xref: /linux/fs/nfs/dir.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[];
145 };
146 
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	struct dir_context *ctx;
151 	unsigned long	page_index;
152 	u64		*dir_cookie;
153 	u64		last_cookie;
154 	loff_t		current_index;
155 	loff_t		prev_index;
156 
157 	unsigned long	dir_verifier;
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 static
166 void nfs_readdir_init_array(struct page *page)
167 {
168 	struct nfs_cache_array *array;
169 
170 	array = kmap_atomic(page);
171 	memset(array, 0, sizeof(struct nfs_cache_array));
172 	array->eof_index = -1;
173 	kunmap_atomic(array);
174 }
175 
176 /*
177  * we are freeing strings created by nfs_add_to_readdir_array()
178  */
179 static
180 void nfs_readdir_clear_array(struct page *page)
181 {
182 	struct nfs_cache_array *array;
183 	int i;
184 
185 	array = kmap_atomic(page);
186 	for (i = 0; i < array->size; i++)
187 		kfree(array->array[i].string.name);
188 	array->size = 0;
189 	kunmap_atomic(array);
190 }
191 
192 /*
193  * the caller is responsible for freeing qstr.name
194  * when called by nfs_readdir_add_to_array, the strings will be freed in
195  * nfs_clear_readdir_array()
196  */
197 static
198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 	string->len = len;
201 	string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 	if (string->name == NULL)
203 		return -ENOMEM;
204 	/*
205 	 * Avoid a kmemleak false positive. The pointer to the name is stored
206 	 * in a page cache page which kmemleak does not scan.
207 	 */
208 	kmemleak_not_leak(string->name);
209 	string->hash = full_name_hash(NULL, name, len);
210 	return 0;
211 }
212 
213 static
214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 	struct nfs_cache_array *array = kmap(page);
217 	struct nfs_cache_array_entry *cache_entry;
218 	int ret;
219 
220 	cache_entry = &array->array[array->size];
221 
222 	/* Check that this entry lies within the page bounds */
223 	ret = -ENOSPC;
224 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 		goto out;
226 
227 	cache_entry->cookie = entry->prev_cookie;
228 	cache_entry->ino = entry->ino;
229 	cache_entry->d_type = entry->d_type;
230 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 	if (ret)
232 		goto out;
233 	array->last_cookie = entry->cookie;
234 	array->size++;
235 	if (entry->eof != 0)
236 		array->eof_index = array->size;
237 out:
238 	kunmap(page);
239 	return ret;
240 }
241 
242 static inline
243 int is_32bit_api(void)
244 {
245 #ifdef CONFIG_COMPAT
246 	return in_compat_syscall();
247 #else
248 	return (BITS_PER_LONG == 32);
249 #endif
250 }
251 
252 static
253 bool nfs_readdir_use_cookie(const struct file *filp)
254 {
255 	if ((filp->f_mode & FMODE_32BITHASH) ||
256 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257 		return false;
258 	return true;
259 }
260 
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = true;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->prev_index) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %.*s has duplicate cookie %llu\n",
317 								desc->file, array->array[i].string.len,
318 								array->array[i].string.name, *desc->dir_cookie);
319 					}
320 					status = -ELOOP;
321 					goto out;
322 				}
323 				ctx->dup_cookie = *desc->dir_cookie;
324 				ctx->duped = -1;
325 			}
326 			if (nfs_readdir_use_cookie(desc->file))
327 				desc->ctx->pos = *desc->dir_cookie;
328 			else
329 				desc->ctx->pos = new_pos;
330 			desc->prev_index = new_pos;
331 			desc->cache_entry_index = i;
332 			return 0;
333 		}
334 	}
335 	if (array->eof_index >= 0) {
336 		status = -EBADCOOKIE;
337 		if (*desc->dir_cookie == array->last_cookie)
338 			desc->eof = true;
339 	}
340 out:
341 	return status;
342 }
343 
344 static
345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
346 {
347 	struct nfs_cache_array *array;
348 	int status;
349 
350 	array = kmap(desc->page);
351 
352 	if (*desc->dir_cookie == 0)
353 		status = nfs_readdir_search_for_pos(array, desc);
354 	else
355 		status = nfs_readdir_search_for_cookie(array, desc);
356 
357 	if (status == -EAGAIN) {
358 		desc->last_cookie = array->last_cookie;
359 		desc->current_index += array->size;
360 		desc->page_index++;
361 	}
362 	kunmap(desc->page);
363 	return status;
364 }
365 
366 /* Fill a page with xdr information before transferring to the cache page */
367 static
368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 			struct nfs_entry *entry, struct file *file, struct inode *inode)
370 {
371 	struct nfs_open_dir_context *ctx = file->private_data;
372 	const struct cred *cred = ctx->cred;
373 	unsigned long	timestamp, gencount;
374 	int		error;
375 
376  again:
377 	timestamp = jiffies;
378 	gencount = nfs_inc_attr_generation_counter();
379 	desc->dir_verifier = nfs_save_change_attribute(inode);
380 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 					  NFS_SERVER(inode)->dtsize, desc->plus);
382 	if (error < 0) {
383 		/* We requested READDIRPLUS, but the server doesn't grok it */
384 		if (error == -ENOTSUPP && desc->plus) {
385 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 			desc->plus = false;
388 			goto again;
389 		}
390 		goto error;
391 	}
392 	desc->timestamp = timestamp;
393 	desc->gencount = gencount;
394 error:
395 	return error;
396 }
397 
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 		      struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 	struct inode *inode = file_inode(desc->file);
402 	int error;
403 
404 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405 	if (error)
406 		return error;
407 	entry->fattr->time_start = desc->timestamp;
408 	entry->fattr->gencount = desc->gencount;
409 	return 0;
410 }
411 
412 /* Match file and dirent using either filehandle or fileid
413  * Note: caller is responsible for checking the fsid
414  */
415 static
416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 {
418 	struct inode *inode;
419 	struct nfs_inode *nfsi;
420 
421 	if (d_really_is_negative(dentry))
422 		return 0;
423 
424 	inode = d_inode(dentry);
425 	if (is_bad_inode(inode) || NFS_STALE(inode))
426 		return 0;
427 
428 	nfsi = NFS_I(inode);
429 	if (entry->fattr->fileid != nfsi->fileid)
430 		return 0;
431 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432 		return 0;
433 	return 1;
434 }
435 
436 static
437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
438 {
439 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440 		return false;
441 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442 		return true;
443 	if (ctx->pos == 0)
444 		return true;
445 	return false;
446 }
447 
448 /*
449  * This function is called by the lookup and getattr code to request the
450  * use of readdirplus to accelerate any future lookups in the same
451  * directory.
452  */
453 void nfs_advise_use_readdirplus(struct inode *dir)
454 {
455 	struct nfs_inode *nfsi = NFS_I(dir);
456 
457 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 	    !list_empty(&nfsi->open_files))
459 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
460 }
461 
462 /*
463  * This function is mainly for use by nfs_getattr().
464  *
465  * If this is an 'ls -l', we want to force use of readdirplus.
466  * Do this by checking if there is an active file descriptor
467  * and calling nfs_advise_use_readdirplus, then forcing a
468  * cache flush.
469  */
470 void nfs_force_use_readdirplus(struct inode *dir)
471 {
472 	struct nfs_inode *nfsi = NFS_I(dir);
473 
474 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 	    !list_empty(&nfsi->open_files)) {
476 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 		invalidate_mapping_pages(dir->i_mapping,
478 			nfsi->page_index + 1, -1);
479 	}
480 }
481 
482 static
483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 		unsigned long dir_verifier)
485 {
486 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 	struct dentry *dentry;
489 	struct dentry *alias;
490 	struct inode *inode;
491 	int status;
492 
493 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494 		return;
495 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496 		return;
497 	if (filename.len == 0)
498 		return;
499 	/* Validate that the name doesn't contain any illegal '\0' */
500 	if (strnlen(filename.name, filename.len) != filename.len)
501 		return;
502 	/* ...or '/' */
503 	if (strnchr(filename.name, filename.len, '/'))
504 		return;
505 	if (filename.name[0] == '.') {
506 		if (filename.len == 1)
507 			return;
508 		if (filename.len == 2 && filename.name[1] == '.')
