); 989 } 990 991 static struct folio * 992 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) 993 { 994 struct address_space *mapping = desc->file->f_mapping; 995 u64 change_attr = inode_peek_iversion_raw(mapping->host); 996 u64 cookie = desc->last_cookie; 997 struct folio *folio; 998 999 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); 1000 if (!folio) 1001 return NULL; 1002 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) 1003 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 1004 return folio; 1005 } 1006 1007 /* 1008 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1009 * and locks the page to prevent removal from the page cache. 1010 */ 1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1012 { 1013 struct inode *inode = file_inode(desc->file); 1014 struct nfs_inode *nfsi = NFS_I(inode); 1015 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1016 int res; 1017 1018 desc->folio = nfs_readdir_folio_get_cached(desc); 1019 if (!desc->folio) 1020 return -ENOMEM; 1021 if (nfs_readdir_folio_needs_filling(desc->folio)) { 1022 /* Grow the dtsize if we had to go back for more pages */ 1023 if (desc->folio_index == desc->folio_index_max) 1024 nfs_grow_dtsize(desc); 1025 desc->folio_index_max = desc->folio_index; 1026 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1027 desc->last_cookie, 1028 desc->folio->index, desc->dtsize); 1029 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1030 &desc->folio, 1); 1031 if (res < 0) { 1032 nfs_readdir_folio_unlock_and_put_cached(desc); 1033 trace_nfs_readdir_cache_fill_done(inode, res); 1034 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1035 invalidate_inode_pages2(desc->file->f_mapping); 1036 nfs_readdir_rewind_search(desc); 1037 trace_nfs_readdir_invalidate_cache_range( 1038 inode, 0, MAX_LFS_FILESIZE); 1039 return -EAGAIN; 1040 } 1041 return res; 1042 } 1043 /* 1044 * Set the cookie verifier if the page cache was empty 1045 */ 1046 if (desc->last_cookie == 0 && 1047 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1048 memcpy(nfsi->cookieverf, verf, 1049 sizeof(nfsi->cookieverf)); 1050 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1051 -1); 1052 trace_nfs_readdir_invalidate_cache_range( 1053 inode, 1, MAX_LFS_FILESIZE); 1054 } 1055 desc->clear_cache = false; 1056 } 1057 res = nfs_readdir_search_array(desc); 1058 if (res == 0) 1059 return 0; 1060 nfs_readdir_folio_unlock_and_put_cached(desc); 1061 return res; 1062 } 1063 1064 /* Search for desc->dir_cookie from the beginning of the page cache */ 1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1066 { 1067 int res; 1068 1069 do { 1070 res = find_and_lock_cache_page(desc); 1071 } while (res == -EAGAIN); 1072 return res; 1073 } 1074 1075 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1076 1077 /* 1078 * Once we've found the start of the dirent within a page: fill 'er up... 1079 */ 1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1081 const __be32 *verf) 1082 { 1083 struct file *file = desc->file; 1084 struct nfs_cache_array *array; 1085 unsigned int i; 1086 bool first_emit = !desc->dir_cookie; 1087 1088 array = kmap_local_folio(desc->folio, 0); 1089 for (i = desc->cache_entry_index; i < array->size; i++) { 1090 struct nfs_cache_array_entry *ent; 1091 1092 /* 1093 * nfs_readdir_handle_cache_misses return force clear at 1094 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for 1095 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1 1096 * entries need be emitted here. 1097 */ 1098 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) { 1099 desc->eob = true; 1100 break; 1101 } 1102 1103 ent = &array->array[i]; 1104 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1105 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1106 desc->eob = true; 1107 break; 1108 } 1109 memcpy(desc->verf, verf, sizeof(desc->verf)); 1110 if (i == array->size - 1) { 1111 desc->dir_cookie = array->last_cookie; 1112 nfs_readdir_seek_next_array(array, desc); 1113 } else { 1114 desc->dir_cookie = array->array[i + 1].cookie; 1115 desc->last_cookie = array->array[0].cookie; 1116 } 1117 if (nfs_readdir_use_cookie(file)) 1118 desc->ctx->pos = desc->dir_cookie; 1119 else 1120 desc->ctx->pos++; 1121 } 1122 if (array->folio_is_eof) 1123 desc->eof = !desc->eob; 1124 1125 kunmap_local(array); 1126 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1127 (unsigned long long)desc->dir_cookie); 1128 } 1129 1130 /* 1131 * If we cannot find a cookie in our cache, we suspect that this is 1132 * because it points to a deleted file, so we ask the server to return 1133 * whatever it thinks is the next entry. We then feed this to filldir. 1134 * If all goes well, we should then be able to find our way round the 1135 * cache on the next call to readdir_search_pagecache(); 1136 * 1137 * NOTE: we cannot add the anonymous page to the pagecache because 1138 * the data it contains might not be page aligned. Besides, 1139 * we should already have a complete representation of the 1140 * directory in the page cache by the time we get here. 1141 */ 1142 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1143 { 1144 struct folio **arrays; 1145 size_t i, sz = 512; 1146 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1147 int status = -ENOMEM; 1148 1149 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1150 (unsigned long long)desc->dir_cookie); 1151 1152 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1153 if (!arrays) 1154 goto out; 1155 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); 1156 if (!arrays[0]) 1157 goto out; 1158 1159 desc->folio_index = 0; 1160 desc->cache_entry_index = 0; 1161 desc->last_cookie = desc->dir_cookie; 1162 desc->folio_index_max = 0; 1163 1164 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1165 -1, desc->dtsize); 1166 1167 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1168 if (status < 0) { 1169 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1170 goto out_free; 1171 } 1172 1173 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1174 desc->folio = arrays[i]; 1175 nfs_do_filldir(desc, verf); 1176 } 1177 desc->folio = NULL; 1178 1179 /* 1180 * Grow the dtsize if we have to go back for more pages, 1181 * or shrink it if we're reading too many. 1182 */ 1183 if (!desc->eof) { 1184 if (!desc->eob) 1185 nfs_grow_dtsize(desc); 1186 else if (desc->buffer_fills == 1 && 1187 i < (desc->folio_index_max >> 1)) 1188 nfs_shrink_dtsize(desc); 1189 } 1190 out_free: 1191 for (i = 0; i < sz && arrays[i]; i++) 1192 nfs_readdir_folio_array_free(arrays[i]); 1193 out: 1194 if (!nfs_readdir_use_cookie(desc->file)) 1195 nfs_readdir_rewind_search(desc); 1196 desc->folio_index_max = -1; 1197 kfree(arrays); 1198 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1199 return status; 1200 } 1201 1202 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1203 struct nfs_readdir_descriptor *desc, 1204 unsigned int cache_misses, 1205 bool force_clear) 1206 { 1207 if (desc->ctx->pos == 0 || !desc->plus) 1208 return false; 1209 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1210 return false; 1211 trace_nfs_readdir_force_readdirplus(inode); 1212 return true; 1213 } 1214 1215 /* The file offset position represents the dirent entry number. A 1216 last cookie cache takes care of the common case of reading the 1217 whole directory. 1218 */ 1219 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1220 { 1221 struct dentry *dentry = file_dentry(file); 1222 struct inode *inode = d_inode(dentry); 1223 struct nfs_inode *nfsi = NFS_I(inode); 1224 struct nfs_open_dir_context *dir_ctx = file->private_data; 1225 struct nfs_readdir_descriptor *desc; 1226 unsigned int cache_hits, cache_misses; 1227 bool force_clear; 1228 int res; 1229 1230 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1231 file, (long long)ctx->pos); 1232 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1233 1234 /* 1235 * ctx->pos points to the dirent entry number. 1236 * *desc->dir_cookie has the cookie for the next entry. We have 1237 * to either find the entry with the appropriate number or 1238 * revalidate the cookie. 