1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/sched.h> 37 #include <linux/kmemleak.h> 38 #include <linux/xattr.h> 39 40 #include "delegation.h" 41 #include "iostat.h" 42 #include "internal.h" 43 #include "fscache.h" 44 45 /* #define NFS_DEBUG_VERBOSE 1 */ 46 47 static int nfs_opendir(struct inode *, struct file *); 48 static int nfs_closedir(struct inode *, struct file *); 49 static int nfs_readdir(struct file *, void *, filldir_t); 50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 51 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 52 static void nfs_readdir_clear_array(struct page*); 53 54 const struct file_operations nfs_dir_operations = { 55 .llseek = nfs_llseek_dir, 56 .read = generic_read_dir, 57 .readdir = nfs_readdir, 58 .open = nfs_opendir, 59 .release = nfs_closedir, 60 .fsync = nfs_fsync_dir, 61 }; 62 63 const struct address_space_operations nfs_dir_aops = { 64 .freepage = nfs_readdir_clear_array, 65 }; 66 67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 68 { 69 struct nfs_open_dir_context *ctx; 70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 71 if (ctx != NULL) { 72 ctx->duped = 0; 73 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 74 ctx->dir_cookie = 0; 75 ctx->dup_cookie = 0; 76 ctx->cred = get_rpccred(cred); 77 return ctx; 78 } 79 return ERR_PTR(-ENOMEM); 80 } 81 82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 83 { 84 put_rpccred(ctx->cred); 85 kfree(ctx); 86 } 87 88 /* 89 * Open file 90 */ 91 static int 92 nfs_opendir(struct inode *inode, struct file *filp) 93 { 94 int res = 0; 95 struct nfs_open_dir_context *ctx; 96 struct rpc_cred *cred; 97 98 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 99 filp->f_path.dentry->d_parent->d_name.name, 100 filp->f_path.dentry->d_name.name); 101 102 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 103 104 cred = rpc_lookup_cred(); 105 if (IS_ERR(cred)) 106 return PTR_ERR(cred); 107 ctx = alloc_nfs_open_dir_context(inode, cred); 108 if (IS_ERR(ctx)) { 109 res = PTR_ERR(ctx); 110 goto out; 111 } 112 filp->private_data = ctx; 113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 114 /* This is a mountpoint, so d_revalidate will never 115 * have been called, so we need to refresh the 116 * inode (for close-open consistency) ourselves. 117 */ 118 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 119 } 120 out: 121 put_rpccred(cred); 122 return res; 123 } 124 125 static int 126 nfs_closedir(struct inode *inode, struct file *filp) 127 { 128 put_nfs_open_dir_context(filp->private_data); 129 return 0; 130 } 131 132 struct nfs_cache_array_entry { 133 u64 cookie; 134 u64 ino; 135 struct qstr string; 136 unsigned char d_type; 137 }; 138 139 struct nfs_cache_array { 140 int size; 141 int eof_index; 142 u64 last_cookie; 143 struct nfs_cache_array_entry array[0]; 144 }; 145 146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 unsigned long page_index; 151 u64 *dir_cookie; 152 u64 last_cookie; 153 loff_t current_index; 154 decode_dirent_t decode; 155 156 unsigned long timestamp; 157 unsigned long gencount; 158 unsigned int cache_entry_index; 159 unsigned int plus:1; 160 unsigned int eof:1; 161 } nfs_readdir_descriptor_t; 162 163 /* 164 * The caller is responsible for calling nfs_readdir_release_array(page) 165 */ 166 static 167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 168 { 169 void *ptr; 170 if (page == NULL) 171 return ERR_PTR(-EIO); 172 ptr = kmap(page); 173 if (ptr == NULL) 174 return ERR_PTR(-ENOMEM); 175 return ptr; 176 } 177 178 static 179 void nfs_readdir_release_array(struct page *page) 180 { 181 kunmap(page); 182 } 183 184 /* 185 * we are freeing strings created by nfs_add_to_readdir_array() 186 */ 187 static 188 void nfs_readdir_clear_array(struct page *page) 189 { 190 struct nfs_cache_array *array; 191 int i; 192 193 array = kmap_atomic(page); 194 for (i = 0; i < array->size; i++) 195 kfree(array->array[i].string.name); 196 kunmap_atomic(array); 197 } 198 199 /* 200 * the caller is responsible for freeing qstr.name 201 * when called by nfs_readdir_add_to_array, the strings will be freed in 202 * nfs_clear_readdir_array() 203 */ 204 static 205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 206 { 207 string->len = len; 208 string->name = kmemdup(name, len, GFP_KERNEL); 209 if (string->name == NULL) 210 return -ENOMEM; 211 /* 212 * Avoid a kmemleak false positive. The pointer to the name is stored 213 * in a page cache page which kmemleak does not scan. 214 */ 215 kmemleak_not_leak(string->name); 216 string->hash = full_name_hash(name, len); 217 return 0; 218 } 219 220 static 221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 222 { 223 struct nfs_cache_array *array = nfs_readdir_get_array(page); 224 struct nfs_cache_array_entry *cache_entry; 225 int ret; 226 227 if (IS_ERR(array)) 228 return PTR_ERR(array); 229 230 cache_entry = &array->array[array->size]; 231 232 /* Check that this entry lies within the page bounds */ 233 ret = -ENOSPC; 234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 235 goto out; 236 237 cache_entry->cookie = entry->prev_cookie; 238 cache_entry->ino = entry->ino; 239 cache_entry->d_type = entry->d_type; 240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 241 if (ret) 242 goto out; 243 array->last_cookie = entry->cookie; 244 array->size++; 245 if (entry->eof != 0) 246 array->eof_index = array->size; 247 out: 248 nfs_readdir_release_array(page); 249 return ret; 250 } 251 252 static 253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 254 { 255 loff_t diff = desc->file->f_pos - desc->current_index; 256 unsigned int index; 257 258 if (diff < 0) 259 goto out_eof; 260 if (diff >= array->size) { 261 if (array->eof_index >= 0) 262 goto out_eof; 263 return -EAGAIN; 264 } 265 266 index = (unsigned int)diff; 267 *desc->dir_cookie = array->array[index].cookie; 268 desc->cache_entry_index = index; 269 return 0; 270 out_eof: 271 desc->eof = 1; 272 return -EBADCOOKIE; 273 } 274 275 static 276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 277 { 278 int i; 279 loff_t new_pos; 280 int status = -EAGAIN; 281 282 for (i = 0; i < array->size; i++) { 283 if (array->array[i].cookie == *desc->dir_cookie) { 284 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode); 285 struct nfs_open_dir_context *ctx = desc->file->private_data; 286 287 new_pos = desc->current_index + i; 288 if (ctx->attr_gencount != nfsi->attr_gencount 289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 290 ctx->duped = 0; 291 ctx->attr_gencount = nfsi->attr_gencount; 292 } else if (new_pos < desc->file->f_pos) { 293 if (ctx->duped > 0 294 && ctx->dup_cookie == *desc->dir_cookie) { 295 if (printk_ratelimit()) { 296 pr_notice("NFS: directory %s/%s contains a readdir loop." 297 "Please contact your server vendor. " 298 "The file: %s has duplicate cookie %llu\n", 299 desc->file->f_dentry->d_parent->d_name.name, 300 desc->file->f_dentry->d_name.name, 301 array->array[i].string.name, 302 *desc->dir_cookie); 303 } 304 status = -ELOOP; 305 goto out; 306 } 307 ctx->dup_cookie = *desc->dir_cookie; 308 ctx->duped = -1; 309 } 310 desc->file->f_pos = new_pos; 311 desc->cache_entry_index = i; 312 return 0; 313 } 314 } 315 if (array->eof_index >= 0) { 316 status = -EBADCOOKIE; 317 if (*desc->dir_cookie == array->last_cookie) 318 desc->eof = 1; 319 } 320 out: 321 return status; 322 } 323 324 static 325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 326 { 327 struct nfs_cache_array *array; 328 int status; 329 330 array = nfs_readdir_get_array(desc->page); 331 if (IS_ERR(array)) { 332 status = PTR_ERR(array); 333 goto out; 334 } 335 336 if (*desc->dir_cookie == 0) 337 status = nfs_readdir_search_for_pos(array, desc); 338 else 339 status = nfs_readdir_search_for_cookie(array, desc); 340 341 if (status == -EAGAIN) { 342 desc->last_cookie = array->last_cookie; 343 desc->current_index += array->size; 344 desc->page_index++; 345 } 346 nfs_readdir_release_array(desc->page); 347 out: 348 return status; 349 } 350 351 /* Fill a page with xdr information before transferring to the cache page */ 352 static 353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 354 struct nfs_entry *entry, struct file *file, struct inode *inode) 355 { 356 struct nfs_open_dir_context *ctx = file->private_data; 357 struct rpc_cred *cred = ctx->cred; 358 unsigned long timestamp, gencount; 359 int error; 360 361 again: 362 timestamp = jiffies; 363 gencount = nfs_inc_attr_generation_counter(); 364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 365 NFS_SERVER(inode)->dtsize, desc->plus); 366 if (error < 0) { 367 /* We requested READDIRPLUS, but the server doesn't grok it */ 368 if (error == -ENOTSUPP && desc->plus) { 369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 371 desc->plus = 0; 372 goto again; 373 } 374 goto error; 375 } 376 desc->timestamp = timestamp; 377 desc->gencount = gencount; 378 error: 379 return error; 380 } 381 382 static int xdr_decode(nfs_readdir_descriptor_t *desc, 383 struct nfs_entry *entry, struct xdr_stream *xdr) 384 { 385 int error; 386 387 error = desc->decode(xdr, entry, desc->plus); 388 if (error) 389 return error; 390 entry->fattr->time_start = desc->timestamp; 391 entry->fattr->gencount = desc->gencount; 392 return 0; 393 } 394 395 static 396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 397 { 398 if (dentry->d_inode == NULL) 399 goto different; 400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 401 goto different; 402 return 1; 403 different: 404 return 0; 405 } 406 407 static 408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp) 409 { 410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 411 return false; 412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 413 return true; 414 if (filp->f_pos == 0) 415 return true; 416 return false; 417 } 418 419 /* 420 * This function is called by the lookup code to request the use of 421 * readdirplus to accelerate any future lookups in the same 422 * directory. 423 */ 424 static 425 void nfs_advise_use_readdirplus(struct inode *dir) 426 { 427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 428 } 429 430 static 431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 432 { 433 struct qstr filename = QSTR_INIT(entry->name, entry->len); 434 struct dentry *dentry; 435 struct dentry *alias; 436 struct inode *dir = parent->d_inode; 437 struct inode *inode; 438 439 if (filename.name[0] == '.') { 440 if (filename.len == 1) 441 return; 442 if (filename.len == 2 && filename.name[1] == '.') 443 return; 444 } 445 filename.hash = full_name_hash(filename.name, filename.len); 446 447 dentry = d_lookup(parent, &filename); 448 if (dentry != NULL) { 449 if (nfs_same_file(dentry, entry)) { 450 nfs_refresh_inode(dentry->d_inode, entry->fattr); 451 goto out; 452 } else { 453 if (d_invalidate(dentry) != 0) 454 goto out; 455 dput(dentry); 456 } 457 } 458 459 dentry = d_alloc(parent, &filename); 460 if (dentry == NULL) 461 return; 462 463 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 464 if (IS_ERR(inode)) 465 goto out; 466 467 alias = d_materialise_unique(dentry, inode); 468 if (IS_ERR(alias)) 469 goto out; 470 else if (alias) { 471 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 472 dput(alias); 473 } else 474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 475 476 out: 477 dput(dentry); 478 } 479 480 /* Perform conversion from xdr to cache array */ 481 static 482 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 483 struct page **xdr_pages, struct page *page, unsigned int buflen) 484 { 485 struct xdr_stream stream; 486 struct xdr_buf buf; 487 struct page *scratch; 488 struct nfs_cache_array *array; 489 unsigned int count = 0; 490 int status; 491 492 scratch = alloc_page(GFP_KERNEL); 493 if (scratch == NULL) 494 return -ENOMEM; 495 496 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 497 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 498 499 do { 500 status = xdr_decode(desc, entry, &stream); 501 if (status != 0) { 502 if (status == -EAGAIN) 503 status = 0; 504 break; 505 } 506 507 count++; 508 509 if (desc->plus != 0) 510 nfs_prime_dcache(desc->file->f_path.dentry, entry); 511 512 status = nfs_readdir_add_to_array(entry, page); 513 if (status != 0) 514 break; 515 } while (!entry->eof); 516 517 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 518 array = nfs_readdir_get_array(page); 519 if (!IS_ERR(array)) { 520 array->eof_index = array->size; 521 status = 0; 522 nfs_readdir_release_array(page); 523 } else 524 status = PTR_ERR(array); 525 } 526 527 put_page(scratch); 528 return status; 529 } 530 531 static 532 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 533 { 534 unsigned int i; 535 for (i = 0; i < npages; i++) 536 put_page(pages[i]); 537 } 538 539 static 540 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 541 unsigned int npages) 542 { 543 nfs_readdir_free_pagearray(pages, npages); 544 } 545 546 /* 547 * nfs_readdir_large_page will allocate pages that must be freed with a call 548 * to nfs_readdir_free_large_page 549 */ 550 static 551 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 552 { 553 unsigned int i; 554 555 for (i = 0; i < npages; i++) { 556 struct page *page = alloc_page(GFP_KERNEL); 557 if (page == NULL) 558 goto out_freepages; 559 pages[i] = page; 560 } 561 return 0; 562 563 out_freepages: 564 nfs_readdir_free_pagearray(pages, i); 565 return -ENOMEM; 566 } 567 568 static 569 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 570 { 571 struct page *pages[NFS_MAX_READDIR_PAGES]; 572 void *pages_ptr = NULL; 573 struct nfs_entry entry; 574 struct file *file = desc->file; 575 struct nfs_cache_array *array; 576 int status = -ENOMEM; 577 unsigned int array_size = ARRAY_SIZE(pages); 578 579 entry.prev_cookie = 0; 580 entry.cookie = desc->last_cookie; 581 entry.eof = 0; 582 entry.fh = nfs_alloc_fhandle(); 583 entry.fattr = nfs_alloc_fattr(); 584 entry.server = NFS_SERVER(inode); 585 if (entry.fh == NULL || entry.fattr == NULL) 586 goto out; 587 588 array = nfs_readdir_get_array(page); 589 if (IS_ERR(array)) { 590 status = PTR_ERR(array); 591 goto out; 592 } 593 memset(array, 0, sizeof(struct nfs_cache_array)); 594 array->eof_index = -1; 595 596 status = nfs_readdir_large_page(pages, array_size); 597 if (status < 0) 598 goto out_release_array; 599 do { 600 unsigned int pglen; 601 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 602 603 if (status < 0) 604 break; 605 pglen = status; 606 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 607 if (status < 0) { 608 if (status == -ENOSPC) 609 status = 0; 610 break; 611 } 612 } while (array->eof_index < 0); 613 614 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 615 out_release_array: 616 nfs_readdir_release_array(page); 617 out: 618 nfs_free_fattr(entry.fattr); 619 nfs_free_fhandle(entry.fh); 620 return status; 621 } 622 623 /* 624 * Now we cache directories properly, by converting xdr information 625 * to an array that can be used for lookups later. This results in 626 * fewer cache pages, since we can store more information on each page. 627 * We only need to convert from xdr once so future lookups are much simpler 628 */ 629 static 630 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 631 { 632 struct inode *inode = desc->file->f_path.dentry->d_inode; 633 int ret; 634 635 ret = nfs_readdir_xdr_to_array(desc, page, inode); 