509 			return;
510 	}
511 	filename.hash = full_name_hash(parent, filename.name, filename.len);
512 
513 	dentry = d_lookup(parent, &filename);
514 again:
515 	if (!dentry) {
516 		dentry = d_alloc_parallel(parent, &filename, &wq);
517 		if (IS_ERR(dentry))
518 			return;
519 	}
520 	if (!d_in_lookup(dentry)) {
521 		/* Is there a mountpoint here? If so, just exit */
522 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 					&entry->fattr->fsid))
524 			goto out;
525 		if (nfs_same_file(dentry, entry)) {
526 			if (!entry->fh->size)
527 				goto out;
528 			nfs_set_verifier(dentry, dir_verifier);
529 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530 			if (!status)
531 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532 			goto out;
533 		} else {
534 			d_invalidate(dentry);
535 			dput(dentry);
536 			dentry = NULL;
537 			goto again;
538 		}
539 	}
540 	if (!entry->fh->size) {
541 		d_lookup_done(dentry);
542 		goto out;
543 	}
544 
545 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 	alias = d_splice_alias(inode, dentry);
547 	d_lookup_done(dentry);
548 	if (alias) {
549 		if (IS_ERR(alias))
550 			goto out;
551 		dput(dentry);
552 		dentry = alias;
553 	}
554 	nfs_set_verifier(dentry, dir_verifier);
555 out:
556 	dput(dentry);
557 }
558 
559 /* Perform conversion from xdr to cache array */
560 static
561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 				struct page **xdr_pages, struct page *page, unsigned int buflen)
563 {
564 	struct xdr_stream stream;
565 	struct xdr_buf buf;
566 	struct page *scratch;
567 	struct nfs_cache_array *array;
568 	unsigned int count = 0;
569 	int status;
570 
571 	scratch = alloc_page(GFP_KERNEL);
572 	if (scratch == NULL)
573 		return -ENOMEM;
574 
575 	if (buflen == 0)
576 		goto out_nopages;
577 
578 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
580 
581 	do {
582 		status = xdr_decode(desc, entry, &stream);
583 		if (status != 0) {
584 			if (status == -EAGAIN)
585 				status = 0;
586 			break;
587 		}
588 
589 		count++;
590 
591 		if (desc->plus)
592 			nfs_prime_dcache(file_dentry(desc->file), entry,
593 					desc->dir_verifier);
594 
595 		status = nfs_readdir_add_to_array(entry, page);
596 		if (status != 0)
597 			break;
598 	} while (!entry->eof);
599 
600 out_nopages:
601 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
602 		array = kmap(page);
603 		array->eof_index = array->size;
604 		status = 0;
605 		kunmap(page);
606 	}
607 
608 	put_page(scratch);
609 	return status;
610 }
611 
612 static
613 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
614 {
615 	unsigned int i;
616 	for (i = 0; i < npages; i++)
617 		put_page(pages[i]);
618 }
619 
620 /*
621  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
622  * to nfs_readdir_free_pages()
623  */
624 static
625 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
626 {
627 	unsigned int i;
628 
629 	for (i = 0; i < npages; i++) {
630 		struct page *page = alloc_page(GFP_KERNEL);
631 		if (page == NULL)
632 			goto out_freepages;
633 		pages[i] = page;
634 	}
635 	return 0;
636 
637 out_freepages:
638 	nfs_readdir_free_pages(pages, i);
639 	return -ENOMEM;
640 }
641 
642 static
643 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
644 {
645 	struct page *pages[NFS_MAX_READDIR_PAGES];
646 	struct nfs_entry entry;
647 	struct file	*file = desc->file;
648 	struct nfs_cache_array *array;
649 	int status = -ENOMEM;
650 	unsigned int array_size = ARRAY_SIZE(pages);
651 
652 	nfs_readdir_init_array(page);
653 
654 	entry.prev_cookie = 0;
655 	entry.cookie = desc->last_cookie;
656 	entry.eof = 0;
657 	entry.fh = nfs_alloc_fhandle();
658 	entry.fattr = nfs_alloc_fattr();
659 	entry.server = NFS_SERVER(inode);
660 	if (entry.fh == NULL || entry.fattr == NULL)
661 		goto out;
662 
663 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
664 	if (IS_ERR(entry.label)) {
665 		status = PTR_ERR(entry.label);
666 		goto out;
667 	}
668 
669 	array = kmap(page);
670 
671 	status = nfs_readdir_alloc_pages(pages, array_size);
672 	if (status < 0)
673 		goto out_release_array;
674 	do {
675 		unsigned int pglen;
676 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
677 
678 		if (status < 0)
679 			break;
680 		pglen = status;
681 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
682 		if (status < 0) {
683 			if (status == -ENOSPC)
684 				status = 0;
685 			break;
686 		}
687 	} while (array->eof_index < 0);
688 
689 	nfs_readdir_free_pages(pages, array_size);
690 out_release_array:
691 	kunmap(page);
692 	nfs4_label_free(entry.label);
693 out:
694 	nfs_free_fattr(entry.fattr);
695 	nfs_free_fhandle(entry.fh);
696 	return status;
697 }
698 
699 /*
700  * Now we cache directories properly, by converting xdr information
701  * to an array that can be used for lookups later.  This results in
702  * fewer cache pages, since we can store more information on each page.
703  * We only need to convert from xdr once so future lookups are much simpler
704  */
705 static
706 int nfs_readdir_filler(void *data, struct page* page)
707 {
708 	nfs_readdir_descriptor_t *desc = data;
709 	struct inode	*inode = file_inode(desc->file);
710 	int ret;
711 
712 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
713 	if (ret < 0)
714 		goto error;
715 	SetPageUptodate(page);
716 
717 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
718 		/* Should never happen */
719 		nfs_zap_mapping(inode, inode->i_mapping);
720 	}
721 	unlock_page(page);
722 	return 0;
723  error:
724 	nfs_readdir_clear_array(page);
725 	unlock_page(page);
726 	return ret;
727 }
728 
729 static
730 void cache_page_release(nfs_readdir_descriptor_t *desc)
731 {
732 	put_page(desc->page);
733 	desc->page = NULL;
734 }
735 
736 static
737 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
738 {
739 	return read_cache_page(desc->file->f_mapping, desc->page_index,
740 			nfs_readdir_filler, desc);
741 }
742 
743 /*
744  * Returns 0 if desc->dir_cookie was found on page desc->page_index
745  * and locks the page to prevent removal from the page cache.
746  */
747 static
748 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
749 {
750 	struct inode *inode = file_inode(desc->file);
751 	struct nfs_inode *nfsi = NFS_I(inode);
752 	int res;
753 
754 	desc->page = get_cache_page(desc);
755 	if (IS_ERR(desc->page))
756 		return PTR_ERR(desc->page);
757 	res = lock_page_killable(desc->page);
758 	if (res != 0)
759 		goto error;
760 	res = -EAGAIN;
761 	if (desc->page->mapping != NULL) {
762 		res = nfs_readdir_search_array(desc);
763 		if (res == 0) {
764 			nfsi->page_index = desc->page_index;
765 			return 0;
766 		}
767 	}
768 	unlock_page(desc->page);
769 error:
770 	cache_page_release(desc);
771 	return res;
772 }
773 
774 /* Search for desc->dir_cookie from the beginning of the page cache */
775 static inline
776 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
777 {
778 	int res;
779 
780 	if (desc->page_index == 0) {
781 		desc->current_index = 0;
782 		desc->prev_index = 0;
783 		desc->last_cookie = 0;
784 	}
785 	do {
786 		res = find_and_lock_cache_page(desc);
787 	} while (res == -EAGAIN);
788 	return res;
789 }
790 
791 /*
792  * Once we've found the start of the dirent within a page: fill 'er up...
793  */
794 static
795 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
796 {
797 	struct file	*file = desc->file;
798 	int i = 0;
799 	int res = 0;
800 	struct nfs_cache_array *array = NULL;
801 	struct nfs_open_dir_context *ctx = file->private_data;
802 
803 	array = kmap(desc->page);
804 	for (i = desc->cache_entry_index; i < array->size; i++) {
805 		struct nfs_cache_array_entry *ent;
806 
807 		ent = &array->array[i];
808 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
809 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
810 			desc->eof = true;
811 			break;
812 		}
813 		if (i < (array->size-1))
814 			*desc->dir_cookie = array->array[i+1].cookie;
815 		else
816 			*desc->dir_cookie = array->last_cookie;
817 		if (nfs_readdir_use_cookie(file))
818 			desc->ctx->pos = *desc->dir_cookie;
819 		else
820 			desc->ctx->pos++;
821 		if (ctx->duped != 0)
822 			ctx->duped = 1;
823 	}
824 	if (array->eof_index >= 0)
825 		desc->eof = true;
826 
827 	kunmap(desc->page);
828 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
829 			(unsigned long long)*desc->dir_cookie, res);
830 	return res;
831 }
832 
833 /*
834  * If we cannot find a cookie in our cache, we suspect that this is
835  * because it points to a deleted file, so we ask the server to return
836  * whatever it thinks is the next entry. We then feed this to filldir.
837  * If all goes well, we should then be able to find our way round the
838  * cache on the next call to readdir_search_pagecache();
839  *
840  * NOTE: we cannot add the anonymous page to the pagecache because
841  *	 the data it contains might not be page aligned. Besides,
842  *	 we should already have a complete representation of the
843  *	 directory in the page cache by the time we get here.
844  */
845 static inline
846 int uncached_readdir(nfs_readdir_descriptor_t *desc)
847 {
848 	struct page	*page = NULL;
849 	int		status;
850 	struct inode *inode = file_inode(desc->file);
851 	struct nfs_open_dir_context *ctx = desc->file->private_data;
852 
853 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
854 			(unsigned long long)*desc->dir_cookie);
855 
856 	page = alloc_page(GFP_HIGHUSER);
857 	if (!page) {
858 		status = -ENOMEM;
859 		goto out;
860 	}
861 
862 	desc->page_index = 0;
863 	desc->last_cookie = *desc->dir_cookie;
864 	desc->page = page;
865 	ctx->duped = 0;
866 
867 	status = nfs_readdir_xdr_to_array(desc, page, inode);
868 	if (status < 0)
869 		goto out_release;
870 
871 	status = nfs_do_filldir(desc);
872 
873  out_release:
874 	nfs_readdir_clear_array(desc->page);
875 	cache_page_release(desc);
876  out:
877 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
878 			__func__, status);
879 	return status;
880 }
881 
882 /* The file offset position represents the dirent entry number.  A
883    last cookie cache takes care of the common case of reading the
884    whole directory.
