1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->cred = get_cred(cred); 82 spin_lock(&dir->i_lock); 83 if (list_empty(&nfsi->open_files) && 84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 85 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 86 NFS_INO_REVAL_FORCED; 87 list_add(&ctx->list, &nfsi->open_files); 88 spin_unlock(&dir->i_lock); 89 return ctx; 90 } 91 return ERR_PTR(-ENOMEM); 92 } 93 94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 95 { 96 spin_lock(&dir->i_lock); 97 list_del(&ctx->list); 98 spin_unlock(&dir->i_lock); 99 put_cred(ctx->cred); 100 kfree(ctx); 101 } 102 103 /* 104 * Open file 105 */ 106 static int 107 nfs_opendir(struct inode *inode, struct file *filp) 108 { 109 int res = 0; 110 struct nfs_open_dir_context *ctx; 111 112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 113 114 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 115 116 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 117 if (IS_ERR(ctx)) { 118 res = PTR_ERR(ctx); 119 goto out; 120 } 121 filp->private_data = ctx; 122 out: 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[]; 145 }; 146 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 struct dir_context *ctx; 151 unsigned long page_index; 152 u64 *dir_cookie; 153 u64 last_cookie; 154 loff_t current_index; 155 loff_t prev_index; 156 157 unsigned long dir_verifier; 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163 } nfs_readdir_descriptor_t; 164 165 static 166 void nfs_readdir_init_array(struct page *page) 167 { 168 struct nfs_cache_array *array; 169 170 array = kmap_atomic(page); 171 memset(array, 0, sizeof(struct nfs_cache_array)); 172 array->eof_index = -1; 173 kunmap_atomic(array); 174 } 175 176 /* 177 * we are freeing strings created by nfs_add_to_readdir_array() 178 */ 179 static 180 void nfs_readdir_clear_array(struct page *page) 181 { 182 struct nfs_cache_array *array; 183 int i; 184 185 array = kmap_atomic(page); 186 for (i = 0; i < array->size; i++) 187 kfree(array->array[i].string.name); 188 array->size = 0; 189 kunmap_atomic(array); 190 } 191 192 /* 193 * the caller is responsible for freeing qstr.name 194 * when called by nfs_readdir_add_to_array, the strings will be freed in 195 * nfs_clear_readdir_array() 196 */ 197 static 198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 199 { 200 string->len = len; 201 string->name = kmemdup_nul(name, len, GFP_KERNEL); 202 if (string->name == NULL) 203 return -ENOMEM; 204 /* 205 * Avoid a kmemleak false positive. The pointer to the name is stored 206 * in a page cache page which kmemleak does not scan. 207 */ 208 kmemleak_not_leak(string->name); 209 string->hash = full_name_hash(NULL, name, len); 210 return 0; 211 } 212 213 static 214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 215 { 216 struct nfs_cache_array *array = kmap(page); 217 struct nfs_cache_array_entry *cache_entry; 218 int ret; 219 220 cache_entry = &array->array[array->size]; 221 222 /* Check that this entry lies within the page bounds */ 223 ret = -ENOSPC; 224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 225 goto out; 226 227 cache_entry->cookie = entry->prev_cookie; 228 cache_entry->ino = entry->ino; 229 cache_entry->d_type = entry->d_type; 230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 231 if (ret) 232 goto out; 233 array->last_cookie = entry->cookie; 234 array->size++; 235 if (entry->eof != 0) 236 array->eof_index = array->size; 237 out: 238 kunmap(page); 239 return ret; 240 } 241 242 static inline 243 int is_32bit_api(void) 244 { 245 #ifdef CONFIG_COMPAT 246 return in_compat_syscall(); 247 #else 248 return (BITS_PER_LONG == 32); 249 #endif 250 } 251 252 static 253 bool nfs_readdir_use_cookie(const struct file *filp) 254 { 255 if ((filp->f_mode & FMODE_32BITHASH) || 256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 257 return false; 258 return true; 259 } 260 261 static 262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263 { 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279 out_eof: 280 desc->eof = true; 281 return -EBADCOOKIE; 282 } 283 284 static bool 285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286 { 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291 } 292 293 static 294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295 { 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->prev_index) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 if (nfs_readdir_use_cookie(desc->file)) 327 desc->ctx->pos = *desc->dir_cookie; 328 else 329 desc->ctx->pos = new_pos; 330 desc->prev_index = new_pos; 331 desc->cache_entry_index = i; 332 return 0; 333 } 334 } 335 if (array->eof_index >= 0) { 336 status = -EBADCOOKIE; 337 if (*desc->dir_cookie == array->last_cookie) 338 desc->eof = true; 339 } 340 out: 341 return status; 342 } 343 344 static 345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 346 { 347 struct nfs_cache_array *array; 348 int status; 349 350 array = kmap(desc->page); 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 kunmap(desc->page); 363 return status; 364 } 365 366 /* Fill a page with xdr information before transferring to the cache page */ 367 static 368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 369 struct nfs_entry *entry, struct file *file, struct inode *inode) 370 { 371 struct nfs_open_dir_context *ctx = file->private_data; 372 const struct cred *cred = ctx->cred; 373 unsigned long timestamp, gencount; 374 int error; 375 376 again: 377 timestamp = jiffies; 378 gencount = nfs_inc_attr_generation_counter(); 379 desc->dir_verifier = nfs_save_change_attribute(inode); 380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = false; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394 error: 395 return error; 396 } 397 398 static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400 { 401 struct inode *inode = file_inode(desc->file); 402 int error; 403 404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 405 if (error) 406 return error; 407 entry->fattr->time_start = desc->timestamp; 408 entry->fattr->gencount = desc->gencount; 409 return 0; 410 } 411 412 /* Match file and dirent using either filehandle or fileid 413 * Note: caller is responsible for checking the fsid 414 */ 415 static 416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 417 { 418 struct inode *inode; 419 struct nfs_inode *nfsi; 420 421 if (d_really_is_negative(dentry)) 422 return 0; 423 424 inode = d_inode(dentry); 425 if (is_bad_inode(inode) || NFS_STALE(inode)) 426 return 0; 427 428 nfsi = NFS_I(inode); 429 if (entry->fattr->fileid != nfsi->fileid) 430 return 0; 431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 432 return 0; 433 return 1; 434 } 435 436 static 437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 438 { 439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 440 return false; 441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 442 return true; 443 if (ctx->pos == 0) 444 return true; 445 return false; 446 } 447 448 /* 449 * This function is called by the lookup and getattr code to request the 450 * use of readdirplus to accelerate any future lookups in the same 451 * directory. 452 */ 453 void nfs_advise_use_readdirplus(struct inode *dir) 454 { 455 struct nfs_inode *nfsi = NFS_I(dir); 456 457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 458 !list_empty(&nfsi->open_files)) 459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 460 } 461 462 /* 463 * This function is mainly for use by nfs_getattr(). 464 * 465 * If this is an 'ls -l', we want to force use of readdirplus. 466 * Do this by checking if there is an active file descriptor 467 * and calling nfs_advise_use_readdirplus, then forcing a 468 * cache flush. 469 */ 470 void nfs_force_use_readdirplus(struct inode *dir) 471 { 472 struct nfs_inode *nfsi = NFS_I(dir); 473 474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 475 !list_empty(&nfsi->open_files)) { 476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 477 invalidate_mapping_pages(dir->i_mapping, 478 nfsi->page_index + 1, -1); 479 } 480 } 481 482 static 483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 484 unsigned long dir_verifier) 485 { 486 struct qstr filename = QSTR_INIT(entry->name, entry->len); 487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 488 struct dentry *dentry; 489 struct dentry *alias; 490 struct inode *inode; 491 int status; 492 493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 494 return; 495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 496 return; 497 if (filename.len == 0) 498 return; 499 /* Validate that the name doesn't contain any illegal '\0' */ 500 if (strnlen(filename.name, filename.len) != filename.len) 501 return; 502 /* ...or '/' */ 503 if (strnchr(filename.name, filename.len, '/')) 504 return; 505 if (filename.name[0] == '.') { 506 if (filename.len == 1) 507 return; 508 if (filename.len == 2 && filename.name[1] == '.') 