636 if (ret < 0) 637 goto error; 638 SetPageUptodate(page); 639 640 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 641 /* Should never happen */ 642 nfs_zap_mapping(inode, inode->i_mapping); 643 } 644 unlock_page(page); 645 return 0; 646 error: 647 unlock_page(page); 648 return ret; 649 } 650 651 static 652 void cache_page_release(nfs_readdir_descriptor_t *desc) 653 { 654 if (!desc->page->mapping) 655 nfs_readdir_clear_array(desc->page); 656 page_cache_release(desc->page); 657 desc->page = NULL; 658 } 659 660 static 661 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 662 { 663 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping, 664 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 665 } 666 667 /* 668 * Returns 0 if desc->dir_cookie was found on page desc->page_index 669 */ 670 static 671 int find_cache_page(nfs_readdir_descriptor_t *desc) 672 { 673 int res; 674 675 desc->page = get_cache_page(desc); 676 if (IS_ERR(desc->page)) 677 return PTR_ERR(desc->page); 678 679 res = nfs_readdir_search_array(desc); 680 if (res != 0) 681 cache_page_release(desc); 682 return res; 683 } 684 685 /* Search for desc->dir_cookie from the beginning of the page cache */ 686 static inline 687 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 688 { 689 int res; 690 691 if (desc->page_index == 0) { 692 desc->current_index = 0; 693 desc->last_cookie = 0; 694 } 695 do { 696 res = find_cache_page(desc); 697 } while (res == -EAGAIN); 698 return res; 699 } 700 701 /* 702 * Once we've found the start of the dirent within a page: fill 'er up... 703 */ 704 static 705 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 706 filldir_t filldir) 707 { 708 struct file *file = desc->file; 709 int i = 0; 710 int res = 0; 711 struct nfs_cache_array *array = NULL; 712 struct nfs_open_dir_context *ctx = file->private_data; 713 714 array = nfs_readdir_get_array(desc->page); 715 if (IS_ERR(array)) { 716 res = PTR_ERR(array); 717 goto out; 718 } 719 720 for (i = desc->cache_entry_index; i < array->size; i++) { 721 struct nfs_cache_array_entry *ent; 722 723 ent = &array->array[i]; 724 if (filldir(dirent, ent->string.name, ent->string.len, 725 file->f_pos, nfs_compat_user_ino64(ent->ino), 726 ent->d_type) < 0) { 727 desc->eof = 1; 728 break; 729 } 730 file->f_pos++; 731 if (i < (array->size-1)) 732 *desc->dir_cookie = array->array[i+1].cookie; 733 else 734 *desc->dir_cookie = array->last_cookie; 735 if (ctx->duped != 0) 736 ctx->duped = 1; 737 } 738 if (array->eof_index >= 0) 739 desc->eof = 1; 740 741 nfs_readdir_release_array(desc->page); 742 out: 743 cache_page_release(desc); 744 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 745 (unsigned long long)*desc->dir_cookie, res); 746 return res; 747 } 748 749 /* 750 * If we cannot find a cookie in our cache, we suspect that this is 751 * because it points to a deleted file, so we ask the server to return 752 * whatever it thinks is the next entry. We then feed this to filldir. 753 * If all goes well, we should then be able to find our way round the 754 * cache on the next call to readdir_search_pagecache(); 755 * 756 * NOTE: we cannot add the anonymous page to the pagecache because 757 * the data it contains might not be page aligned. Besides, 758 * we should already have a complete representation of the 759 * directory in the page cache by the time we get here. 760 */ 761 static inline 762 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 763 filldir_t filldir) 764 { 765 struct page *page = NULL; 766 int status; 767 struct inode *inode = desc->file->f_path.dentry->d_inode; 768 struct nfs_open_dir_context *ctx = desc->file->private_data; 769 770 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 771 (unsigned long long)*desc->dir_cookie); 772 773 page = alloc_page(GFP_HIGHUSER); 774 if (!page) { 775 status = -ENOMEM; 776 goto out; 777 } 778 779 desc->page_index = 0; 780 desc->last_cookie = *desc->dir_cookie; 781 desc->page = page; 782 ctx->duped = 0; 783 784 status = nfs_readdir_xdr_to_array(desc, page, inode); 785 if (status < 0) 786 goto out_release; 787 788 status = nfs_do_filldir(desc, dirent, filldir); 789 790 out: 791 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 792 __func__, status); 793 return status; 794 out_release: 795 cache_page_release(desc); 796 goto out; 797 } 798 799 /* The file offset position represents the dirent entry number. A 800 last cookie cache takes care of the common case of reading the 801 whole directory. 802 */ 803 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 804 { 805 struct dentry *dentry = filp->f_path.dentry; 806 struct inode *inode = dentry->d_inode; 807 nfs_readdir_descriptor_t my_desc, 808 *desc = &my_desc; 809 struct nfs_open_dir_context *dir_ctx = filp->private_data; 810 int res; 811 812 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 813 dentry->d_parent->d_name.name, dentry->d_name.name, 814 (long long)filp->f_pos); 815 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 816 817 /* 818 * filp->f_pos points to the dirent entry number. 819 * *desc->dir_cookie has the cookie for the next entry. We have 820 * to either find the entry with the appropriate number or 821 * revalidate the cookie. 822 */ 823 memset(desc, 0, sizeof(*desc)); 824 825 desc->file = filp; 826 desc->dir_cookie = &dir_ctx->dir_cookie; 827 desc->decode = NFS_PROTO(inode)->decode_dirent; 828 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0; 829 830 nfs_block_sillyrename(dentry); 831 res = nfs_revalidate_mapping(inode, filp->f_mapping); 832 if (res < 0) 833 goto out; 834 835 do { 836 res = readdir_search_pagecache(desc); 837 838 if (res == -EBADCOOKIE) { 839 res = 0; 840 /* This means either end of directory */ 841 if (*desc->dir_cookie && desc->eof == 0) { 842 /* Or that the server has 'lost' a cookie */ 843 res = uncached_readdir(desc, dirent, filldir); 844 if (res == 0) 845 continue; 846 } 847 break; 848 } 849 if (res == -ETOOSMALL && desc->plus) { 850 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 851 nfs_zap_caches(inode); 852 desc->page_index = 0; 853 desc->plus = 0; 854 desc->eof = 0; 855 continue; 856 } 857 if (res < 0) 858 break; 859 860 res = nfs_do_filldir(desc, dirent, filldir); 861 if (res < 0) 862 break; 863 } while (!desc->eof); 864 out: 865 nfs_unblock_sillyrename(dentry); 866 if (res > 0) 867 res = 0; 868 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 869 dentry->d_parent->d_name.name, dentry->d_name.name, 870 res); 871 return res; 872 } 873 874 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 875 { 876 struct dentry *dentry = filp->f_path.dentry; 877 struct inode *inode = dentry->d_inode; 878 struct nfs_open_dir_context *dir_ctx = filp->private_data; 879 880 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 881 dentry->d_parent->d_name.name, 882 dentry->d_name.name, 883 offset, origin); 884 885 mutex_lock(&inode->i_mutex); 886 switch (origin) { 887 case 1: 888 offset += filp->f_pos; 889 case 0: 890 if (offset >= 0) 891 break; 892 default: 893 offset = -EINVAL; 894 goto out; 895 } 896 if (offset != filp->f_pos) { 897 filp->f_pos = offset; 898 dir_ctx->dir_cookie = 0; 899 dir_ctx->duped = 0; 900 } 901 out: 902 mutex_unlock(&inode->i_mutex); 903 return offset; 904 } 905 906 /* 907 * All directory operations under NFS are synchronous, so fsync() 908 * is a dummy operation. 