xref: /linux/fs/nfs/dir.c (revision c27dfca4555bf74dd7dd7161d8ef2790ec1c7283)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.free_folio = nfs_readdir_clear_array,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char folio_full : 1,
150 		      folio_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct folio	*folio;
158 	struct dir_context *ctx;
159 	pgoff_t		folio_index;
160 	pgoff_t		folio_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
202 					 u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_local_folio(folio, 0);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->folio_full = 0;
211 	array->folio_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_local(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct folio *folio)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_local_folio(folio, 0);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_local(array);
229 }
230 
231 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
232 					   u64 change_attr)
233 {
234 	nfs_readdir_clear_array(folio);
235 	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
236 }
237 
238 static struct folio *
239 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241 	struct folio *folio = folio_alloc(gfp_flags, 0);
242 	if (folio)
243 		nfs_readdir_folio_init_array(folio, last_cookie, 0);
244 	return folio;
245 }
246 
247 static void nfs_readdir_folio_array_free(struct folio *folio)
248 {
249 	if (folio) {
250 		nfs_readdir_clear_array(folio);
251 		folio_put(folio);
252 	}
253 }
254 
255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256 {
257 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258 }
259 
260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261 {
262 	array->folio_is_eof = 1;
263 	array->folio_full = 1;
264 }
265 
266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267 {
268 	return array->folio_full;
269 }
270 
271 /*
272  * the caller is responsible for freeing qstr.name
273  * when called by nfs_readdir_add_to_array, the strings will be freed in
274  * nfs_clear_readdir_array()
275  */
276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277 {
278 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279 
280 	/*
281 	 * Avoid a kmemleak false positive. The pointer to the name is stored
282 	 * in a page cache page which kmemleak does not scan.
283 	 */
284 	if (ret != NULL)
285 		kmemleak_not_leak(ret);
286 	return ret;
287 }
288 
289 static size_t nfs_readdir_array_maxentries(void)
290 {
291 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292 	       sizeof(struct nfs_cache_array_entry);
293 }
294 
295 /*
296  * Check that the next array entry lies entirely within the page bounds
297  */
298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299 {
300 	if (array->folio_full)
301 		return -ENOSPC;
302 	if (array->size == nfs_readdir_array_maxentries()) {
303 		array->folio_full = 1;
304 		return -ENOSPC;
305 	}
306 	return 0;
307 }
308 
309 static int nfs_readdir_folio_array_append(struct folio *folio,
310 					  const struct nfs_entry *entry,
311 					  u64 *cookie)
312 {
313 	struct nfs_cache_array *array;
314 	struct nfs_cache_array_entry *cache_entry;
315 	const char *name;
316 	int ret = -ENOMEM;
317 
318 	name = nfs_readdir_copy_name(entry->name, entry->len);
319 
320 	array = kmap_local_folio(folio, 0);
321 	if (!name)
322 		goto out;
323 	ret = nfs_readdir_array_can_expand(array);
324 	if (ret) {
325 		kfree(name);
326 		goto out;
327 	}
328 
329 	cache_entry = &array->array[array->size];
330 	cache_entry->cookie = array->last_cookie;
331 	cache_entry->ino = entry->ino;
332 	cache_entry->d_type = entry->d_type;
333 	cache_entry->name_len = entry->len;
334 	cache_entry->name = name;
335 	array->last_cookie = entry->cookie;
336 	if (array->last_cookie <= cache_entry->cookie)
337 		array->cookies_are_ordered = 0;
338 	array->size++;
339 	if (entry->eof != 0)
340 		nfs_readdir_array_set_eof(array);
341 out:
342 	*cookie = array->last_cookie;
343 	kunmap_local(array);
344 	return ret;
345 }
346 
347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348 /*
349  * Hash algorithm allowing content addressible access to sequences
350  * of directory cookies. Content is addressed by the value of the
351  * cookie index of the first readdir entry in a page.
352  *
353  * We select only the first 18 bits to avoid issues with excessive
354  * memory use for the page cache XArray. 18 bits should allow the caching
355  * of 262144 pages of sequences of readdir entries. Since each page holds
356  * 127 readdir entries for a typical 64-bit system, that works out to a
357  * cache of ~ 33 million entries per directory.
