1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 /* #define NFS_DEBUG_VERBOSE 1 */ 47 48 static int nfs_opendir(struct inode *, struct file *); 49 static int nfs_closedir(struct inode *, struct file *); 50 static int nfs_readdir(struct file *, struct dir_context *); 51 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 52 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 53 static void nfs_readdir_clear_array(struct page*); 54 55 const struct file_operations nfs_dir_operations = { 56 .llseek = nfs_llseek_dir, 57 .read = generic_read_dir, 58 .iterate = nfs_readdir, 59 .open = nfs_opendir, 60 .release = nfs_closedir, 61 .fsync = nfs_fsync_dir, 62 }; 63 64 const struct address_space_operations nfs_dir_aops = { 65 .freepage = nfs_readdir_clear_array, 66 }; 67 68 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 69 { 70 struct nfs_open_dir_context *ctx; 71 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 72 if (ctx != NULL) { 73 ctx->duped = 0; 74 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 75 ctx->dir_cookie = 0; 76 ctx->dup_cookie = 0; 77 ctx->cred = get_rpccred(cred); 78 return ctx; 79 } 80 return ERR_PTR(-ENOMEM); 81 } 82 83 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 84 { 85 put_rpccred(ctx->cred); 86 kfree(ctx); 87 } 88 89 /* 90 * Open file 91 */ 92 static int 93 nfs_opendir(struct inode *inode, struct file *filp) 94 { 95 int res = 0; 96 struct nfs_open_dir_context *ctx; 97 struct rpc_cred *cred; 98 99 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 100 filp->f_path.dentry->d_parent->d_name.name, 101 filp->f_path.dentry->d_name.name); 102 103 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 104 105 cred = rpc_lookup_cred(); 106 if (IS_ERR(cred)) 107 return PTR_ERR(cred); 108 ctx = alloc_nfs_open_dir_context(inode, cred); 109 if (IS_ERR(ctx)) { 110 res = PTR_ERR(ctx); 111 goto out; 112 } 113 filp->private_data = ctx; 114 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 115 /* This is a mountpoint, so d_revalidate will never 116 * have been called, so we need to refresh the 117 * inode (for close-open consistency) ourselves. 118 */ 119 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 120 } 121 out: 122 put_rpccred(cred); 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 unsigned int plus:1; 162 unsigned int eof:1; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * The caller is responsible for calling nfs_readdir_release_array(page) 167 */ 168 static 169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 170 { 171 void *ptr; 172 if (page == NULL) 173 return ERR_PTR(-EIO); 174 ptr = kmap(page); 175 if (ptr == NULL) 176 return ERR_PTR(-ENOMEM); 177 return ptr; 178 } 179 180 static 181 void nfs_readdir_release_array(struct page *page) 182 { 183 kunmap(page); 184 } 185 186 /* 187 * we are freeing strings created by nfs_add_to_readdir_array() 188 */ 189 static 190 void nfs_readdir_clear_array(struct page *page) 191 { 192 struct nfs_cache_array *array; 193 int i; 194 195 array = kmap_atomic(page); 196 for (i = 0; i < array->size; i++) 197 kfree(array->array[i].string.name); 198 kunmap_atomic(array); 199 } 200 201 /* 202 * the caller is responsible for freeing qstr.name 203 * when called by nfs_readdir_add_to_array, the strings will be freed in 204 * nfs_clear_readdir_array() 205 */ 206 static 207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 208 { 209 string->len = len; 210 string->name = kmemdup(name, len, GFP_KERNEL); 211 if (string->name == NULL) 212 return -ENOMEM; 213 /* 214 * Avoid a kmemleak false positive. The pointer to the name is stored 215 * in a page cache page which kmemleak does not scan. 216 */ 217 kmemleak_not_leak(string->name); 218 string->hash = full_name_hash(name, len); 219 return 0; 220 } 221 222 static 223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 224 { 225 struct nfs_cache_array *array = nfs_readdir_get_array(page); 226 struct nfs_cache_array_entry *cache_entry; 227 int ret; 228 229 if (IS_ERR(array)) 230 return PTR_ERR(array); 231 232 cache_entry = &array->array[array->size]; 233 234 /* Check that this entry lies within the page bounds */ 235 ret = -ENOSPC; 236 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 237 goto out; 238 239 cache_entry->cookie = entry->prev_cookie; 240 cache_entry->ino = entry->ino; 241 cache_entry->d_type = entry->d_type; 242 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 243 if (ret) 244 goto out; 245 array->last_cookie = entry->cookie; 246 array->size++; 247 if (entry->eof != 0) 248 array->eof_index = array->size; 249 out: 250 nfs_readdir_release_array(page); 251 return ret; 252 } 253 254 static 255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 256 { 257 loff_t diff = desc->ctx->pos - desc->current_index; 258 unsigned int index; 259 260 if (diff < 0) 261 goto out_eof; 262 if (diff >= array->size) { 263 if (array->eof_index >= 0) 264 goto out_eof; 265 return -EAGAIN; 266 } 267 268 index = (unsigned int)diff; 269 *desc->dir_cookie = array->array[index].cookie; 270 desc->cache_entry_index = index; 271 return 0; 272 out_eof: 273 desc->eof = 1; 274 return -EBADCOOKIE; 275 } 276 277 static 278 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 279 { 280 int i; 281 loff_t new_pos; 282 int status = -EAGAIN; 283 284 for (i = 0; i < array->size; i++) { 285 if (array->array[i].cookie == *desc->dir_cookie) { 286 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 287 struct nfs_open_dir_context *ctx = desc->file->private_data; 288 289 new_pos = desc->current_index + i; 290 if (ctx->attr_gencount != nfsi->attr_gencount 291 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 292 ctx->duped = 0; 293 ctx->attr_gencount = nfsi->attr_gencount; 294 } else if (new_pos < desc->ctx->pos) { 295 if (ctx->duped > 0 296 && ctx->dup_cookie == *desc->dir_cookie) { 297 if (printk_ratelimit()) { 298 pr_notice("NFS: directory %s/%s contains a readdir loop." 299 "Please contact your server vendor. " 300 "The file: %s has duplicate cookie %llu\n", 301 desc->file->f_dentry->d_parent->d_name.name, 302 desc->file->f_dentry->d_name.name, 303 array->array[i].string.name, 304 *desc->dir_cookie); 305 } 306 status = -ELOOP; 307 goto out; 308 } 309 ctx->dup_cookie = *desc->dir_cookie; 310 ctx->duped = -1; 311 } 312 desc->ctx->pos = new_pos; 313 desc->cache_entry_index = i; 314 return 0; 315 } 316 } 317 if (array->eof_index >= 0) { 318 status = -EBADCOOKIE; 319 if (*desc->dir_cookie == array->last_cookie) 320 desc->eof = 1; 321 } 322 out: 323 return status; 324 } 325 326 static 327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 328 { 329 struct nfs_cache_array *array; 330 int status; 331 332 array = nfs_readdir_get_array(desc->page); 333 if (IS_ERR(array)) { 334 status = PTR_ERR(array); 335 goto out; 336 } 337 338 if (*desc->dir_cookie == 0) 339 status = nfs_readdir_search_for_pos(array, desc); 340 else 341 status = nfs_readdir_search_for_cookie(array, desc); 342 343 if (status == -EAGAIN) { 344 desc->last_cookie = array->last_cookie; 345 desc->current_index += array->size; 346 desc->page_index++; 347 } 348 nfs_readdir_release_array(desc->page); 349 out: 350 return status; 351 } 352 353 /* Fill a page with xdr information before transferring to the cache page */ 354 static 355 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 356 struct nfs_entry *entry, struct file *file, struct inode *inode) 357 { 358 struct nfs_open_dir_context *ctx = file->private_data; 359 struct rpc_cred *cred = ctx->cred; 360 unsigned long timestamp, gencount; 361 int error; 362 363 again: 364 timestamp = jiffies; 365 gencount = nfs_inc_attr_generation_counter(); 366 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 367 NFS_SERVER(inode)->dtsize, desc->plus); 368 if (error < 0) { 369 /* We requested READDIRPLUS, but the server doesn't grok