1239 */ 1240 nfs_revalidate_mapping(inode, file->f_mapping); 1241 1242 res = -ENOMEM; 1243 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1244 if (!desc) 1245 goto out; 1246 desc->file = file; 1247 desc->ctx = ctx; 1248 desc->folio_index_max = -1; 1249 1250 spin_lock(&file->f_lock); 1251 desc->dir_cookie = dir_ctx->dir_cookie; 1252 desc->folio_index = dir_ctx->page_index; 1253 desc->last_cookie = dir_ctx->last_cookie; 1254 desc->attr_gencount = dir_ctx->attr_gencount; 1255 desc->eof = dir_ctx->eof; 1256 nfs_set_dtsize(desc, dir_ctx->dtsize); 1257 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1258 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1259 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1260 force_clear = dir_ctx->force_clear; 1261 spin_unlock(&file->f_lock); 1262 1263 if (desc->eof) { 1264 res = 0; 1265 goto out_free; 1266 } 1267 1268 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1269 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1270 force_clear); 1271 desc->clear_cache = force_clear; 1272 1273 do { 1274 res = readdir_search_pagecache(desc); 1275 1276 if (res == -EBADCOOKIE) { 1277 res = 0; 1278 /* This means either end of directory */ 1279 if (desc->dir_cookie && !desc->eof) { 1280 /* Or that the server has 'lost' a cookie */ 1281 res = uncached_readdir(desc); 1282 if (res == 0) 1283 continue; 1284 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1285 res = 0; 1286 } 1287 break; 1288 } 1289 if (res == -ETOOSMALL && desc->plus) { 1290 nfs_zap_caches(inode); 1291 desc->plus = false; 1292 desc->eof = false; 1293 continue; 1294 } 1295 if (res < 0) 1296 break; 1297 1298 nfs_do_filldir(desc, nfsi->cookieverf); 1299 nfs_readdir_folio_unlock_and_put_cached(desc); 1300 if (desc->folio_index == desc->folio_index_max) 1301 desc->clear_cache = force_clear; 1302 } while (!desc->eob && !desc->eof); 1303 1304 spin_lock(&file->f_lock); 1305 dir_ctx->dir_cookie = desc->dir_cookie; 1306 dir_ctx->last_cookie = desc->last_cookie; 1307 dir_ctx->attr_gencount = desc->attr_gencount; 1308 dir_ctx->page_index = desc->folio_index; 1309 dir_ctx->force_clear = force_clear; 1310 dir_ctx->eof = desc->eof; 1311 dir_ctx->dtsize = desc->dtsize; 1312 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1313 spin_unlock(&file->f_lock); 1314 out_free: 1315 kfree(desc); 1316 1317 out: 1318 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1319 return res; 1320 } 1321 1322 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1323 { 1324 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1325 1326 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1327 filp, offset, whence); 1328 1329 switch (whence) { 1330 default: 1331 return -EINVAL; 1332 case SEEK_SET: 1333 if (offset < 0) 1334 return -EINVAL; 1335 spin_lock(&filp->f_lock); 1336 break; 1337 case SEEK_CUR: 1338 if (offset == 0) 1339 return filp->f_pos; 1340 spin_lock(&filp->f_lock); 1341 offset += filp->f_pos; 1342 if (offset < 0) { 1343 spin_unlock(&filp->f_lock); 1344 return -EINVAL; 1345 } 1346 } 1347 if (offset != filp->f_pos) { 1348 filp->f_pos = offset; 1349 dir_ctx->page_index = 0; 1350 if (!nfs_readdir_use_cookie(filp)) { 1351 dir_ctx->dir_cookie = 0; 1352 dir_ctx->last_cookie = 0; 1353 } else { 1354 dir_ctx->dir_cookie = offset; 1355 dir_ctx->last_cookie = offset; 1356 } 1357 dir_ctx->eof = false; 1358 } 1359 spin_unlock(&filp->f_lock); 1360 return offset; 1361 } 1362 1363 /* 1364 * All directory operations under NFS are synchronous, so fsync() 1365 * is a dummy operation. 1366 */ 1367 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1368 int datasync) 1369 { 1370 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1371 1372 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1373 return 0; 1374 } 1375 1376 /** 1377 * nfs_force_lookup_revalidate - Mark the directory as having changed 1378 * @dir: pointer to directory inode 1379 * 1380 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1381 * full lookup on all child dentries of 'dir' whenever a change occurs 1382 * on the server that might have invalidated our dcache. 1383 * 1384 * Note that we reserve bit '0' as a tag to let us know when a dentry 1385 * was revalidated while holding a delegation on its inode. 1386 * 1387 * The caller should be holding dir->i_lock 1388 */ 1389 void nfs_force_lookup_revalidate(struct inode *dir) 1390 { 1391 NFS_I(dir)->cache_change_attribute += 2; 1392 } 1393 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1394 1395 /** 1396 * nfs_verify_change_attribute - Detects NFS remote directory changes 1397 * @dir: pointer to parent directory inode 1398 * @verf: previously saved change attribute 1399 * 1400 * Return "false" if the verifiers doesn't match the change attribute. 1401 * This would usually indicate that the directory contents have changed on 1402 * the server, and that any dentries need revalidating. 1403 */ 1404 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1405 { 1406 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1407 } 1408 1409 static void nfs_set_verifier_delegated(unsigned long *verf) 1410 { 1411 *verf |= 1UL; 1412 } 1413 1414 #if IS_ENABLED(CONFIG_NFS_V4) 1415 static void nfs_unset_verifier_delegated(unsigned long *verf) 1416 { 1417 *verf &= ~1UL; 1418 } 1419 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1420 1421 static bool nfs_test_verifier_delegated(unsigned long verf) 1422 { 1423 return verf & 1; 1424 } 1425 1426 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1427 { 1428 return nfs_test_verifier_delegated(dentry->d_time); 1429 } 1430 1431 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1432 { 1433 struct inode *inode = d_inode(dentry); 1434 struct inode *dir = d_inode(dentry->d_parent); 1435 1436 if (!nfs_verify_change_attribute(dir, verf)) 1437 return; 1438 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1439 nfs_set_verifier_delegated(&verf); 1440 dentry->d_time = verf; 1441 } 1442 1443 /** 1444 * nfs_set_verifier - save a parent directory verifier in the dentry 1445 * @dentry: pointer to dentry 1446 * @verf: verifier to save 1447 * 1448 * Saves the parent directory verifier in @dentry. If the inode has 1449 * a delegation, we also tag the dentry as having been revalidated 1450 * while holding a delegation so that we know we don't have to 1451 * look it up again after a directory change. 1452 */ 1453 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1454 { 1455 1456 spin_lock(&dentry->d_lock); 1457 nfs_set_verifier_locked(dentry, verf); 1458 spin_unlock(&dentry->d_lock); 1459 } 1460 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1461 1462 #if IS_ENABLED(CONFIG_NFS_V4) 1463 /** 1464 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1465 * @inode: pointer to inode 1466 * 1467 * Iterates through the dentries in the inode alias list and clears 1468 * the tag used to indicate that the dentry has been revalidated 1469 * while holding a delegation. 1470 * This function is intended for use when the delegation is being 1471 * returned or revoked. 1472 */ 1473 void nfs_clear_verifier_delegated(struct inode *inode) 1474 { 1475 struct dentry *alias; 1476 1477 if (!inode) 1478 return; 1479 spin_lock(&inode->i_lock); 1480 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1481 spin_lock(&alias->d_lock); 1482 nfs_unset_verifier_delegated(&alias->d_time); 1483 spin_unlock(&alias->d_lock); 1484 } 1485 spin_unlock(&inode->i_lock); 1486 } 1487 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1488 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1489 1490 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1491 { 1492 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1493 d_really_is_negative(dentry)) 1494 return dentry->d_time == inode_peek_iversion_raw(dir); 1495 return nfs_verify_change_attribute(dir, dentry->d_time); 1496 } 1497 1498 /* 1499 * A check for whether or not the parent directory has changed. 1500 * In the case it has, we assume that the dentries are untrustworthy 1501 * and may need to be looked up again. 1502 * If rcu_walk prevents us from performing a full check, return 0. 1503 */ 1504 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1505 int rcu_walk) 1506 { 1507 if (IS_ROOT(dentry)) 1508 return 1; 1509 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1510 return 0; 1511 if (!nfs_dentry_verify_change(dir, dentry)) 1512 return 0; 1513 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1514 if (nfs_mapping_need_revalidate_inode(dir)) { 1515 if (rcu_walk) 1516 return 0; 1517 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1518 return 0; 1519 } 1520 if (!nfs_dentry_verify_change(dir, dentry)) 1521 return 0; 1522 return 1; 1523 } 1524 1525 /* 1526 * Use intent information to check whether or not we're going to do 1527 * an O_EXCL create using this path component. 1528 */ 1529 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1530 { 1531 if (NFS_PROTO(dir)->version == 2) 1532 return 0; 1533 return flags & LOOKUP_EXCL; 1534 } 1535 1536 /* 1537 * Inode and filehandle revalidation for lookups. 