509 return; 510 } 511 filename.hash = full_name_hash(parent, filename.name, filename.len); 512 513 dentry = d_lookup(parent, &filename); 514 again: 515 if (!dentry) { 516 dentry = d_alloc_parallel(parent, &filename, &wq); 517 if (IS_ERR(dentry)) 518 return; 519 } 520 if (!d_in_lookup(dentry)) { 521 /* Is there a mountpoint here? If so, just exit */ 522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 523 &entry->fattr->fsid)) 524 goto out; 525 if (nfs_same_file(dentry, entry)) { 526 if (!entry->fh->size) 527 goto out; 528 nfs_set_verifier(dentry, dir_verifier); 529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 530 if (!status) 531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 532 goto out; 533 } else { 534 d_invalidate(dentry); 535 dput(dentry); 536 dentry = NULL; 537 goto again; 538 } 539 } 540 if (!entry->fh->size) { 541 d_lookup_done(dentry); 542 goto out; 543 } 544 545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 546 alias = d_splice_alias(inode, dentry); 547 d_lookup_done(dentry); 548 if (alias) { 549 if (IS_ERR(alias)) 550 goto out; 551 dput(dentry); 552 dentry = alias; 553 } 554 nfs_set_verifier(dentry, dir_verifier); 555 out: 556 dput(dentry); 557 } 558 559 /* Perform conversion from xdr to cache array */ 560 static 561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 562 struct page **xdr_pages, struct page *page, unsigned int buflen) 563 { 564 struct xdr_stream stream; 565 struct xdr_buf buf; 566 struct page *scratch; 567 struct nfs_cache_array *array; 568 unsigned int count = 0; 569 int status; 570 571 scratch = alloc_page(GFP_KERNEL); 572 if (scratch == NULL) 573 return -ENOMEM; 574 575 if (buflen == 0) 576 goto out_nopages; 577 578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 580 581 do { 582 status = xdr_decode(desc, entry, &stream); 583 if (status != 0) { 584 if (status == -EAGAIN) 585 status = 0; 586 break; 587 } 588 589 count++; 590 591 if (desc->plus) 592 nfs_prime_dcache(file_dentry(desc->file), entry, 593 desc->dir_verifier); 594 595 status = nfs_readdir_add_to_array(entry, page); 596 if (status != 0) 597 break; 598 } while (!entry->eof); 599 600 out_nopages: 601 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 602 array = kmap(page); 603 array->eof_index = array->size; 604 status = 0; 605 kunmap(page); 606 } 607 608 put_page(scratch); 609 return status; 610 } 611 612 static 613 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 614 { 615 unsigned int i; 616 for (i = 0; i < npages; i++) 617 put_page(pages[i]); 618 } 619 620 /* 621 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 622 * to nfs_readdir_free_pages() 623 */ 624 static 625 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 626 { 627 unsigned int i; 628 629 for (i = 0; i < npages; i++) { 630 struct page *page = alloc_page(GFP_KERNEL); 631 if (page == NULL) 632 goto out_freepages; 633 pages[i] = page; 634 } 635 return 0; 636 637 out_freepages: 638 nfs_readdir_free_pages(pages, i); 639 return -ENOMEM; 640 } 641 642 static 643 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 644 { 645 struct page *pages[NFS_MAX_READDIR_PAGES]; 646 struct nfs_entry entry; 647 struct file *file = desc->file; 648 struct nfs_cache_array *array; 649 int status = -ENOMEM; 650 unsigned int array_size = ARRAY_SIZE(pages); 651 652 nfs_readdir_init_array(page); 653 654 entry.prev_cookie = 0; 655 entry.cookie = desc->last_cookie; 656 entry.eof = 0; 657 entry.fh = nfs_alloc_fhandle(); 658 entry.fattr = nfs_alloc_fattr(); 659 entry.server = NFS_SERVER(inode); 660 if (entry.fh == NULL || entry.fattr == NULL) 661 goto out; 662 663 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 664 if (IS_ERR(entry.label)) { 665 status = PTR_ERR(entry.label); 666 goto out; 667 } 668 669 array = kmap(page); 670 671 status = nfs_readdir_alloc_pages(pages, array_size); 672 if (status < 0) 673 goto out_release_array; 674 do { 675 unsigned int pglen; 676 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 677 678 if (status < 0) 679 break; 680 pglen = status; 681 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 682 if (status < 0) { 683 if (status == -ENOSPC) 684 status = 0; 685 break; 686 } 687 } while (array->eof_index < 0); 688 689 nfs_readdir_free_pages(pages, array_size); 690 out_release_array: 691 kunmap(page); 692 nfs4_label_free(entry.label); 693 out: 694 nfs_free_fattr(entry.fattr); 695 nfs_free_fhandle(entry.fh); 696 return status; 697 } 698 699 /* 700 * Now we cache directories properly, by converting xdr information 701 * to an array that can be used for lookups later. This results in 702 * fewer cache pages, since we can store more information on each page. 703 * We only need to convert from xdr once so future lookups are much simpler 704 */ 705 static 706 int nfs_readdir_filler(void *data, struct page* page) 707 { 708 nfs_readdir_descriptor_t *desc = data; 709 struct inode *inode = file_inode(desc->file); 710 int ret; 711 712 ret = nfs_readdir_xdr_to_array(desc, page, inode); 713 if (ret < 0) 714 goto error; 715 SetPageUptodate(page); 716 717 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 718 /* Should never happen */ 719 nfs_zap_mapping(inode, inode->i_mapping); 720 } 721 unlock_page(page); 722 return 0; 723 error: 724 nfs_readdir_clear_array(page); 725 unlock_page(page); 726 return ret; 727 } 728 729 static 730 void cache_page_release(nfs_readdir_descriptor_t *desc) 731 { 732 put_page(desc->page); 733 desc->page = NULL; 734 } 735 736 static 737 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 738 { 739 return read_cache_page(desc->file->f_mapping, desc->page_index, 740 nfs_readdir_filler, desc); 741 } 742 743 /* 744 * Returns 0 if desc->dir_cookie was found on page desc->page_index 745 * and locks the page to prevent removal from the page cache. 746 */ 747 static 748 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) 749 { 750 struct inode *inode = file_inode(desc->file); 751 struct nfs_inode *nfsi = NFS_I(inode); 752 int res; 753 754 desc->page = get_cache_page(desc); 755 if (IS_ERR(desc->page)) 756 return PTR_ERR(desc->page); 757 res = lock_page_killable(desc->page); 758 if (res != 0) 759 goto error; 760 res = -EAGAIN; 761 if (desc->page->mapping != NULL) { 762 res = nfs_readdir_search_array(desc); 763 if (res == 0) { 764 nfsi->page_index = desc->page_index; 765 return 0; 766 } 767 } 768 unlock_page(desc->page); 769 error: 770 cache_page_release(desc); 771 return res; 772 } 773 774 /* Search for desc->dir_cookie from the beginning of the page cache */ 775 static inline 776 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 777 { 778 int res; 779 780 if (desc->page_index == 0) { 781 desc->current_index = 0; 782 desc->prev_index = 0; 783 desc->last_cookie = 0; 784 } 785 do { 786 res = find_and_lock_cache_page(desc); 787 } while (res == -EAGAIN); 788 return res; 789 } 790 791 /* 792 * Once we've found the start of the dirent within a page: fill 'er up... 793 */ 794 static 795 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 796 { 797 struct file *file = desc->file; 798 int i = 0; 799 int res = 0; 800 struct nfs_cache_array *array = NULL; 801 struct nfs_open_dir_context *ctx = file->private_data; 802 803 array = kmap(desc->page); 804 for (i = desc->cache_entry_index; i < array->size; i++) { 805 struct nfs_cache_array_entry *ent; 806 807 ent = &array->array[i]; 808 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 809 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 810 desc->eof = true; 811 break; 812 } 813 if (i < (array->size-1)) 814 *desc->dir_cookie = array->array[i+1].cookie; 815 else 816 *desc->dir_cookie = array->last_cookie; 817 if (nfs_readdir_use_cookie(file)) 818 desc->ctx->pos = *desc->dir_cookie; 819 else 820 desc->ctx->pos++; 821 if (ctx->duped != 0) 822 ctx->duped = 1; 823 } 824 if (array->eof_index >= 0) 825 desc->eof = true; 826 827 kunmap(desc->page); 828 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 829 (unsigned long long)*desc->dir_cookie, res); 830 return res; 831 } 832 833 /* 834 * If we cannot find a cookie in our cache, we suspect that this is 835 * because it points to a deleted file, so we ask the server to return 836 * whatever it thinks is the next entry. We then feed this to filldir. 837 * If all goes well, we should then be able to find our way round the 838 * cache on the next call to readdir_search_pagecache(); 839 * 840 * NOTE: we cannot add the anonymous page to the pagecache because 841 * the data it contains might not be page aligned. Besides, 842 * we should already have a complete representation of the 843 * directory in the page cache by the time we get here. 844 */ 845 static inline 846 int uncached_readdir(nfs_readdir_descriptor_t *desc) 847 { 848 struct page *page = NULL; 849 int status; 850 struct inode *inode = file_inode(desc->file); 851 struct nfs_open_dir_context *ctx = desc->file->private_data; 852 853 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 854 (unsigned long long)*desc->dir_cookie); 855 856 page = alloc_page(GFP_HIGHUSER); 857 if (!page) { 858 status = -ENOMEM; 859 goto out; 860 } 861 862 desc->page_index = 0; 863 desc->last_cookie = *desc->dir_cookie; 864 desc->page = page; 865 ctx->duped = 0; 866 867 status = nfs_readdir_xdr_to_array(desc, page, inode); 868 if (status < 0) 869 goto out_release; 870 871 status = nfs_do_filldir(desc); 872 873 out_release: 874 nfs_readdir_clear_array(desc->page); 875 cache_page_release(desc); 876 out: 877 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 878 __func__, status); 879 return status; 880 } 881 882 /* The file offset position represents the dirent entry number. A 883 last cookie cache takes care of the common case of reading the 884 whole directory. 