358  */
359 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
360 {
361 	if (cookie == 0)
362 		return 0;
363 	return hash_64(cookie, 18);
364 }
365 
366 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
367 				       u64 change_attr)
368 {
369 	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
370 	int ret = true;
371 
372 	if (array->change_attr != change_attr)
373 		ret = false;
374 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
375 		ret = false;
376 	kunmap_local(array);
377 	return ret;
378 }
379 
380 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
381 {
382 	folio_unlock(folio);
383 	folio_put(folio);
384 }
385 
386 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
387 						u64 change_attr)
388 {
389 	if (folio_test_uptodate(folio)) {
390 		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
391 			return;
392 		nfs_readdir_clear_array(folio);
393 	}
394 	nfs_readdir_folio_init_array(folio, cookie, change_attr);
395 	folio_mark_uptodate(folio);
396 }
397 
398 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
399 						  u64 cookie, u64 change_attr)
400 {
401 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
402 	struct folio *folio;
403 
404 	folio = filemap_grab_folio(mapping, index);
405 	if (IS_ERR(folio))
406 		return NULL;
407 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
408 	return folio;
409 }
410 
411 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
412 {
413 	struct nfs_cache_array *array;
414 	u64 ret;
415 
416 	array = kmap_local_folio(folio, 0);
417 	ret = array->last_cookie;
418 	kunmap_local(array);
419 	return ret;
420 }
421 
422 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
423 {
424 	struct nfs_cache_array *array;
425 	bool ret;
426 
427 	array = kmap_local_folio(folio, 0);
428 	ret = !nfs_readdir_array_is_full(array);
429 	kunmap_local(array);
430 	return ret;
431 }
432 
433 static void nfs_readdir_folio_set_eof(struct folio *folio)
434 {
435 	struct nfs_cache_array *array;
436 
437 	array = kmap_local_folio(folio, 0);
438 	nfs_readdir_array_set_eof(array);
439 	kunmap_local(array);
440 }
441 
442 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
443 						u64 cookie, u64 change_attr)
444 {
445 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
446 	struct folio *folio;
447 
448 	folio = __filemap_get_folio(mapping, index,
449 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
450 			mapping_gfp_mask(mapping));
451 	if (IS_ERR(folio))
452 		return NULL;
453 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
454 	if (nfs_readdir_folio_last_cookie(folio) != cookie)
455 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
456 	return folio;
457 }
458 
459 static inline
460 int is_32bit_api(void)
461 {
462 #ifdef CONFIG_COMPAT
463 	return in_compat_syscall();
464 #else
465 	return (BITS_PER_LONG == 32);
466 #endif
467 }
468 
469 static
470 bool nfs_readdir_use_cookie(const struct file *filp)
471 {
472 	if ((filp->f_mode & FMODE_32BITHASH) ||
473 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
474 		return false;
475 	return true;
476 }
477 
478 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
479 					struct nfs_readdir_descriptor *desc)
480 {
481 	if (array->folio_full) {
482 		desc->last_cookie = array->last_cookie;
483 		desc->current_index += array->size;
484 		desc->cache_entry_index = 0;
485 		desc->folio_index++;
486 	} else
487 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
488 }
489 
490 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
491 {
492 	desc->current_index = 0;
493 	desc->last_cookie = 0;
494 	desc->folio_index = 0;
495 }
496 
497 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
498 				      struct nfs_readdir_descriptor *desc)
499 {
500 	loff_t diff = desc->ctx->pos - desc->current_index;
501 	unsigned int index;
502 
503 	if (diff < 0)
504 		goto out_eof;
505 	if (diff >= array->size) {
506 		if (array->folio_is_eof)
507 			goto out_eof;
508 		nfs_readdir_seek_next_array(array, desc);
509 		return -EAGAIN;
510 	}
511 
512 	index = (unsigned int)diff;
513 	desc->dir_cookie = array->array[index].cookie;
514 	desc->cache_entry_index = index;
515 	return 0;
516 out_eof:
517 	desc->eof = true;
518 	return -EBADCOOKIE;
519 }
520 
521 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
522 					      u64 cookie)
523 {