1538 * 1539 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1540 * or if the intent information indicates that we're about to open this 1541 * particular file and the "nocto" mount flag is not set. 1542 * 1543 */ 1544 static 1545 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1546 { 1547 struct nfs_server *server = NFS_SERVER(inode); 1548 int ret; 1549 1550 if (IS_AUTOMOUNT(inode)) 1551 return 0; 1552 1553 if (flags & LOOKUP_OPEN) { 1554 switch (inode->i_mode & S_IFMT) { 1555 case S_IFREG: 1556 /* A NFSv4 OPEN will revalidate later */ 1557 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1558 goto out; 1559 fallthrough; 1560 case S_IFDIR: 1561 if (server->flags & NFS_MOUNT_NOCTO) 1562 break; 1563 /* NFS close-to-open cache consistency validation */ 1564 goto out_force; 1565 } 1566 } 1567 1568 /* VFS wants an on-the-wire revalidation */ 1569 if (flags & LOOKUP_REVAL) 1570 goto out_force; 1571 out: 1572 if (inode->i_nlink > 0 || 1573 (inode->i_nlink == 0 && 1574 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1575 return 0; 1576 else 1577 return -ESTALE; 1578 out_force: 1579 if (flags & LOOKUP_RCU) 1580 return -ECHILD; 1581 ret = __nfs_revalidate_inode(server, inode); 1582 if (ret != 0) 1583 return ret; 1584 goto out; 1585 } 1586 1587 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1588 { 1589 spin_lock(&inode->i_lock); 1590 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1591 spin_unlock(&inode->i_lock); 1592 } 1593 1594 /* 1595 * We judge how long we want to trust negative 1596 * dentries by looking at the parent inode mtime. 1597 * 1598 * If parent mtime has changed, we revalidate, else we wait for a 1599 * period corresponding to the parent's attribute cache timeout value. 1600 * 1601 * If LOOKUP_RCU prevents us from performing a full check, return 1 1602 * suggesting a reval is needed. 1603 * 1604 * Note that when creating a new file, or looking up a rename target, 1605 * then it shouldn't be necessary to revalidate a negative dentry. 1606 */ 1607 static inline 1608 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1609 unsigned int flags) 1610 { 1611 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1612 return 0; 1613 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1614 return 1; 1615 /* Case insensitive server? Revalidate negative dentries */ 1616 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1617 return 1; 1618 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1619 } 1620 1621 static int 1622 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1623 struct inode *inode, int error) 1624 { 1625 switch (error) { 1626 case 1: 1627 break; 1628 case 0: 1629 /* 1630 * We can't d_drop the root of a disconnected tree: 1631 * its d_hash is on the s_anon list and d_drop() would hide 1632 * it from shrink_dcache_for_unmount(), leading to busy 1633 * inodes on unmount and further oopses. 1634 */ 1635 if (inode && IS_ROOT(dentry)) 1636 error = 1; 1637 break; 1638 } 1639 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1640 return error; 1641 } 1642 1643 static int 1644 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1645 unsigned int flags) 1646 { 1647 int ret = 1; 1648 if (nfs_neg_need_reval(dir, dentry, flags)) { 1649 if (flags & LOOKUP_RCU) 1650 return -ECHILD; 1651 ret = 0; 1652 } 1653 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1654 } 1655 1656 static int 1657 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1658 struct inode *inode) 1659 { 1660 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1661 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1662 } 1663 1664 static int nfs_lookup_revalidate_dentry(struct inode *dir, 1665 struct dentry *dentry, 1666 struct inode *inode, unsigned int flags) 1667 { 1668 struct nfs_fh *fhandle; 1669 struct nfs_fattr *fattr; 1670 unsigned long dir_verifier; 1671 int ret; 1672 1673 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1674 1675 ret = -ENOMEM; 1676 fhandle = nfs_alloc_fhandle(); 1677 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1678 if (fhandle == NULL || fattr == NULL) 1679 goto out; 1680 1681 dir_verifier = nfs_save_change_attribute(dir); 1682 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1683 if (ret < 0) { 1684 switch (ret) { 1685 case -ESTALE: 1686 case -ENOENT: 1687 ret = 0; 1688 break; 1689 case -ETIMEDOUT: 1690 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1691 ret = 1; 1692 } 1693 goto out; 1694 } 1695 1696 /* Request help from readdirplus */ 1697 nfs_lookup_advise_force_readdirplus(dir, flags); 1698 1699 ret = 0; 1700 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1701 goto out; 1702 if (nfs_refresh_inode(inode, fattr) < 0) 1703 goto out; 1704 1705 nfs_setsecurity(inode, fattr); 1706 nfs_set_verifier(dentry, dir_verifier); 1707 1708 ret = 1; 1709 out: 1710 nfs_free_fattr(fattr); 1711 nfs_free_fhandle(fhandle); 1712 1713 /* 1714 * If the lookup failed despite the dentry change attribute being 1715 * a match, then we should revalidate the directory cache. 1716 */ 1717 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1718 nfs_mark_dir_for_revalidate(dir); 1719 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1720 } 1721 1722 /* 1723 * This is called every time the dcache has a lookup hit, 1724 * and we should check whether we can really trust that 1725 * lookup. 1726 * 1727 * NOTE! The hit can be a negative hit too, don't assume 1728 * we have an inode! 1729 * 1730 * If the parent directory is seen to have changed, we throw out the 1731 * cached dentry and do a new lookup. 1732 */ 1733 static int 1734 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1735 unsigned int flags) 1736 { 1737 struct inode *inode; 1738 int error; 1739 1740 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1741 inode = d_inode(dentry); 1742 1743 if (!inode) 1744 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1745 1746 if (is_bad_inode(inode)) { 1747 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1748 __func__, dentry); 1749 goto out_bad; 1750 } 1751 1752 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1753 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1754 goto out_bad; 1755 1756 if (nfs_verifier_is_delegated(dentry)) 1757 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1758 1759 /* Force a full look up iff the parent directory has changed */ 1760 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1761 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1762 error = nfs_lookup_verify_inode(inode, flags); 1763 if (error) { 1764 if (error == -ESTALE) 1765 nfs_mark_dir_for_revalidate(dir); 1766 goto out_bad; 1767 } 1768 goto out_valid; 1769 } 1770 1771 if (flags & LOOKUP_RCU) 1772 return -ECHILD; 1773 1774 if (NFS_STALE(inode)) 1775 goto out_bad; 1776 1777 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 1778 out_valid: 1779 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1780 out_bad: 1781 if (flags & LOOKUP_RCU) 1782 return -ECHILD; 1783 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1784 } 1785 1786 static int 1787 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1788 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1789 { 1790 struct dentry *parent; 1791 struct inode *dir; 1792 int ret; 1793 1794 if (flags & LOOKUP_RCU) { 1795 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1796 return -ECHILD; 1797 parent = READ_ONCE(dentry->d_parent); 1798 dir = d_inode_rcu(parent); 1799 if (!dir) 1800 return -ECHILD; 1801 ret = reval(dir, dentry, flags); 1802 if (parent != READ_ONCE(dentry->d_parent)) 1803 return -ECHILD; 1804 } else { 1805 /* Wait for unlink to complete */ 1806 wait_var_event(&dentry->d_fsdata, 1807 dentry->d_fsdata != NFS_FSDATA_BLOCKED); 1808 parent = dget_parent(dentry); 1809 ret = reval(d_inode(parent), dentry, flags); 1810 dput(parent); 1811 } 1812 return ret; 1813 } 1814 1815 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1816 { 1817 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1818 } 1819 1820 /* 1821 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1822 * when we don't really care about the dentry name. This is called when a 1823 * pathwalk ends on a dentry that was not found via a normal lookup in the 1824 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1825 * 1826 * In this situation, we just want to verify that the inode itself is OK 1827 * since the dentry might have changed on the server. 1828 */ 1829 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1830 { 1831 struct inode *inode = d_inode(dentry); 1832 int error = 0; 1833 1834 /* 1835 * I believe we can only get a negative dentry here in the case of a 1836 * procfs-style symlink. Just assume it's correct for now, but we may 1837 * eventually need to do something more here. 1838 */ 1839 if (!inode) { 1840 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1841 __func__, dentry); 1842 return 1; 1843 } 1844 1845 if (is_bad_inode(inode)) { 1846 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1847 __func__, dentry); 1848 return 0; 1849 } 1850 1851 error = nfs_lookup_verify_inode(inode, flags); 1852 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1853 __func__, inode->i_ino, error ? "invalid" : "valid"); 1854 return !error; 1855 } 1856 1857 /* 1858 * This is called from dput() when d_count is going to 0. 