885 */ 886 static int nfs_readdir(struct file *file, struct dir_context *ctx) 887 { 888 struct dentry *dentry = file_dentry(file); 889 struct inode *inode = d_inode(dentry); 890 struct nfs_open_dir_context *dir_ctx = file->private_data; 891 nfs_readdir_descriptor_t my_desc = { 892 .file = file, 893 .ctx = ctx, 894 .dir_cookie = &dir_ctx->dir_cookie, 895 .plus = nfs_use_readdirplus(inode, ctx), 896 }, 897 *desc = &my_desc; 898 int res = 0; 899 900 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 901 file, (long long)ctx->pos); 902 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 903 904 /* 905 * ctx->pos points to the dirent entry number. 906 * *desc->dir_cookie has the cookie for the next entry. We have 907 * to either find the entry with the appropriate number or 908 * revalidate the cookie. 909 */ 910 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 911 res = nfs_revalidate_mapping(inode, file->f_mapping); 912 if (res < 0) 913 goto out; 914 915 do { 916 res = readdir_search_pagecache(desc); 917 918 if (res == -EBADCOOKIE) { 919 res = 0; 920 /* This means either end of directory */ 921 if (*desc->dir_cookie && !desc->eof) { 922 /* Or that the server has 'lost' a cookie */ 923 res = uncached_readdir(desc); 924 if (res == 0) 925 continue; 926 } 927 break; 928 } 929 if (res == -ETOOSMALL && desc->plus) { 930 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 931 nfs_zap_caches(inode); 932 desc->page_index = 0; 933 desc->plus = false; 934 desc->eof = false; 935 continue; 936 } 937 if (res < 0) 938 break; 939 940 res = nfs_do_filldir(desc); 941 unlock_page(desc->page); 942 cache_page_release(desc); 943 if (res < 0) 944 break; 945 } while (!desc->eof); 946 out: 947 if (res > 0) 948 res = 0; 949 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 950 return res; 951 } 952 953 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 954 { 955 struct inode *inode = file_inode(filp); 956 struct nfs_open_dir_context *dir_ctx = filp->private_data; 957 958 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 959 filp, offset, whence); 960 961 switch (whence) { 962 default: 963 return -EINVAL; 964 case SEEK_SET: 965 if (offset < 0) 966 return -EINVAL; 967 inode_lock(inode); 968 break; 969 case SEEK_CUR: 970 if (offset == 0) 971 return filp->f_pos; 972 inode_lock(inode); 973 offset += filp->f_pos; 974 if (offset < 0) { 975 inode_unlock(inode); 976 return -EINVAL; 977 } 978 } 979 if (offset != filp->f_pos) { 980 filp->f_pos = offset; 981 if (nfs_readdir_use_cookie(filp)) 982 dir_ctx->dir_cookie = offset; 983 else 984 dir_ctx->dir_cookie = 0; 985 dir_ctx->duped = 0; 986 } 987 inode_unlock(inode); 988 return offset; 989 } 990 991 /* 992 * All directory operations under NFS are synchronous, so fsync() 993 * is a dummy operation. 994 */ 995 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 996 int datasync) 997 { 998 struct inode *inode = file_inode(filp); 999 1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1001 1002 inode_lock(inode); 1003 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 1004 inode_unlock(inode); 1005 return 0; 1006 } 1007 1008 /** 1009 * nfs_force_lookup_revalidate - Mark the directory as having changed 1010 * @dir: pointer to directory inode 1011 * 1012 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1013 * full lookup on all child dentries of 'dir' whenever a change occurs 1014 * on the server that might have invalidated our dcache. 1015 * 1016 * Note that we reserve bit '0' as a tag to let us know when a dentry 1017 * was revalidated while holding a delegation on its inode. 1018 * 1019 * The caller should be holding dir->i_lock 1020 */ 1021 void nfs_force_lookup_revalidate(struct inode *dir) 1022 { 1023 NFS_I(dir)->cache_change_attribute += 2; 1024 } 1025 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1026 1027 /** 1028 * nfs_verify_change_attribute - Detects NFS remote directory changes 1029 * @dir: pointer to parent directory inode 1030 * @verf: previously saved change attribute 1031 * 1032 * Return "false" if the verifiers doesn't match the change attribute. 1033 * This would usually indicate that the directory contents have changed on 1034 * the server, and that any dentries need revalidating. 1035 */ 1036 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1037 { 1038 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1039 } 1040 1041 static void nfs_set_verifier_delegated(unsigned long *verf) 1042 { 1043 *verf |= 1UL; 1044 } 1045 1046 #if IS_ENABLED(CONFIG_NFS_V4) 1047 static void nfs_unset_verifier_delegated(unsigned long *verf) 1048 { 1049 *verf &= ~1UL; 1050 } 1051 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1052 1053 static bool nfs_test_verifier_delegated(unsigned long verf) 1054 { 1055 return verf & 1; 1056 } 1057 1058 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1059 { 1060 return nfs_test_verifier_delegated(dentry->d_time); 1061 } 1062 1063 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1064 { 1065 struct inode *inode = d_inode(dentry); 1066 1067 if (!nfs_verifier_is_delegated(dentry) && 1068 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf)) 1069 goto out; 1070 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1071 nfs_set_verifier_delegated(&verf); 1072 out: 1073 dentry->d_time = verf; 1074 } 1075 1076 /** 1077 * nfs_set_verifier - save a parent directory verifier in the dentry 1078 * @dentry: pointer to dentry 1079 * @verf: verifier to save 1080 * 1081 * Saves the parent directory verifier in @dentry. If the inode has 1082 * a delegation, we also tag the dentry as having been revalidated 1083 * while holding a delegation so that we know we don't have to 1084 * look it up again after a directory change. 1085 */ 1086 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1087 { 1088 1089 spin_lock(&dentry->d_lock); 1090 nfs_set_verifier_locked(dentry, verf); 1091 spin_unlock(&dentry->d_lock); 1092 } 1093 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1094 1095 #if IS_ENABLED(CONFIG_NFS_V4) 1096 /** 1097 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1098 * @inode: pointer to inode 1099 * 1100 * Iterates through the dentries in the inode alias list and clears 1101 * the tag used to indicate that the dentry has been revalidated 1102 * while holding a delegation. 1103 * This function is intended for use when the delegation is being 1104 * returned or revoked. 1105 */ 1106 void nfs_clear_verifier_delegated(struct inode *inode) 1107 { 1108 struct dentry *alias; 1109 1110 if (!inode) 1111 return; 1112 spin_lock(&inode->i_lock); 1113 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1114 spin_lock(&alias->d_lock); 1115 nfs_unset_verifier_delegated(&alias->d_time); 1116 spin_unlock(&alias->d_lock); 1117 } 1118 spin_unlock(&inode->i_lock); 1119 } 1120 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1121 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1122 1123 /* 1124 * A check for whether or not the parent directory has changed. 1125 * In the case it has, we assume that the dentries are untrustworthy 1126 * and may need to be looked up again. 1127 * If rcu_walk prevents us from performing a full check, return 0. 1128 */ 1129 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1130 int rcu_walk) 1131 { 1132 if (IS_ROOT(dentry)) 1133 return 1; 1134 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1135 return 0; 1136 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1137 return 0; 1138 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1139 if (nfs_mapping_need_revalidate_inode(dir)) { 1140 if (rcu_walk) 1141 return 0; 1142 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1143 return 0; 1144 } 1145 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1146 return 0; 1147 return 1; 1148 } 1149 1150 /* 1151 * Use intent information to check whether or not we're going to do 1152 * an O_EXCL create using this path component. 1153 */ 1154 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1155 { 1156 if (NFS_PROTO(dir)->version == 2) 1157 return 0; 1158 return flags & LOOKUP_EXCL; 1159 } 1160 1161 /* 1162 * Inode and filehandle revalidation for lookups. 1163 * 1164 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1165 * or if the intent information indicates that we're about to open this 1166 * particular file and the "nocto" mount flag is not set. 1167 * 1168 */ 1169 static 1170 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1171 { 1172 struct nfs_server *server = NFS_SERVER(inode); 1173 int ret; 1174 1175 if (IS_AUTOMOUNT(inode)) 1176 return 0; 1177 1178 if (flags & LOOKUP_OPEN) { 1179 switch (inode->i_mode & S_IFMT) { 1180 case S_IFREG: 1181 /* A NFSv4 OPEN will revalidate later */ 1182 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1183 goto out; 1184 /* Fallthrough */ 1185 case S_IFDIR: 1186 if (server->flags & NFS_MOUNT_NOCTO) 1187 break; 1188 /* NFS close-to-open cache consistency validation */ 1189 goto out_force; 1190 } 1191 } 1192 1193 /* VFS wants an on-the-wire revalidation */ 1194 if (flags & LOOKUP_REVAL) 1195 goto out_force; 1196 out: 1197 return (inode->i_nlink == 0) ? -ESTALE : 0; 1198 out_force: 1199 if (flags & LOOKUP_RCU) 1200 return -ECHILD; 1201 ret = __nfs_revalidate_inode(server, inode); 1202 if (ret != 0) 1203 return ret; 1204 goto out; 1205 } 1206 1207 /* 1208 * We judge how long we want to trust negative 1209 * dentries by looking at the parent inode mtime. 