885  */
886 static int nfs_readdir(struct file *file, struct dir_context *ctx)
887 {
888 	struct dentry	*dentry = file_dentry(file);
889 	struct inode	*inode = d_inode(dentry);
890 	struct nfs_open_dir_context *dir_ctx = file->private_data;
891 	nfs_readdir_descriptor_t my_desc = {
892 		.file = file,
893 		.ctx = ctx,
894 		.dir_cookie = &dir_ctx->dir_cookie,
895 		.plus = nfs_use_readdirplus(inode, ctx),
896 	},
897 			*desc = &my_desc;
898 	int res = 0;
899 
900 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
901 			file, (long long)ctx->pos);
902 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
903 
904 	/*
905 	 * ctx->pos points to the dirent entry number.
906 	 * *desc->dir_cookie has the cookie for the next entry. We have
907 	 * to either find the entry with the appropriate number or
908 	 * revalidate the cookie.
909 	 */
910 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
911 		res = nfs_revalidate_mapping(inode, file->f_mapping);
912 	if (res < 0)
913 		goto out;
914 
915 	do {
916 		res = readdir_search_pagecache(desc);
917 
918 		if (res == -EBADCOOKIE) {
919 			res = 0;
920 			/* This means either end of directory */
921 			if (*desc->dir_cookie && !desc->eof) {
922 				/* Or that the server has 'lost' a cookie */
923 				res = uncached_readdir(desc);
924 				if (res == 0)
925 					continue;
926 			}
927 			break;
928 		}
929 		if (res == -ETOOSMALL && desc->plus) {
930 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
931 			nfs_zap_caches(inode);
932 			desc->page_index = 0;
933 			desc->plus = false;
934 			desc->eof = false;
935 			continue;
936 		}
937 		if (res < 0)
938 			break;
939 
940 		res = nfs_do_filldir(desc);
941 		unlock_page(desc->page);
942 		cache_page_release(desc);
943 		if (res < 0)
944 			break;
945 	} while (!desc->eof);
946 out:
947 	if (res > 0)
948 		res = 0;
949 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
950 	return res;
951 }
952 
953 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
954 {
955 	struct inode *inode = file_inode(filp);
956 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
957 
958 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
959 			filp, offset, whence);
960 
961 	switch (whence) {
962 	default:
963 		return -EINVAL;
964 	case SEEK_SET:
965 		if (offset < 0)
966 			return -EINVAL;
967 		inode_lock(inode);
968 		break;
969 	case SEEK_CUR:
970 		if (offset == 0)
971 			return filp->f_pos;
972 		inode_lock(inode);
973 		offset += filp->f_pos;
974 		if (offset < 0) {
975 			inode_unlock(inode);
976 			return -EINVAL;
977 		}
978 	}
979 	if (offset != filp->f_pos) {
980 		filp->f_pos = offset;
981 		if (nfs_readdir_use_cookie(filp))
982 			dir_ctx->dir_cookie = offset;
983 		else
984 			dir_ctx->dir_cookie = 0;
985 		dir_ctx->duped = 0;
986 	}
987 	inode_unlock(inode);
988 	return offset;
989 }
990 
991 /*
992  * All directory operations under NFS are synchronous, so fsync()
993  * is a dummy operation.
994  */
995 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
996 			 int datasync)
997 {
998 	struct inode *inode = file_inode(filp);
999 
1000 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001 
1002 	inode_lock(inode);
1003 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1004 	inode_unlock(inode);
1005 	return 0;
1006 }
1007 
1008 /**
1009  * nfs_force_lookup_revalidate - Mark the directory as having changed
1010  * @dir: pointer to directory inode
1011  *
1012  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1013  * full lookup on all child dentries of 'dir' whenever a change occurs
1014  * on the server that might have invalidated our dcache.
1015  *
1016  * Note that we reserve bit '0' as a tag to let us know when a dentry
1017  * was revalidated while holding a delegation on its inode.
1018  *
1019  * The caller should be holding dir->i_lock
1020  */
1021 void nfs_force_lookup_revalidate(struct inode *dir)
1022 {
1023 	NFS_I(dir)->cache_change_attribute += 2;
1024 }
1025 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1026 
1027 /**
1028  * nfs_verify_change_attribute - Detects NFS remote directory changes
1029  * @dir: pointer to parent directory inode
1030  * @verf: previously saved change attribute
1031  *
1032  * Return "false" if the verifiers doesn't match the change attribute.
1033  * This would usually indicate that the directory contents have changed on
1034  * the server, and that any dentries need revalidating.
1035  */
1036 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1037 {
1038 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1039 }
1040 
1041 static void nfs_set_verifier_delegated(unsigned long *verf)
1042 {
1043 	*verf |= 1UL;
1044 }
1045 
1046 #if IS_ENABLED(CONFIG_NFS_V4)
1047 static void nfs_unset_verifier_delegated(unsigned long *verf)
1048 {
1049 	*verf &= ~1UL;
1050 }
1051 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1052 
1053 static bool nfs_test_verifier_delegated(unsigned long verf)
1054 {
1055 	return verf & 1;
1056 }
1057 
1058 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1059 {
1060 	return nfs_test_verifier_delegated(dentry->d_time);
1061 }
1062 
1063 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1064 {
1065 	struct inode *inode = d_inode(dentry);
1066 
1067 	if (!nfs_verifier_is_delegated(dentry) &&
1068 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1069 		goto out;
1070 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1071 		nfs_set_verifier_delegated(&verf);
1072 out:
1073 	dentry->d_time = verf;
1074 }
1075 
1076 /**
1077  * nfs_set_verifier - save a parent directory verifier in the dentry
1078  * @dentry: pointer to dentry
1079  * @verf: verifier to save
1080  *
1081  * Saves the parent directory verifier in @dentry. If the inode has
1082  * a delegation, we also tag the dentry as having been revalidated
1083  * while holding a delegation so that we know we don't have to
1084  * look it up again after a directory change.
1085  */
1086 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1087 {
1088 
1089 	spin_lock(&dentry->d_lock);
1090 	nfs_set_verifier_locked(dentry, verf);
1091 	spin_unlock(&dentry->d_lock);
1092 }
1093 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1094 
1095 #if IS_ENABLED(CONFIG_NFS_V4)
1096 /**
1097  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1098  * @inode: pointer to inode
1099  *
1100  * Iterates through the dentries in the inode alias list and clears
1101  * the tag used to indicate that the dentry has been revalidated
1102  * while holding a delegation.
1103  * This function is intended for use when the delegation is being
1104  * returned or revoked.
1105  */
1106 void nfs_clear_verifier_delegated(struct inode *inode)
1107 {
1108 	struct dentry *alias;
1109 
1110 	if (!inode)
1111 		return;
1112 	spin_lock(&inode->i_lock);
1113 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1114 		spin_lock(&alias->d_lock);
1115 		nfs_unset_verifier_delegated(&alias->d_time);
1116 		spin_unlock(&alias->d_lock);
1117 	}
1118 	spin_unlock(&inode->i_lock);
1119 }
1120 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1121 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1122 
1123 /*
1124  * A check for whether or not the parent directory has changed.
1125  * In the case it has, we assume that the dentries are untrustworthy
1126  * and may need to be looked up again.
1127  * If rcu_walk prevents us from performing a full check, return 0.
1128  */
1129 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1130 			      int rcu_walk)
1131 {
1132 	if (IS_ROOT(dentry))
1133 		return 1;
1134 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1135 		return 0;
1136 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1137 		return 0;
1138 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1139 	if (nfs_mapping_need_revalidate_inode(dir)) {
1140 		if (rcu_walk)
1141 			return 0;
1142 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1143 			return 0;
1144 	}
1145 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1146 		return 0;
1147 	return 1;
1148 }
1149 
1150 /*
1151  * Use intent information to check whether or not we're going to do
1152  * an O_EXCL create using this path component.
1153  */
1154 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1155 {
1156 	if (NFS_PROTO(dir)->version == 2)
1157 		return 0;
1158 	return flags & LOOKUP_EXCL;
1159 }
1160 
1161 /*
1162  * Inode and filehandle revalidation for lookups.
1163  *
1164  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1165  * or if the intent information indicates that we're about to open this
1166  * particular file and the "nocto" mount flag is not set.
1167  *
1168  */
1169 static
1170 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1171 {
1172 	struct nfs_server *server = NFS_SERVER(inode);
1173 	int ret;
1174 
1175 	if (IS_AUTOMOUNT(inode))
1176 		return 0;
1177 
1178 	if (flags & LOOKUP_OPEN) {
1179 		switch (inode->i_mode & S_IFMT) {
1180 		case S_IFREG:
1181 			/* A NFSv4 OPEN will revalidate later */
1182 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1183 				goto out;
1184 			/* Fallthrough */
1185 		case S_IFDIR:
1186 			if (server->flags & NFS_MOUNT_NOCTO)
1187 				break;
1188 			/* NFS close-to-open cache consistency validation */
1189 			goto out_force;
1190 		}
1191 	}
1192 
1193 	/* VFS wants an on-the-wire revalidation */
1194 	if (flags & LOOKUP_REVAL)
1195 		goto out_force;
1196 out:
1197 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1198 out_force:
1199 	if (flags & LOOKUP_RCU)
1200 		return -ECHILD;
1201 	ret = __nfs_revalidate_inode(server, inode);
1202 	if (ret != 0)
1203 		return ret;
1204 	goto out;
1205 }
1206 
1207 /*
1208  * We judge how long we want to trust negative
1209  * dentries by looking at the parent inode mtime.