1859 */ 1860 static int nfs_dentry_delete(const struct dentry *dentry) 1861 { 1862 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1863 dentry, dentry->d_flags); 1864 1865 /* Unhash any dentry with a stale inode */ 1866 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1867 return 1; 1868 1869 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1870 /* Unhash it, so that ->d_iput() would be called */ 1871 return 1; 1872 } 1873 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1874 /* Unhash it, so that ancestors of killed async unlink 1875 * files will be cleaned up during umount */ 1876 return 1; 1877 } 1878 return 0; 1879 1880 } 1881 1882 /* Ensure that we revalidate inode->i_nlink */ 1883 static void nfs_drop_nlink(struct inode *inode) 1884 { 1885 spin_lock(&inode->i_lock); 1886 /* drop the inode if we're reasonably sure this is the last link */ 1887 if (inode->i_nlink > 0) 1888 drop_nlink(inode); 1889 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1890 nfs_set_cache_invalid( 1891 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1892 NFS_INO_INVALID_NLINK); 1893 spin_unlock(&inode->i_lock); 1894 } 1895 1896 /* 1897 * Called when the dentry loses inode. 1898 * We use it to clean up silly-renamed files. 1899 */ 1900 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1901 { 1902 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1903 nfs_complete_unlink(dentry, inode); 1904 nfs_drop_nlink(inode); 1905 } 1906 iput(inode); 1907 } 1908 1909 static void nfs_d_release(struct dentry *dentry) 1910 { 1911 /* free cached devname value, if it survived that far */ 1912 if (unlikely(dentry->d_fsdata)) { 1913 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1914 WARN_ON(1); 1915 else 1916 kfree(dentry->d_fsdata); 1917 } 1918 } 1919 1920 const struct dentry_operations nfs_dentry_operations = { 1921 .d_revalidate = nfs_lookup_revalidate, 1922 .d_weak_revalidate = nfs_weak_revalidate, 1923 .d_delete = nfs_dentry_delete, 1924 .d_iput = nfs_dentry_iput, 1925 .d_automount = nfs_d_automount, 1926 .d_release = nfs_d_release, 1927 }; 1928 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1929 1930 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1931 { 1932 struct dentry *res; 1933 struct inode *inode = NULL; 1934 struct nfs_fh *fhandle = NULL; 1935 struct nfs_fattr *fattr = NULL; 1936 unsigned long dir_verifier; 1937 int error; 1938 1939 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1940 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1941 1942 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1943 return ERR_PTR(-ENAMETOOLONG); 1944 1945 /* 1946 * If we're doing an exclusive create, optimize away the lookup 1947 * but don't hash the dentry. 1948 */ 1949 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1950 return NULL; 1951 1952 res = ERR_PTR(-ENOMEM); 1953 fhandle = nfs_alloc_fhandle(); 1954 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1955 if (fhandle == NULL || fattr == NULL) 1956 goto out; 1957 1958 dir_verifier = nfs_save_change_attribute(dir); 1959 trace_nfs_lookup_enter(dir, dentry, flags); 1960 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1961 if (error == -ENOENT) { 1962 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1963 dir_verifier = inode_peek_iversion_raw(dir); 1964 goto no_entry; 1965 } 1966 if (error < 0) { 1967 res = ERR_PTR(error); 1968 goto out; 1969 } 1970 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1971 res = ERR_CAST(inode); 1972 if (IS_ERR(res)) 1973 goto out; 1974 1975 /* Notify readdir to use READDIRPLUS */ 1976 nfs_lookup_advise_force_readdirplus(dir, flags); 1977 1978 no_entry: 1979 res = d_splice_alias(inode, dentry); 1980 if (res != NULL) { 1981 if (IS_ERR(res)) 1982 goto out; 1983 dentry = res; 1984 } 1985 nfs_set_verifier(dentry, dir_verifier); 1986 out: 1987 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 1988 nfs_free_fattr(fattr); 1989 nfs_free_fhandle(fhandle); 1990 return res; 1991 } 1992 EXPORT_SYMBOL_GPL(nfs_lookup); 1993 1994 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 1995 { 1996 /* Case insensitive server? Revalidate dentries */ 1997 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 1998 d_prune_aliases(inode); 1999 } 2000 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 2001 2002 #if IS_ENABLED(CONFIG_NFS_V4) 2003 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 2004 2005 const struct dentry_operations nfs4_dentry_operations = { 2006 .d_revalidate = nfs4_lookup_revalidate, 2007 .d_weak_revalidate = nfs_weak_revalidate, 2008 .d_delete = nfs_dentry_delete, 2009 .d_iput = nfs_dentry_iput, 2010 .d_automount = nfs_d_automount, 2011 .d_release = nfs_d_release, 2012 }; 2013 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2014 2015 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2016 { 2017 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2018 } 2019 2020 static int do_open(struct inode *inode, struct file *filp) 2021 { 2022 nfs_fscache_open_file(inode, filp); 2023 return 0; 2024 } 2025 2026 static int nfs_finish_open(struct nfs_open_context *ctx, 2027 struct dentry *dentry, 2028 struct file *file, unsigned open_flags) 2029 { 2030 int err; 2031 2032 err = finish_open(file, dentry, do_open); 2033 if (err) 2034 goto out; 2035 if (S_ISREG(file_inode(file)->i_mode)) 2036 nfs_file_set_open_context(file, ctx); 2037 else 2038 err = -EOPENSTALE; 2039 out: 2040 return err; 2041 } 2042 2043 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2044 struct file *file, unsigned open_flags, 2045 umode_t mode) 2046 { 2047 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2048 struct nfs_open_context *ctx; 2049 struct dentry *res; 2050 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2051 struct inode *inode; 2052 unsigned int lookup_flags = 0; 2053 unsigned long dir_verifier; 2054 bool switched = false; 2055 int created = 0; 2056 int err; 2057 2058 /* Expect a negative dentry */ 2059 BUG_ON(d_inode(dentry)); 2060 2061 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2062 dir->i_sb->s_id, dir->i_ino, dentry); 2063 2064 err = nfs_check_flags(open_flags); 2065 if (err) 2066 return err; 2067 2068 /* NFS only supports OPEN on regular files */ 2069 if ((open_flags & O_DIRECTORY)) { 2070 if (!d_in_lookup(dentry)) { 2071 /* 2072 * Hashed negative dentry with O_DIRECTORY: dentry was 2073 * revalidated and is fine, no need to perform lookup 2074 * again 2075 */ 2076 return -ENOENT; 2077 } 2078 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2079 goto no_open; 2080 } 2081 2082 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2083 return -ENAMETOOLONG; 2084 2085 if (open_flags & O_CREAT) { 2086 struct nfs_server *server = NFS_SERVER(dir); 2087 2088 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2089 mode &= ~current_umask(); 2090 2091 attr.ia_valid |= ATTR_MODE; 2092 attr.ia_mode = mode; 2093 } 2094 if (open_flags & O_TRUNC) { 2095 attr.ia_valid |= ATTR_SIZE; 2096 attr.ia_size = 0; 2097 } 2098 2099 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2100 d_drop(dentry); 2101 switched = true; 2102 dentry = d_alloc_parallel(dentry->d_parent, 2103 &dentry->d_name, &wq); 2104 if (IS_ERR(dentry)) 2105 return PTR_ERR(dentry); 2106 if (unlikely(!d_in_lookup(dentry))) 2107 return finish_no_open(file, dentry); 2108 } 2109 2110 ctx = create_nfs_open_context(dentry, open_flags, file); 2111 err = PTR_ERR(ctx); 2112 if (IS_ERR(ctx)) 2113 goto out; 2114 2115 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2116 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2117 if (created) 2118 file->f_mode |= FMODE_CREATED; 2119 if (IS_ERR(inode)) { 2120 err = PTR_ERR(inode); 2121 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2122 put_nfs_open_context(ctx); 2123 d_drop(dentry); 2124 switch (err) { 2125 case -ENOENT: 2126 d_splice_alias(NULL, dentry); 2127 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2128 dir_verifier = inode_peek_iversion_raw(dir); 2129 else 2130 dir_verifier = nfs_save_change_attribute(dir); 2131 nfs_set_verifier(dentry, dir_verifier); 2132 break; 2133 case -EISDIR: 2134 case -ENOTDIR: 2135 goto no_open; 2136 case -ELOOP: 2137 if (!