1210 * 1211 * If parent mtime has changed, we revalidate, else we wait for a 1212 * period corresponding to the parent's attribute cache timeout value. 1213 * 1214 * If LOOKUP_RCU prevents us from performing a full check, return 1 1215 * suggesting a reval is needed. 1216 * 1217 * Note that when creating a new file, or looking up a rename target, 1218 * then it shouldn't be necessary to revalidate a negative dentry. 1219 */ 1220 static inline 1221 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1222 unsigned int flags) 1223 { 1224 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1225 return 0; 1226 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1227 return 1; 1228 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1229 } 1230 1231 static int 1232 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1233 struct inode *inode, int error) 1234 { 1235 switch (error) { 1236 case 1: 1237 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1238 __func__, dentry); 1239 return 1; 1240 case 0: 1241 nfs_mark_for_revalidate(dir); 1242 if (inode && S_ISDIR(inode->i_mode)) { 1243 /* Purge readdir caches. */ 1244 nfs_zap_caches(inode); 1245 /* 1246 * We can't d_drop the root of a disconnected tree: 1247 * its d_hash is on the s_anon list and d_drop() would hide 1248 * it from shrink_dcache_for_unmount(), leading to busy 1249 * inodes on unmount and further oopses. 1250 */ 1251 if (IS_ROOT(dentry)) 1252 return 1; 1253 } 1254 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1255 __func__, dentry); 1256 return 0; 1257 } 1258 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1259 __func__, dentry, error); 1260 return error; 1261 } 1262 1263 static int 1264 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1265 unsigned int flags) 1266 { 1267 int ret = 1; 1268 if (nfs_neg_need_reval(dir, dentry, flags)) { 1269 if (flags & LOOKUP_RCU) 1270 return -ECHILD; 1271 ret = 0; 1272 } 1273 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1274 } 1275 1276 static int 1277 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1278 struct inode *inode) 1279 { 1280 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1281 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1282 } 1283 1284 static int 1285 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1286 struct inode *inode) 1287 { 1288 struct nfs_fh *fhandle; 1289 struct nfs_fattr *fattr; 1290 struct nfs4_label *label; 1291 unsigned long dir_verifier; 1292 int ret; 1293 1294 ret = -ENOMEM; 1295 fhandle = nfs_alloc_fhandle(); 1296 fattr = nfs_alloc_fattr(); 1297 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1298 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1299 goto out; 1300 1301 dir_verifier = nfs_save_change_attribute(dir); 1302 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1303 if (ret < 0) { 1304 switch (ret) { 1305 case -ESTALE: 1306 case -ENOENT: 1307 ret = 0; 1308 break; 1309 case -ETIMEDOUT: 1310 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1311 ret = 1; 1312 } 1313 goto out; 1314 } 1315 ret = 0; 1316 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1317 goto out; 1318 if (nfs_refresh_inode(inode, fattr) < 0) 1319 goto out; 1320 1321 nfs_setsecurity(inode, fattr, label); 1322 nfs_set_verifier(dentry, dir_verifier); 1323 1324 /* set a readdirplus hint that we had a cache miss */ 1325 nfs_force_use_readdirplus(dir); 1326 ret = 1; 1327 out: 1328 nfs_free_fattr(fattr); 1329 nfs_free_fhandle(fhandle); 1330 nfs4_label_free(label); 1331 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1332 } 1333 1334 /* 1335 * This is called every time the dcache has a lookup hit, 1336 * and we should check whether we can really trust that 1337 * lookup. 1338 * 1339 * NOTE! The hit can be a negative hit too, don't assume 1340 * we have an inode! 1341 * 1342 * If the parent directory is seen to have changed, we throw out the 1343 * cached dentry and do a new lookup. 1344 */ 1345 static int 1346 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1347 unsigned int flags) 1348 { 1349 struct inode *inode; 1350 int error; 1351 1352 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1353 inode = d_inode(dentry); 1354 1355 if (!inode) 1356 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1357 1358 if (is_bad_inode(inode)) { 1359 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1360 __func__, dentry); 1361 goto out_bad; 1362 } 1363 1364 if (nfs_verifier_is_delegated(dentry)) 1365 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1366 1367 /* Force a full look up iff the parent directory has changed */ 1368 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1369 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1370 error = nfs_lookup_verify_inode(inode, flags); 1371 if (error) { 1372 if (error == -ESTALE) 1373 nfs_zap_caches(dir); 1374 goto out_bad; 1375 } 1376 nfs_advise_use_readdirplus(dir); 1377 goto out_valid; 1378 } 1379 1380 if (flags & LOOKUP_RCU) 1381 return -ECHILD; 1382 1383 if (NFS_STALE(inode)) 1384 goto out_bad; 1385 1386 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1387 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1388 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1389 return error; 1390 out_valid: 1391 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1392 out_bad: 1393 if (flags & LOOKUP_RCU) 1394 return -ECHILD; 1395 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1396 } 1397 1398 static int 1399 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1400 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1401 { 1402 struct dentry *parent; 1403 struct inode *dir; 1404 int ret; 1405 1406 if (flags & LOOKUP_RCU) { 1407 parent = READ_ONCE(dentry->d_parent); 1408 dir = d_inode_rcu(parent); 1409 if (!dir) 1410 return -ECHILD; 1411 ret = reval(dir, dentry, flags); 1412 if (parent != READ_ONCE(dentry->d_parent)) 1413 return -ECHILD; 1414 } else { 1415 parent = dget_parent(dentry); 1416 ret = reval(d_inode(parent), dentry, flags); 1417 dput(parent); 1418 } 1419 return ret; 1420 } 1421 1422 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1423 { 1424 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1425 } 1426 1427 /* 1428 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1429 * when we don't really care about the dentry name. This is called when a 1430 * pathwalk ends on a dentry that was not found via a normal lookup in the 1431 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1432 * 1433 * In this situation, we just want to verify that the inode itself is OK 1434 * since the dentry might have changed on the server. 1435 */ 1436 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1437 { 1438 struct inode *inode = d_inode(dentry); 1439 int error = 0; 1440 1441 /* 1442 * I believe we can only get a negative dentry here in the case of a 1443 * procfs-style symlink. Just assume it's correct for now, but we may 1444 * eventually need to do something more here. 1445 */ 1446 if (!inode) { 1447 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1448 __func__, dentry); 1449 return 1; 1450 } 1451 1452 if (is_bad_inode(inode)) { 1453 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1454 __func__, dentry); 1455 return 0; 1456 } 1457 1458 error = nfs_lookup_verify_inode(inode, flags); 1459 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1460 __func__, inode->i_ino, error ? "invalid" : "valid"); 1461 return !error; 1462 } 1463 1464 /* 1465 * This is called from dput() when d_count is going to 0. 1466 */ 1467 static int nfs_dentry_delete(const struct dentry *dentry) 1468 { 1469 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1470 dentry, dentry->d_flags); 1471 1472 /* Unhash any dentry with a stale inode */ 1473 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1474 return 1; 1475 1476 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1477 /* Unhash it, so that ->d_iput() would be called */ 1478 return 1; 1479 } 1480 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1481 /* Unhash it, so that ancestors of killed async unlink 1482 * files will be cleaned up during umount */ 1483 return 1; 1484 } 1485 return 0; 1486 1487 } 1488 1489 /* Ensure that we revalidate inode->i_nlink */ 1490 static void nfs_drop_nlink(struct inode *inode) 1491 { 1492 spin_lock(&inode->i_lock); 1493 /* drop the inode if we're reasonably sure this is the last link */ 1494 if (inode->i_nlink > 0) 1495 drop_nlink(inode); 1496 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1497 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1498 | NFS_INO_INVALID_CTIME 1499 | NFS_INO_INVALID_OTHER 1500 | NFS_INO_REVAL_FORCED; 1501 spin_unlock(&inode->i_lock); 1502 } 1503 1504 /* 1505 * Called when the dentry loses inode. 1506 * We use it to clean up silly-renamed files. 