1210  *
1211  * If parent mtime has changed, we revalidate, else we wait for a
1212  * period corresponding to the parent's attribute cache timeout value.
1213  *
1214  * If LOOKUP_RCU prevents us from performing a full check, return 1
1215  * suggesting a reval is needed.
1216  *
1217  * Note that when creating a new file, or looking up a rename target,
1218  * then it shouldn't be necessary to revalidate a negative dentry.
1219  */
1220 static inline
1221 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1222 		       unsigned int flags)
1223 {
1224 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1225 		return 0;
1226 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1227 		return 1;
1228 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1229 }
1230 
1231 static int
1232 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1233 			   struct inode *inode, int error)
1234 {
1235 	switch (error) {
1236 	case 1:
1237 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1238 			__func__, dentry);
1239 		return 1;
1240 	case 0:
1241 		nfs_mark_for_revalidate(dir);
1242 		if (inode && S_ISDIR(inode->i_mode)) {
1243 			/* Purge readdir caches. */
1244 			nfs_zap_caches(inode);
1245 			/*
1246 			 * We can't d_drop the root of a disconnected tree:
1247 			 * its d_hash is on the s_anon list and d_drop() would hide
1248 			 * it from shrink_dcache_for_unmount(), leading to busy
1249 			 * inodes on unmount and further oopses.
1250 			 */
1251 			if (IS_ROOT(dentry))
1252 				return 1;
1253 		}
1254 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1255 				__func__, dentry);
1256 		return 0;
1257 	}
1258 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1259 				__func__, dentry, error);
1260 	return error;
1261 }
1262 
1263 static int
1264 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1265 			       unsigned int flags)
1266 {
1267 	int ret = 1;
1268 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1269 		if (flags & LOOKUP_RCU)
1270 			return -ECHILD;
1271 		ret = 0;
1272 	}
1273 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1274 }
1275 
1276 static int
1277 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1278 				struct inode *inode)
1279 {
1280 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1281 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1282 }
1283 
1284 static int
1285 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1286 			     struct inode *inode)
1287 {
1288 	struct nfs_fh *fhandle;
1289 	struct nfs_fattr *fattr;
1290 	struct nfs4_label *label;
1291 	unsigned long dir_verifier;
1292 	int ret;
1293 
1294 	ret = -ENOMEM;
1295 	fhandle = nfs_alloc_fhandle();
1296 	fattr = nfs_alloc_fattr();
1297 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1298 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1299 		goto out;
1300 
1301 	dir_verifier = nfs_save_change_attribute(dir);
1302 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1303 	if (ret < 0) {
1304 		switch (ret) {
1305 		case -ESTALE:
1306 		case -ENOENT:
1307 			ret = 0;
1308 			break;
1309 		case -ETIMEDOUT:
1310 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1311 				ret = 1;
1312 		}
1313 		goto out;
1314 	}
1315 	ret = 0;
1316 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1317 		goto out;
1318 	if (nfs_refresh_inode(inode, fattr) < 0)
1319 		goto out;
1320 
1321 	nfs_setsecurity(inode, fattr, label);
1322 	nfs_set_verifier(dentry, dir_verifier);
1323 
1324 	/* set a readdirplus hint that we had a cache miss */
1325 	nfs_force_use_readdirplus(dir);
1326 	ret = 1;
1327 out:
1328 	nfs_free_fattr(fattr);
1329 	nfs_free_fhandle(fhandle);
1330 	nfs4_label_free(label);
1331 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1332 }
1333 
1334 /*
1335  * This is called every time the dcache has a lookup hit,
1336  * and we should check whether we can really trust that
1337  * lookup.
1338  *
1339  * NOTE! The hit can be a negative hit too, don't assume
1340  * we have an inode!
1341  *
1342  * If the parent directory is seen to have changed, we throw out the
1343  * cached dentry and do a new lookup.
1344  */
1345 static int
1346 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1347 			 unsigned int flags)
1348 {
1349 	struct inode *inode;
1350 	int error;
1351 
1352 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1353 	inode = d_inode(dentry);
1354 
1355 	if (!inode)
1356 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1357 
1358 	if (is_bad_inode(inode)) {
1359 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1360 				__func__, dentry);
1361 		goto out_bad;
1362 	}
1363 
1364 	if (nfs_verifier_is_delegated(dentry))
1365 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1366 
1367 	/* Force a full look up iff the parent directory has changed */
1368 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1369 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1370 		error = nfs_lookup_verify_inode(inode, flags);
1371 		if (error) {
1372 			if (error == -ESTALE)
1373 				nfs_zap_caches(dir);
1374 			goto out_bad;
1375 		}
1376 		nfs_advise_use_readdirplus(dir);
1377 		goto out_valid;
1378 	}
1379 
1380 	if (flags & LOOKUP_RCU)
1381 		return -ECHILD;
1382 
1383 	if (NFS_STALE(inode))
1384 		goto out_bad;
1385 
1386 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1387 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1388 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1389 	return error;
1390 out_valid:
1391 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1392 out_bad:
1393 	if (flags & LOOKUP_RCU)
1394 		return -ECHILD;
1395 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1396 }
1397 
1398 static int
1399 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1400 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1401 {
1402 	struct dentry *parent;
1403 	struct inode *dir;
1404 	int ret;
1405 
1406 	if (flags & LOOKUP_RCU) {
1407 		parent = READ_ONCE(dentry->d_parent);
1408 		dir = d_inode_rcu(parent);
1409 		if (!dir)
1410 			return -ECHILD;
1411 		ret = reval(dir, dentry, flags);
1412 		if (parent != READ_ONCE(dentry->d_parent))
1413 			return -ECHILD;
1414 	} else {
1415 		parent = dget_parent(dentry);
1416 		ret = reval(d_inode(parent), dentry, flags);
1417 		dput(parent);
1418 	}
1419 	return ret;
1420 }
1421 
1422 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1423 {
1424 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1425 }
1426 
1427 /*
1428  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1429  * when we don't really care about the dentry name. This is called when a
1430  * pathwalk ends on a dentry that was not found via a normal lookup in the
1431  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1432  *
1433  * In this situation, we just want to verify that the inode itself is OK
1434  * since the dentry might have changed on the server.
1435  */
1436 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1437 {
1438 	struct inode *inode = d_inode(dentry);
1439 	int error = 0;
1440 
1441 	/*
1442 	 * I believe we can only get a negative dentry here in the case of a
1443 	 * procfs-style symlink. Just assume it's correct for now, but we may
1444 	 * eventually need to do something more here.
1445 	 */
1446 	if (!inode) {
1447 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1448 				__func__, dentry);
1449 		return 1;
1450 	}
1451 
1452 	if (is_bad_inode(inode)) {
1453 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1454 				__func__, dentry);
1455 		return 0;
1456 	}
1457 
1458 	error = nfs_lookup_verify_inode(inode, flags);
1459 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1460 			__func__, inode->i_ino, error ? "invalid" : "valid");
1461 	return !error;
1462 }
1463 
1464 /*
1465  * This is called from dput() when d_count is going to 0.
1466  */
1467 static int nfs_dentry_delete(const struct dentry *dentry)
1468 {
1469 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1470 		dentry, dentry->d_flags);
1471 
1472 	/* Unhash any dentry with a stale inode */
1473 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1474 		return 1;
1475 
1476 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1477 		/* Unhash it, so that ->d_iput() would be called */
1478 		return 1;
1479 	}
1480 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1481 		/* Unhash it, so that ancestors of killed async unlink
1482 		 * files will be cleaned up during umount */
1483 		return 1;
1484 	}
1485 	return 0;
1486 
1487 }
1488 
1489 /* Ensure that we revalidate inode->i_nlink */
1490 static void nfs_drop_nlink(struct inode *inode)
1491 {
1492 	spin_lock(&inode->i_lock);
1493 	/* drop the inode if we're reasonably sure this is the last link */
1494 	if (inode->i_nlink > 0)
1495 		drop_nlink(inode);
1496 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1497 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1498 		| NFS_INO_INVALID_CTIME
1499 		| NFS_INO_INVALID_OTHER
1500 		| NFS_INO_REVAL_FORCED;
1501 	spin_unlock(&inode->i_lock);
1502 }
1503 
1504 /*
1505  * Called when the dentry loses inode.
1506  * We use it to clean up silly-renamed files.
1507  */
1508 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1509 {
1510 	if (S_ISDIR(inode->i_mode))
1511 		/* drop any readdir cache as it could easily be old */
1512 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1513 
1514 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1515 		nfs_complete_unlink(dentry, inode);
1516 		nfs_drop_nlink(inode);
1517 	}
1518 	iput(inode);
1519 }
1520 
1521 static void nfs_d_release(struct dentry *dentry)
1522 {
1523 	/* free cached devname value, if it survived that far */
1524 	if (unlikely(dentry->d_fsdata)) {
1525 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1526 			WARN_ON(1);
1527 		else
1528 			kfree(dentry->d_fsdata);
1529 	}
1530 }
1531 
1532 const struct dentry_operations nfs_dentry_operations = {
1533 	.d_revalidate	= nfs_lookup_revalidate,
1534 	.d_weak_revalidate	= nfs_weak_revalidate,
1535 	.d_delete	= nfs_dentry_delete,
1536 	.d_iput		= nfs_dentry_iput,
1537 	.d_automount	= nfs_d_automount,
1538 	.d_release	= nfs_d_release,
1539 };
1540 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1541 
1542 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1543 {
1544 	struct dentry *res;
1545 	struct inode *inode = NULL;
1546 	struct nfs_fh *fhandle = NULL;
1547 	struct nfs_fattr *fattr = NULL;
1548 	struct nfs4_label *label = NULL;
1549 	unsigned long dir_verifier;
1550 	int error;
1551 
1552 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1553 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1554 
1555 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1556 		return ERR_PTR(-ENAMETOOLONG);
1557 
1558 	/*
1559 	 * If we're doing an exclusive create, optimize away the lookup
1560 	 * but don't hash the dentry.