(open_flags & O_NOFOLLOW)) 2138 goto no_open; 2139 break; 2140 /* case -EINVAL: */ 2141 default: 2142 break; 2143 } 2144 goto out; 2145 } 2146 file->f_mode |= FMODE_CAN_ODIRECT; 2147 2148 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2149 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2150 put_nfs_open_context(ctx); 2151 out: 2152 if (unlikely(switched)) { 2153 d_lookup_done(dentry); 2154 dput(dentry); 2155 } 2156 return err; 2157 2158 no_open: 2159 res = nfs_lookup(dir, dentry, lookup_flags); 2160 if (!res) { 2161 inode = d_inode(dentry); 2162 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2163 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2164 res = ERR_PTR(-ENOTDIR); 2165 else if (inode && S_ISREG(inode->i_mode)) 2166 res = ERR_PTR(-EOPENSTALE); 2167 } else if (!IS_ERR(res)) { 2168 inode = d_inode(res); 2169 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2170 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2171 dput(res); 2172 res = ERR_PTR(-ENOTDIR); 2173 } else if (inode && S_ISREG(inode->i_mode)) { 2174 dput(res); 2175 res = ERR_PTR(-EOPENSTALE); 2176 } 2177 } 2178 if (switched) { 2179 d_lookup_done(dentry); 2180 if (!res) 2181 res = dentry; 2182 else 2183 dput(dentry); 2184 } 2185 if (IS_ERR(res)) 2186 return PTR_ERR(res); 2187 return finish_no_open(file, res); 2188 } 2189 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2190 2191 static int 2192 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 2193 unsigned int flags) 2194 { 2195 struct inode *inode; 2196 2197 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2198 goto full_reval; 2199 if (d_mountpoint(dentry)) 2200 goto full_reval; 2201 2202 inode = d_inode(dentry); 2203 2204 /* We can't create new files in nfs_open_revalidate(), so we 2205 * optimize away revalidation of negative dentries. 2206 */ 2207 if (inode == NULL) 2208 goto full_reval; 2209 2210 if (nfs_verifier_is_delegated(dentry)) 2211 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2212 2213 /* NFS only supports OPEN on regular files */ 2214 if (!S_ISREG(inode->i_mode)) 2215 goto full_reval; 2216 2217 /* We cannot do exclusive creation on a positive dentry */ 2218 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2219 goto reval_dentry; 2220 2221 /* Check if the directory changed */ 2222 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2223 goto reval_dentry; 2224 2225 /* Let f_op->open() actually open (and revalidate) the file */ 2226 return 1; 2227 reval_dentry: 2228 if (flags & LOOKUP_RCU) 2229 return -ECHILD; 2230 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 2231 2232 full_reval: 2233 return nfs_do_lookup_revalidate(dir, dentry, flags); 2234 } 2235 2236 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2237 { 2238 return __nfs_lookup_revalidate(dentry, flags, 2239 nfs4_do_lookup_revalidate); 2240 } 2241 2242 #endif /* CONFIG_NFSV4 */ 2243 2244 struct dentry * 2245 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2246 struct nfs_fattr *fattr) 2247 { 2248 struct dentry *parent = dget_parent(dentry); 2249 struct inode *dir = d_inode(parent); 2250 struct inode *inode; 2251 struct dentry *d; 2252 int error; 2253 2254 d_drop(dentry); 2255 2256 if (fhandle->size == 0) { 2257 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2258 if (error) 2259 goto out_error; 2260 } 2261 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2262 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2263 struct nfs_server *server = NFS_SB(dentry->d_sb); 2264 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2265 fattr, NULL); 2266 if (error < 0) 2267 goto out_error; 2268 } 2269 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2270 d = d_splice_alias(inode, dentry); 2271 out: 2272 dput(parent); 2273 return d; 2274 out_error: 2275 d = ERR_PTR(error); 2276 goto out; 2277 } 2278 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2279 2280 /* 2281 * Code common to create, mkdir, and mknod. 2282 */ 2283 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2284 struct nfs_fattr *fattr) 2285 { 2286 struct dentry *d; 2287 2288 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2289 if (IS_ERR(d)) 2290 return PTR_ERR(d); 2291 2292 /* Callers don't care */ 2293 dput(d); 2294 return 0; 2295 } 2296 EXPORT_SYMBOL_GPL(nfs_instantiate); 2297 2298 /* 2299 * Following a failed create operation, we drop the dentry rather 2300 * than retain a negative dentry. This avoids a problem in the event 2301 * that the operation succeeded on the server, but an error in the 2302 * reply path made it appear to have failed. 2303 */ 2304 int nfs_create(struct mnt_idmap *idmap, struct inode *dir, 2305 struct dentry *dentry, umode_t mode, bool excl) 2306 { 2307 struct iattr attr; 2308 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2309 int error; 2310 2311 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2312 dir->i_sb->s_id, dir->i_ino, dentry); 2313 2314 attr.ia_mode = mode; 2315 attr.ia_valid = ATTR_MODE; 2316 2317 trace_nfs_create_enter(dir, dentry, open_flags); 2318 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2319 trace_nfs_create_exit(dir, dentry, open_flags, error); 2320 if (error != 0) 2321 goto out_err; 2322 return 0; 2323 out_err: 2324 d_drop(dentry); 2325 return error; 2326 } 2327 EXPORT_SYMBOL_GPL(nfs_create); 2328 2329 /* 2330 * See comments for nfs_proc_create regarding failed operations. 2331 */ 2332 int 2333 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 2334 struct dentry *dentry, umode_t mode, dev_t rdev) 2335 { 2336 struct iattr attr; 2337 int status; 2338 2339 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2340 dir->i_sb->s_id, dir->i_ino, dentry); 2341 2342 attr.ia_mode = mode; 2343 attr.ia_valid = ATTR_MODE; 2344 2345 trace_nfs_mknod_enter(dir, dentry); 2346 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2347 trace_nfs_mknod_exit(dir, dentry, status); 2348 if (status != 0) 2349 goto out_err; 2350 return 0; 2351 out_err: 2352 d_drop(dentry); 2353 return status; 2354 } 2355 EXPORT_SYMBOL_GPL(nfs_mknod); 2356 2357 /* 2358 * See comments for nfs_proc_create regarding failed operations. 2359 */ 2360 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2361 struct dentry *dentry, umode_t mode) 2362 { 2363 struct iattr attr; 2364 int error; 2365 2366 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2367 dir->i_sb->s_id, dir->i_ino, dentry); 2368 2369 attr.ia_valid = ATTR_MODE; 2370 attr.ia_mode = mode | S_IFDIR; 2371 2372 trace_nfs_mkdir_enter(dir, dentry); 2373 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2374 trace_nfs_mkdir_exit(dir, dentry, error); 2375 if (error != 0) 2376 goto out_err; 2377 return 0; 2378 out_err: 2379 d_drop(dentry); 2380 return error; 2381 } 2382 EXPORT_SYMBOL_GPL(nfs_mkdir); 2383 2384 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2385 { 2386 if (simple_positive(dentry)) 2387 d_delete(dentry); 2388 } 2389 2390 static void nfs_dentry_remove_handle_error(struct inode *dir, 2391 struct dentry *dentry, int error) 2392 { 2393 switch (error) { 2394 case -ENOENT: 2395 if (d_really_is_positive(dentry)) 2396 d_delete(dentry); 2397 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2398 break; 2399 case 0: 2400 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2401 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2402 } 2403 } 2404 2405 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2406 { 2407 int error; 2408 2409 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2410 dir->i_sb->s_id, dir->i_ino, dentry); 2411 2412 trace_nfs_rmdir_enter(dir, dentry); 2413 if (d_really_is_positive(dentry)) { 2414 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2415 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2416 /* Ensure the VFS deletes this inode */ 2417 switch (error) { 2418 case 0: 2419 clear_nlink(d_inode(dentry)); 2420 break; 2421 case -ENOENT: 2422 nfs_dentry_handle_enoent(dentry); 2423 } 2424 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2425 } else 2426 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2427 nfs_dentry_remove_handle_error(dir, dentry, error); 2428 trace_nfs_rmdir_exit(dir, dentry, error); 2429 2430 return error; 2431 } 2432 EXPORT_SYMBOL_GPL(nfs_rmdir); 2433 2434 /* 2435 * Remove a file after making sure there are no pending writes, 2436 * and after checking that the file has only one user. 2437 * 2438 * We invalidate the attribute cache and free the inode prior to the operation 2439 * to avoid possible races if the server reuses the inode. 