1507 */ 1508 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1509 { 1510 if (S_ISDIR(inode->i_mode)) 1511 /* drop any readdir cache as it could easily be old */ 1512 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1513 1514 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1515 nfs_complete_unlink(dentry, inode); 1516 nfs_drop_nlink(inode); 1517 } 1518 iput(inode); 1519 } 1520 1521 static void nfs_d_release(struct dentry *dentry) 1522 { 1523 /* free cached devname value, if it survived that far */ 1524 if (unlikely(dentry->d_fsdata)) { 1525 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1526 WARN_ON(1); 1527 else 1528 kfree(dentry->d_fsdata); 1529 } 1530 } 1531 1532 const struct dentry_operations nfs_dentry_operations = { 1533 .d_revalidate = nfs_lookup_revalidate, 1534 .d_weak_revalidate = nfs_weak_revalidate, 1535 .d_delete = nfs_dentry_delete, 1536 .d_iput = nfs_dentry_iput, 1537 .d_automount = nfs_d_automount, 1538 .d_release = nfs_d_release, 1539 }; 1540 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1541 1542 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1543 { 1544 struct dentry *res; 1545 struct inode *inode = NULL; 1546 struct nfs_fh *fhandle = NULL; 1547 struct nfs_fattr *fattr = NULL; 1548 struct nfs4_label *label = NULL; 1549 unsigned long dir_verifier; 1550 int error; 1551 1552 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1553 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1554 1555 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1556 return ERR_PTR(-ENAMETOOLONG); 1557 1558 /* 1559 * If we're doing an exclusive create, optimize away the lookup 1560 * but don't hash the dentry. 1561 */ 1562 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1563 return NULL; 1564 1565 res = ERR_PTR(-ENOMEM); 1566 fhandle = nfs_alloc_fhandle(); 1567 fattr = nfs_alloc_fattr(); 1568 if (fhandle == NULL || fattr == NULL) 1569 goto out; 1570 1571 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1572 if (IS_ERR(label)) 1573 goto out; 1574 1575 dir_verifier = nfs_save_change_attribute(dir); 1576 trace_nfs_lookup_enter(dir, dentry, flags); 1577 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1578 if (error == -ENOENT) 1579 goto no_entry; 1580 if (error < 0) { 1581 res = ERR_PTR(error); 1582 goto out_label; 1583 } 1584 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1585 res = ERR_CAST(inode); 1586 if (IS_ERR(res)) 1587 goto out_label; 1588 1589 /* Notify readdir to use READDIRPLUS */ 1590 nfs_force_use_readdirplus(dir); 1591 1592 no_entry: 1593 res = d_splice_alias(inode, dentry); 1594 if (res != NULL) { 1595 if (IS_ERR(res)) 1596 goto out_label; 1597 dentry = res; 1598 } 1599 nfs_set_verifier(dentry, dir_verifier); 1600 out_label: 1601 trace_nfs_lookup_exit(dir, dentry, flags, error); 1602 nfs4_label_free(label); 1603 out: 1604 nfs_free_fattr(fattr); 1605 nfs_free_fhandle(fhandle); 1606 return res; 1607 } 1608 EXPORT_SYMBOL_GPL(nfs_lookup); 1609 1610 #if IS_ENABLED(CONFIG_NFS_V4) 1611 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1612 1613 const struct dentry_operations nfs4_dentry_operations = { 1614 .d_revalidate = nfs4_lookup_revalidate, 1615 .d_weak_revalidate = nfs_weak_revalidate, 1616 .d_delete = nfs_dentry_delete, 1617 .d_iput = nfs_dentry_iput, 1618 .d_automount = nfs_d_automount, 1619 .d_release = nfs_d_release, 1620 }; 1621 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1622 1623 static fmode_t flags_to_mode(int flags) 1624 { 1625 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1626 if ((flags & O_ACCMODE) != O_WRONLY) 1627 res |= FMODE_READ; 1628 if ((flags & O_ACCMODE) != O_RDONLY) 1629 res |= FMODE_WRITE; 1630 return res; 1631 } 1632 1633 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1634 { 1635 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1636 } 1637 1638 static int do_open(struct inode *inode, struct file *filp) 1639 { 1640 nfs_fscache_open_file(inode, filp); 1641 return 0; 1642 } 1643 1644 static int nfs_finish_open(struct nfs_open_context *ctx, 1645 struct dentry *dentry, 1646 struct file *file, unsigned open_flags) 1647 { 1648 int err; 1649 1650 err = finish_open(file, dentry, do_open); 1651 if (err) 1652 goto out; 1653 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1654 nfs_file_set_open_context(file, ctx); 1655 else 1656 err = -EOPENSTALE; 1657 out: 1658 return err; 1659 } 1660 1661 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1662 struct file *file, unsigned open_flags, 1663 umode_t mode) 1664 { 1665 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1666 struct nfs_open_context *ctx; 1667 struct dentry *res; 1668 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1669 struct inode *inode; 1670 unsigned int lookup_flags = 0; 1671 bool switched = false; 1672 int created = 0; 1673 int err; 1674 1675 /* Expect a negative dentry */ 1676 BUG_ON(d_inode(dentry)); 1677 1678 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1679 dir->i_sb->s_id, dir->i_ino, dentry); 1680 1681 err = nfs_check_flags(open_flags); 1682 if (err) 1683 return err; 1684 1685 /* NFS only supports OPEN on regular files */ 1686 if ((open_flags & O_DIRECTORY)) { 1687 if (!d_in_lookup(dentry)) { 1688 /* 1689 * Hashed negative dentry with O_DIRECTORY: dentry was 1690 * revalidated and is fine, no need to perform lookup 1691 * again 1692 */ 1693 return -ENOENT; 1694 } 1695 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1696 goto no_open; 1697 } 1698 1699 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1700 return -ENAMETOOLONG; 1701 1702 if (open_flags & O_CREAT) { 1703 struct nfs_server *server = NFS_SERVER(dir); 1704 1705 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1706 mode &= ~current_umask(); 1707 1708 attr.ia_valid |= ATTR_MODE; 1709 attr.ia_mode = mode; 1710 } 1711 if (open_flags & O_TRUNC) { 1712 attr.ia_valid |= ATTR_SIZE; 1713 attr.ia_size = 0; 1714 } 1715 1716 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1717 d_drop(dentry); 1718 switched = true; 1719 dentry = d_alloc_parallel(dentry->d_parent, 1720 &dentry->d_name, &wq); 1721 if (IS_ERR(dentry)) 1722 return PTR_ERR(dentry); 1723 if (unlikely(!d_in_lookup(dentry))) 1724 return finish_no_open(file, dentry); 1725 } 1726 1727 ctx = create_nfs_open_context(dentry, open_flags, file); 1728 err = PTR_ERR(ctx); 1729 if (IS_ERR(ctx)) 1730 goto out; 1731 1732 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1733 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1734 if (created) 1735 file->f_mode |= FMODE_CREATED; 1736 if (IS_ERR(inode)) { 1737 err = PTR_ERR(inode); 1738 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1739 put_nfs_open_context(ctx); 1740 d_drop(dentry); 1741 switch (err) { 1742 case -ENOENT: 1743 d_splice_alias(NULL, dentry); 1744 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1745 break; 1746 case -EISDIR: 1747 case -ENOTDIR: 1748 goto no_open; 1749 case -ELOOP: 1750 if (!(open_flags & O_NOFOLLOW)) 1751 goto no_open; 1752 break; 1753 /* case -EINVAL: */ 1754 default: 1755 break; 1756 } 1757 goto out; 1758 } 1759 1760 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1761 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1762 put_nfs_open_context(ctx); 1763 out: 1764 if (unlikely(switched)) { 1765 d_lookup_done(dentry); 1766 dput(dentry); 1767 } 1768 return err; 1769 1770 no_open: 1771 res = nfs_lookup(dir, dentry, lookup_flags); 1772 if (switched) { 1773 d_lookup_done(dentry); 1774 if (!res) 1775 res = dentry; 1776 else 1777 dput(dentry); 1778 } 1779 if (IS_ERR(res)) 1780 return PTR_ERR(res); 1781 return finish_no_open(file, res); 1782 } 1783 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1784 1785 static int 1786 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1787 unsigned int flags) 1788 { 1789 struct inode *inode; 1790 1791 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1792 goto full_reval; 1793 if (d_mountpoint(dentry)) 1794 goto full_reval; 1795 1796 inode = d_inode(dentry); 1797 1798 /* We can't create new files in nfs_open_revalidate(), so we 1799 * optimize away revalidation of negative dentries. 1800 */ 1801 if (inode == NULL) 1802 goto full_reval; 1803 1804 if (nfs_verifier_is_delegated(dentry)) 1805 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1806 1807 /* NFS only supports OPEN on regular files */ 1808 if (!S_ISREG(inode->i_mode)) 1809 goto full_reval; 1810 1811 /* We cannot do exclusive creation on a positive dentry */ 1812 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1813 goto reval_dentry; 1814 1815 /* Check if the directory changed */ 1816 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1817 goto reval_dentry; 1818 1819 /* Let f_op->open() actually open (and revalidate) the file */ 1820 return 1; 1821 reval_dentry: 1822 if (flags & LOOKUP_RCU) 1823 return -ECHILD; 1824 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1825 1826 full_reval: 1827 return nfs_do_lookup_revalidate(dir, dentry, flags); 1828 } 1829 1830 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1831 { 1832 return __nfs_lookup_revalidate(dentry, flags, 1833 nfs4_do_lookup_revalidate); 1834 } 1835 1836 #endif /* CONFIG_NFSV4 */ 1837 1838 struct dentry * 1839 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 1840 struct nfs_fattr *fattr, 1841 struct nfs4_label *label) 1842 { 1843 struct dentry *parent = dget_parent(dentry); 1844 struct inode *dir = d_inode(parent); 1845 struct inode *inode; 1846 struct dentry *d; 1847 int error; 1848 1849 d_drop(dentry); 1850 1851 if (fhandle->size == 0) { 1852 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); 1853 if (error) 1854 goto out_error; 1855 } 1856 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1857 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1858 struct nfs_server *server = NFS_SB(dentry->d_sb); 1859 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1860 fattr, NULL, NULL); 1861 if (error < 0) 1862 goto out_error; 1863 } 1864 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1865 d = d_splice_alias(inode, dentry); 1866 out: 1867 dput(parent); 1868 return d; 1869 out_error: 1870 nfs_mark_for_revalidate(dir); 1871 d = ERR_PTR(error); 1872 goto out; 1873 } 1874 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 1875 1876 /* 1877 * Code common to create, mkdir, and mknod. 