it */ 370 if (error == -ENOTSUPP && desc->plus) { 371 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 372 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 373 desc->plus = 0; 374 goto again; 375 } 376 goto error; 377 } 378 desc->timestamp = timestamp; 379 desc->gencount = gencount; 380 error: 381 return error; 382 } 383 384 static int xdr_decode(nfs_readdir_descriptor_t *desc, 385 struct nfs_entry *entry, struct xdr_stream *xdr) 386 { 387 int error; 388 389 error = desc->decode(xdr, entry, desc->plus); 390 if (error) 391 return error; 392 entry->fattr->time_start = desc->timestamp; 393 entry->fattr->gencount = desc->gencount; 394 return 0; 395 } 396 397 static 398 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 399 { 400 if (dentry->d_inode == NULL) 401 goto different; 402 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 403 goto different; 404 return 1; 405 different: 406 return 0; 407 } 408 409 static 410 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 411 { 412 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 413 return false; 414 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 415 return true; 416 if (ctx->pos == 0) 417 return true; 418 return false; 419 } 420 421 /* 422 * This function is called by the lookup code to request the use of 423 * readdirplus to accelerate any future lookups in the same 424 * directory. 425 */ 426 static 427 void nfs_advise_use_readdirplus(struct inode *dir) 428 { 429 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 430 } 431 432 static 433 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 434 { 435 struct qstr filename = QSTR_INIT(entry->name, entry->len); 436 struct dentry *dentry; 437 struct dentry *alias; 438 struct inode *dir = parent->d_inode; 439 struct inode *inode; 440 int status; 441 442 if (filename.name[0] == '.') { 443 if (filename.len == 1) 444 return; 445 if (filename.len == 2 && filename.name[1] == '.') 446 return; 447 } 448 filename.hash = full_name_hash(filename.name, filename.len); 449 450 dentry = d_lookup(parent, &filename); 451 if (dentry != NULL) { 452 if (nfs_same_file(dentry, entry)) { 453 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 454 status = nfs_refresh_inode(dentry->d_inode, entry->fattr); 455 if (!status) 456 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label); 457 goto out; 458 } else { 459 if (d_invalidate(dentry) != 0) 460 goto out; 461 dput(dentry); 462 } 463 } 464 465 dentry = d_alloc(parent, &filename); 466 if (dentry == NULL) 467 return; 468 469 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 470 if (IS_ERR(inode)) 471 goto out; 472 473 alias = d_materialise_unique(dentry, inode); 474 if (IS_ERR(alias)) 475 goto out; 476 else if (alias) { 477 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 478 dput(alias); 479 } else 480 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 481 482 out: 483 dput(dentry); 484 } 485 486 /* Perform conversion from xdr to cache array */ 487 static 488 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 489 struct page **xdr_pages, struct page *page, unsigned int buflen) 490 { 491 struct xdr_stream stream; 492 struct xdr_buf buf; 493 struct page *scratch; 494 struct nfs_cache_array *array; 495 unsigned int count = 0; 496 int status; 497 498 scratch = alloc_page(GFP_KERNEL); 499 if (scratch == NULL) 500 return -ENOMEM; 501 502 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 503 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 504 505 do { 506 status = xdr_decode(desc, entry, &stream); 507 if (status != 0) { 508 if (status == -EAGAIN) 509 status = 0; 510 break; 511 } 512 513 count++; 514 515 if (desc->plus != 0) 516 nfs_prime_dcache(desc->file->f_path.dentry, entry); 517 518 status = nfs_readdir_add_to_array(entry, page); 519 if (status != 0) 520 break; 521 } while (!entry->eof); 522 523 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 524 array = nfs_readdir_get_array(page); 525 if (!IS_ERR(array)) { 526 array->eof_index = array->size; 527 status = 0; 528 nfs_readdir_release_array(page); 529 } else 530 status = PTR_ERR(array); 531 } 532 533 put_page(scratch); 534 return status; 535 } 536 537 static 538 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 539 { 540 unsigned int i; 541 for (i = 0; i < npages; i++) 542 put_page(pages[i]); 543 } 544 545 static 546 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 547 unsigned int npages) 548 { 549 nfs_readdir_free_pagearray(pages, npages); 550 } 551 552 /* 553 * nfs_readdir_large_page will allocate pages that must be freed with a call 554 * to nfs_readdir_free_large_page 555 */ 556 static 557 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 558 { 559 unsigned int i; 560 561 for (i = 0; i < npages; i++) { 562 struct page *page = alloc_page(GFP_KERNEL); 563 if (page == NULL) 564 goto out_freepages; 565 pages[i] = page; 566 } 567 return 0; 568 569 out_freepages: 570 nfs_readdir_free_pagearray(pages, i); 571 return -ENOMEM; 572 } 573 574 static 575 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 576 { 577 struct page *pages[NFS_MAX_READDIR_PAGES]; 578 void *pages_ptr = NULL; 579 struct nfs_entry entry; 580 struct file *file = desc->file; 581 struct nfs_cache_array *array; 582 int status = -ENOMEM; 583 unsigned int array_size = ARRAY_SIZE(pages); 584 585 entry.prev_cookie = 0; 586 entry.cookie = desc->last_cookie; 587 entry.eof = 0; 588 entry.fh = nfs_alloc_fhandle(); 589 entry.fattr = nfs_alloc_fattr(); 590 entry.server = NFS_SERVER(inode); 591 if (entry.fh == NULL || entry.fattr == NULL) 592 goto out; 593 594 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 595 if (IS_ERR(entry.label)) { 596 status = PTR_ERR(entry.label); 597 goto out; 598 } 599 600 array = nfs_readdir_get_array(page); 601 if (IS_ERR(array)) { 602 status = PTR_ERR(array); 603 goto out_label_free; 604 } 605 memset(array, 0, sizeof(struct nfs_cache_array)); 606 array->eof_index = -1; 607 608 status = nfs_readdir_large_page(pages, array_size); 609 if (status < 0) 610 goto out_release_array; 611 do { 612 unsigned int pglen; 613 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 614 615 if (status < 0) 616 break; 617 pglen = status; 618 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 619 if (status < 0) { 620 if (status == -ENOSPC) 621 status = 0; 622 break; 623 } 624 } while (array->eof_index < 0); 625 626 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 627 out_release_array: 628 nfs_readdir_release_array(page); 629 out_label_free: 630 nfs4_label_free(entry.label); 631 out: 632 nfs_free_fattr(entry.fattr); 633 nfs_free_fhandle(entry.fh); 634 return status; 635 } 636 637 /* 638 * Now we cache directories properly, by converting xdr information 639 * to an array that can be used for lookups later. This results in 640 * fewer cache pages, since we can store more information on each page. 641 * We only need to convert from xdr once so future lookups are much simpler 642 */ 643 static 644 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 645 { 646 struct inode *inode = file_inode(desc->file); 647 int ret; 648 649 ret = nfs_readdir_xdr_to_array(desc, page, inode); 650 if (ret < 0) 651 goto error; 652 SetPageUptodate(page); 653 654 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 655 /* Should never happen */ 656 nfs_zap_mapping(inode, inode->i_mapping); 657 } 658 unlock_page(page); 659 return 0; 660 error: 661 unlock_page(page); 662 return ret; 663 } 664 665 static 666 void cache_page_release(nfs_readdir_descriptor_t *desc) 667 { 668 if (!desc->page->mapping) 669 nfs_readdir_clear_array(desc->page); 670 page_cache_release(desc->page); 671 desc->page = NULL; 672 } 673 674 static 675 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 676 { 677 return read_cache_page(file_inode(desc->file)->i_mapping, 678 