909 */ 910 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 911 int datasync) 912 { 913 struct dentry *dentry = filp->f_path.dentry; 914 struct inode *inode = dentry->d_inode; 915 916 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 917 dentry->d_parent->d_name.name, dentry->d_name.name, 918 datasync); 919 920 mutex_lock(&inode->i_mutex); 921 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 922 mutex_unlock(&inode->i_mutex); 923 return 0; 924 } 925 926 /** 927 * nfs_force_lookup_revalidate - Mark the directory as having changed 928 * @dir - pointer to directory inode 929 * 930 * This forces the revalidation code in nfs_lookup_revalidate() to do a 931 * full lookup on all child dentries of 'dir' whenever a change occurs 932 * on the server that might have invalidated our dcache. 933 * 934 * The caller should be holding dir->i_lock 935 */ 936 void nfs_force_lookup_revalidate(struct inode *dir) 937 { 938 NFS_I(dir)->cache_change_attribute++; 939 } 940 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 941 942 /* 943 * A check for whether or not the parent directory has changed. 944 * In the case it has, we assume that the dentries are untrustworthy 945 * and may need to be looked up again. 946 */ 947 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 948 { 949 if (IS_ROOT(dentry)) 950 return 1; 951 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 952 return 0; 953 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 954 return 0; 955 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 956 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 957 return 0; 958 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 959 return 0; 960 return 1; 961 } 962 963 /* 964 * Use intent information to check whether or not we're going to do 965 * an O_EXCL create using this path component. 966 */ 967 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 968 { 969 if (NFS_PROTO(dir)->version == 2) 970 return 0; 971 return flags & LOOKUP_EXCL; 972 } 973 974 /* 975 * Inode and filehandle revalidation for lookups. 976 * 977 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 978 * or if the intent information indicates that we're about to open this 979 * particular file and the "nocto" mount flag is not set. 980 * 981 */ 982 static inline 983 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 984 { 985 struct nfs_server *server = NFS_SERVER(inode); 986 987 if (IS_AUTOMOUNT(inode)) 988 return 0; 989 /* VFS wants an on-the-wire revalidation */ 990 if (flags & LOOKUP_REVAL) 991 goto out_force; 992 /* This is an open(2) */ 993 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 994 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 995 goto out_force; 996 return 0; 997 out_force: 998 return __nfs_revalidate_inode(server, inode); 999 } 1000 1001 /* 1002 * We judge how long we want to trust negative 1003 * dentries by looking at the parent inode mtime. 1004 * 1005 * If parent mtime has changed, we revalidate, else we wait for a 1006 * period corresponding to the parent's attribute cache timeout value. 1007 */ 1008 static inline 1009 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1010 unsigned int flags) 1011 { 1012 /* Don't revalidate a negative dentry if we're creating a new file */ 1013 if (flags & LOOKUP_CREATE) 1014 return 0; 1015 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1016 return 1; 1017 return !nfs_check_verifier(dir, dentry); 1018 } 1019 1020 /* 1021 * This is called every time the dcache has a lookup hit, 1022 * and we should check whether we can really trust that 1023 * lookup. 1024 * 1025 * NOTE! The hit can be a negative hit too, don't assume 1026 * we have an inode! 1027 * 1028 * If the parent directory is seen to have changed, we throw out the 1029 * cached dentry and do a new lookup. 1030 */ 1031 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1032 { 1033 struct inode *dir; 1034 struct inode *inode; 1035 struct dentry *parent; 1036 struct nfs_fh *fhandle = NULL; 1037 struct nfs_fattr *fattr = NULL; 1038 int error; 1039 1040 if (flags & LOOKUP_RCU) 1041 return -ECHILD; 1042 1043 parent = dget_parent(dentry); 1044 dir = parent->d_inode; 1045 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1046 inode = dentry->d_inode; 1047 1048 if (!inode) { 1049 if (nfs_neg_need_reval(dir, dentry, flags)) 1050 goto out_bad; 1051 goto out_valid_noent; 1052 } 1053 1054 if (is_bad_inode(inode)) { 1055 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1056 __func__, dentry->d_parent->d_name.name, 1057 dentry->d_name.name); 1058 goto out_bad; 1059 } 1060 1061 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1062 goto out_set_verifier; 1063 1064 /* Force a full look up iff the parent directory has changed */ 1065 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1066 if (nfs_lookup_verify_inode(inode, flags)) 1067 goto out_zap_parent; 1068 goto out_valid; 1069 } 1070 1071 if (NFS_STALE(inode)) 1072 goto out_bad; 1073 1074 error = -ENOMEM; 1075 fhandle = nfs_alloc_fhandle(); 1076 fattr = nfs_alloc_fattr(); 1077 if (fhandle == NULL || fattr == NULL) 1078 goto out_error; 1079 1080 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1081 if (error) 1082 goto out_bad; 1083 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1084 goto out_bad; 1085 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1086 goto out_bad; 1087 1088 nfs_free_fattr(fattr); 1089 nfs_free_fhandle(fhandle); 1090 out_set_verifier: 1091 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1092 out_valid: 1093 /* Success: notify readdir to use READDIRPLUS */ 1094 nfs_advise_use_readdirplus(dir); 1095 out_valid_noent: 1096 dput(parent); 1097 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1098 __func__, dentry->d_parent->d_name.name, 1099 dentry->d_name.name); 1100 return 1; 1101 out_zap_parent: 1102 nfs_zap_caches(dir); 1103 out_bad: 1104 nfs_free_fattr(fattr); 1105 nfs_free_fhandle(fhandle); 1106 nfs_mark_for_revalidate(dir); 1107 if (inode && S_ISDIR(inode->i_mode)) { 1108 /* Purge readdir caches. */ 1109 nfs_zap_caches(inode); 1110 /* If we have submounts, don't unhash ! */ 1111 if (have_submounts(dentry)) 1112 goto out_valid; 1113 if (dentry->d_flags & DCACHE_DISCONNECTED) 1114 goto out_valid; 1115 shrink_dcache_parent(dentry); 1116 } 1117 d_drop(dentry); 1118 dput(parent); 1119 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1120 __func__, dentry->d_parent->d_name.name, 1121 dentry->d_name.name); 1122 return 0; 1123 out_error: 1124 nfs_free_fattr(fattr); 1125 nfs_free_fhandle(fhandle); 1126 dput(parent); 1127 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1128 __func__, dentry->d_parent->d_name.name, 1129 dentry->d_name.name, error); 1130 return error; 1131 } 1132 1133 /* 1134 * This is called from dput() when d_count is going to 0. 1135 */ 1136 static int nfs_dentry_delete(const struct dentry *dentry) 1137 { 1138 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1139 dentry->d_parent->d_name.name, dentry->d_name.name, 1140 dentry->d_flags); 1141 1142 /* Unhash any dentry with a stale inode */ 1143 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1144 return 1; 1145 1146 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1147 /* Unhash it, so that ->d_iput() would be called */ 1148 return 1; 1149 } 1150 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1151 /* Unhash it, so that ancestors of killed async unlink 1152 * files will be cleaned up during umount */ 1153 return 1; 1154 } 1155 return 0; 1156 1157 } 1158 1159 static void nfs_drop_nlink(struct inode *inode) 1160 { 1161 spin_lock(&inode->i_lock); 1162 if (inode->i_nlink > 0) 1163 drop_nlink(inode); 1164 spin_unlock(&inode->i_lock); 1165 } 1166 1167 /* 1168 * Called when the dentry loses inode. 1169 * We use it to clean up silly-renamed files. 