1878 */ 1879 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1880 struct nfs_fattr *fattr, 1881 struct nfs4_label *label) 1882 { 1883 struct dentry *d; 1884 1885 d = nfs_add_or_obtain(dentry, fhandle, fattr, label); 1886 if (IS_ERR(d)) 1887 return PTR_ERR(d); 1888 1889 /* Callers don't care */ 1890 dput(d); 1891 return 0; 1892 } 1893 EXPORT_SYMBOL_GPL(nfs_instantiate); 1894 1895 /* 1896 * Following a failed create operation, we drop the dentry rather 1897 * than retain a negative dentry. This avoids a problem in the event 1898 * that the operation succeeded on the server, but an error in the 1899 * reply path made it appear to have failed. 1900 */ 1901 int nfs_create(struct inode *dir, struct dentry *dentry, 1902 umode_t mode, bool excl) 1903 { 1904 struct iattr attr; 1905 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1906 int error; 1907 1908 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1909 dir->i_sb->s_id, dir->i_ino, dentry); 1910 1911 attr.ia_mode = mode; 1912 attr.ia_valid = ATTR_MODE; 1913 1914 trace_nfs_create_enter(dir, dentry, open_flags); 1915 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1916 trace_nfs_create_exit(dir, dentry, open_flags, error); 1917 if (error != 0) 1918 goto out_err; 1919 return 0; 1920 out_err: 1921 d_drop(dentry); 1922 return error; 1923 } 1924 EXPORT_SYMBOL_GPL(nfs_create); 1925 1926 /* 1927 * See comments for nfs_proc_create regarding failed operations. 1928 */ 1929 int 1930 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1931 { 1932 struct iattr attr; 1933 int status; 1934 1935 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1936 dir->i_sb->s_id, dir->i_ino, dentry); 1937 1938 attr.ia_mode = mode; 1939 attr.ia_valid = ATTR_MODE; 1940 1941 trace_nfs_mknod_enter(dir, dentry); 1942 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1943 trace_nfs_mknod_exit(dir, dentry, status); 1944 if (status != 0) 1945 goto out_err; 1946 return 0; 1947 out_err: 1948 d_drop(dentry); 1949 return status; 1950 } 1951 EXPORT_SYMBOL_GPL(nfs_mknod); 1952 1953 /* 1954 * See comments for nfs_proc_create regarding failed operations. 1955 */ 1956 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1957 { 1958 struct iattr attr; 1959 int error; 1960 1961 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1962 dir->i_sb->s_id, dir->i_ino, dentry); 1963 1964 attr.ia_valid = ATTR_MODE; 1965 attr.ia_mode = mode | S_IFDIR; 1966 1967 trace_nfs_mkdir_enter(dir, dentry); 1968 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1969 trace_nfs_mkdir_exit(dir, dentry, error); 1970 if (error != 0) 1971 goto out_err; 1972 return 0; 1973 out_err: 1974 d_drop(dentry); 1975 return error; 1976 } 1977 EXPORT_SYMBOL_GPL(nfs_mkdir); 1978 1979 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1980 { 1981 if (simple_positive(dentry)) 1982 d_delete(dentry); 1983 } 1984 1985 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1986 { 1987 int error; 1988 1989 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1990 dir->i_sb->s_id, dir->i_ino, dentry); 1991 1992 trace_nfs_rmdir_enter(dir, dentry); 1993 if (d_really_is_positive(dentry)) { 1994 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1995 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1996 /* Ensure the VFS deletes this inode */ 1997 switch (error) { 1998 case 0: 1999 clear_nlink(d_inode(dentry)); 2000 break; 2001 case -ENOENT: 2002 nfs_dentry_handle_enoent(dentry); 2003 } 2004 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2005 } else 2006 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2007 trace_nfs_rmdir_exit(dir, dentry, error); 2008 2009 return error; 2010 } 2011 EXPORT_SYMBOL_GPL(nfs_rmdir); 2012 2013 /* 2014 * Remove a file after making sure there are no pending writes, 2015 * and after checking that the file has only one user. 2016 * 2017 * We invalidate the attribute cache and free the inode prior to the operation 2018 * to avoid possible races if the server reuses the inode. 2019 */ 2020 static int nfs_safe_remove(struct dentry *dentry) 2021 { 2022 struct inode *dir = d_inode(dentry->d_parent); 2023 struct inode *inode = d_inode(dentry); 2024 int error = -EBUSY; 2025 2026 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2027 2028 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2029 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2030 error = 0; 2031 goto out; 2032 } 2033 2034 trace_nfs_remove_enter(dir, dentry); 2035 if (inode != NULL) { 2036 error = NFS_PROTO(dir)->remove(dir, dentry); 2037 if (error == 0) 2038 nfs_drop_nlink(inode); 2039 } else 2040 error = NFS_PROTO(dir)->remove(dir, dentry); 2041 if (error == -ENOENT) 2042 nfs_dentry_handle_enoent(dentry); 2043 trace_nfs_remove_exit(dir, dentry, error); 2044 out: 2045 return error; 2046 } 2047 2048 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2049 * belongs to an active ".nfs..." file and we return -EBUSY. 2050 * 2051 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2052 */ 2053 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2054 { 2055 int error; 2056 int need_rehash = 0; 2057 2058 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2059 dir->i_ino, dentry); 2060 2061 trace_nfs_unlink_enter(dir, dentry); 2062 spin_lock(&dentry->d_lock); 2063 if (d_count(dentry) > 1) { 2064 spin_unlock(&dentry->d_lock); 2065 /* Start asynchronous writeout of the inode */ 2066 write_inode_now(d_inode(dentry), 0); 2067 error = nfs_sillyrename(dir, dentry); 2068 goto out; 2069 } 2070 if (!d_unhashed(dentry)) { 2071 __d_drop(dentry); 2072 need_rehash = 1; 2073 } 2074 spin_unlock(&dentry->d_lock); 2075 error = nfs_safe_remove(dentry); 2076 if (!error || error == -ENOENT) { 2077 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2078 } else if (need_rehash) 2079 d_rehash(dentry); 2080 out: 2081 trace_nfs_unlink_exit(dir, dentry, error); 2082 return error; 2083 } 2084 EXPORT_SYMBOL_GPL(nfs_unlink); 2085 2086 /* 2087 * To create a symbolic link, most file systems instantiate a new inode, 2088 * add a page to it containing the path, then write it out to the disk 2089 * using prepare_write/commit_write. 2090 * 2091 * Unfortunately the NFS client can't create the in-core inode first 2092 * because it needs a file handle to create an in-core inode (see 2093 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2094 * symlink request has completed on the server. 2095 * 2096 * So instead we allocate a raw page, copy the symname into it, then do 2097 * the SYMLINK request with the page as the buffer. If it succeeds, we 2098 * now have a new file handle and can instantiate an in-core NFS inode 2099 * and move the raw page into its mapping. 2100 */ 2101 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2102 { 2103 struct page *page; 2104 char *kaddr; 2105 struct iattr attr; 2106 unsigned int pathlen = strlen(symname); 2107 int error; 2108 2109 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2110 dir->i_ino, dentry, symname); 2111 2112 if (pathlen > PAGE_SIZE) 2113 return -ENAMETOOLONG; 2114 2115 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2116 attr.ia_valid = ATTR_MODE; 2117 2118 page = alloc_page(GFP_USER); 2119 if (!page) 2120 return -ENOMEM; 2121 2122 kaddr = page_address(page); 2123 memcpy(kaddr, symname, pathlen); 2124 if (pathlen < PAGE_SIZE) 2125 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2126 2127 trace_nfs_symlink_enter(dir, dentry); 2128 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2129 trace_nfs_symlink_exit(dir, dentry, error); 2130 if (error != 0) { 2131 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2132 dir->i_sb->s_id, dir->i_ino, 2133 dentry, symname, error); 2134 d_drop(dentry); 2135 __free_page(page); 2136 return error; 2137 } 2138 2139 /* 2140 * No big deal if we can't add this page to the page cache here. 2141 * READLINK will get the missing page from the server if needed. 2142 */ 2143 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2144 GFP_KERNEL)) { 2145 SetPageUptodate(page); 2146 unlock_page(page); 2147 /* 2148 * add_to_page_cache_lru() grabs an extra page refcount. 2149 * Drop it here to avoid leaking this page later. 