1561 	 */
1562 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1563 		return NULL;
1564 
1565 	res = ERR_PTR(-ENOMEM);
1566 	fhandle = nfs_alloc_fhandle();
1567 	fattr = nfs_alloc_fattr();
1568 	if (fhandle == NULL || fattr == NULL)
1569 		goto out;
1570 
1571 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1572 	if (IS_ERR(label))
1573 		goto out;
1574 
1575 	dir_verifier = nfs_save_change_attribute(dir);
1576 	trace_nfs_lookup_enter(dir, dentry, flags);
1577 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1578 	if (error == -ENOENT)
1579 		goto no_entry;
1580 	if (error < 0) {
1581 		res = ERR_PTR(error);
1582 		goto out_label;
1583 	}
1584 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1585 	res = ERR_CAST(inode);
1586 	if (IS_ERR(res))
1587 		goto out_label;
1588 
1589 	/* Notify readdir to use READDIRPLUS */
1590 	nfs_force_use_readdirplus(dir);
1591 
1592 no_entry:
1593 	res = d_splice_alias(inode, dentry);
1594 	if (res != NULL) {
1595 		if (IS_ERR(res))
1596 			goto out_label;
1597 		dentry = res;
1598 	}
1599 	nfs_set_verifier(dentry, dir_verifier);
1600 out_label:
1601 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1602 	nfs4_label_free(label);
1603 out:
1604 	nfs_free_fattr(fattr);
1605 	nfs_free_fhandle(fhandle);
1606 	return res;
1607 }
1608 EXPORT_SYMBOL_GPL(nfs_lookup);
1609 
1610 #if IS_ENABLED(CONFIG_NFS_V4)
1611 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1612 
1613 const struct dentry_operations nfs4_dentry_operations = {
1614 	.d_revalidate	= nfs4_lookup_revalidate,
1615 	.d_weak_revalidate	= nfs_weak_revalidate,
1616 	.d_delete	= nfs_dentry_delete,
1617 	.d_iput		= nfs_dentry_iput,
1618 	.d_automount	= nfs_d_automount,
1619 	.d_release	= nfs_d_release,
1620 };
1621 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1622 
1623 static fmode_t flags_to_mode(int flags)
1624 {
1625 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1626 	if ((flags & O_ACCMODE) != O_WRONLY)
1627 		res |= FMODE_READ;
1628 	if ((flags & O_ACCMODE) != O_RDONLY)
1629 		res |= FMODE_WRITE;
1630 	return res;
1631 }
1632 
1633 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1634 {
1635 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1636 }
1637 
1638 static int do_open(struct inode *inode, struct file *filp)
1639 {
1640 	nfs_fscache_open_file(inode, filp);
1641 	return 0;
1642 }
1643 
1644 static int nfs_finish_open(struct nfs_open_context *ctx,
1645 			   struct dentry *dentry,
1646 			   struct file *file, unsigned open_flags)
1647 {
1648 	int err;
1649 
1650 	err = finish_open(file, dentry, do_open);
1651 	if (err)
1652 		goto out;
1653 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1654 		nfs_file_set_open_context(file, ctx);
1655 	else
1656 		err = -EOPENSTALE;
1657 out:
1658 	return err;
1659 }
1660 
1661 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1662 		    struct file *file, unsigned open_flags,
1663 		    umode_t mode)
1664 {
1665 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1666 	struct nfs_open_context *ctx;
1667 	struct dentry *res;
1668 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1669 	struct inode *inode;
1670 	unsigned int lookup_flags = 0;
1671 	bool switched = false;
1672 	int created = 0;
1673 	int err;
1674 
1675 	/* Expect a negative dentry */
1676 	BUG_ON(d_inode(dentry));
1677 
1678 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1679 			dir->i_sb->s_id, dir->i_ino, dentry);
1680 
1681 	err = nfs_check_flags(open_flags);
1682 	if (err)
1683 		return err;
1684 
1685 	/* NFS only supports OPEN on regular files */
1686 	if ((open_flags & O_DIRECTORY)) {
1687 		if (!d_in_lookup(dentry)) {
1688 			/*
1689 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1690 			 * revalidated and is fine, no need to perform lookup
1691 			 * again
1692 			 */
1693 			return -ENOENT;
1694 		}
1695 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1696 		goto no_open;
1697 	}
1698 
1699 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1700 		return -ENAMETOOLONG;
1701 
1702 	if (open_flags & O_CREAT) {
1703 		struct nfs_server *server = NFS_SERVER(dir);
1704 
1705 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1706 			mode &= ~current_umask();
1707 
1708 		attr.ia_valid |= ATTR_MODE;
1709 		attr.ia_mode = mode;
1710 	}
1711 	if (open_flags & O_TRUNC) {
1712 		attr.ia_valid |= ATTR_SIZE;
1713 		attr.ia_size = 0;
1714 	}
1715 
1716 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1717 		d_drop(dentry);
1718 		switched = true;
1719 		dentry = d_alloc_parallel(dentry->d_parent,
1720 					  &dentry->d_name, &wq);
1721 		if (IS_ERR(dentry))
1722 			return PTR_ERR(dentry);
1723 		if (unlikely(!d_in_lookup(dentry)))
1724 			return finish_no_open(file, dentry);
1725 	}
1726 
1727 	ctx = create_nfs_open_context(dentry, open_flags, file);
1728 	err = PTR_ERR(ctx);
1729 	if (IS_ERR(ctx))
1730 		goto out;
1731 
1732 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1733 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1734 	if (created)
1735 		file->f_mode |= FMODE_CREATED;
1736 	if (IS_ERR(inode)) {
1737 		err = PTR_ERR(inode);
1738 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1739 		put_nfs_open_context(ctx);
1740 		d_drop(dentry);
1741 		switch (err) {
1742 		case -ENOENT:
1743 			d_splice_alias(NULL, dentry);
1744 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1745 			break;
1746 		case -EISDIR:
1747 		case -ENOTDIR:
1748 			goto no_open;
1749 		case -ELOOP:
1750 			if (!(open_flags & O_NOFOLLOW))
1751 				goto no_open;
1752 			break;
1753 			/* case -EINVAL: */
1754 		default:
1755 			break;
1756 		}
1757 		goto out;
1758 	}
1759 
1760 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1761 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1762 	put_nfs_open_context(ctx);
1763 out:
1764 	if (unlikely(switched)) {
1765 		d_lookup_done(dentry);
1766 		dput(dentry);
1767 	}
1768 	return err;
1769 
1770 no_open:
1771 	res = nfs_lookup(dir, dentry, lookup_flags);
1772 	if (switched) {
1773 		d_lookup_done(dentry);
1774 		if (!res)
1775 			res = dentry;
1776 		else
1777 			dput(dentry);
1778 	}
1779 	if (IS_ERR(res))
1780 		return PTR_ERR(res);
1781 	return finish_no_open(file, res);
1782 }
1783 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1784 
1785 static int
1786 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1787 			  unsigned int flags)
1788 {
1789 	struct inode *inode;
1790 
1791 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1792 		goto full_reval;
1793 	if (d_mountpoint(dentry))
1794 		goto full_reval;
1795 
1796 	inode = d_inode(dentry);
1797 
1798 	/* We can't create new files in nfs_open_revalidate(), so we
1799 	 * optimize away revalidation of negative dentries.
1800 	 */
1801 	if (inode == NULL)
1802 		goto full_reval;
1803 
1804 	if (nfs_verifier_is_delegated(dentry))
1805 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1806 
1807 	/* NFS only supports OPEN on regular files */
1808 	if (!S_ISREG(inode->i_mode))
1809 		goto full_reval;
1810 
1811 	/* We cannot do exclusive creation on a positive dentry */
1812 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1813 		goto reval_dentry;
1814 
1815 	/* Check if the directory changed */
1816 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1817 		goto reval_dentry;
1818 
1819 	/* Let f_op->open() actually open (and revalidate) the file */
1820 	return 1;
1821 reval_dentry:
1822 	if (flags & LOOKUP_RCU)
1823 		return -ECHILD;
1824 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1825 
1826 full_reval:
1827 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1828 }
1829 
1830 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1831 {
1832 	return __nfs_lookup_revalidate(dentry, flags,
1833 			nfs4_do_lookup_revalidate);
1834 }
1835 
1836 #endif /* CONFIG_NFSV4 */
1837 
1838 struct dentry *
1839 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1840 				struct nfs_fattr *fattr,
1841 				struct nfs4_label *label)
1842 {
1843 	struct dentry *parent = dget_parent(dentry);
1844 	struct inode *dir = d_inode(parent);
1845 	struct inode *inode;
1846 	struct dentry *d;
1847 	int error;
1848 
1849 	d_drop(dentry);
1850 
1851 	if (fhandle->size == 0) {
1852 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1853 		if (error)
1854 			goto out_error;
1855 	}
1856 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1857 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1858 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1859 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1860 				fattr, NULL, NULL);
1861 		if (error < 0)
1862 			goto out_error;
1863 	}
1864 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1865 	d = d_splice_alias(inode, dentry);
1866 out:
1867 	dput(parent);
1868 	return d;
1869 out_error:
1870 	nfs_mark_for_revalidate(dir);
1871 	d = ERR_PTR(error);
1872 	goto out;
1873 }
1874 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1875 
1876 /*
1877  * Code common to create, mkdir, and mknod.