1170 */ 1171 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1172 { 1173 if (S_ISDIR(inode->i_mode)) 1174 /* drop any readdir cache as it could easily be old */ 1175 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1176 1177 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1178 drop_nlink(inode); 1179 nfs_complete_unlink(dentry, inode); 1180 } 1181 iput(inode); 1182 } 1183 1184 static void nfs_d_release(struct dentry *dentry) 1185 { 1186 /* free cached devname value, if it survived that far */ 1187 if (unlikely(dentry->d_fsdata)) { 1188 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1189 WARN_ON(1); 1190 else 1191 kfree(dentry->d_fsdata); 1192 } 1193 } 1194 1195 const struct dentry_operations nfs_dentry_operations = { 1196 .d_revalidate = nfs_lookup_revalidate, 1197 .d_delete = nfs_dentry_delete, 1198 .d_iput = nfs_dentry_iput, 1199 .d_automount = nfs_d_automount, 1200 .d_release = nfs_d_release, 1201 }; 1202 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1203 1204 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1205 { 1206 struct dentry *res; 1207 struct dentry *parent; 1208 struct inode *inode = NULL; 1209 struct nfs_fh *fhandle = NULL; 1210 struct nfs_fattr *fattr = NULL; 1211 int error; 1212 1213 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1214 dentry->d_parent->d_name.name, dentry->d_name.name); 1215 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1216 1217 res = ERR_PTR(-ENAMETOOLONG); 1218 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1219 goto out; 1220 1221 /* 1222 * If we're doing an exclusive create, optimize away the lookup 1223 * but don't hash the dentry. 1224 */ 1225 if (nfs_is_exclusive_create(dir, flags)) { 1226 d_instantiate(dentry, NULL); 1227 res = NULL; 1228 goto out; 1229 } 1230 1231 res = ERR_PTR(-ENOMEM); 1232 fhandle = nfs_alloc_fhandle(); 1233 fattr = nfs_alloc_fattr(); 1234 if (fhandle == NULL || fattr == NULL) 1235 goto out; 1236 1237 parent = dentry->d_parent; 1238 /* Protect against concurrent sillydeletes */ 1239 nfs_block_sillyrename(parent); 1240 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1241 if (error == -ENOENT) 1242 goto no_entry; 1243 if (error < 0) { 1244 res = ERR_PTR(error); 1245 goto out_unblock_sillyrename; 1246 } 1247 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1248 res = ERR_CAST(inode); 1249 if (IS_ERR(res)) 1250 goto out_unblock_sillyrename; 1251 1252 /* Success: notify readdir to use READDIRPLUS */ 1253 nfs_advise_use_readdirplus(dir); 1254 1255 no_entry: 1256 res = d_materialise_unique(dentry, inode); 1257 if (res != NULL) { 1258 if (IS_ERR(res)) 1259 goto out_unblock_sillyrename; 1260 dentry = res; 1261 } 1262 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1263 out_unblock_sillyrename: 1264 nfs_unblock_sillyrename(parent); 1265 out: 1266 nfs_free_fattr(fattr); 1267 nfs_free_fhandle(fhandle); 1268 return res; 1269 } 1270 EXPORT_SYMBOL_GPL(nfs_lookup); 1271 1272 #if IS_ENABLED(CONFIG_NFS_V4) 1273 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1274 1275 const struct dentry_operations nfs4_dentry_operations = { 1276 .d_revalidate = nfs4_lookup_revalidate, 1277 .d_delete = nfs_dentry_delete, 1278 .d_iput = nfs_dentry_iput, 1279 .d_automount = nfs_d_automount, 1280 .d_release = nfs_d_release, 1281 }; 1282 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1283 1284 static fmode_t flags_to_mode(int flags) 1285 { 1286 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1287 if ((flags & O_ACCMODE) != O_WRONLY) 1288 res |= FMODE_READ; 1289 if ((flags & O_ACCMODE) != O_RDONLY) 1290 res |= FMODE_WRITE; 1291 return res; 1292 } 1293 1294 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1295 { 1296 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1297 } 1298 1299 static int do_open(struct inode *inode, struct file *filp) 1300 { 1301 nfs_fscache_set_inode_cookie(inode, filp); 1302 return 0; 1303 } 1304 1305 static int nfs_finish_open(struct nfs_open_context *ctx, 1306 struct dentry *dentry, 1307 struct file *file, unsigned open_flags, 1308 int *opened) 1309 { 1310 int err; 1311 1312 if (ctx->dentry != dentry) { 1313 dput(ctx->dentry); 1314 ctx->dentry = dget(dentry); 1315 } 1316 1317 /* If the open_intent is for execute, we have an extra check to make */ 1318 if (ctx->mode & FMODE_EXEC) { 1319 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags); 1320 if (err < 0) 1321 goto out; 1322 } 1323 1324 err = finish_open(file, dentry, do_open, opened); 1325 if (err) 1326 goto out; 1327 nfs_file_set_open_context(file, ctx); 1328 1329 out: 1330 put_nfs_open_context(ctx); 1331 return err; 1332 } 1333 1334 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1335 struct file *file, unsigned open_flags, 1336 umode_t mode, int *opened) 1337 { 1338 struct nfs_open_context *ctx; 1339 struct dentry *res; 1340 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1341 struct inode *inode; 1342 int err; 1343 1344 /* Expect a negative dentry */ 1345 BUG_ON(dentry->d_inode); 1346 1347 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n", 1348 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1349 1350 /* NFS only supports OPEN on regular files */ 1351 if ((open_flags & O_DIRECTORY)) { 1352 if (!d_unhashed(dentry)) { 1353 /* 1354 * Hashed negative dentry with O_DIRECTORY: dentry was 1355 * revalidated and is fine, no need to perform lookup 1356 * again 1357 */ 1358 return -ENOENT; 1359 } 1360 goto no_open; 1361 } 1362 1363 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1364 return -ENAMETOOLONG; 1365 1366 if (open_flags & O_CREAT) { 1367 attr.ia_valid |= ATTR_MODE; 1368 attr.ia_mode = mode & ~current_umask(); 1369 } 1370 if (open_flags & O_TRUNC) { 1371 attr.ia_valid |= ATTR_SIZE; 1372 attr.ia_size = 0; 1373 } 1374 1375 ctx = create_nfs_open_context(dentry, open_flags); 1376 err = PTR_ERR(ctx); 1377 if (IS_ERR(ctx)) 1378 goto out; 1379 1380 nfs_block_sillyrename(dentry->d_parent); 1381 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1382 d_drop(dentry); 1383 if (IS_ERR(inode)) { 1384 nfs_unblock_sillyrename(dentry->d_parent); 1385 put_nfs_open_context(ctx); 1386 err = PTR_ERR(inode); 1387 switch (err) { 1388 case -ENOENT: 1389 d_add(dentry, NULL); 1390 break; 1391 case -EISDIR: 1392 case -ENOTDIR: 1393 goto no_open; 1394 case -ELOOP: 1395 if (!(open_flags & O_NOFOLLOW)) 1396 goto no_open; 1397 break; 1398 /* case -EINVAL: */ 1399 default: 1400 break; 1401 } 1402 goto out; 1403 } 1404 res = d_add_unique(dentry, inode); 1405 if (res != NULL) 1406 dentry = res; 1407 1408 nfs_unblock_sillyrename(dentry->d_parent); 1409 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1410 1411 err = nfs_finish_open(ctx, dentry, file, open_flags, opened); 1412 1413 dput(res); 1414 out: 1415 return err; 1416 1417 no_open: 1418 res = nfs_lookup(dir, dentry, 0); 1419 err = PTR_ERR(res); 1420 if (IS_ERR(res)) 1421 goto out; 1422 1423 return finish_no_open(file, res); 1424 } 1425 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1426 1427 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1428 { 1429 struct dentry *parent = NULL; 1430 struct inode *inode; 1431 struct inode *dir; 1432 int ret = 0; 1433 1434 if (flags & LOOKUP_RCU) 1435 return -ECHILD; 1436 1437 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1438 goto no_open; 1439 if (d_mountpoint(dentry)) 1440 goto no_open; 1441 1442 inode = dentry->d_inode; 1443 parent = dget_parent(dentry); 1444 dir = parent->d_inode; 1445 1446 /* We can't create new files in nfs_open_revalidate(), so we 1447 * optimize away revalidation of negative dentries. 