2440 */ 2441 static int nfs_safe_remove(struct dentry *dentry) 2442 { 2443 struct inode *dir = d_inode(dentry->d_parent); 2444 struct inode *inode = d_inode(dentry); 2445 int error = -EBUSY; 2446 2447 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2448 2449 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2450 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2451 error = 0; 2452 goto out; 2453 } 2454 2455 trace_nfs_remove_enter(dir, dentry); 2456 if (inode != NULL) { 2457 error = NFS_PROTO(dir)->remove(dir, dentry); 2458 if (error == 0) 2459 nfs_drop_nlink(inode); 2460 } else 2461 error = NFS_PROTO(dir)->remove(dir, dentry); 2462 if (error == -ENOENT) 2463 nfs_dentry_handle_enoent(dentry); 2464 trace_nfs_remove_exit(dir, dentry, error); 2465 out: 2466 return error; 2467 } 2468 2469 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2470 * belongs to an active ".nfs..." file and we return -EBUSY. 2471 * 2472 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2473 */ 2474 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2475 { 2476 int error; 2477 2478 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2479 dir->i_ino, dentry); 2480 2481 trace_nfs_unlink_enter(dir, dentry); 2482 spin_lock(&dentry->d_lock); 2483 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2484 &NFS_I(d_inode(dentry))->flags)) { 2485 spin_unlock(&dentry->d_lock); 2486 /* Start asynchronous writeout of the inode */ 2487 write_inode_now(d_inode(dentry), 0); 2488 error = nfs_sillyrename(dir, dentry); 2489 goto out; 2490 } 2491 /* We must prevent any concurrent open until the unlink 2492 * completes. ->d_revalidate will wait for ->d_fsdata 2493 * to clear. We set it here to ensure no lookup succeeds until 2494 * the unlink is complete on the server. 2495 */ 2496 error = -ETXTBSY; 2497 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2498 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2499 spin_unlock(&dentry->d_lock); 2500 goto out; 2501 } 2502 /* old devname */ 2503 kfree(dentry->d_fsdata); 2504 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 2505 2506 spin_unlock(&dentry->d_lock); 2507 error = nfs_safe_remove(dentry); 2508 nfs_dentry_remove_handle_error(dir, dentry, error); 2509 dentry->d_fsdata = NULL; 2510 wake_up_var(&dentry->d_fsdata); 2511 out: 2512 trace_nfs_unlink_exit(dir, dentry, error); 2513 return error; 2514 } 2515 EXPORT_SYMBOL_GPL(nfs_unlink); 2516 2517 /* 2518 * To create a symbolic link, most file systems instantiate a new inode, 2519 * add a page to it containing the path, then write it out to the disk 2520 * using prepare_write/commit_write. 2521 * 2522 * Unfortunately the NFS client can't create the in-core inode first 2523 * because it needs a file handle to create an in-core inode (see 2524 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2525 * symlink request has completed on the server. 2526 * 2527 * So instead we allocate a raw page, copy the symname into it, then do 2528 * the SYMLINK request with the page as the buffer. If it succeeds, we 2529 * now have a new file handle and can instantiate an in-core NFS inode 2530 * and move the raw page into its mapping. 2531 */ 2532 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 2533 struct dentry *dentry, const char *symname) 2534 { 2535 struct folio *folio; 2536 char *kaddr; 2537 struct iattr attr; 2538 unsigned int pathlen = strlen(symname); 2539 int error; 2540 2541 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2542 dir->i_ino, dentry, symname); 2543 2544 if (pathlen > PAGE_SIZE) 2545 return -ENAMETOOLONG; 2546 2547 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2548 attr.ia_valid = ATTR_MODE; 2549 2550 folio = folio_alloc(GFP_USER, 0); 2551 if (!folio) 2552 return -ENOMEM; 2553 2554 kaddr = folio_address(folio); 2555 memcpy(kaddr, symname, pathlen); 2556 if (pathlen < PAGE_SIZE) 2557 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2558 2559 trace_nfs_symlink_enter(dir, dentry); 2560 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr); 2561 trace_nfs_symlink_exit(dir, dentry, error); 2562 if (error != 0) { 2563 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2564 dir->i_sb->s_id, dir->i_ino, 2565 dentry, symname, error); 2566 d_drop(dentry); 2567 folio_put(folio); 2568 return error; 2569 } 2570 2571 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2572 2573 /* 2574 * No big deal if we can't add this page to the page cache here. 2575 * READLINK will get the missing page from the server if needed. 2576 */ 2577 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0, 2578 GFP_KERNEL) == 0) { 2579 folio_mark_uptodate(folio); 2580 folio_unlock(folio); 2581 } 2582 2583 folio_put(folio); 2584 return 0; 2585 } 2586 EXPORT_SYMBOL_GPL(nfs_symlink); 2587 2588 int 2589 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2590 { 2591 struct inode *inode = d_inode(old_dentry); 2592 int error; 2593 2594 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2595 old_dentry, dentry); 2596 2597 trace_nfs_link_enter(inode, dir, dentry); 2598 d_drop(dentry); 2599 if (S_ISREG(inode->i_mode)) 2600 nfs_sync_inode(inode); 2601 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2602 if (error == 0) { 2603 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2604 ihold(inode); 2605 d_add(dentry, inode); 2606 } 2607 trace_nfs_link_exit(inode, dir, dentry, error); 2608 return error; 2609 } 2610 EXPORT_SYMBOL_GPL(nfs_link); 2611 2612 static void 2613 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2614 { 2615 struct dentry *new_dentry = data->new_dentry; 2616 2617 new_dentry->d_fsdata = NULL; 2618 wake_up_var(&new_dentry->d_fsdata); 2619 } 2620 2621 /* 2622 * RENAME 2623 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2624 * different file handle for the same inode after a rename (e.g. when 2625 * moving to a different directory). A fail-safe method to do so would 2626 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2627 * rename the old file using the sillyrename stuff. This way, the original 2628 * file in old_dir will go away when the last process iput()s the inode. 2629 * 2630 * FIXED. 2631 * 2632 * It actually works quite well. One needs to have the possibility for 2633 * at least one ".nfs..." file in each directory the file ever gets 2634 * moved or linked to which happens automagically with the new 2635 * implementation that only depends on the dcache stuff instead of 2636 * using the inode layer 2637 * 2638 * Unfortunately, things are a little more complicated than indicated 2639 * above. For a cross-directory move, we want to make sure we can get 2640 * rid of the old inode after the operation. This means there must be 2641 * no pending writes (if it's a file), and the use count must be 1. 2642 * If these conditions are met, we can drop the dentries before doing 2643 * the rename. 2644 */ 2645 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, 2646 struct dentry *old_dentry, struct inode *new_dir, 2647 struct dentry *new_dentry, unsigned int flags) 2648 { 2649 struct inode *old_inode = d_inode(old_dentry); 2650 struct inode *new_inode = d_inode(new_dentry); 2651 struct dentry *dentry = NULL; 2652 struct rpc_task *task; 2653 bool must_unblock = false; 2654 int error = -EBUSY; 2655 2656 if (flags) 2657 return -EINVAL; 2658 2659 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2660 old_dentry, new_dentry, 2661 d_count(new_dentry)); 2662 2663 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2664 /* 2665 * For non-directories, check whether the target is busy and if so, 2666 * make a copy of the dentry and then do a silly-rename. If the 2667 * silly-rename succeeds, the copied dentry is hashed and becomes 2668 * the new target. 2669 */ 2670 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2671 /* We must prevent any concurrent open until the unlink 2672 * completes. ->d_revalidate will wait for ->d_fsdata 2673 * to clear. We set it here to ensure no lookup succeeds until 2674 * the unlink is complete on the server. 