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 679 } 680 681 /* 682 * Returns 0 if desc->dir_cookie was found on page desc->page_index 683 */ 684 static 685 int find_cache_page(nfs_readdir_descriptor_t *desc) 686 { 687 int res; 688 689 desc->page = get_cache_page(desc); 690 if (IS_ERR(desc->page)) 691 return PTR_ERR(desc->page); 692 693 res = nfs_readdir_search_array(desc); 694 if (res != 0) 695 cache_page_release(desc); 696 return res; 697 } 698 699 /* Search for desc->dir_cookie from the beginning of the page cache */ 700 static inline 701 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 702 { 703 int res; 704 705 if (desc->page_index == 0) { 706 desc->current_index = 0; 707 desc->last_cookie = 0; 708 } 709 do { 710 res = find_cache_page(desc); 711 } while (res == -EAGAIN); 712 return res; 713 } 714 715 /* 716 * Once we've found the start of the dirent within a page: fill 'er up... 717 */ 718 static 719 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 720 { 721 struct file *file = desc->file; 722 int i = 0; 723 int res = 0; 724 struct nfs_cache_array *array = NULL; 725 struct nfs_open_dir_context *ctx = file->private_data; 726 727 array = nfs_readdir_get_array(desc->page); 728 if (IS_ERR(array)) { 729 res = PTR_ERR(array); 730 goto out; 731 } 732 733 for (i = desc->cache_entry_index; i < array->size; i++) { 734 struct nfs_cache_array_entry *ent; 735 736 ent = &array->array[i]; 737 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 738 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 739 desc->eof = 1; 740 break; 741 } 742 desc->ctx->pos++; 743 if (i < (array->size-1)) 744 *desc->dir_cookie = array->array[i+1].cookie; 745 else 746 *desc->dir_cookie = array->last_cookie; 747 if (ctx->duped != 0) 748 ctx->duped = 1; 749 } 750 if (array->eof_index >= 0) 751 desc->eof = 1; 752 753 nfs_readdir_release_array(desc->page); 754 out: 755 cache_page_release(desc); 756 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 757 (unsigned long long)*desc->dir_cookie, res); 758 return res; 759 } 760 761 /* 762 * If we cannot find a cookie in our cache, we suspect that this is 763 * because it points to a deleted file, so we ask the server to return 764 * whatever it thinks is the next entry. We then feed this to filldir. 765 * If all goes well, we should then be able to find our way round the 766 * cache on the next call to readdir_search_pagecache(); 767 * 768 * NOTE: we cannot add the anonymous page to the pagecache because 769 * the data it contains might not be page aligned. Besides, 770 * we should already have a complete representation of the 771 * directory in the page cache by the time we get here. 772 */ 773 static inline 774 int uncached_readdir(nfs_readdir_descriptor_t *desc) 775 { 776 struct page *page = NULL; 777 int status; 778 struct inode *inode = file_inode(desc->file); 779 struct nfs_open_dir_context *ctx = desc->file->private_data; 780 781 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 782 (unsigned long long)*desc->dir_cookie); 783 784 page = alloc_page(GFP_HIGHUSER); 785 if (!page) { 786 status = -ENOMEM; 787 goto out; 788 } 789 790 desc->page_index = 0; 791 desc->last_cookie = *desc->dir_cookie; 792 desc->page = page; 793 ctx->duped = 0; 794 795 status = nfs_readdir_xdr_to_array(desc, page, inode); 796 if (status < 0) 797 goto out_release; 798 799 status = nfs_do_filldir(desc); 800 801 out: 802 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 803 __func__, status); 804 return status; 805 out_release: 806 cache_page_release(desc); 807 goto out; 808 } 809 810 /* The file offset position represents the dirent entry number. A 811 last cookie cache takes care of the common case of reading the 812 whole directory. 813 */ 814 static int nfs_readdir(struct file *file, struct dir_context *ctx) 815 { 816 struct dentry *dentry = file->f_path.dentry; 817 struct inode *inode = dentry->d_inode; 818 nfs_readdir_descriptor_t my_desc, 819 *desc = &my_desc; 820 struct nfs_open_dir_context *dir_ctx = file->private_data; 821 int res = 0; 822 823 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 824 dentry->d_parent->d_name.name, dentry->d_name.name, 825 (long long)ctx->pos); 826 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 827 828 /* 829 * ctx->pos points to the dirent entry number. 830 * *desc->dir_cookie has the cookie for the next entry. We have 831 * to either find the entry with the appropriate number or 832 * revalidate the cookie. 833 */ 834 memset(desc, 0, sizeof(*desc)); 835 836 desc->file = file; 837 desc->ctx = ctx; 838 desc->dir_cookie = &dir_ctx->dir_cookie; 839 desc->decode = NFS_PROTO(inode)->decode_dirent; 840 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 841 842 nfs_block_sillyrename(dentry); 843 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 844 res = nfs_revalidate_mapping(inode, file->f_mapping); 845 if (res < 0) 846 goto out; 847 848 do { 849 res = readdir_search_pagecache(desc); 850 851 if (res == -EBADCOOKIE) { 852 res = 0; 853 /* This means either end of directory */ 854 if (*desc->dir_cookie && desc->eof == 0) { 855 /* Or that the server has 'lost' a cookie */ 856 res = uncached_readdir(desc); 857 if (res == 0) 858 continue; 859 } 860 break; 861 } 862 if (res == -ETOOSMALL && desc->plus) { 863 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 864 nfs_zap_caches(inode); 865 desc->page_index = 0; 866 desc->plus = 0; 867 desc->eof = 0; 868 continue; 869 } 870 if (res < 0) 871 break; 872 873 res = nfs_do_filldir(desc); 874 if (res < 0) 875 break; 876 } while (!desc->eof); 877 out: 878 nfs_unblock_sillyrename(dentry); 879 if (res > 0) 880 res = 0; 881 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 882 dentry->d_parent->d_name.name, dentry->d_name.name, 883 res); 884 return res; 885 } 886 887 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 888 { 889 struct dentry *dentry = filp->f_path.dentry; 890 struct inode *inode = dentry->d_inode; 891 struct nfs_open_dir_context *dir_ctx = filp->private_data; 892 893 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 894 dentry->d_parent->d_name.name, 895 dentry->d_name.name, 896 offset, whence); 897 898 mutex_lock(&inode->i_mutex); 899 switch (whence) { 900 case 1: 901 offset += filp->f_pos; 902 case 0: 903 if (offset >= 0) 904 break; 905 default: 906 offset = -EINVAL; 907 goto out; 908 } 909 if (offset != filp->f_pos) { 910 filp->f_pos = offset; 911 dir_ctx->dir_cookie = 0; 912 dir_ctx->duped = 0; 913 } 914 out: 915 mutex_unlock(&inode->i_mutex); 916 return offset; 917 } 918 919 /* 920 * All directory operations under NFS are synchronous, so fsync() 921 * is a dummy operation. 922 */ 923 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 924 int datasync) 925 { 926 struct dentry *dentry = filp->f_path.dentry; 927 struct inode *inode = dentry->d_inode; 928 929 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 930 dentry->d_parent->d_name.name, dentry->d_name.name, 931 datasync); 932 933 mutex_lock(&inode->i_mutex); 934 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 935 mutex_unlock(&inode->i_mutex); 936 return 0; 937 } 938 939 /** 940 * nfs_force_lookup_revalidate - Mark the directory as having changed 941 * @dir - pointer to directory inode 942 * 943 * This forces the revalidation code in nfs_lookup_revalidate() to do a 944 * full lookup on all child dentries of 'dir' whenever a change occurs 945 * on the server that might have invalidated our dcache. 946 * 947 * The caller should be holding dir->i_lock 948 */ 949 void nfs_force_lookup_revalidate(struct inode *dir) 950 { 951 NFS_I(dir)->cache_change_attribute++; 952 } 953 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 954 955 /* 956 * A check for whether or not the parent directory has changed. 