2150 */ 2151 put_page(page); 2152 } else 2153 __free_page(page); 2154 2155 return 0; 2156 } 2157 EXPORT_SYMBOL_GPL(nfs_symlink); 2158 2159 int 2160 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2161 { 2162 struct inode *inode = d_inode(old_dentry); 2163 int error; 2164 2165 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2166 old_dentry, dentry); 2167 2168 trace_nfs_link_enter(inode, dir, dentry); 2169 d_drop(dentry); 2170 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2171 if (error == 0) { 2172 ihold(inode); 2173 d_add(dentry, inode); 2174 } 2175 trace_nfs_link_exit(inode, dir, dentry, error); 2176 return error; 2177 } 2178 EXPORT_SYMBOL_GPL(nfs_link); 2179 2180 /* 2181 * RENAME 2182 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2183 * different file handle for the same inode after a rename (e.g. when 2184 * moving to a different directory). A fail-safe method to do so would 2185 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2186 * rename the old file using the sillyrename stuff. This way, the original 2187 * file in old_dir will go away when the last process iput()s the inode. 2188 * 2189 * FIXED. 2190 * 2191 * It actually works quite well. One needs to have the possibility for 2192 * at least one ".nfs..." file in each directory the file ever gets 2193 * moved or linked to which happens automagically with the new 2194 * implementation that only depends on the dcache stuff instead of 2195 * using the inode layer 2196 * 2197 * Unfortunately, things are a little more complicated than indicated 2198 * above. For a cross-directory move, we want to make sure we can get 2199 * rid of the old inode after the operation. This means there must be 2200 * no pending writes (if it's a file), and the use count must be 1. 2201 * If these conditions are met, we can drop the dentries before doing 2202 * the rename. 2203 */ 2204 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2205 struct inode *new_dir, struct dentry *new_dentry, 2206 unsigned int flags) 2207 { 2208 struct inode *old_inode = d_inode(old_dentry); 2209 struct inode *new_inode = d_inode(new_dentry); 2210 struct dentry *dentry = NULL, *rehash = NULL; 2211 struct rpc_task *task; 2212 int error = -EBUSY; 2213 2214 if (flags) 2215 return -EINVAL; 2216 2217 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2218 old_dentry, new_dentry, 2219 d_count(new_dentry)); 2220 2221 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2222 /* 2223 * For non-directories, check whether the target is busy and if so, 2224 * make a copy of the dentry and then do a silly-rename. If the 2225 * silly-rename succeeds, the copied dentry is hashed and becomes 2226 * the new target. 2227 */ 2228 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2229 /* 2230 * To prevent any new references to the target during the 2231 * rename, we unhash the dentry in advance. 2232 */ 2233 if (!d_unhashed(new_dentry)) { 2234 d_drop(new_dentry); 2235 rehash = new_dentry; 2236 } 2237 2238 if (d_count(new_dentry) > 2) { 2239 int err; 2240 2241 /* copy the target dentry's name */ 2242 dentry = d_alloc(new_dentry->d_parent, 2243 &new_dentry->d_name); 2244 if (!dentry) 2245 goto out; 2246 2247 /* silly-rename the existing target ... */ 2248 err = nfs_sillyrename(new_dir, new_dentry); 2249 if (err) 2250 goto out; 2251 2252 new_dentry = dentry; 2253 rehash = NULL; 2254 new_inode = NULL; 2255 } 2256 } 2257 2258 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2259 if (IS_ERR(task)) { 2260 error = PTR_ERR(task); 2261 goto out; 2262 } 2263 2264 error = rpc_wait_for_completion_task(task); 2265 if (error != 0) { 2266 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2267 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2268 smp_wmb(); 2269 } else 2270 error = task->tk_status; 2271 rpc_put_task(task); 2272 /* Ensure the inode attributes are revalidated */ 2273 if (error == 0) { 2274 spin_lock(&old_inode->i_lock); 2275 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2276 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2277 | NFS_INO_INVALID_CTIME 2278 | NFS_INO_REVAL_FORCED; 2279 spin_unlock(&old_inode->i_lock); 2280 } 2281 out: 2282 if (rehash) 2283 d_rehash(rehash); 2284 trace_nfs_rename_exit(old_dir, old_dentry, 2285 new_dir, new_dentry, error); 2286 if (!error) { 2287 if (new_inode != NULL) 2288 nfs_drop_nlink(new_inode); 2289 /* 2290 * The d_move() should be here instead of in an async RPC completion 2291 * handler because we need the proper locks to move the dentry. If 2292 * we're interrupted by a signal, the async RPC completion handler 2293 * should mark the directories for revalidation. 2294 */ 2295 d_move(old_dentry, new_dentry); 2296 nfs_set_verifier(old_dentry, 2297 nfs_save_change_attribute(new_dir)); 2298 } else if (error == -ENOENT) 2299 nfs_dentry_handle_enoent(old_dentry); 2300 2301 /* new dentry created? */ 2302 if (dentry) 2303 dput(dentry); 2304 return error; 2305 } 2306 EXPORT_SYMBOL_GPL(nfs_rename); 2307 2308 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2309 static LIST_HEAD(nfs_access_lru_list); 2310 static atomic_long_t nfs_access_nr_entries; 2311 2312 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2313 module_param(nfs_access_max_cachesize, ulong, 0644); 2314 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2315 2316 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2317 { 2318 put_cred(entry->cred); 2319 kfree_rcu(entry, rcu_head); 2320 smp_mb__before_atomic(); 2321 atomic_long_dec(&nfs_access_nr_entries); 2322 smp_mb__after_atomic(); 2323 } 2324 2325 static void nfs_access_free_list(struct list_head *head) 2326 { 2327 struct nfs_access_entry *cache; 2328 2329 while (!list_empty(head)) { 2330 cache = list_entry(head->next, struct nfs_access_entry, lru); 2331 list_del(&cache->lru); 2332 nfs_access_free_entry(cache); 2333 } 2334 } 2335 2336 static unsigned long 2337 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2338 { 2339 LIST_HEAD(head); 2340 struct nfs_inode *nfsi, *next; 2341 struct nfs_access_entry *cache; 2342 long freed = 0; 2343 2344 spin_lock(&nfs_access_lru_lock); 2345 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2346 struct inode *inode; 2347 2348 if (nr_to_scan-- == 0) 2349 break; 2350 inode = &nfsi->vfs_inode; 2351 spin_lock(&inode->i_lock); 2352 if (list_empty(&nfsi->access_cache_entry_lru)) 2353 goto remove_lru_entry; 2354 cache = list_entry(nfsi->access_cache_entry_lru.next, 2355 struct nfs_access_entry, lru); 2356 list_move(&cache->lru, &head); 2357 rb_erase(&cache->rb_node, &nfsi->access_cache); 2358 freed++; 2359 if (!list_empty(&nfsi->access_cache_entry_lru)) 2360 list_move_tail(&nfsi->access_cache_inode_lru, 2361 &nfs_access_lru_list); 2362 else { 2363 remove_lru_entry: 2364 list_del_init(&nfsi->access_cache_inode_lru); 2365 smp_mb__before_atomic(); 2366 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2367 smp_mb__after_atomic(); 2368 } 2369 spin_unlock(&inode->i_lock); 2370 } 2371 spin_unlock(&nfs_access_lru_lock); 2372 nfs_access_free_list(&head); 2373 return freed; 2374 } 2375 2376 unsigned long 2377 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2378 { 2379 int nr_to_scan = sc->nr_to_scan; 2380 gfp_t gfp_mask = sc->gfp_mask; 2381 2382 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2383 return SHRINK_STOP; 2384 return nfs_do_access_cache_scan(nr_to_scan); 2385 } 2386 2387 2388 unsigned long 2389 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2390 { 2391 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2392 } 2393 2394 static void 2395 nfs_access_cache_enforce_limit(void) 2396 { 2397 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2398 unsigned long diff; 2399 unsigned int nr_to_scan; 2400 2401 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2402 return; 2403 nr_to_scan = 100; 2404 diff = nr_entries - nfs_access_max_cachesize; 2405 if (diff < nr_to_scan) 2406 nr_to_scan = diff; 2407 nfs_do_access_cache_scan(nr_to_scan); 2408 } 2409 2410 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2411 { 2412 struct rb_root *root_node = &nfsi->access_cache; 2413 struct rb_node *n; 2414 struct nfs_access_entry *entry; 2415 2416 /* Unhook entries from the cache */ 2417 while ((n = rb_first(root_node)) != NULL) { 2418 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2419 rb_erase(n, root_node); 2420 list_move(&entry->lru, head); 2421 } 2422 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2423 } 2424 2425 void nfs_access_zap_cache(struct inode *inode) 2426 { 2427 LIST_HEAD(head); 2428 2429 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2430 return; 2431 /* Remove from global LRU init */ 2432 spin_lock(&nfs_access_lru_lock); 2433 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2434 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2435 2436 spin_lock(&inode->i_lock); 2437 __nfs_access_zap_cache(NFS_I(inode), &head); 2438 spin_unlock(&inode->i_lock); 2439 spin_unlock(&nfs_access_lru_lock); 2440 nfs_access_free_list(&head); 2441 } 2442 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2443 2444 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2445 { 2446 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2447 2448 while (n != NULL) { 2449 struct nfs_access_entry *entry = 2450 rb_entry(n, struct nfs_access_entry, rb_node); 2451 int cmp = cred_fscmp(cred, entry->cred); 2452 2453 if (cmp < 0) 2454 n = n->rb_left; 2455 else if (cmp > 0) 2456 n = n->rb_right; 2457 else 2458 return entry; 2459 } 2460 return NULL; 2461 } 2462 2463 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2464 { 2465 struct nfs_inode *nfsi = NFS_I(inode); 2466 struct nfs_access_entry *cache; 2467 bool retry = true; 2468 int err; 2469 2470 spin_lock(&inode->i_lock); 2471 for(;;) { 2472 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2473 goto out_zap; 2474 cache = nfs_access_search_rbtree(inode, cred); 2475 err = -ENOENT; 2476 if (cache == NULL) 2477 goto out; 2478 /* Found an entry, is our attribute cache valid? */ 2479 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2480 break; 2481 if (!retry) 2482 break; 2483 err = -ECHILD; 2484 if (!may_block) 2485 goto out; 2486 spin_unlock(&inode->i_lock); 2487 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2488 if (err) 2489 return err; 2490 spin_lock(&inode->i_lock); 2491 retry = false; 2492 } 2493 res->cred = cache->cred; 2494 res->mask = cache->mask; 2495 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2496 err = 0; 2497 out: 2498 spin_unlock(&inode->i_lock); 2499 return err; 2500 out_zap: 2501 spin_unlock(&inode->i_lock); 2502 nfs_access_zap_cache(inode); 2503 return -ENOENT; 2504 } 2505 2506 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2507 { 2508 /* Only check the most recently returned cache entry, 2509 * but do it without locking. 