1878  */
1879 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1880 				struct nfs_fattr *fattr,
1881 				struct nfs4_label *label)
1882 {
1883 	struct dentry *d;
1884 
1885 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1886 	if (IS_ERR(d))
1887 		return PTR_ERR(d);
1888 
1889 	/* Callers don't care */
1890 	dput(d);
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(nfs_instantiate);
1894 
1895 /*
1896  * Following a failed create operation, we drop the dentry rather
1897  * than retain a negative dentry. This avoids a problem in the event
1898  * that the operation succeeded on the server, but an error in the
1899  * reply path made it appear to have failed.
1900  */
1901 int nfs_create(struct inode *dir, struct dentry *dentry,
1902 		umode_t mode, bool excl)
1903 {
1904 	struct iattr attr;
1905 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1906 	int error;
1907 
1908 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1909 			dir->i_sb->s_id, dir->i_ino, dentry);
1910 
1911 	attr.ia_mode = mode;
1912 	attr.ia_valid = ATTR_MODE;
1913 
1914 	trace_nfs_create_enter(dir, dentry, open_flags);
1915 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1916 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1917 	if (error != 0)
1918 		goto out_err;
1919 	return 0;
1920 out_err:
1921 	d_drop(dentry);
1922 	return error;
1923 }
1924 EXPORT_SYMBOL_GPL(nfs_create);
1925 
1926 /*
1927  * See comments for nfs_proc_create regarding failed operations.
1928  */
1929 int
1930 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1931 {
1932 	struct iattr attr;
1933 	int status;
1934 
1935 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1936 			dir->i_sb->s_id, dir->i_ino, dentry);
1937 
1938 	attr.ia_mode = mode;
1939 	attr.ia_valid = ATTR_MODE;
1940 
1941 	trace_nfs_mknod_enter(dir, dentry);
1942 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1943 	trace_nfs_mknod_exit(dir, dentry, status);
1944 	if (status != 0)
1945 		goto out_err;
1946 	return 0;
1947 out_err:
1948 	d_drop(dentry);
1949 	return status;
1950 }
1951 EXPORT_SYMBOL_GPL(nfs_mknod);
1952 
1953 /*
1954  * See comments for nfs_proc_create regarding failed operations.
1955  */
1956 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1957 {
1958 	struct iattr attr;
1959 	int error;
1960 
1961 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1962 			dir->i_sb->s_id, dir->i_ino, dentry);
1963 
1964 	attr.ia_valid = ATTR_MODE;
1965 	attr.ia_mode = mode | S_IFDIR;
1966 
1967 	trace_nfs_mkdir_enter(dir, dentry);
1968 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1969 	trace_nfs_mkdir_exit(dir, dentry, error);
1970 	if (error != 0)
1971 		goto out_err;
1972 	return 0;
1973 out_err:
1974 	d_drop(dentry);
1975 	return error;
1976 }
1977 EXPORT_SYMBOL_GPL(nfs_mkdir);
1978 
1979 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1980 {
1981 	if (simple_positive(dentry))
1982 		d_delete(dentry);
1983 }
1984 
1985 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1986 {
1987 	int error;
1988 
1989 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1990 			dir->i_sb->s_id, dir->i_ino, dentry);
1991 
1992 	trace_nfs_rmdir_enter(dir, dentry);
1993 	if (d_really_is_positive(dentry)) {
1994 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1995 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1996 		/* Ensure the VFS deletes this inode */
1997 		switch (error) {
1998 		case 0:
1999 			clear_nlink(d_inode(dentry));
2000 			break;
2001 		case -ENOENT:
2002 			nfs_dentry_handle_enoent(dentry);
2003 		}
2004 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2005 	} else
2006 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2007 	trace_nfs_rmdir_exit(dir, dentry, error);
2008 
2009 	return error;
2010 }
2011 EXPORT_SYMBOL_GPL(nfs_rmdir);
2012 
2013 /*
2014  * Remove a file after making sure there are no pending writes,
2015  * and after checking that the file has only one user.
2016  *
2017  * We invalidate the attribute cache and free the inode prior to the operation
2018  * to avoid possible races if the server reuses the inode.
2019  */
2020 static int nfs_safe_remove(struct dentry *dentry)
2021 {
2022 	struct inode *dir = d_inode(dentry->d_parent);
2023 	struct inode *inode = d_inode(dentry);
2024 	int error = -EBUSY;
2025 
2026 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2027 
2028 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2029 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2030 		error = 0;
2031 		goto out;
2032 	}
2033 
2034 	trace_nfs_remove_enter(dir, dentry);
2035 	if (inode != NULL) {
2036 		error = NFS_PROTO(dir)->remove(dir, dentry);
2037 		if (error == 0)
2038 			nfs_drop_nlink(inode);
2039 	} else
2040 		error = NFS_PROTO(dir)->remove(dir, dentry);
2041 	if (error == -ENOENT)
2042 		nfs_dentry_handle_enoent(dentry);
2043 	trace_nfs_remove_exit(dir, dentry, error);
2044 out:
2045 	return error;
2046 }
2047 
2048 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2049  *  belongs to an active ".nfs..." file and we return -EBUSY.
2050  *
2051  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2052  */
2053 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2054 {
2055 	int error;
2056 	int need_rehash = 0;
2057 
2058 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2059 		dir->i_ino, dentry);
2060 
2061 	trace_nfs_unlink_enter(dir, dentry);
2062 	spin_lock(&dentry->d_lock);
2063 	if (d_count(dentry) > 1) {
2064 		spin_unlock(&dentry->d_lock);
2065 		/* Start asynchronous writeout of the inode */
2066 		write_inode_now(d_inode(dentry), 0);
2067 		error = nfs_sillyrename(dir, dentry);
2068 		goto out;
2069 	}
2070 	if (!d_unhashed(dentry)) {
2071 		__d_drop(dentry);
2072 		need_rehash = 1;
2073 	}
2074 	spin_unlock(&dentry->d_lock);
2075 	error = nfs_safe_remove(dentry);
2076 	if (!error || error == -ENOENT) {
2077 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2078 	} else if (need_rehash)
2079 		d_rehash(dentry);
2080 out:
2081 	trace_nfs_unlink_exit(dir, dentry, error);
2082 	return error;
2083 }
2084 EXPORT_SYMBOL_GPL(nfs_unlink);
2085 
2086 /*
2087  * To create a symbolic link, most file systems instantiate a new inode,
2088  * add a page to it containing the path, then write it out to the disk
2089  * using prepare_write/commit_write.
2090  *
2091  * Unfortunately the NFS client can't create the in-core inode first
2092  * because it needs a file handle to create an in-core inode (see
2093  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2094  * symlink request has completed on the server.
2095  *
2096  * So instead we allocate a raw page, copy the symname into it, then do
2097  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2098  * now have a new file handle and can instantiate an in-core NFS inode
2099  * and move the raw page into its mapping.
2100  */
2101 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2102 {
2103 	struct page *page;
2104 	char *kaddr;
2105 	struct iattr attr;
2106 	unsigned int pathlen = strlen(symname);
2107 	int error;
2108 
2109 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2110 		dir->i_ino, dentry, symname);
2111 
2112 	if (pathlen > PAGE_SIZE)
2113 		return -ENAMETOOLONG;
2114 
2115 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2116 	attr.ia_valid = ATTR_MODE;
2117 
2118 	page = alloc_page(GFP_USER);
2119 	if (!page)
2120 		return -ENOMEM;
2121 
2122 	kaddr = page_address(page);
2123 	memcpy(kaddr, symname, pathlen);
2124 	if (pathlen < PAGE_SIZE)
2125 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2126 
2127 	trace_nfs_symlink_enter(dir, dentry);
2128 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2129 	trace_nfs_symlink_exit(dir, dentry, error);
2130 	if (error != 0) {
2131 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2132 			dir->i_sb->s_id, dir->i_ino,
2133 			dentry, symname, error);
2134 		d_drop(dentry);
2135 		__free_page(page);
2136 		return error;
2137 	}
2138 
2139 	/*
2140 	 * No big deal if we can't add this page to the page cache here.
2141 	 * READLINK will get the missing page from the server if needed.
2142 	 */
2143 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2144 							GFP_KERNEL)) {
2145 		SetPageUptodate(page);
2146 		unlock_page(page);
2147 		/*
2148 		 * add_to_page_cache_lru() grabs an extra page refcount.
2149 		 * Drop it here to avoid leaking this page later.
2150 		 */
2151 		put_page(page);
2152 	} else
2153 		__free_page(page);
2154 
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(nfs_symlink);
2158 
2159 int
2160 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2161 {
2162 	struct inode *inode = d_inode(old_dentry);
2163 	int error;
2164 
2165 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2166 		old_dentry, dentry);
2167 
2168 	trace_nfs_link_enter(inode, dir, dentry);
2169 	d_drop(dentry);
2170 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2171 	if (error == 0) {
2172 		ihold(inode);
2173 		d_add(dentry, inode);
2174 	}
2175 	trace_nfs_link_exit(inode, dir, dentry, error);
2176 	return error;
2177 }
2178 EXPORT_SYMBOL_GPL(nfs_link);
2179 
2180 /*
2181  * RENAME
2182  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2183  * different file handle for the same inode after a rename (e.g. when
2184  * moving to a different directory). A fail-safe method to do so would
2185  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2186  * rename the old file using the sillyrename stuff. This way, the original
2187  * file in old_dir will go away when the last process iput()s the inode.