1448 */ 1449 if (inode == NULL) { 1450 if (!nfs_neg_need_reval(dir, dentry, flags)) 1451 ret = 1; 1452 goto out; 1453 } 1454 1455 /* NFS only supports OPEN on regular files */ 1456 if (!S_ISREG(inode->i_mode)) 1457 goto no_open_dput; 1458 /* We cannot do exclusive creation on a positive dentry */ 1459 if (flags & LOOKUP_EXCL) 1460 goto no_open_dput; 1461 1462 /* Let f_op->open() actually open (and revalidate) the file */ 1463 ret = 1; 1464 1465 out: 1466 dput(parent); 1467 return ret; 1468 1469 no_open_dput: 1470 dput(parent); 1471 no_open: 1472 return nfs_lookup_revalidate(dentry, flags); 1473 } 1474 1475 #endif /* CONFIG_NFSV4 */ 1476 1477 /* 1478 * Code common to create, mkdir, and mknod. 1479 */ 1480 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1481 struct nfs_fattr *fattr) 1482 { 1483 struct dentry *parent = dget_parent(dentry); 1484 struct inode *dir = parent->d_inode; 1485 struct inode *inode; 1486 int error = -EACCES; 1487 1488 d_drop(dentry); 1489 1490 /* We may have been initialized further down */ 1491 if (dentry->d_inode) 1492 goto out; 1493 if (fhandle->size == 0) { 1494 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1495 if (error) 1496 goto out_error; 1497 } 1498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1499 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1500 struct nfs_server *server = NFS_SB(dentry->d_sb); 1501 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1502 if (error < 0) 1503 goto out_error; 1504 } 1505 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1506 error = PTR_ERR(inode); 1507 if (IS_ERR(inode)) 1508 goto out_error; 1509 d_add(dentry, inode); 1510 out: 1511 dput(parent); 1512 return 0; 1513 out_error: 1514 nfs_mark_for_revalidate(dir); 1515 dput(parent); 1516 return error; 1517 } 1518 EXPORT_SYMBOL_GPL(nfs_instantiate); 1519 1520 /* 1521 * Following a failed create operation, we drop the dentry rather 1522 * than retain a negative dentry. This avoids a problem in the event 1523 * that the operation succeeded on the server, but an error in the 1524 * reply path made it appear to have failed. 1525 */ 1526 int nfs_create(struct inode *dir, struct dentry *dentry, 1527 umode_t mode, bool excl) 1528 { 1529 struct iattr attr; 1530 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1531 int error; 1532 1533 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1534 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1535 1536 attr.ia_mode = mode; 1537 attr.ia_valid = ATTR_MODE; 1538 1539 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1540 if (error != 0) 1541 goto out_err; 1542 return 0; 1543 out_err: 1544 d_drop(dentry); 1545 return error; 1546 } 1547 EXPORT_SYMBOL_GPL(nfs_create); 1548 1549 /* 1550 * See comments for nfs_proc_create regarding failed operations. 1551 */ 1552 int 1553 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1554 { 1555 struct iattr attr; 1556 int status; 1557 1558 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1559 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1560 1561 if (!new_valid_dev(rdev)) 1562 return -EINVAL; 1563 1564 attr.ia_mode = mode; 1565 attr.ia_valid = ATTR_MODE; 1566 1567 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1568 if (status != 0) 1569 goto out_err; 1570 return 0; 1571 out_err: 1572 d_drop(dentry); 1573 return status; 1574 } 1575 EXPORT_SYMBOL_GPL(nfs_mknod); 1576 1577 /* 1578 * See comments for nfs_proc_create regarding failed operations. 1579 */ 1580 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1581 { 1582 struct iattr attr; 1583 int error; 1584 1585 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1586 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1587 1588 attr.ia_valid = ATTR_MODE; 1589 attr.ia_mode = mode | S_IFDIR; 1590 1591 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1592 if (error != 0) 1593 goto out_err; 1594 return 0; 1595 out_err: 1596 d_drop(dentry); 1597 return error; 1598 } 1599 EXPORT_SYMBOL_GPL(nfs_mkdir); 1600 1601 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1602 { 1603 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1604 d_delete(dentry); 1605 } 1606 1607 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1608 { 1609 int error; 1610 1611 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1612 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1613 1614 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1615 /* Ensure the VFS deletes this inode */ 1616 if (error == 0 && dentry->d_inode != NULL) 1617 clear_nlink(dentry->d_inode); 1618 else if (error == -ENOENT) 1619 nfs_dentry_handle_enoent(dentry); 1620 1621 return error; 1622 } 1623 EXPORT_SYMBOL_GPL(nfs_rmdir); 1624 1625 /* 1626 * Remove a file after making sure there are no pending writes, 1627 * and after checking that the file has only one user. 1628 * 1629 * We invalidate the attribute cache and free the inode prior to the operation 1630 * to avoid possible races if the server reuses the inode. 1631 */ 1632 static int nfs_safe_remove(struct dentry *dentry) 1633 { 1634 struct inode *dir = dentry->d_parent->d_inode; 1635 struct inode *inode = dentry->d_inode; 1636 int error = -EBUSY; 1637 1638 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1639 dentry->d_parent->d_name.name, dentry->d_name.name); 1640 1641 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1642 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1643 error = 0; 1644 goto out; 1645 } 1646 1647 if (inode != NULL) { 1648 NFS_PROTO(inode)->return_delegation(inode); 1649 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1650 /* The VFS may want to delete this inode */ 1651 if (error == 0) 1652 nfs_drop_nlink(inode); 1653 nfs_mark_for_revalidate(inode); 1654 } else 1655 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1656 if (error == -ENOENT) 1657 nfs_dentry_handle_enoent(dentry); 1658 out: 1659 return error; 1660 } 1661 1662 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1663 * belongs to an active ".nfs..." file and we return -EBUSY. 1664 * 1665 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1666 */ 1667 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1668 { 1669 int error; 1670 int need_rehash = 0; 1671 1672 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1673 dir->i_ino, dentry->d_name.name); 1674 1675 spin_lock(&dentry->d_lock); 1676 if (dentry->d_count > 1) { 1677 spin_unlock(&dentry->d_lock); 1678 /* Start asynchronous writeout of the inode */ 1679 write_inode_now(dentry->d_inode, 0); 1680 error = nfs_sillyrename(dir, dentry); 1681 return error; 1682 } 1683 if (!d_unhashed(dentry)) { 1684 __d_drop(dentry); 1685 need_rehash = 1; 1686 } 1687 spin_unlock(&dentry->d_lock); 1688 error = nfs_safe_remove(dentry); 1689 if (!error || error == -ENOENT) { 1690 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1691 } else if (need_rehash) 1692 d_rehash(dentry); 1693 return error; 1694 } 1695 EXPORT_SYMBOL_GPL(nfs_unlink); 1696 1697 /* 1698 * To create a symbolic link, most file systems instantiate a new inode, 1699 * add a page to it containing the path, then write it out to the disk 1700 * using prepare_write/commit_write. 1701 * 1702 * Unfortunately the NFS client can't create the in-core inode first 1703 * because it needs a file handle to create an in-core inode (see 1704 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1705 * symlink request has completed on the server. 1706 * 1707 * So instead we allocate a raw page, copy the symname into it, then do 1708 * the SYMLINK request with the page as the buffer. If it succeeds, we 1709 * now have a new file handle and can instantiate an in-core NFS inode 1710 * and move the raw page into its mapping. 