2675 */ 2676 error = -ETXTBSY; 2677 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2678 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2679 goto out; 2680 if (new_dentry->d_fsdata) { 2681 /* old devname */ 2682 kfree(new_dentry->d_fsdata); 2683 new_dentry->d_fsdata = NULL; 2684 } 2685 2686 spin_lock(&new_dentry->d_lock); 2687 if (d_count(new_dentry) > 2) { 2688 int err; 2689 2690 spin_unlock(&new_dentry->d_lock); 2691 2692 /* copy the target dentry's name */ 2693 dentry = d_alloc(new_dentry->d_parent, 2694 &new_dentry->d_name); 2695 if (!dentry) 2696 goto out; 2697 2698 /* silly-rename the existing target ... */ 2699 err = nfs_sillyrename(new_dir, new_dentry); 2700 if (err) 2701 goto out; 2702 2703 new_dentry = dentry; 2704 new_inode = NULL; 2705 } else { 2706 new_dentry->d_fsdata = NFS_FSDATA_BLOCKED; 2707 must_unblock = true; 2708 spin_unlock(&new_dentry->d_lock); 2709 } 2710 2711 } 2712 2713 if (S_ISREG(old_inode->i_mode)) 2714 nfs_sync_inode(old_inode); 2715 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2716 must_unblock ? nfs_unblock_rename : NULL); 2717 if (IS_ERR(task)) { 2718 error = PTR_ERR(task); 2719 goto out; 2720 } 2721 2722 error = rpc_wait_for_completion_task(task); 2723 if (error != 0) { 2724 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2725 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2726 smp_wmb(); 2727 } else 2728 error = task->tk_status; 2729 rpc_put_task(task); 2730 /* Ensure the inode attributes are revalidated */ 2731 if (error == 0) { 2732 spin_lock(&old_inode->i_lock); 2733 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2734 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2735 NFS_INO_INVALID_CTIME | 2736 NFS_INO_REVAL_FORCED); 2737 spin_unlock(&old_inode->i_lock); 2738 } 2739 out: 2740 trace_nfs_rename_exit(old_dir, old_dentry, 2741 new_dir, new_dentry, error); 2742 if (!error) { 2743 if (new_inode != NULL) 2744 nfs_drop_nlink(new_inode); 2745 /* 2746 * The d_move() should be here instead of in an async RPC completion 2747 * handler because we need the proper locks to move the dentry. If 2748 * we're interrupted by a signal, the async RPC completion handler 2749 * should mark the directories for revalidation. 2750 */ 2751 d_move(old_dentry, new_dentry); 2752 nfs_set_verifier(old_dentry, 2753 nfs_save_change_attribute(new_dir)); 2754 } else if (error == -ENOENT) 2755 nfs_dentry_handle_enoent(old_dentry); 2756 2757 /* new dentry created? */ 2758 if (dentry) 2759 dput(dentry); 2760 return error; 2761 } 2762 EXPORT_SYMBOL_GPL(nfs_rename); 2763 2764 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2765 static LIST_HEAD(nfs_access_lru_list); 2766 static atomic_long_t nfs_access_nr_entries; 2767 2768 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2769 module_param(nfs_access_max_cachesize, ulong, 0644); 2770 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2771 2772 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2773 { 2774 put_group_info(entry->group_info); 2775 kfree_rcu(entry, rcu_head); 2776 smp_mb__before_atomic(); 2777 atomic_long_dec(&nfs_access_nr_entries); 2778 smp_mb__after_atomic(); 2779 } 2780 2781 static void nfs_access_free_list(struct list_head *head) 2782 { 2783 struct nfs_access_entry *cache; 2784 2785 while (!list_empty(head)) { 2786 cache = list_entry(head->next, struct nfs_access_entry, lru); 2787 list_del(&cache->lru); 2788 nfs_access_free_entry(cache); 2789 } 2790 } 2791 2792 static unsigned long 2793 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2794 { 2795 LIST_HEAD(head); 2796 struct nfs_inode *nfsi, *next; 2797 struct nfs_access_entry *cache; 2798 long freed = 0; 2799 2800 spin_lock(&nfs_access_lru_lock); 2801 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2802 struct inode *inode; 2803 2804 if (nr_to_scan-- == 0) 2805 break; 2806 inode = &nfsi->vfs_inode; 2807 spin_lock(&inode->i_lock); 2808 if (list_empty(&nfsi->access_cache_entry_lru)) 2809 goto remove_lru_entry; 2810 cache = list_entry(nfsi->access_cache_entry_lru.next, 2811 struct nfs_access_entry, lru); 2812 list_move(&cache->lru, &head); 2813 rb_erase(&cache->rb_node, &nfsi->access_cache); 2814 freed++; 2815 if (!list_empty(&nfsi->access_cache_entry_lru)) 2816 list_move_tail(&nfsi->access_cache_inode_lru, 2817 &nfs_access_lru_list); 2818 else { 2819 remove_lru_entry: 2820 list_del_init(&nfsi->access_cache_inode_lru); 2821 smp_mb__before_atomic(); 2822 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2823 smp_mb__after_atomic(); 2824 } 2825 spin_unlock(&inode->i_lock); 2826 } 2827 spin_unlock(&nfs_access_lru_lock); 2828 nfs_access_free_list(&head); 2829 return freed; 2830 } 2831 2832 unsigned long 2833 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2834 { 2835 int nr_to_scan = sc->nr_to_scan; 2836 gfp_t gfp_mask = sc->gfp_mask; 2837 2838 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2839 return SHRINK_STOP; 2840 return nfs_do_access_cache_scan(nr_to_scan); 2841 } 2842 2843 2844 unsigned long 2845 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2846 { 2847 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2848 } 2849 2850 static void 2851 nfs_access_cache_enforce_limit(void) 2852 { 2853 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2854 unsigned long diff; 2855 unsigned int nr_to_scan; 2856 2857 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2858 return; 2859 nr_to_scan = 100; 2860 diff = nr_entries - nfs_access_max_cachesize; 2861 if (diff < nr_to_scan) 2862 nr_to_scan = diff; 2863 nfs_do_access_cache_scan(nr_to_scan); 2864 } 2865 2866 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2867 { 2868 struct rb_root *root_node = &nfsi->access_cache; 2869 struct rb_node *n; 2870 struct nfs_access_entry *entry; 2871 2872 /* Unhook entries from the cache */ 2873 while ((n = rb_first(root_node)) != NULL) { 2874 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2875 rb_erase(n, root_node); 2876 list_move(&entry->lru, head); 2877 } 2878 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2879 } 2880 2881 void nfs_access_zap_cache(struct inode *inode) 2882 { 2883 LIST_HEAD(head); 2884 2885 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2886 return; 2887 /* Remove from global LRU init */ 2888 spin_lock(&nfs_access_lru_lock); 2889 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2890 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2891 2892 spin_lock(&inode->i_lock); 2893 __nfs_access_zap_cache(NFS_I(inode), &head); 2894 spin_unlock(&inode->i_lock); 2895 spin_unlock(&nfs_access_lru_lock); 2896 nfs_access_free_list(&head); 2897 } 2898 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2899 2900 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2901 { 2902 struct group_info *ga, *gb; 2903 int g; 2904 2905 if (uid_lt(a->fsuid, b->fsuid)) 2906 return -1; 2907 if (uid_gt(a->fsuid, b->fsuid)) 2908 return 1; 2909 2910 if (gid_lt(a->fsgid, b->fsgid)) 2911 return -1; 2912 if (gid_gt(a->fsgid, b->fsgid)) 2913 return 1; 2914 2915 ga = a->group_info; 2916 gb = b->group_info; 2917 if (ga == gb) 2918 return 0; 2919 if (ga == NULL) 2920 return -1; 2921 if (gb == NULL) 2922 return 1; 2923 if (ga->ngroups < gb->ngroups) 2924 return -1; 2925 if (ga->ngroups > gb->ngroups) 2926 return 1; 2927 2928 for (g = 0; g < ga->ngroups; g++) { 2929 if (gid_lt(ga->gid[g], gb->gid[g])) 2930 return -1; 2931 if (gid_gt(ga->gid[g], gb->gid[g])) 2932 return 1; 2933 } 2934 return 0; 2935 } 2936 2937 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2938 { 2939 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2940 2941 while (n != NULL) { 2942 struct nfs_access_entry *entry = 2943 rb_entry(n, struct nfs_access_entry, rb_node); 2944 int cmp = access_cmp(cred, entry); 2945 2946 if (cmp < 0) 2947 n = n->rb_left; 2948 else if (cmp > 0) 2949 n = n->rb_right; 2950 else 2951 return entry; 2952 } 2953 return NULL; 2954 } 2955 2956 static u64 nfs_access_login_time(const struct task_struct *task, 2957 const struct cred *cred) 2958 { 2959 const struct task_struct *parent; 2960 const struct cred *pcred; 2961 u64 ret; 2962 2963 rcu_read_lock(); 2964 for (;;) { 2965 parent = rcu_dereference(task->real_parent); 2966 pcred = rcu_dereference(parent->cred); 2967 if (parent == task || cred_fscmp(pcred, cred) != 0) 2968 break; 2969 task = parent; 2970 } 2971 ret = task->start_time; 2972 rcu_read_unlock(); 2973 return ret; 2974 } 2975 2976 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 2977 { 2978 struct nfs_inode *nfsi = NFS_I(inode); 2979 u64 login_time = nfs_access_login_time(current, cred); 2980 struct nfs_access_entry *cache; 2981 bool retry = true; 2982 int err; 2983 2984 spin_lock(&inode->i_lock); 2985 for(;;) { 2986 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2987 goto out_zap; 2988 cache = nfs_access_search_rbtree(inode, cred); 2989 err = -ENOENT; 2990 if (cache == NULL) 2991 goto out; 2992 /* Found an entry, is our attribute cache valid? */ 2993 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2994 break; 2995 if (!retry) 2996 break; 2997 err = -ECHILD; 2998 if (!may_block) 2999 goto out; 3000 spin_unlock(&inode->i_lock); 3001 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3002 if (err) 3003 return err; 3004 spin_lock(&inode->i_lock); 3005 retry = false; 3006 } 3007 err = -ENOENT; 3008 if ((s64)(login_time - cache->timestamp) > 0) 3009 goto out; 3010 *mask = cache->mask; 3011 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3012 err = 0; 3013 out: 3014 spin_unlock(&inode->i_lock); 3015 return err; 3016 out_zap: 3017 spin_unlock(&inode->i_lock); 3018 nfs_access_zap_cache(inode); 3019 return -ENOENT; 3020 } 3021 3022 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3023 { 3024 /* Only check the most recently returned cache entry, 3025 * but do it without locking. 