524 	if (!array->cookies_are_ordered)
525 		return true;
526 	/* Optimisation for monotonically increasing cookies */
527 	if (cookie >= array->last_cookie)
528 		return false;
529 	if (array->size && cookie < array->array[0].cookie)
530 		return false;
531 	return true;
532 }
533 
534 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
535 					 struct nfs_readdir_descriptor *desc)
536 {
537 	unsigned int i;
538 	int status = -EAGAIN;
539 
540 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
541 		goto check_eof;
542 
543 	for (i = 0; i < array->size; i++) {
544 		if (array->array[i].cookie == desc->dir_cookie) {
545 			if (nfs_readdir_use_cookie(desc->file))
546 				desc->ctx->pos = desc->dir_cookie;
547 			else
548 				desc->ctx->pos = desc->current_index + i;
549 			desc->cache_entry_index = i;
550 			return 0;
551 		}
552 	}
553 check_eof:
554 	if (array->folio_is_eof) {
555 		status = -EBADCOOKIE;
556 		if (desc->dir_cookie == array->last_cookie)
557 			desc->eof = true;
558 	} else
559 		nfs_readdir_seek_next_array(array, desc);
560 	return status;
561 }
562 
563 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
564 {
565 	struct nfs_cache_array *array;
566 	int status;
567 
568 	array = kmap_local_folio(desc->folio, 0);
569 
570 	if (desc->dir_cookie == 0)
571 		status = nfs_readdir_search_for_pos(array, desc);
572 	else
573 		status = nfs_readdir_search_for_cookie(array, desc);
574 
575 	kunmap_local(array);
576 	return status;
577 }
578 
579 /* Fill a page with xdr information before transferring to the cache page */
580 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
581 				  __be32 *verf, u64 cookie,
582 				  struct page **pages, size_t bufsize,
583 				  __be32 *verf_res)
584 {
585 	struct inode *inode = file_inode(desc->file);
586 	struct nfs_readdir_arg arg = {
587 		.dentry = file_dentry(desc->file),
588 		.cred = desc->file->f_cred,
589 		.verf = verf,
590 		.cookie = cookie,
591 		.pages = pages,
592 		.page_len = bufsize,
593 		.plus = desc->plus,
594 	};
595 	struct nfs_readdir_res res = {
596 		.verf = verf_res,
597 	};
598 	unsigned long	timestamp, gencount;
599 	int		error;
600 
601  again:
602 	timestamp = jiffies;
603 	gencount = nfs_inc_attr_generation_counter();
604 	desc->dir_verifier = nfs_save_change_attribute(inode);
605 	error = NFS_PROTO(inode)->readdir(&arg, &res);
606 	if (error < 0) {
607 		/* We requested READDIRPLUS, but the server doesn't grok it */
608 		if (error == -ENOTSUPP && desc->plus) {
609 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
610 			desc->plus = arg.plus = false;
611 			goto again;
612 		}
613 		goto error;
614 	}
615 	desc->timestamp = timestamp;
616 	desc->gencount = gencount;
617 error:
618 	return error;
619 }
620 
621 static int xdr_decode(struct nfs_readdir_descriptor *desc,
622 		      struct nfs_entry *entry, struct xdr_stream *xdr)
623 {
624 	struct inode *inode = file_inode(desc->file);
625 	int error;
626 
627 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
628 	if (error)
629 		return error;
630 	entry->fattr->time_start = desc->timestamp;
631 	entry->fattr->gencount = desc->gencount;
632 	return 0;
633 }
634 
635 /* Match file and dirent using either filehandle or fileid
636  * Note: caller is responsible for checking the fsid
637  */
638 static
639 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
640 {
641 	struct inode *inode;
642 	struct nfs_inode *nfsi;
643 
644 	if (d_really_is_negative(dentry))
645 		return 0;
646 
647 	inode = d_inode(dentry);
648 	if (is_bad_inode(inode) || NFS_STALE(inode))
649 		return 0;
650 
651 	nfsi = NFS_I(inode);
652 	if (entry->fattr->fileid != nfsi->fileid)
653 		return 0;
654 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
655 		return 0;
656 	return 1;
657 }
658 
659 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
660 
661 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
662 				unsigned int cache_hits,
663 				unsigned int cache_misses)
664 {
665 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
666 		return false;
667 	if (ctx->pos == 0 ||
668 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
669 		return true;
670 	return false;
671 }
672 
673 /*
674  * This function is called by the getattr code to request the
675  * use of readdirplus to accelerate any future lookups in the same
676  * directory.