957 * In the case it has, we assume that the dentries are untrustworthy 958 * and may need to be looked up again. 959 */ 960 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 961 { 962 if (IS_ROOT(dentry)) 963 return 1; 964 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 965 return 0; 966 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 967 return 0; 968 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 969 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 970 return 0; 971 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 972 return 0; 973 return 1; 974 } 975 976 /* 977 * Use intent information to check whether or not we're going to do 978 * an O_EXCL create using this path component. 979 */ 980 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 981 { 982 if (NFS_PROTO(dir)->version == 2) 983 return 0; 984 return flags & LOOKUP_EXCL; 985 } 986 987 /* 988 * Inode and filehandle revalidation for lookups. 989 * 990 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 991 * or if the intent information indicates that we're about to open this 992 * particular file and the "nocto" mount flag is not set. 993 * 994 */ 995 static 996 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 997 { 998 struct nfs_server *server = NFS_SERVER(inode); 999 int ret; 1000 1001 if (IS_AUTOMOUNT(inode)) 1002 return 0; 1003 /* VFS wants an on-the-wire revalidation */ 1004 if (flags & LOOKUP_REVAL) 1005 goto out_force; 1006 /* This is an open(2) */ 1007 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1008 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1009 goto out_force; 1010 out: 1011 return (inode->i_nlink == 0) ? -ENOENT : 0; 1012 out_force: 1013 ret = __nfs_revalidate_inode(server, inode); 1014 if (ret != 0) 1015 return ret; 1016 goto out; 1017 } 1018 1019 /* 1020 * We judge how long we want to trust negative 1021 * dentries by looking at the parent inode mtime. 1022 * 1023 * If parent mtime has changed, we revalidate, else we wait for a 1024 * period corresponding to the parent's attribute cache timeout value. 1025 */ 1026 static inline 1027 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1028 unsigned int flags) 1029 { 1030 /* Don't revalidate a negative dentry if we're creating a new file */ 1031 if (flags & LOOKUP_CREATE) 1032 return 0; 1033 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1034 return 1; 1035 return !nfs_check_verifier(dir, dentry); 1036 } 1037 1038 /* 1039 * This is called every time the dcache has a lookup hit, 1040 * and we should check whether we can really trust that 1041 * lookup. 1042 * 1043 * NOTE! The hit can be a negative hit too, don't assume 1044 * we have an inode! 1045 * 1046 * If the parent directory is seen to have changed, we throw out the 1047 * cached dentry and do a new lookup. 1048 */ 1049 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1050 { 1051 struct inode *dir; 1052 struct inode *inode; 1053 struct dentry *parent; 1054 struct nfs_fh *fhandle = NULL; 1055 struct nfs_fattr *fattr = NULL; 1056 struct nfs4_label *label = NULL; 1057 int error; 1058 1059 if (flags & LOOKUP_RCU) 1060 return -ECHILD; 1061 1062 parent = dget_parent(dentry); 1063 dir = parent->d_inode; 1064 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1065 inode = dentry->d_inode; 1066 1067 if (!inode) { 1068 if (nfs_neg_need_reval(dir, dentry, flags)) 1069 goto out_bad; 1070 goto out_valid_noent; 1071 } 1072 1073 if (is_bad_inode(inode)) { 1074 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1075 __func__, dentry->d_parent->d_name.name, 1076 dentry->d_name.name); 1077 goto out_bad; 1078 } 1079 1080 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1081 goto out_set_verifier; 1082 1083 /* Force a full look up iff the parent directory has changed */ 1084 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1085 if (nfs_lookup_verify_inode(inode, flags)) 1086 goto out_zap_parent; 1087 goto out_valid; 1088 } 1089 1090 if (NFS_STALE(inode)) 1091 goto out_bad; 1092 1093 error = -ENOMEM; 1094 fhandle = nfs_alloc_fhandle(); 1095 fattr = nfs_alloc_fattr(); 1096 if (fhandle == NULL || fattr == NULL) 1097 goto out_error; 1098 1099 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1100 if (IS_ERR(label)) 1101 goto out_error; 1102 1103 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1104 if (error) 1105 goto out_bad; 1106 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1107 goto out_bad; 1108 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1109 goto out_bad; 1110 1111 nfs_setsecurity(inode, fattr, label); 1112 1113 nfs_free_fattr(fattr); 1114 nfs_free_fhandle(fhandle); 1115 nfs4_label_free(label); 1116 1117 out_set_verifier: 1118 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1119 out_valid: 1120 /* Success: notify readdir to use READDIRPLUS */ 1121 nfs_advise_use_readdirplus(dir); 1122 out_valid_noent: 1123 dput(parent); 1124 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1125 __func__, dentry->d_parent->d_name.name, 1126 dentry->d_name.name); 1127 return 1; 1128 out_zap_parent: 1129 nfs_zap_caches(dir); 1130 out_bad: 1131 nfs_free_fattr(fattr); 1132 nfs_free_fhandle(fhandle); 1133 nfs4_label_free(label); 1134 nfs_mark_for_revalidate(dir); 1135 if (inode && S_ISDIR(inode->i_mode)) { 1136 /* Purge readdir caches. */ 1137 nfs_zap_caches(inode); 1138 /* If we have submounts, don't unhash ! */ 1139 if (have_submounts(dentry)) 1140 goto out_valid; 1141 if (dentry->d_flags & DCACHE_DISCONNECTED) 1142 goto out_valid; 1143 shrink_dcache_parent(dentry); 1144 } 1145 d_drop(dentry); 1146 dput(parent); 1147 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1148 __func__, dentry->d_parent->d_name.name, 1149 dentry->d_name.name); 1150 return 0; 1151 out_error: 1152 nfs_free_fattr(fattr); 1153 nfs_free_fhandle(fhandle); 1154 nfs4_label_free(label); 1155 dput(parent); 1156 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1157 __func__, dentry->d_parent->d_name.name, 1158 dentry->d_name.name, error); 1159 return error; 1160 } 1161 1162 /* 1163 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1164 * when we don't really care about the dentry name. This is called when a 1165 * pathwalk ends on a dentry that was not found via a normal lookup in the 1166 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1167 * 1168 * In this situation, we just want to verify that the inode itself is OK 1169 * since the dentry might have changed on the server. 1170 */ 1171 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1172 { 1173 int error; 1174 struct inode *inode = dentry->d_inode; 1175 1176 /* 1177 * I believe we can only get a negative dentry here in the case of a 1178 * procfs-style symlink. Just assume it's correct for now, but we may 1179 * eventually need to do something more here. 1180 */ 1181 if (!inode) { 1182 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n", 1183 __func__, dentry->d_parent->d_name.name, 1184 dentry->d_name.name); 1185 return 1; 1186 } 1187 1188 if (is_bad_inode(inode)) { 1189 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1190 __func__, dentry->d_parent->d_name.name, 1191 dentry->d_name.name); 1192 return 0; 1193 } 1194 1195 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1196 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1197 __func__, inode->i_ino, error ? "invalid" : "valid"); 1198 return !error; 1199 } 1200 1201 /* 1202 * This is called from dput() when d_count is going to 0. 