3026 */ 3027 struct nfs_inode *nfsi = NFS_I(inode); 3028 u64 login_time = nfs_access_login_time(current, cred); 3029 struct nfs_access_entry *cache; 3030 int err = -ECHILD; 3031 struct list_head *lh; 3032 3033 rcu_read_lock(); 3034 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3035 goto out; 3036 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3037 cache = list_entry(lh, struct nfs_access_entry, lru); 3038 if (lh == &nfsi->access_cache_entry_lru || 3039 access_cmp(cred, cache) != 0) 3040 cache = NULL; 3041 if (cache == NULL) 3042 goto out; 3043 if ((s64)(login_time - cache->timestamp) > 0) 3044 goto out; 3045 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3046 goto out; 3047 *mask = cache->mask; 3048 err = 0; 3049 out: 3050 rcu_read_unlock(); 3051 return err; 3052 } 3053 3054 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3055 u32 *mask, bool may_block) 3056 { 3057 int status; 3058 3059 status = nfs_access_get_cached_rcu(inode, cred, mask); 3060 if (status != 0) 3061 status = nfs_access_get_cached_locked(inode, cred, mask, 3062 may_block); 3063 3064 return status; 3065 } 3066 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3067 3068 static void nfs_access_add_rbtree(struct inode *inode, 3069 struct nfs_access_entry *set, 3070 const struct cred *cred) 3071 { 3072 struct nfs_inode *nfsi = NFS_I(inode); 3073 struct rb_root *root_node = &nfsi->access_cache; 3074 struct rb_node **p = &root_node->rb_node; 3075 struct rb_node *parent = NULL; 3076 struct nfs_access_entry *entry; 3077 int cmp; 3078 3079 spin_lock(&inode->i_lock); 3080 while (*p != NULL) { 3081 parent = *p; 3082 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3083 cmp = access_cmp(cred, entry); 3084 3085 if (cmp < 0) 3086 p = &parent->rb_left; 3087 else if (cmp > 0) 3088 p = &parent->rb_right; 3089 else 3090 goto found; 3091 } 3092 rb_link_node(&set->rb_node, parent, p); 3093 rb_insert_color(&set->rb_node, root_node); 3094 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3095 spin_unlock(&inode->i_lock); 3096 return; 3097 found: 3098 rb_replace_node(parent, &set->rb_node, root_node); 3099 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3100 list_del(&entry->lru); 3101 spin_unlock(&inode->i_lock); 3102 nfs_access_free_entry(entry); 3103 } 3104 3105 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3106 const struct cred *cred) 3107 { 3108 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3109 if (cache == NULL) 3110 return; 3111 RB_CLEAR_NODE(&cache->rb_node); 3112 cache->fsuid = cred->fsuid; 3113 cache->fsgid = cred->fsgid; 3114 cache->group_info = get_group_info(cred->group_info); 3115 cache->mask = set->mask; 3116 cache->timestamp = ktime_get_ns(); 3117 3118 /* The above field assignments must be visible 3119 * before this item appears on the lru. We cannot easily 3120 * use rcu_assign_pointer, so just force the memory barrier. 3121 */ 3122 smp_wmb(); 3123 nfs_access_add_rbtree(inode, cache, cred); 3124 3125 /* Update accounting */ 3126 smp_mb__before_atomic(); 3127 atomic_long_inc(&nfs_access_nr_entries); 3128 smp_mb__after_atomic(); 3129 3130 /* Add inode to global LRU list */ 3131 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3132 spin_lock(&nfs_access_lru_lock); 3133 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3134 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3135 &nfs_access_lru_list); 3136 spin_unlock(&nfs_access_lru_lock); 3137 } 3138 nfs_access_cache_enforce_limit(); 3139 } 3140 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3141 3142 #define NFS_MAY_READ (NFS_ACCESS_READ) 3143 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3144 NFS_ACCESS_EXTEND | \ 3145 NFS_ACCESS_DELETE) 3146 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3147 NFS_ACCESS_EXTEND) 3148 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3149 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3150 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3151 static int 3152 nfs_access_calc_mask(u32 access_result, umode_t umode) 3153 { 3154 int mask = 0; 3155 3156 if (access_result & NFS_MAY_READ) 3157 mask |= MAY_READ; 3158 if (S_ISDIR(umode)) { 3159 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3160 mask |= MAY_WRITE; 3161 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3162 mask |= MAY_EXEC; 3163 } else if (S_ISREG(umode)) { 3164 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3165 mask |= MAY_WRITE; 3166 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3167 mask |= MAY_EXEC; 3168 } else if (access_result & NFS_MAY_WRITE) 3169 mask |= MAY_WRITE; 3170 return mask; 3171 } 3172 3173 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3174 { 3175 entry->mask = access_result; 3176 } 3177 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3178 3179 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3180 { 3181 struct nfs_access_entry cache; 3182 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3183 int cache_mask = -1; 3184 int status; 3185 3186 trace_nfs_access_enter(inode); 3187 3188 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3189 if (status == 0) 3190 goto out_cached; 3191 3192 status = -ECHILD; 3193 if (!may_block) 3194 goto out; 3195 3196 /* 3197 * Determine which access bits we want to ask for... 3198 */ 3199 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3200 nfs_access_xattr_mask(NFS_SERVER(inode)); 3201 if (S_ISDIR(inode->i_mode)) 3202 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3203 else 3204 cache.mask |= NFS_ACCESS_EXECUTE; 3205 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3206 if (status != 0) { 3207 if (status == -ESTALE) { 3208 if (!S_ISDIR(inode->i_mode)) 3209 nfs_set_inode_stale(inode); 3210 else 3211 nfs_zap_caches(inode); 3212 } 3213 goto out; 3214 } 3215 nfs_access_add_cache(inode, &cache, cred); 3216 out_cached: 3217 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3218 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3219 status = -EACCES; 3220 out: 3221 trace_nfs_access_exit(inode, mask, cache_mask, status); 3222 return status; 3223 } 3224 3225 static int nfs_open_permission_mask(int openflags) 3226 { 3227 int mask = 0; 3228 3229 if (openflags & __FMODE_EXEC) { 3230 /* ONLY check exec rights */ 3231 mask = MAY_EXEC; 3232 } else { 3233 if ((openflags & O_ACCMODE) != O_WRONLY) 3234 mask |= MAY_READ; 3235 if ((openflags & O_ACCMODE) != O_RDONLY) 3236 mask |= MAY_WRITE; 3237 } 3238 3239 return mask; 3240 } 3241 3242 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3243 { 3244 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3245 } 3246 EXPORT_SYMBOL_GPL(nfs_may_open); 3247 3248 static int nfs_execute_ok(struct inode *inode, int mask) 3249 { 3250 struct nfs_server *server = NFS_SERVER(inode); 3251 int ret = 0; 3252 3253 if (S_ISDIR(inode->i_mode)) 3254 return 0; 3255 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3256 if (mask & MAY_NOT_BLOCK) 3257 return -ECHILD; 3258 ret = __nfs_revalidate_inode(server, inode); 3259 } 3260 if (ret == 0 && !execute_ok(inode)) 3261 ret = -EACCES; 3262 return ret; 3263 } 3264 3265 int nfs_permission(struct mnt_idmap *idmap, 3266 struct inode *inode, 3267 int mask) 3268 { 3269 const struct cred *cred = current_cred(); 3270 int res = 0; 3271 3272 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3273 3274 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3275 goto out; 3276 /* Is this sys_access() ? */ 3277 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3278 goto force_lookup; 3279 3280 switch (inode->i_mode & S_IFMT) { 3281 case S_IFLNK: 3282 goto out; 3283 case S_IFREG: 3284 if ((mask & MAY_OPEN) && 3285 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3286 return 0; 3287 break; 3288 case S_IFDIR: 3289 /* 3290 * Optimize away all write operations, since the server 3291 * will check permissions when we perform the op. 3292 */ 3293 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3294 goto out; 3295 } 3296 3297 force_lookup: 3298 if (!NFS_PROTO(inode)->access) 3299 goto out_notsup; 3300 3301 res = nfs_do_access(inode, cred, mask); 3302 out: 3303 if (!res && (mask & MAY_EXEC)) 3304 res = nfs_execute_ok(inode, mask); 3305 3306 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3307 inode->i_sb->s_id, inode->i_ino, mask, res); 3308 return res; 3309 out_notsup: 3310 if (mask & MAY_NOT_BLOCK) 3311 return -ECHILD; 3312 3313 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3314 NFS_INO_INVALID_OTHER); 3315 if (res == 0) 3316 res = generic_permission(&nop_mnt_idmap, inode, mask); 3317 goto out; 3318 } 3319 EXPORT_SYMBOL_GPL(nfs_permission); 3320