2510 */ 2511 struct nfs_inode *nfsi = NFS_I(inode); 2512 struct nfs_access_entry *cache; 2513 int err = -ECHILD; 2514 struct list_head *lh; 2515 2516 rcu_read_lock(); 2517 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2518 goto out; 2519 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2520 cache = list_entry(lh, struct nfs_access_entry, lru); 2521 if (lh == &nfsi->access_cache_entry_lru || 2522 cred_fscmp(cred, cache->cred) != 0) 2523 cache = NULL; 2524 if (cache == NULL) 2525 goto out; 2526 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2527 goto out; 2528 res->cred = cache->cred; 2529 res->mask = cache->mask; 2530 err = 0; 2531 out: 2532 rcu_read_unlock(); 2533 return err; 2534 } 2535 2536 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2537 { 2538 struct nfs_inode *nfsi = NFS_I(inode); 2539 struct rb_root *root_node = &nfsi->access_cache; 2540 struct rb_node **p = &root_node->rb_node; 2541 struct rb_node *parent = NULL; 2542 struct nfs_access_entry *entry; 2543 int cmp; 2544 2545 spin_lock(&inode->i_lock); 2546 while (*p != NULL) { 2547 parent = *p; 2548 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2549 cmp = cred_fscmp(set->cred, entry->cred); 2550 2551 if (cmp < 0) 2552 p = &parent->rb_left; 2553 else if (cmp > 0) 2554 p = &parent->rb_right; 2555 else 2556 goto found; 2557 } 2558 rb_link_node(&set->rb_node, parent, p); 2559 rb_insert_color(&set->rb_node, root_node); 2560 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2561 spin_unlock(&inode->i_lock); 2562 return; 2563 found: 2564 rb_replace_node(parent, &set->rb_node, root_node); 2565 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2566 list_del(&entry->lru); 2567 spin_unlock(&inode->i_lock); 2568 nfs_access_free_entry(entry); 2569 } 2570 2571 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2572 { 2573 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2574 if (cache == NULL) 2575 return; 2576 RB_CLEAR_NODE(&cache->rb_node); 2577 cache->cred = get_cred(set->cred); 2578 cache->mask = set->mask; 2579 2580 /* The above field assignments must be visible 2581 * before this item appears on the lru. We cannot easily 2582 * use rcu_assign_pointer, so just force the memory barrier. 2583 */ 2584 smp_wmb(); 2585 nfs_access_add_rbtree(inode, cache); 2586 2587 /* Update accounting */ 2588 smp_mb__before_atomic(); 2589 atomic_long_inc(&nfs_access_nr_entries); 2590 smp_mb__after_atomic(); 2591 2592 /* Add inode to global LRU list */ 2593 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2594 spin_lock(&nfs_access_lru_lock); 2595 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2596 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2597 &nfs_access_lru_list); 2598 spin_unlock(&nfs_access_lru_lock); 2599 } 2600 nfs_access_cache_enforce_limit(); 2601 } 2602 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2603 2604 #define NFS_MAY_READ (NFS_ACCESS_READ) 2605 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2606 NFS_ACCESS_EXTEND | \ 2607 NFS_ACCESS_DELETE) 2608 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2609 NFS_ACCESS_EXTEND) 2610 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2611 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2612 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2613 static int 2614 nfs_access_calc_mask(u32 access_result, umode_t umode) 2615 { 2616 int mask = 0; 2617 2618 if (access_result & NFS_MAY_READ) 2619 mask |= MAY_READ; 2620 if (S_ISDIR(umode)) { 2621 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2622 mask |= MAY_WRITE; 2623 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2624 mask |= MAY_EXEC; 2625 } else if (S_ISREG(umode)) { 2626 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2627 mask |= MAY_WRITE; 2628 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2629 mask |= MAY_EXEC; 2630 } else if (access_result & NFS_MAY_WRITE) 2631 mask |= MAY_WRITE; 2632 return mask; 2633 } 2634 2635 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2636 { 2637 entry->mask = access_result; 2638 } 2639 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2640 2641 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2642 { 2643 struct nfs_access_entry cache; 2644 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2645 int cache_mask = -1; 2646 int status; 2647 2648 trace_nfs_access_enter(inode); 2649 2650 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2651 if (status != 0) 2652 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2653 if (status == 0) 2654 goto out_cached; 2655 2656 status = -ECHILD; 2657 if (!may_block) 2658 goto out; 2659 2660 /* 2661 * Determine which access bits we want to ask for... 2662 */ 2663 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2664 if (S_ISDIR(inode->i_mode)) 2665 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2666 else 2667 cache.mask |= NFS_ACCESS_EXECUTE; 2668 cache.cred = cred; 2669 status = NFS_PROTO(inode)->access(inode, &cache); 2670 if (status != 0) { 2671 if (status == -ESTALE) { 2672 if (!S_ISDIR(inode->i_mode)) 2673 nfs_set_inode_stale(inode); 2674 else 2675 nfs_zap_caches(inode); 2676 } 2677 goto out; 2678 } 2679 nfs_access_add_cache(inode, &cache); 2680 out_cached: 2681 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2682 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2683 status = -EACCES; 2684 out: 2685 trace_nfs_access_exit(inode, mask, cache_mask, status); 2686 return status; 2687 } 2688 2689 static int nfs_open_permission_mask(int openflags) 2690 { 2691 int mask = 0; 2692 2693 if (openflags & __FMODE_EXEC) { 2694 /* ONLY check exec rights */ 2695 mask = MAY_EXEC; 2696 } else { 2697 if ((openflags & O_ACCMODE) != O_WRONLY) 2698 mask |= MAY_READ; 2699 if ((openflags & O_ACCMODE) != O_RDONLY) 2700 mask |= MAY_WRITE; 2701 } 2702 2703 return mask; 2704 } 2705 2706 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2707 { 2708 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2709 } 2710 EXPORT_SYMBOL_GPL(nfs_may_open); 2711 2712 static int nfs_execute_ok(struct inode *inode, int mask) 2713 { 2714 struct nfs_server *server = NFS_SERVER(inode); 2715 int ret = 0; 2716 2717 if (S_ISDIR(inode->i_mode)) 2718 return 0; 2719 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2720 if (mask & MAY_NOT_BLOCK) 2721 return -ECHILD; 2722 ret = __nfs_revalidate_inode(server, inode); 2723 } 2724 if (ret == 0 && !execute_ok(inode)) 2725 ret = -EACCES; 2726 return ret; 2727 } 2728 2729 int nfs_permission(struct inode *inode, int mask) 2730 { 2731 const struct cred *cred = current_cred(); 2732 int res = 0; 2733 2734 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2735 2736 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2737 goto out; 2738 /* Is this sys_access() ? */ 2739 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2740 goto force_lookup; 2741 2742 switch (inode->i_mode & S_IFMT) { 2743 case S_IFLNK: 2744 goto out; 2745 case S_IFREG: 2746 if ((mask & MAY_OPEN) && 2747 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2748 return 0; 2749 break; 2750 case S_IFDIR: 2751 /* 2752 * Optimize away all write operations, since the server 2753 * will check permissions when we perform the op. 2754 */ 2755 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2756 goto out; 2757 } 2758 2759 force_lookup: 2760 if (!NFS_PROTO(inode)->access) 2761 goto out_notsup; 2762 2763 res = nfs_do_access(inode, cred, mask); 2764 out: 2765 if (!res && (mask & MAY_EXEC)) 2766 res = nfs_execute_ok(inode, mask); 2767 2768 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2769 inode->i_sb->s_id, inode->i_ino, mask, res); 2770 return res; 2771 out_notsup: 2772 if (mask & MAY_NOT_BLOCK) 2773 return -ECHILD; 2774 2775 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2776 if (res == 0) 2777 res = generic_permission(inode, mask); 2778 goto out; 2779 } 2780 EXPORT_SYMBOL_GPL(nfs_permission); 2781 2782 /* 2783 * Local variables: 2784 * version-control: t 2785 * kept-new-versions: 5 2786 * End: 2787 */ 2788