1203 */ 1204 static int nfs_dentry_delete(const struct dentry *dentry) 1205 { 1206 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1207 dentry->d_parent->d_name.name, dentry->d_name.name, 1208 dentry->d_flags); 1209 1210 /* Unhash any dentry with a stale inode */ 1211 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1212 return 1; 1213 1214 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1215 /* Unhash it, so that ->d_iput() would be called */ 1216 return 1; 1217 } 1218 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1219 /* Unhash it, so that ancestors of killed async unlink 1220 * files will be cleaned up during umount */ 1221 return 1; 1222 } 1223 return 0; 1224 1225 } 1226 1227 /* Ensure that we revalidate inode->i_nlink */ 1228 static void nfs_drop_nlink(struct inode *inode) 1229 { 1230 spin_lock(&inode->i_lock); 1231 /* drop the inode if we're reasonably sure this is the last link */ 1232 if (inode->i_nlink == 1) 1233 clear_nlink(inode); 1234 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1235 spin_unlock(&inode->i_lock); 1236 } 1237 1238 /* 1239 * Called when the dentry loses inode. 1240 * We use it to clean up silly-renamed files. 1241 */ 1242 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1243 { 1244 if (S_ISDIR(inode->i_mode)) 1245 /* drop any readdir cache as it could easily be old */ 1246 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1247 1248 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1249 nfs_complete_unlink(dentry, inode); 1250 nfs_drop_nlink(inode); 1251 } 1252 iput(inode); 1253 } 1254 1255 static void nfs_d_release(struct dentry *dentry) 1256 { 1257 /* free cached devname value, if it survived that far */ 1258 if (unlikely(dentry->d_fsdata)) { 1259 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1260 WARN_ON(1); 1261 else 1262 kfree(dentry->d_fsdata); 1263 } 1264 } 1265 1266 const struct dentry_operations nfs_dentry_operations = { 1267 .d_revalidate = nfs_lookup_revalidate, 1268 .d_weak_revalidate = nfs_weak_revalidate, 1269 .d_delete = nfs_dentry_delete, 1270 .d_iput = nfs_dentry_iput, 1271 .d_automount = nfs_d_automount, 1272 .d_release = nfs_d_release, 1273 }; 1274 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1275 1276 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1277 { 1278 struct dentry *res; 1279 struct dentry *parent; 1280 struct inode *inode = NULL; 1281 struct nfs_fh *fhandle = NULL; 1282 struct nfs_fattr *fattr = NULL; 1283 struct nfs4_label *label = NULL; 1284 int error; 1285 1286 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1287 dentry->d_parent->d_name.name, dentry->d_name.name); 1288 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1289 1290 res = ERR_PTR(-ENAMETOOLONG); 1291 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1292 goto out; 1293 1294 /* 1295 * If we're doing an exclusive create, optimize away the lookup 1296 * but don't hash the dentry. 1297 */ 1298 if (nfs_is_exclusive_create(dir, flags)) { 1299 d_instantiate(dentry, NULL); 1300 res = NULL; 1301 goto out; 1302 } 1303 1304 res = ERR_PTR(-ENOMEM); 1305 fhandle = nfs_alloc_fhandle(); 1306 fattr = nfs_alloc_fattr(); 1307 if (fhandle == NULL || fattr == NULL) 1308 goto out; 1309 1310 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1311 if (IS_ERR(label)) 1312 goto out; 1313 1314 parent = dentry->d_parent; 1315 /* Protect against concurrent sillydeletes */ 1316 nfs_block_sillyrename(parent); 1317 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1318 if (error == -ENOENT) 1319 goto no_entry; 1320 if (error < 0) { 1321 res = ERR_PTR(error); 1322 goto out_unblock_sillyrename; 1323 } 1324 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1325 res = ERR_CAST(inode); 1326 if (IS_ERR(res)) 1327 goto out_unblock_sillyrename; 1328 1329 /* Success: notify readdir to use READDIRPLUS */ 1330 nfs_advise_use_readdirplus(dir); 1331 1332 no_entry: 1333 res = d_materialise_unique(dentry, inode); 1334 if (res != NULL) { 1335 if (IS_ERR(res)) 1336 goto out_unblock_sillyrename; 1337 dentry = res; 1338 } 1339 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1340 out_unblock_sillyrename: 1341 nfs_unblock_sillyrename(parent); 1342 nfs4_label_free(label); 1343 out: 1344 nfs_free_fattr(fattr); 1345 nfs_free_fhandle(fhandle); 1346 return res; 1347 } 1348 EXPORT_SYMBOL_GPL(nfs_lookup); 1349 1350 #if IS_ENABLED(CONFIG_NFS_V4) 1351 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1352 1353 const struct dentry_operations nfs4_dentry_operations = { 1354 .d_revalidate = nfs4_lookup_revalidate, 1355 .d_delete = nfs_dentry_delete, 1356 .d_iput = nfs_dentry_iput, 1357 .d_automount = nfs_d_automount, 1358 .d_release = nfs_d_release, 1359 }; 1360 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1361 1362 static fmode_t flags_to_mode(int flags) 1363 { 1364 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1365 if ((flags & O_ACCMODE) != O_WRONLY) 1366 res |= FMODE_READ; 1367 if ((flags & O_ACCMODE) != O_RDONLY) 1368 res |= FMODE_WRITE; 1369 return res; 1370 } 1371 1372 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1373 { 1374 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1375 } 1376 1377 static int do_open(struct inode *inode, struct file *filp) 1378 { 1379 nfs_fscache_set_inode_cookie(inode, filp); 1380 return 0; 1381 } 1382 1383 static int nfs_finish_open(struct nfs_open_context *ctx, 1384 struct dentry *dentry, 1385 struct file *file, unsigned open_flags, 1386 int *opened) 1387 { 1388 int err; 1389 1390 err = finish_open(file, dentry, do_open, opened); 1391 if (err) 1392 goto out; 1393 nfs_file_set_open_context(file, ctx); 1394 1395 out: 1396 put_nfs_open_context(ctx); 1397 return err; 1398 } 1399 1400 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1401 struct file *file, unsigned open_flags, 1402 umode_t mode, int *opened) 1403 { 1404 struct nfs_open_context *ctx; 1405 struct dentry *res; 1406 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1407 struct inode *inode; 1408 int err; 1409 1410 /* Expect a negative dentry */ 1411 BUG_ON(dentry->d_inode); 1412 1413 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n", 1414 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1415 1416 /* NFS only supports OPEN on regular files */ 1417 if ((open_flags & O_DIRECTORY)) { 1418 if (!d_unhashed(dentry)) { 1419 /* 1420 * Hashed negative dentry with O_DIRECTORY: dentry was 1421 * revalidated and is fine, no need to perform lookup 1422 * again 1423 */ 1424 return -ENOENT; 1425 } 1426 goto no_open; 1427 } 1428 1429 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1430 return -ENAMETOOLONG; 1431 1432 if (open_flags & O_CREAT) { 1433 attr.ia_valid |= ATTR_MODE; 1434 attr.ia_mode = mode & ~current_umask(); 1435 } 1436 if (open_flags & O_TRUNC) { 1437 attr.ia_valid |= ATTR_SIZE; 1438 attr.ia_size = 0; 1439 } 1440 1441 ctx = create_nfs_open_context(dentry, open_flags); 1442 err = PTR_ERR(ctx); 1443 if (IS_ERR(ctx)) 1444 goto out; 1445 1446 nfs_block_sillyrename(dentry->d_parent); 1447 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1448 nfs_unblock_sillyrename(dentry->d_parent); 1449 if (IS_ERR(inode)) { 1450 put_nfs_open_context(ctx); 1451 err = PTR_ERR(inode); 1452 switch (err) { 1453 case -ENOENT: 1454 d_drop(dentry); 1455 d_add(dentry, NULL); 1456 break; 1457 case -EISDIR: 1458 case -ENOTDIR: 1459 goto no_open; 1460 case -ELOOP: 1461 if (!(open_flags & O_NOFOLLOW)) 1462 goto no_open; 1463 break; 1464 /* case -EINVAL: */ 1465 default: 1466 break; 1467 } 1468 goto out; 1469 } 1470 1471 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1472 out: 1473 return err; 1474 1475 no_open: 1476 res = nfs_lookup(dir, dentry, 0); 1477 err = PTR_ERR(res); 1478 if (IS_ERR(res)) 1479 goto out; 1480 1481 return finish_no_open(file, res); 1482 } 1483 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1484 1485 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1486 { 1487 struct dentry *parent = NULL; 1488 struct inode *inode; 1489 struct inode *dir; 1490 int ret = 0; 1491 1492 if (flags & LOOKUP_RCU) 1493 return -ECHILD; 1494 1495 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1496 goto no_open; 1497 if (d_mountpoint(dentry)) 1498 goto no_open; 1499 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1500 goto no_open; 1501 1502 inode = dentry->d_inode; 1503 parent = dget_parent(dentry); 1504 dir = parent->d_inode; 1505 1506 /* We can't create new files in nfs_open_revalidate(), so we 1507 * optimize away revalidation of negative dentries. 