1711 */ 1712 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1713 { 1714 struct pagevec lru_pvec; 1715 struct page *page; 1716 char *kaddr; 1717 struct iattr attr; 1718 unsigned int pathlen = strlen(symname); 1719 int error; 1720 1721 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1722 dir->i_ino, dentry->d_name.name, symname); 1723 1724 if (pathlen > PAGE_SIZE) 1725 return -ENAMETOOLONG; 1726 1727 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1728 attr.ia_valid = ATTR_MODE; 1729 1730 page = alloc_page(GFP_HIGHUSER); 1731 if (!page) 1732 return -ENOMEM; 1733 1734 kaddr = kmap_atomic(page); 1735 memcpy(kaddr, symname, pathlen); 1736 if (pathlen < PAGE_SIZE) 1737 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1738 kunmap_atomic(kaddr); 1739 1740 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1741 if (error != 0) { 1742 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1743 dir->i_sb->s_id, dir->i_ino, 1744 dentry->d_name.name, symname, error); 1745 d_drop(dentry); 1746 __free_page(page); 1747 return error; 1748 } 1749 1750 /* 1751 * No big deal if we can't add this page to the page cache here. 1752 * READLINK will get the missing page from the server if needed. 1753 */ 1754 pagevec_init(&lru_pvec, 0); 1755 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1756 GFP_KERNEL)) { 1757 pagevec_add(&lru_pvec, page); 1758 pagevec_lru_add_file(&lru_pvec); 1759 SetPageUptodate(page); 1760 unlock_page(page); 1761 } else 1762 __free_page(page); 1763 1764 return 0; 1765 } 1766 EXPORT_SYMBOL_GPL(nfs_symlink); 1767 1768 int 1769 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1770 { 1771 struct inode *inode = old_dentry->d_inode; 1772 int error; 1773 1774 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1775 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1776 dentry->d_parent->d_name.name, dentry->d_name.name); 1777 1778 NFS_PROTO(inode)->return_delegation(inode); 1779 1780 d_drop(dentry); 1781 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1782 if (error == 0) { 1783 ihold(inode); 1784 d_add(dentry, inode); 1785 } 1786 return error; 1787 } 1788 EXPORT_SYMBOL_GPL(nfs_link); 1789 1790 /* 1791 * RENAME 1792 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1793 * different file handle for the same inode after a rename (e.g. when 1794 * moving to a different directory). A fail-safe method to do so would 1795 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1796 * rename the old file using the sillyrename stuff. This way, the original 1797 * file in old_dir will go away when the last process iput()s the inode. 1798 * 1799 * FIXED. 1800 * 1801 * It actually works quite well. One needs to have the possibility for 1802 * at least one ".nfs..." file in each directory the file ever gets 1803 * moved or linked to which happens automagically with the new 1804 * implementation that only depends on the dcache stuff instead of 1805 * using the inode layer 1806 * 1807 * Unfortunately, things are a little more complicated than indicated 1808 * above. For a cross-directory move, we want to make sure we can get 1809 * rid of the old inode after the operation. This means there must be 1810 * no pending writes (if it's a file), and the use count must be 1. 1811 * If these conditions are met, we can drop the dentries before doing 1812 * the rename. 1813 */ 1814 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1815 struct inode *new_dir, struct dentry *new_dentry) 1816 { 1817 struct inode *old_inode = old_dentry->d_inode; 1818 struct inode *new_inode = new_dentry->d_inode; 1819 struct dentry *dentry = NULL, *rehash = NULL; 1820 int error = -EBUSY; 1821 1822 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1823 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1824 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1825 new_dentry->d_count); 1826 1827 /* 1828 * For non-directories, check whether the target is busy and if so, 1829 * make a copy of the dentry and then do a silly-rename. If the 1830 * silly-rename succeeds, the copied dentry is hashed and becomes 1831 * the new target. 1832 */ 1833 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1834 /* 1835 * To prevent any new references to the target during the 1836 * rename, we unhash the dentry in advance. 1837 */ 1838 if (!d_unhashed(new_dentry)) { 1839 d_drop(new_dentry); 1840 rehash = new_dentry; 1841 } 1842 1843 if (new_dentry->d_count > 2) { 1844 int err; 1845 1846 /* copy the target dentry's name */ 1847 dentry = d_alloc(new_dentry->d_parent, 1848 &new_dentry->d_name); 1849 if (!dentry) 1850 goto out; 1851 1852 /* silly-rename the existing target ... */ 1853 err = nfs_sillyrename(new_dir, new_dentry); 1854 if (err) 1855 goto out; 1856 1857 new_dentry = dentry; 1858 rehash = NULL; 1859 new_inode = NULL; 1860 } 1861 } 1862 1863 NFS_PROTO(old_inode)->return_delegation(old_inode); 1864 if (new_inode != NULL) 1865 NFS_PROTO(new_inode)->return_delegation(new_inode); 1866 1867 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1868 new_dir, &new_dentry->d_name); 1869 nfs_mark_for_revalidate(old_inode); 1870 out: 1871 if (rehash) 1872 d_rehash(rehash); 1873 if (!error) { 1874 if (new_inode != NULL) 1875 nfs_drop_nlink(new_inode); 1876 d_move(old_dentry, new_dentry); 1877 nfs_set_verifier(new_dentry, 1878 nfs_save_change_attribute(new_dir)); 1879 } else if (error == -ENOENT) 1880 nfs_dentry_handle_enoent(old_dentry); 1881 1882 /* new dentry created? */ 1883 if (dentry) 1884 dput(dentry); 1885 return error; 1886 } 1887 EXPORT_SYMBOL_GPL(nfs_rename); 1888 1889 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1890 static LIST_HEAD(nfs_access_lru_list); 1891 static atomic_long_t nfs_access_nr_entries; 1892 1893 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1894 { 1895 put_rpccred(entry->cred); 1896 kfree(entry); 1897 smp_mb__before_atomic_dec(); 1898 atomic_long_dec(&nfs_access_nr_entries); 1899 smp_mb__after_atomic_dec(); 1900 } 1901 1902 static void nfs_access_free_list(struct list_head *head) 1903 { 1904 struct nfs_access_entry *cache; 1905 1906 while (!list_empty(head)) { 1907 cache = list_entry(head->next, struct nfs_access_entry, lru); 1908 list_del(&cache->lru); 1909 nfs_access_free_entry(cache); 1910 } 1911 } 1912 1913 int nfs_access_cache_shrinker(struct shrinker *shrink, 1914 struct shrink_control *sc) 1915 { 1916 LIST_HEAD(head); 1917 struct nfs_inode *nfsi, *next; 1918 struct nfs_access_entry *cache; 1919 int nr_to_scan = sc->nr_to_scan; 1920 gfp_t gfp_mask = sc->gfp_mask; 1921 1922 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 1923 return (nr_to_scan == 0) ? 0 : -1; 1924 1925 spin_lock(&nfs_access_lru_lock); 1926 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 1927 struct inode *inode; 1928 1929 if (nr_to_scan-- == 0) 1930 break; 1931 inode = &nfsi->vfs_inode; 1932 spin_lock(&inode->i_lock); 1933 if (list_empty(&nfsi->access_cache_entry_lru)) 1934 goto remove_lru_entry; 1935 cache = list_entry(nfsi->access_cache_entry_lru.next, 1936 struct nfs_access_entry, lru); 1937 list_move(&cache->lru, &head); 1938 rb_erase(&cache->rb_node, &nfsi->access_cache); 1939 if (!list_empty(&nfsi->access_cache_entry_lru)) 1940 list_move_tail(&nfsi->access_cache_inode_lru, 1941 &nfs_access_lru_list); 1942 else { 1943 remove_lru_entry: 1944 list_del_init(&nfsi->access_cache_inode_lru); 1945 smp_mb__before_clear_bit(); 1946 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1947 smp_mb__after_clear_bit(); 1948 } 1949 spin_unlock(&inode->i_lock); 1950 } 1951 spin_unlock(&nfs_access_lru_lock); 1952 nfs_access_free_list(&head); 1953 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1954 } 1955 1956 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 1957 { 1958 struct rb_root *root_node = &nfsi->access_cache; 1959 struct rb_node *n; 1960 struct nfs_access_entry *entry; 1961 1962 /* Unhook entries from the cache */ 1963 while ((n = rb_first(root_node)) != NULL) { 