2188  *
2189  * FIXED.
2190  *
2191  * It actually works quite well. One needs to have the possibility for
2192  * at least one ".nfs..." file in each directory the file ever gets
2193  * moved or linked to which happens automagically with the new
2194  * implementation that only depends on the dcache stuff instead of
2195  * using the inode layer
2196  *
2197  * Unfortunately, things are a little more complicated than indicated
2198  * above. For a cross-directory move, we want to make sure we can get
2199  * rid of the old inode after the operation.  This means there must be
2200  * no pending writes (if it's a file), and the use count must be 1.
2201  * If these conditions are met, we can drop the dentries before doing
2202  * the rename.
2203  */
2204 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2205 	       struct inode *new_dir, struct dentry *new_dentry,
2206 	       unsigned int flags)
2207 {
2208 	struct inode *old_inode = d_inode(old_dentry);
2209 	struct inode *new_inode = d_inode(new_dentry);
2210 	struct dentry *dentry = NULL, *rehash = NULL;
2211 	struct rpc_task *task;
2212 	int error = -EBUSY;
2213 
2214 	if (flags)
2215 		return -EINVAL;
2216 
2217 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2218 		 old_dentry, new_dentry,
2219 		 d_count(new_dentry));
2220 
2221 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2222 	/*
2223 	 * For non-directories, check whether the target is busy and if so,
2224 	 * make a copy of the dentry and then do a silly-rename. If the
2225 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2226 	 * the new target.
2227 	 */
2228 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2229 		/*
2230 		 * To prevent any new references to the target during the
2231 		 * rename, we unhash the dentry in advance.
2232 		 */
2233 		if (!d_unhashed(new_dentry)) {
2234 			d_drop(new_dentry);
2235 			rehash = new_dentry;
2236 		}
2237 
2238 		if (d_count(new_dentry) > 2) {
2239 			int err;
2240 
2241 			/* copy the target dentry's name */
2242 			dentry = d_alloc(new_dentry->d_parent,
2243 					 &new_dentry->d_name);
2244 			if (!dentry)
2245 				goto out;
2246 
2247 			/* silly-rename the existing target ... */
2248 			err = nfs_sillyrename(new_dir, new_dentry);
2249 			if (err)
2250 				goto out;
2251 
2252 			new_dentry = dentry;
2253 			rehash = NULL;
2254 			new_inode = NULL;
2255 		}
2256 	}
2257 
2258 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2259 	if (IS_ERR(task)) {
2260 		error = PTR_ERR(task);
2261 		goto out;
2262 	}
2263 
2264 	error = rpc_wait_for_completion_task(task);
2265 	if (error != 0) {
2266 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2267 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2268 		smp_wmb();
2269 	} else
2270 		error = task->tk_status;
2271 	rpc_put_task(task);
2272 	/* Ensure the inode attributes are revalidated */
2273 	if (error == 0) {
2274 		spin_lock(&old_inode->i_lock);
2275 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2276 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2277 			| NFS_INO_INVALID_CTIME
2278 			| NFS_INO_REVAL_FORCED;
2279 		spin_unlock(&old_inode->i_lock);
2280 	}
2281 out:
2282 	if (rehash)
2283 		d_rehash(rehash);
2284 	trace_nfs_rename_exit(old_dir, old_dentry,
2285 			new_dir, new_dentry, error);
2286 	if (!error) {
2287 		if (new_inode != NULL)
2288 			nfs_drop_nlink(new_inode);
2289 		/*
2290 		 * The d_move() should be here instead of in an async RPC completion
2291 		 * handler because we need the proper locks to move the dentry.  If
2292 		 * we're interrupted by a signal, the async RPC completion handler
2293 		 * should mark the directories for revalidation.
2294 		 */
2295 		d_move(old_dentry, new_dentry);
2296 		nfs_set_verifier(old_dentry,
2297 					nfs_save_change_attribute(new_dir));
2298 	} else if (error == -ENOENT)
2299 		nfs_dentry_handle_enoent(old_dentry);
2300 
2301 	/* new dentry created? */
2302 	if (dentry)
2303 		dput(dentry);
2304 	return error;
2305 }
2306 EXPORT_SYMBOL_GPL(nfs_rename);
2307 
2308 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2309 static LIST_HEAD(nfs_access_lru_list);
2310 static atomic_long_t nfs_access_nr_entries;
2311 
2312 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2313 module_param(nfs_access_max_cachesize, ulong, 0644);
2314 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2315 
2316 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2317 {
2318 	put_cred(entry->cred);
2319 	kfree_rcu(entry, rcu_head);
2320 	smp_mb__before_atomic();
2321 	atomic_long_dec(&nfs_access_nr_entries);
2322 	smp_mb__after_atomic();
2323 }
2324 
2325 static void nfs_access_free_list(struct list_head *head)
2326 {
2327 	struct nfs_access_entry *cache;
2328 
2329 	while (!list_empty(head)) {
2330 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2331 		list_del(&cache->lru);
2332 		nfs_access_free_entry(cache);
2333 	}
2334 }
2335 
2336 static unsigned long
2337 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2338 {
2339 	LIST_HEAD(head);
2340 	struct nfs_inode *nfsi, *next;
2341 	struct nfs_access_entry *cache;
2342 	long freed = 0;
2343 
2344 	spin_lock(&nfs_access_lru_lock);
2345 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2346 		struct inode *inode;
2347 
2348 		if (nr_to_scan-- == 0)
2349 			break;
2350 		inode = &nfsi->vfs_inode;
2351 		spin_lock(&inode->i_lock);
2352 		if (list_empty(&nfsi->access_cache_entry_lru))
2353 			goto remove_lru_entry;
2354 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2355 				struct nfs_access_entry, lru);
2356 		list_move(&cache->lru, &head);
2357 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2358 		freed++;
2359 		if (!list_empty(&nfsi->access_cache_entry_lru))
2360 			list_move_tail(&nfsi->access_cache_inode_lru,
2361 					&nfs_access_lru_list);
2362 		else {
2363 remove_lru_entry:
2364 			list_del_init(&nfsi->access_cache_inode_lru);
2365 			smp_mb__before_atomic();
2366 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2367 			smp_mb__after_atomic();
2368 		}
2369 		spin_unlock(&inode->i_lock);
2370 	}
2371 	spin_unlock(&nfs_access_lru_lock);
2372 	nfs_access_free_list(&head);
2373 	return freed;
2374 }
2375 
2376 unsigned long
2377 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2378 {
2379 	int nr_to_scan = sc->nr_to_scan;
2380 	gfp_t gfp_mask = sc->gfp_mask;
2381 
2382 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2383 		return SHRINK_STOP;
2384 	return nfs_do_access_cache_scan(nr_to_scan);
2385 }
2386 
2387 
2388 unsigned long
2389 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2390 {
2391 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2392 }
2393 
2394 static void
2395 nfs_access_cache_enforce_limit(void)
2396 {
2397 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2398 	unsigned long diff;
2399 	unsigned int nr_to_scan;
2400 
2401 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2402 		return;
2403 	nr_to_scan = 100;
2404 	diff = nr_entries - nfs_access_max_cachesize;
2405 	if (diff < nr_to_scan)
2406 		nr_to_scan = diff;
2407 	nfs_do_access_cache_scan(nr_to_scan);
2408 }
2409 
2410 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2411 {
2412 	struct rb_root *root_node = &nfsi->access_cache;
2413 	struct rb_node *n;
2414 	struct nfs_access_entry *entry;
2415 
2416 	/* Unhook entries from the cache */
2417 	while ((n = rb_first(root_node)) != NULL) {
2418 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2419 		rb_erase(n, root_node);
2420 		list_move(&entry->lru, head);
2421 	}
2422 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2423 }
2424 
2425 void nfs_access_zap_cache(struct inode *inode)
2426 {
2427 	LIST_HEAD(head);
2428 
2429 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2430 		return;
2431 	/* Remove from global LRU init */
2432 	spin_lock(&nfs_access_lru_lock);
2433 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2434 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2435 
2436 	spin_lock(&inode->i_lock);
2437 	__nfs_access_zap_cache(NFS_I(inode), &head);
2438 	spin_unlock(&inode->i_lock);
2439 	spin_unlock(&nfs_access_lru_lock);
2440 	nfs_access_free_list(&head);
2441 }
2442 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2443 
2444 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2445 {
2446 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2447 
2448 	while (n != NULL) {
2449 		struct nfs_access_entry *entry =
2450 			rb_entry(n, struct nfs_access_entry, rb_node);
2451 		int cmp = cred_fscmp(cred, entry->cred);
2452 
2453 		if (cmp < 0)
2454 			n = n->rb_left;
2455 		else if (cmp > 0)
2456 			n = n->rb_right;
2457 		else
2458 			return entry;
2459 	}
2460 	return NULL;
2461 }
2462 
2463 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2464 {
2465 	struct nfs_inode *nfsi = NFS_I(inode);
2466 	struct nfs_access_entry *cache;
2467 	bool retry = true;
2468 	int err;
2469 
2470 	spin_lock(&inode->i_lock);
2471 	for(;;) {
2472 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2473 			goto out_zap;
2474 		cache = nfs_access_search_rbtree(inode, cred);
2475 		err = -ENOENT;
2476 		if (cache == NULL)
2477 			goto out;
2478 		/* Found an entry, is our attribute cache valid? */
2479 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2480 			break;
2481 		if (!retry)
2482 			break;
2483 		err = -ECHILD;
2484 		if (!may_block)
2485 			goto out;
2486 		spin_unlock(&inode->i_lock);
2487 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2488 		if (err)
2489 			return err;
2490 		spin_lock(&inode->i_lock);
2491 		retry = false;
2492 	}
2493 	res->cred = cache->cred;
2494 	res->mask = cache->mask;
2495 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2496 	err = 0;
2497 out:
2498 	spin_unlock(&inode->i_lock);
2499 	return err;
2500 out_zap:
2501 	spin_unlock(&inode->i_lock);
2502 	nfs_access_zap_cache(inode);
2503 	return -ENOENT;
2504 }
2505 
2506 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2507 {
2508 	/* Only check the most recently returned cache entry,
2509 	 * but do it without locking.