1508 */ 1509 if (inode == NULL) { 1510 if (!nfs_neg_need_reval(dir, dentry, flags)) 1511 ret = 1; 1512 goto out; 1513 } 1514 1515 /* NFS only supports OPEN on regular files */ 1516 if (!S_ISREG(inode->i_mode)) 1517 goto no_open_dput; 1518 /* We cannot do exclusive creation on a positive dentry */ 1519 if (flags & LOOKUP_EXCL) 1520 goto no_open_dput; 1521 1522 /* Let f_op->open() actually open (and revalidate) the file */ 1523 ret = 1; 1524 1525 out: 1526 dput(parent); 1527 return ret; 1528 1529 no_open_dput: 1530 dput(parent); 1531 no_open: 1532 return nfs_lookup_revalidate(dentry, flags); 1533 } 1534 1535 #endif /* CONFIG_NFSV4 */ 1536 1537 /* 1538 * Code common to create, mkdir, and mknod. 1539 */ 1540 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1541 struct nfs_fattr *fattr, 1542 struct nfs4_label *label) 1543 { 1544 struct dentry *parent = dget_parent(dentry); 1545 struct inode *dir = parent->d_inode; 1546 struct inode *inode; 1547 int error = -EACCES; 1548 1549 d_drop(dentry); 1550 1551 /* We may have been initialized further down */ 1552 if (dentry->d_inode) 1553 goto out; 1554 if (fhandle->size == 0) { 1555 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1556 if (error) 1557 goto out_error; 1558 } 1559 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1560 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1561 struct nfs_server *server = NFS_SB(dentry->d_sb); 1562 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1563 if (error < 0) 1564 goto out_error; 1565 } 1566 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1567 error = PTR_ERR(inode); 1568 if (IS_ERR(inode)) 1569 goto out_error; 1570 d_add(dentry, inode); 1571 out: 1572 dput(parent); 1573 return 0; 1574 out_error: 1575 nfs_mark_for_revalidate(dir); 1576 dput(parent); 1577 return error; 1578 } 1579 EXPORT_SYMBOL_GPL(nfs_instantiate); 1580 1581 /* 1582 * Following a failed create operation, we drop the dentry rather 1583 * than retain a negative dentry. This avoids a problem in the event 1584 * that the operation succeeded on the server, but an error in the 1585 * reply path made it appear to have failed. 1586 */ 1587 int nfs_create(struct inode *dir, struct dentry *dentry, 1588 umode_t mode, bool excl) 1589 { 1590 struct iattr attr; 1591 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1592 int error; 1593 1594 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1595 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1596 1597 attr.ia_mode = mode; 1598 attr.ia_valid = ATTR_MODE; 1599 1600 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1601 if (error != 0) 1602 goto out_err; 1603 return 0; 1604 out_err: 1605 d_drop(dentry); 1606 return error; 1607 } 1608 EXPORT_SYMBOL_GPL(nfs_create); 1609 1610 /* 1611 * See comments for nfs_proc_create regarding failed operations. 1612 */ 1613 int 1614 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1615 { 1616 struct iattr attr; 1617 int status; 1618 1619 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1620 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1621 1622 if (!new_valid_dev(rdev)) 1623 return -EINVAL; 1624 1625 attr.ia_mode = mode; 1626 attr.ia_valid = ATTR_MODE; 1627 1628 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1629 if (status != 0) 1630 goto out_err; 1631 return 0; 1632 out_err: 1633 d_drop(dentry); 1634 return status; 1635 } 1636 EXPORT_SYMBOL_GPL(nfs_mknod); 1637 1638 /* 1639 * See comments for nfs_proc_create regarding failed operations. 1640 */ 1641 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1642 { 1643 struct iattr attr; 1644 int error; 1645 1646 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1647 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1648 1649 attr.ia_valid = ATTR_MODE; 1650 attr.ia_mode = mode | S_IFDIR; 1651 1652 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1653 if (error != 0) 1654 goto out_err; 1655 return 0; 1656 out_err: 1657 d_drop(dentry); 1658 return error; 1659 } 1660 EXPORT_SYMBOL_GPL(nfs_mkdir); 1661 1662 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1663 { 1664 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1665 d_delete(dentry); 1666 } 1667 1668 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1669 { 1670 int error; 1671 1672 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1673 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1674 1675 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1676 /* Ensure the VFS deletes this inode */ 1677 if (error == 0 && dentry->d_inode != NULL) 1678 clear_nlink(dentry->d_inode); 1679 else if (error == -ENOENT) 1680 nfs_dentry_handle_enoent(dentry); 1681 1682 return error; 1683 } 1684 EXPORT_SYMBOL_GPL(nfs_rmdir); 1685 1686 /* 1687 * Remove a file after making sure there are no pending writes, 1688 * and after checking that the file has only one user. 1689 * 1690 * We invalidate the attribute cache and free the inode prior to the operation 1691 * to avoid possible races if the server reuses the inode. 1692 */ 1693 static int nfs_safe_remove(struct dentry *dentry) 1694 { 1695 struct inode *dir = dentry->d_parent->d_inode; 1696 struct inode *inode = dentry->d_inode; 1697 int error = -EBUSY; 1698 1699 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1700 dentry->d_parent->d_name.name, dentry->d_name.name); 1701 1702 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1703 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1704 error = 0; 1705 goto out; 1706 } 1707 1708 if (inode != NULL) { 1709 NFS_PROTO(inode)->return_delegation(inode); 1710 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1711 if (error == 0) 1712 nfs_drop_nlink(inode); 1713 } else 1714 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1715 if (error == -ENOENT) 1716 nfs_dentry_handle_enoent(dentry); 1717 out: 1718 return error; 1719 } 1720 1721 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1722 * belongs to an active ".nfs..." file and we return -EBUSY. 1723 * 1724 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1725 */ 1726 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1727 { 1728 int error; 1729 int need_rehash = 0; 1730 1731 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1732 dir->i_ino, dentry->d_name.name); 1733 1734 spin_lock(&dentry->d_lock); 1735 if (d_count(dentry) > 1) { 1736 spin_unlock(&dentry->d_lock); 1737 /* Start asynchronous writeout of the inode */ 1738 write_inode_now(dentry->d_inode, 0); 1739 error = nfs_sillyrename(dir, dentry); 1740 return error; 1741 } 1742 if (!d_unhashed(dentry)) { 1743 __d_drop(dentry); 1744 need_rehash = 1; 1745 } 1746 spin_unlock(&dentry->d_lock); 1747 error = nfs_safe_remove(dentry); 1748 if (!error || error == -ENOENT) { 1749 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1750 } else if (need_rehash) 1751 d_rehash(dentry); 1752 return error; 1753 } 1754 EXPORT_SYMBOL_GPL(nfs_unlink); 1755 1756 /* 1757 * To create a symbolic link, most file systems instantiate a new inode, 1758 * add a page to it containing the path, then write it out to the disk 1759 * using prepare_write/commit_write. 1760 * 1761 * Unfortunately the NFS client can't create the in-core inode first 1762 * because it needs a file handle to create an in-core inode (see 1763 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1764 * symlink request has completed on the server. 1765 * 1766 * So instead we allocate a raw page, copy the symname into it, then do 1767 * the SYMLINK request with the page as the buffer. If it succeeds, we 1768 * now have a new file handle and can instantiate an in-core NFS inode 1769 * and move the raw page into its mapping. 