1964 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1965 rb_erase(n, root_node); 1966 list_move(&entry->lru, head); 1967 } 1968 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1969 } 1970 1971 void nfs_access_zap_cache(struct inode *inode) 1972 { 1973 LIST_HEAD(head); 1974 1975 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 1976 return; 1977 /* Remove from global LRU init */ 1978 spin_lock(&nfs_access_lru_lock); 1979 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 1980 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1981 1982 spin_lock(&inode->i_lock); 1983 __nfs_access_zap_cache(NFS_I(inode), &head); 1984 spin_unlock(&inode->i_lock); 1985 spin_unlock(&nfs_access_lru_lock); 1986 nfs_access_free_list(&head); 1987 } 1988 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 1989 1990 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1991 { 1992 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1993 struct nfs_access_entry *entry; 1994 1995 while (n != NULL) { 1996 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1997 1998 if (cred < entry->cred) 1999 n = n->rb_left; 2000 else if (cred > entry->cred) 2001 n = n->rb_right; 2002 else 2003 return entry; 2004 } 2005 return NULL; 2006 } 2007 2008 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2009 { 2010 struct nfs_inode *nfsi = NFS_I(inode); 2011 struct nfs_access_entry *cache; 2012 int err = -ENOENT; 2013 2014 spin_lock(&inode->i_lock); 2015 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2016 goto out_zap; 2017 cache = nfs_access_search_rbtree(inode, cred); 2018 if (cache == NULL) 2019 goto out; 2020 if (!nfs_have_delegated_attributes(inode) && 2021 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2022 goto out_stale; 2023 res->jiffies = cache->jiffies; 2024 res->cred = cache->cred; 2025 res->mask = cache->mask; 2026 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2027 err = 0; 2028 out: 2029 spin_unlock(&inode->i_lock); 2030 return err; 2031 out_stale: 2032 rb_erase(&cache->rb_node, &nfsi->access_cache); 2033 list_del(&cache->lru); 2034 spin_unlock(&inode->i_lock); 2035 nfs_access_free_entry(cache); 2036 return -ENOENT; 2037 out_zap: 2038 spin_unlock(&inode->i_lock); 2039 nfs_access_zap_cache(inode); 2040 return -ENOENT; 2041 } 2042 2043 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2044 { 2045 struct nfs_inode *nfsi = NFS_I(inode); 2046 struct rb_root *root_node = &nfsi->access_cache; 2047 struct rb_node **p = &root_node->rb_node; 2048 struct rb_node *parent = NULL; 2049 struct nfs_access_entry *entry; 2050 2051 spin_lock(&inode->i_lock); 2052 while (*p != NULL) { 2053 parent = *p; 2054 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2055 2056 if (set->cred < entry->cred) 2057 p = &parent->rb_left; 2058 else if (set->cred > entry->cred) 2059 p = &parent->rb_right; 2060 else 2061 goto found; 2062 } 2063 rb_link_node(&set->rb_node, parent, p); 2064 rb_insert_color(&set->rb_node, root_node); 2065 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2066 spin_unlock(&inode->i_lock); 2067 return; 2068 found: 2069 rb_replace_node(parent, &set->rb_node, root_node); 2070 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2071 list_del(&entry->lru); 2072 spin_unlock(&inode->i_lock); 2073 nfs_access_free_entry(entry); 2074 } 2075 2076 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2077 { 2078 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2079 if (cache == NULL) 2080 return; 2081 RB_CLEAR_NODE(&cache->rb_node); 2082 cache->jiffies = set->jiffies; 2083 cache->cred = get_rpccred(set->cred); 2084 cache->mask = set->mask; 2085 2086 nfs_access_add_rbtree(inode, cache); 2087 2088 /* Update accounting */ 2089 smp_mb__before_atomic_inc(); 2090 atomic_long_inc(&nfs_access_nr_entries); 2091 smp_mb__after_atomic_inc(); 2092 2093 /* Add inode to global LRU list */ 2094 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2095 spin_lock(&nfs_access_lru_lock); 2096 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2097 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2098 &nfs_access_lru_list); 2099 spin_unlock(&nfs_access_lru_lock); 2100 } 2101 } 2102 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2103 2104 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2105 { 2106 entry->mask = 0; 2107 if (access_result & NFS4_ACCESS_READ) 2108 entry->mask |= MAY_READ; 2109 if (access_result & 2110 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2111 entry->mask |= MAY_WRITE; 2112 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2113 entry->mask |= MAY_EXEC; 2114 } 2115 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2116 2117 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2118 { 2119 struct nfs_access_entry cache; 2120 int status; 2121 2122 status = nfs_access_get_cached(inode, cred, &cache); 2123 if (status == 0) 2124 goto out; 2125 2126 /* Be clever: ask server to check for all possible rights */ 2127 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2128 cache.cred = cred; 2129 cache.jiffies = jiffies; 2130 status = NFS_PROTO(inode)->access(inode, &cache); 2131 if (status != 0) { 2132 if (status == -ESTALE) { 2133 nfs_zap_caches(inode); 2134 if (!S_ISDIR(inode->i_mode)) 2135 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2136 } 2137 return status; 2138 } 2139 nfs_access_add_cache(inode, &cache); 2140 out: 2141 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2142 return 0; 2143 return -EACCES; 2144 } 2145 2146 static int nfs_open_permission_mask(int openflags) 2147 { 2148 int mask = 0; 2149 2150 if ((openflags & O_ACCMODE) != O_WRONLY) 2151 mask |= MAY_READ; 2152 if ((openflags & O_ACCMODE) != O_RDONLY) 2153 mask |= MAY_WRITE; 2154 if (openflags & __FMODE_EXEC) 2155 mask |= MAY_EXEC; 2156 return mask; 2157 } 2158 2159 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2160 { 2161 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2162 } 2163 EXPORT_SYMBOL_GPL(nfs_may_open); 2164 2165 int nfs_permission(struct inode *inode, int mask) 2166 { 2167 struct rpc_cred *cred; 2168 int res = 0; 2169 2170 if (mask & MAY_NOT_BLOCK) 2171 return -ECHILD; 2172 2173 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2174 2175 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2176 goto out; 2177 /* Is this sys_access() ? */ 2178 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2179 goto force_lookup; 2180 2181 switch (inode->i_mode & S_IFMT) { 2182 case S_IFLNK: 2183 goto out; 2184 case S_IFREG: 2185 /* NFSv4 has atomic_open... */ 2186 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2187 && (mask & MAY_OPEN) 2188 && !(mask & MAY_EXEC)) 2189 goto out; 2190 break; 2191 case S_IFDIR: 2192 /* 2193 * Optimize away all write operations, since the server 2194 * will check permissions when we perform the op. 2195 */ 2196 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2197 goto out; 2198 } 2199 2200 force_lookup: 2201 if (!NFS_PROTO(inode)->access) 2202 goto out_notsup; 2203 2204 cred = rpc_lookup_cred(); 2205 if (!IS_ERR(cred)) { 2206 res = nfs_do_access(inode, cred, mask); 2207 put_rpccred(cred); 2208 } else 2209 res = PTR_ERR(cred); 2210 out: 2211 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2212 res = -EACCES; 2213 2214 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2215 inode->i_sb->s_id, inode->i_ino, mask, res); 2216 return res; 2217 out_notsup: 2218 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2219 if (res == 0) 2220 res = generic_permission(inode, mask); 2221 goto out; 2222 } 2223 EXPORT_SYMBOL_GPL(nfs_permission); 2224 2225 /* 2226 * Local variables: 2227 * version-control: t 2228 * kept-new-versions: 5 2229 * End: 2230 */ 2231