2510 	 */
2511 	struct nfs_inode *nfsi = NFS_I(inode);
2512 	struct nfs_access_entry *cache;
2513 	int err = -ECHILD;
2514 	struct list_head *lh;
2515 
2516 	rcu_read_lock();
2517 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2518 		goto out;
2519 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2520 	cache = list_entry(lh, struct nfs_access_entry, lru);
2521 	if (lh == &nfsi->access_cache_entry_lru ||
2522 	    cred_fscmp(cred, cache->cred) != 0)
2523 		cache = NULL;
2524 	if (cache == NULL)
2525 		goto out;
2526 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2527 		goto out;
2528 	res->cred = cache->cred;
2529 	res->mask = cache->mask;
2530 	err = 0;
2531 out:
2532 	rcu_read_unlock();
2533 	return err;
2534 }
2535 
2536 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2537 {
2538 	struct nfs_inode *nfsi = NFS_I(inode);
2539 	struct rb_root *root_node = &nfsi->access_cache;
2540 	struct rb_node **p = &root_node->rb_node;
2541 	struct rb_node *parent = NULL;
2542 	struct nfs_access_entry *entry;
2543 	int cmp;
2544 
2545 	spin_lock(&inode->i_lock);
2546 	while (*p != NULL) {
2547 		parent = *p;
2548 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2549 		cmp = cred_fscmp(set->cred, entry->cred);
2550 
2551 		if (cmp < 0)
2552 			p = &parent->rb_left;
2553 		else if (cmp > 0)
2554 			p = &parent->rb_right;
2555 		else
2556 			goto found;
2557 	}
2558 	rb_link_node(&set->rb_node, parent, p);
2559 	rb_insert_color(&set->rb_node, root_node);
2560 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2561 	spin_unlock(&inode->i_lock);
2562 	return;
2563 found:
2564 	rb_replace_node(parent, &set->rb_node, root_node);
2565 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2566 	list_del(&entry->lru);
2567 	spin_unlock(&inode->i_lock);
2568 	nfs_access_free_entry(entry);
2569 }
2570 
2571 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2572 {
2573 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2574 	if (cache == NULL)
2575 		return;
2576 	RB_CLEAR_NODE(&cache->rb_node);
2577 	cache->cred = get_cred(set->cred);
2578 	cache->mask = set->mask;
2579 
2580 	/* The above field assignments must be visible
2581 	 * before this item appears on the lru.  We cannot easily
2582 	 * use rcu_assign_pointer, so just force the memory barrier.
2583 	 */
2584 	smp_wmb();
2585 	nfs_access_add_rbtree(inode, cache);
2586 
2587 	/* Update accounting */
2588 	smp_mb__before_atomic();
2589 	atomic_long_inc(&nfs_access_nr_entries);
2590 	smp_mb__after_atomic();
2591 
2592 	/* Add inode to global LRU list */
2593 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2594 		spin_lock(&nfs_access_lru_lock);
2595 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2596 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2597 					&nfs_access_lru_list);
2598 		spin_unlock(&nfs_access_lru_lock);
2599 	}
2600 	nfs_access_cache_enforce_limit();
2601 }
2602 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2603 
2604 #define NFS_MAY_READ (NFS_ACCESS_READ)
2605 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2606 		NFS_ACCESS_EXTEND | \
2607 		NFS_ACCESS_DELETE)
2608 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2609 		NFS_ACCESS_EXTEND)
2610 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2611 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2612 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2613 static int
2614 nfs_access_calc_mask(u32 access_result, umode_t umode)
2615 {
2616 	int mask = 0;
2617 
2618 	if (access_result & NFS_MAY_READ)
2619 		mask |= MAY_READ;
2620 	if (S_ISDIR(umode)) {
2621 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2622 			mask |= MAY_WRITE;
2623 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2624 			mask |= MAY_EXEC;
2625 	} else if (S_ISREG(umode)) {
2626 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2627 			mask |= MAY_WRITE;
2628 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2629 			mask |= MAY_EXEC;
2630 	} else if (access_result & NFS_MAY_WRITE)
2631 			mask |= MAY_WRITE;
2632 	return mask;
2633 }
2634 
2635 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2636 {
2637 	entry->mask = access_result;
2638 }
2639 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2640 
2641 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2642 {
2643 	struct nfs_access_entry cache;
2644 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2645 	int cache_mask = -1;
2646 	int status;
2647 
2648 	trace_nfs_access_enter(inode);
2649 
2650 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2651 	if (status != 0)
2652 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2653 	if (status == 0)
2654 		goto out_cached;
2655 
2656 	status = -ECHILD;
2657 	if (!may_block)
2658 		goto out;
2659 
2660 	/*
2661 	 * Determine which access bits we want to ask for...
2662 	 */
2663 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2664 	if (S_ISDIR(inode->i_mode))
2665 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2666 	else
2667 		cache.mask |= NFS_ACCESS_EXECUTE;
2668 	cache.cred = cred;
2669 	status = NFS_PROTO(inode)->access(inode, &cache);
2670 	if (status != 0) {
2671 		if (status == -ESTALE) {
2672 			if (!S_ISDIR(inode->i_mode))
2673 				nfs_set_inode_stale(inode);
2674 			else
2675 				nfs_zap_caches(inode);
2676 		}
2677 		goto out;
2678 	}
2679 	nfs_access_add_cache(inode, &cache);
2680 out_cached:
2681 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2682 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2683 		status = -EACCES;
2684 out:
2685 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2686 	return status;
2687 }
2688 
2689 static int nfs_open_permission_mask(int openflags)
2690 {
2691 	int mask = 0;
2692 
2693 	if (openflags & __FMODE_EXEC) {
2694 		/* ONLY check exec rights */
2695 		mask = MAY_EXEC;
2696 	} else {
2697 		if ((openflags & O_ACCMODE) != O_WRONLY)
2698 			mask |= MAY_READ;
2699 		if ((openflags & O_ACCMODE) != O_RDONLY)
2700 			mask |= MAY_WRITE;
2701 	}
2702 
2703 	return mask;
2704 }
2705 
2706 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2707 {
2708 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2709 }
2710 EXPORT_SYMBOL_GPL(nfs_may_open);
2711 
2712 static int nfs_execute_ok(struct inode *inode, int mask)
2713 {
2714 	struct nfs_server *server = NFS_SERVER(inode);
2715 	int ret = 0;
2716 
2717 	if (S_ISDIR(inode->i_mode))
2718 		return 0;
2719 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2720 		if (mask & MAY_NOT_BLOCK)
2721 			return -ECHILD;
2722 		ret = __nfs_revalidate_inode(server, inode);
2723 	}
2724 	if (ret == 0 && !execute_ok(inode))
2725 		ret = -EACCES;
2726 	return ret;
2727 }
2728 
2729 int nfs_permission(struct inode *inode, int mask)
2730 {
2731 	const struct cred *cred = current_cred();
2732 	int res = 0;
2733 
2734 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2735 
2736 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2737 		goto out;
2738 	/* Is this sys_access() ? */
2739 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2740 		goto force_lookup;
2741 
2742 	switch (inode->i_mode & S_IFMT) {
2743 		case S_IFLNK:
2744 			goto out;
2745 		case S_IFREG:
2746 			if ((mask & MAY_OPEN) &&
2747 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2748 				return 0;
2749 			break;
2750 		case S_IFDIR:
2751 			/*
2752 			 * Optimize away all write operations, since the server
2753 			 * will check permissions when we perform the op.
2754 			 */
2755 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2756 				goto out;
2757 	}
2758 
2759 force_lookup:
2760 	if (!NFS_PROTO(inode)->access)
2761 		goto out_notsup;
2762 
2763 	res = nfs_do_access(inode, cred, mask);
2764 out:
2765 	if (!res && (mask & MAY_EXEC))
2766 		res = nfs_execute_ok(inode, mask);
2767 
2768 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2769 		inode->i_sb->s_id, inode->i_ino, mask, res);
2770 	return res;
2771 out_notsup:
2772 	if (mask & MAY_NOT_BLOCK)
2773 		return -ECHILD;
2774 
2775 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2776 	if (res == 0)
2777 		res = generic_permission(inode, mask);
2778 	goto out;
2779 }
2780 EXPORT_SYMBOL_GPL(nfs_permission);
2781 
2782 /*
2783  * Local variables:
2784  *  version-control: t
2785  *  kept-new-versions: 5
2786  * End:
2787  */
2788