1770 */ 1771 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1772 { 1773 struct page *page; 1774 char *kaddr; 1775 struct iattr attr; 1776 unsigned int pathlen = strlen(symname); 1777 int error; 1778 1779 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1780 dir->i_ino, dentry->d_name.name, symname); 1781 1782 if (pathlen > PAGE_SIZE) 1783 return -ENAMETOOLONG; 1784 1785 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1786 attr.ia_valid = ATTR_MODE; 1787 1788 page = alloc_page(GFP_HIGHUSER); 1789 if (!page) 1790 return -ENOMEM; 1791 1792 kaddr = kmap_atomic(page); 1793 memcpy(kaddr, symname, pathlen); 1794 if (pathlen < PAGE_SIZE) 1795 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1796 kunmap_atomic(kaddr); 1797 1798 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1799 if (error != 0) { 1800 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1801 dir->i_sb->s_id, dir->i_ino, 1802 dentry->d_name.name, symname, error); 1803 d_drop(dentry); 1804 __free_page(page); 1805 return error; 1806 } 1807 1808 /* 1809 * No big deal if we can't add this page to the page cache here. 1810 * READLINK will get the missing page from the server if needed. 1811 */ 1812 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0, 1813 GFP_KERNEL)) { 1814 SetPageUptodate(page); 1815 unlock_page(page); 1816 } else 1817 __free_page(page); 1818 1819 return 0; 1820 } 1821 EXPORT_SYMBOL_GPL(nfs_symlink); 1822 1823 int 1824 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1825 { 1826 struct inode *inode = old_dentry->d_inode; 1827 int error; 1828 1829 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1830 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1831 dentry->d_parent->d_name.name, dentry->d_name.name); 1832 1833 NFS_PROTO(inode)->return_delegation(inode); 1834 1835 d_drop(dentry); 1836 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1837 if (error == 0) { 1838 ihold(inode); 1839 d_add(dentry, inode); 1840 } 1841 return error; 1842 } 1843 EXPORT_SYMBOL_GPL(nfs_link); 1844 1845 /* 1846 * RENAME 1847 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1848 * different file handle for the same inode after a rename (e.g. when 1849 * moving to a different directory). A fail-safe method to do so would 1850 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1851 * rename the old file using the sillyrename stuff. This way, the original 1852 * file in old_dir will go away when the last process iput()s the inode. 1853 * 1854 * FIXED. 1855 * 1856 * It actually works quite well. One needs to have the possibility for 1857 * at least one ".nfs..." file in each directory the file ever gets 1858 * moved or linked to which happens automagically with the new 1859 * implementation that only depends on the dcache stuff instead of 1860 * using the inode layer 1861 * 1862 * Unfortunately, things are a little more complicated than indicated 1863 * above. For a cross-directory move, we want to make sure we can get 1864 * rid of the old inode after the operation. This means there must be 1865 * no pending writes (if it's a file), and the use count must be 1. 1866 * If these conditions are met, we can drop the dentries before doing 1867 * the rename. 1868 */ 1869 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1870 struct inode *new_dir, struct dentry *new_dentry) 1871 { 1872 struct inode *old_inode = old_dentry->d_inode; 1873 struct inode *new_inode = new_dentry->d_inode; 1874 struct dentry *dentry = NULL, *rehash = NULL; 1875 int error = -EBUSY; 1876 1877 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1878 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1879 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1880 d_count(new_dentry)); 1881 1882 /* 1883 * For non-directories, check whether the target is busy and if so, 1884 * make a copy of the dentry and then do a silly-rename. If the 1885 * silly-rename succeeds, the copied dentry is hashed and becomes 1886 * the new target. 1887 */ 1888 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1889 /* 1890 * To prevent any new references to the target during the 1891 * rename, we unhash the dentry in advance. 1892 */ 1893 if (!d_unhashed(new_dentry)) { 1894 d_drop(new_dentry); 1895 rehash = new_dentry; 1896 } 1897 1898 if (d_count(new_dentry) > 2) { 1899 int err; 1900 1901 /* copy the target dentry's name */ 1902 dentry = d_alloc(new_dentry->d_parent, 1903 &new_dentry->d_name); 1904 if (!dentry) 1905 goto out; 1906 1907 /* silly-rename the existing target ... */ 1908 err = nfs_sillyrename(new_dir, new_dentry); 1909 if (err) 1910 goto out; 1911 1912 new_dentry = dentry; 1913 rehash = NULL; 1914 new_inode = NULL; 1915 } 1916 } 1917 1918 NFS_PROTO(old_inode)->return_delegation(old_inode); 1919 if (new_inode != NULL) 1920 NFS_PROTO(new_inode)->return_delegation(new_inode); 1921 1922 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1923 new_dir, &new_dentry->d_name); 1924 nfs_mark_for_revalidate(old_inode); 1925 out: 1926 if (rehash) 1927 d_rehash(rehash); 1928 if (!error) { 1929 if (new_inode != NULL) 1930 nfs_drop_nlink(new_inode); 1931 d_move(old_dentry, new_dentry); 1932 nfs_set_verifier(new_dentry, 1933 nfs_save_change_attribute(new_dir)); 1934 } else if (error == -ENOENT) 1935 nfs_dentry_handle_enoent(old_dentry); 1936 1937 /* new dentry created? */ 1938 if (dentry) 1939 dput(dentry); 1940 return error; 1941 } 1942 EXPORT_SYMBOL_GPL(nfs_rename); 1943 1944 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1945 static LIST_HEAD(nfs_access_lru_list); 1946 static atomic_long_t nfs_access_nr_entries; 1947 1948 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1949 { 1950 put_rpccred(entry->cred); 1951 kfree(entry); 1952 smp_mb__before_atomic_dec(); 1953 atomic_long_dec(&nfs_access_nr_entries); 1954 smp_mb__after_atomic_dec(); 1955 } 1956 1957 static void nfs_access_free_list(struct list_head *head) 1958 { 1959 struct nfs_access_entry *cache; 1960 1961 while (!list_empty(head)) { 1962 cache = list_entry(head->next, struct nfs_access_entry, lru); 1963 list_del(&cache->lru); 1964 nfs_access_free_entry(cache); 1965 } 1966 } 1967 1968 int nfs_access_cache_shrinker(struct shrinker *shrink, 1969 struct shrink_control *sc) 1970 { 1971 LIST_HEAD(head); 1972 struct nfs_inode *nfsi, *next; 1973 struct nfs_access_entry *cache; 1974 int nr_to_scan = sc->nr_to_scan; 1975 gfp_t gfp_mask = sc->gfp_mask; 1976 1977 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 1978 return (nr_to_scan == 0) ? 0 : -1; 1979 1980 spin_lock(&nfs_access_lru_lock); 1981 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 1982 struct inode *inode; 1983 1984 if (nr_to_scan-- == 0) 1985 break; 1986 inode = &nfsi->vfs_inode; 1987 spin_lock(&inode->i_lock); 1988 if (list_empty(&nfsi->access_cache_entry_lru)) 1989 goto remove_lru_entry; 1990 cache = list_entry(nfsi->access_cache_entry_lru.next, 1991 struct nfs_access_entry, lru); 1992 list_move(&cache->lru, &head); 1993 rb_erase(&cache->rb_node, &nfsi->access_cache); 1994 if (!list_empty(&nfsi->access_cache_entry_lru)) 1995 list_move_tail(&nfsi->access_cache_inode_lru, 1996 &nfs_access_lru_list); 1997 else { 1998 remove_lru_entry: 1999 list_del_init(&nfsi->access_cache_inode_lru); 2000 smp_mb__before_clear_bit(); 2001 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2002 smp_mb__after_clear_bit(); 2003 } 2004 spin_unlock(&inode->i_lock); 2005 } 2006 spin_unlock(&nfs_access_lru_lock); 2007 nfs_access_free_list(&head); 2008 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 2009 } 2010 2011 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2012 { 2013 struct rb_root *root_node = &nfsi->access_cache; 2014 struct rb_node *n; 2015 struct nfs_access_entry *entry; 2016 2017 /* Unhook entries from the cache */ 2018 while ((n = rb_first(root_node)) != NULL) { 2019 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2020 rb_erase(n, root_node); 2021 list_move(&entry->lru, head); 2022 } 2023 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2024 } 2025 2026 void nfs_access_zap_cache(struct inode *inode) 2027 { 2028 LIST_HEAD(head); 2029 2030 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2031 return; 2032 /* Remove from global LRU init */ 2033 spin_lock(&nfs_access_lru_lock); 2034 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2035 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2036 2037 spin_lock(&inode->i_lock); 2038 __nfs_access_zap_cache(NFS_I(inode), &head); 2039 spin_unlock(&inode->i_lock); 2040 spin_unlock(&nfs_access_lru_lock); 2041 nfs_access_free_list(&head); 2042 } 2043 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2044 2045 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2046 { 2047 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2048 struct nfs_access_entry *entry; 2049 2050 while (n != NULL) { 2051 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2052 2053 if (cred < entry->cred) 2054 n = n->rb_left; 2055 else if (cred > entry->cred) 2056 n = n->rb_right; 2057 else 2058 return entry; 2059 } 2060 return NULL; 2061 } 2062 2063 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2064 { 2065 struct nfs_inode *nfsi = NFS_I(inode); 2066 struct nfs_access_entry *cache; 2067 int err = -ENOENT; 2068 2069 spin_lock(&inode->i_lock); 2070 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2071 goto out_zap; 2072 cache = nfs_access_search_rbtree(inode, cred); 2073 if (cache == NULL) 2074 goto out; 2075 if (!nfs_have_delegated_attributes(inode) && 2076 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2077 goto out_stale; 2078 res->jiffies = cache->jiffies; 2079 res->cred = cache->cred; 2080 res->mask = cache->mask; 2081 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2082 err = 0; 2083 out: 2084 spin_unlock(&inode->i_lock); 2085 return err; 2086 out_stale: 2087 rb_erase(&cache->rb_node, &nfsi->access_cache); 2088 list_del(&cache->lru); 2089 spin_unlock(&inode->i_lock); 2090 nfs_access_free_entry(cache); 2091 return -ENOENT; 2092 out_zap: 2093 spin_unlock(&inode->i_lock); 2094 nfs_access_zap_cache(inode); 2095 return -ENOENT; 2096 } 2097 2098 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2099 { 2100 struct nfs_inode *nfsi = NFS_I(inode); 2101 struct rb_root *root_node = &nfsi->access_cache; 2102 struct rb_node **p = &root_node->rb_node; 2103 struct rb_node *parent = NULL; 2104 struct nfs_access_entry *entry; 2105 2106 spin_lock(&inode->i_lock); 2107 while (*p != NULL) { 2108 parent = *p; 2109 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2110 2111 if (set->cred < entry->cred) 2112 p = &parent->rb_left; 2113 else if (set->cred > entry->cred) 2114 p = &parent->rb_right; 2115 else 2116 goto found; 2117 } 2118 rb_link_node(&set->rb_node, parent, p); 2119 rb_insert_color(&set->rb_node, root_node); 2120 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2121 spin_unlock(&inode->i_lock); 2122 return; 2123 found: 2124 rb_replace_node(parent, &set->rb_node, root_node); 2125 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2126 list_del(&entry->lru); 2127 spin_unlock(&inode->i_lock); 2128 nfs_access_free_entry(entry); 2129 } 2130 2131 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2132 { 2133 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2134 if (cache == NULL) 2135 return; 2136 RB_CLEAR_NODE(&cache->rb_node); 2137 cache->jiffies = set->jiffies; 2138 cache->cred = get_rpccred(set->cred); 2139 cache->mask = set->mask; 2140 2141 nfs_access_add_rbtree(inode, cache); 2142 2143 /* Update accounting */ 2144 smp_mb__before_atomic_inc(); 2145 atomic_long_inc(&nfs_access_nr_entries); 2146 smp_mb__after_atomic_inc(); 2147 2148 /* Add inode to global LRU list */ 2149 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2150 spin_lock(&nfs_access_lru_lock); 2151 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2152 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2153 &nfs_access_lru_list); 2154 spin_unlock(&nfs_access_lru_lock); 2155 } 2156 } 2157 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2158 2159 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2160 { 2161 entry->mask = 0; 2162 if (access_result & NFS4_ACCESS_READ) 2163 entry->mask |= MAY_READ; 2164 if (access_result & 2165 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2166 entry->mask |= MAY_WRITE; 2167 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2168 entry->mask |= MAY_EXEC; 2169 } 2170 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2171 2172 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2173 { 2174 struct nfs_access_entry cache; 2175 int status; 2176 2177 status = nfs_access_get_cached(inode, cred, &cache); 2178 if (status == 0) 2179 goto out; 2180 2181 /* Be clever: ask server to check for all possible rights */ 2182 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2183 cache.cred = cred; 2184 cache.jiffies = jiffies; 2185 status = NFS_PROTO(inode)->access(inode, &cache); 2186 if (status != 0) { 2187 if (status == -ESTALE) { 2188 nfs_zap_caches(inode); 2189 if (!S_ISDIR(inode->i_mode)) 2190 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2191 } 2192 return status; 2193 } 2194 nfs_access_add_cache(inode, &cache); 2195 out: 2196 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2197 return 0; 2198 return -EACCES; 2199 } 2200 2201 static int nfs_open_permission_mask(int openflags) 2202 { 2203 int mask = 0; 2204 2205 if (openflags & __FMODE_EXEC) { 2206 /* ONLY check exec rights */ 2207 mask = MAY_EXEC; 2208 } else { 2209 if ((openflags & O_ACCMODE) != O_WRONLY) 2210 mask |= MAY_READ; 2211 if ((openflags & O_ACCMODE) != O_RDONLY) 2212 mask |= MAY_WRITE; 2213 } 2214 2215 return mask; 2216 } 2217 2218 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2219 { 2220 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2221 } 2222 EXPORT_SYMBOL_GPL(nfs_may_open); 2223 2224 int nfs_permission(struct inode *inode, int mask) 2225 { 2226 struct rpc_cred *cred; 2227 int res = 0; 2228 2229 if (mask & MAY_NOT_BLOCK) 2230 return -ECHILD; 2231 2232 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2233 2234 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2235 goto out; 2236 /* Is this sys_access() ? */ 2237 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2238 goto force_lookup; 2239 2240 switch (inode->i_mode & S_IFMT) { 2241 case S_IFLNK: 2242 goto out; 2243 case S_IFREG: 2244 /* NFSv4 has atomic_open... */ 2245 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2246 && (mask & MAY_OPEN) 2247 && !(mask & MAY_EXEC)) 2248 goto out; 2249 break; 2250 case S_IFDIR: 2251 /* 2252 * Optimize away all write operations, since the server 2253 * will check permissions when we perform the op. 2254 */ 2255 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2256 goto out; 2257 } 2258 2259 force_lookup: 2260 if (!NFS_PROTO(inode)->access) 2261 goto out_notsup; 2262 2263 cred = rpc_lookup_cred(); 2264 if (!IS_ERR(cred)) { 2265 res = nfs_do_access(inode, cred, mask); 2266 put_rpccred(cred); 2267 } else 2268 res = PTR_ERR(cred); 2269 out: 2270 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2271 res = -EACCES; 2272 2273 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2274 inode->i_sb->s_id, inode->i_ino, mask, res); 2275 return res; 2276 out_notsup: 2277 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2278 if (res == 0) 2279 res = generic_permission(inode, mask); 2280 goto out; 2281 } 2282 EXPORT_SYMBOL_GPL(nfs_permission); 2283 2284 /* 2285 * Local variables: 2286 * version-control: t 2287 * kept-new-versions: 5 2288 * End: 2289 */ 2290