677  */
678 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
679 {
680 	struct nfs_inode *nfsi = NFS_I(dir);
681 	struct nfs_open_dir_context *ctx;
682 
683 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
684 	    S_ISDIR(dir->i_mode)) {
685 		rcu_read_lock();
686 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
687 			atomic_inc(&ctx->cache_hits);
688 		rcu_read_unlock();
689 	}
690 }
691 
692 /*
693  * This function is mainly for use by nfs_getattr().
694  *
695  * If this is an 'ls -l', we want to force use of readdirplus.
696  */
697 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
698 {
699 	struct nfs_inode *nfsi = NFS_I(dir);
700 	struct nfs_open_dir_context *ctx;
701 
702 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
703 	    S_ISDIR(dir->i_mode)) {
704 		rcu_read_lock();
705 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
706 			atomic_inc(&ctx->cache_misses);
707 		rcu_read_unlock();
708 	}
709 }
710 
711 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
712 						unsigned int flags)
713 {
714 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
715 		return;
716 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
717 		return;
718 	nfs_readdir_record_entry_cache_miss(dir);
719 }
720 
721 static
722 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
723 		unsigned long dir_verifier)
724 {
725 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
726 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
727 	struct dentry *dentry;
728 	struct dentry *alias;
729 	struct inode *inode;
730 	int status;
731 
732 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
733 		return;
734 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
735 		return;
736 	if (filename.len == 0)
737 		return;
738 	/* Validate that the name doesn't contain any illegal '\0' */
739 	if (strnlen(filename.name, filename.len) != filename.len)
740 		return;
741 	/* ...or '/' */
742 	if (strnchr(filename.name, filename.len, '/'))
743 		return;
744 	if (filename.name[0] == '.') {
745 		if (filename.len == 1)
746 			return;
747 		if (filename.len == 2 && filename.name[1] == '.')
748 			return;
749 	}
750 	filename.hash = full_name_hash(parent, filename.name, filename.len);
751 
752 	dentry = d_lookup(parent, &filename);
753 again:
754 	if (!dentry) {
755 		dentry = d_alloc_parallel(parent, &filename, &wq);
756 		if (IS_ERR(dentry))
757 			return;
758 	}
759 	if (!d_in_lookup(dentry)) {
760 		/* Is there a mountpoint here? If so, just exit */
761 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
762 					&entry->fattr->fsid))
763 			goto out;
764 		if (nfs_same_file(dentry, entry)) {
765 			if (!entry->fh->size)
766 				goto out;
767 			nfs_set_verifier(dentry, dir_verifier);
768 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
769 			if (!status)
770 				nfs_setsecurity(d_inode(dentry), entry->fattr);
771 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
772 							    dentry, 0, status);
773 			goto out;
774 		} else {
775 			trace_nfs_readdir_lookup_revalidate_failed(
776 				d_inode(parent), dentry, 0);
777 			d_invalidate(dentry);
778 			dput(dentry);
779 			dentry = NULL;
780 			goto again;
781 		}
782 	}
783 	if (!entry->fh->size) {
784 		d_lookup_done(dentry);
785 		goto out;
786 	}
787 
788 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
789 	alias = d_splice_alias(inode, dentry);
790 	d_lookup_done(dentry);
791 	if (alias) {
792 		if (IS_ERR(alias))
793 			goto out;
794 		dput(dentry);
795 		dentry = alias;
796 	}
797 	nfs_set_verifier(dentry, dir_verifier);
798 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
799 out:
800 	dput(dentry);
801 }
802 
803 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
804 				    struct nfs_entry *entry,
805 				    struct xdr_stream *stream)
806 {
807 	int ret;
808 
809 	if (entry->fattr->label)
810 		entry->fattr->label->len = NFS4_MAXLABELLEN;
811 	ret = xdr_decode(desc, entry, stream);
812 	if (ret || !desc->plus)
813 		return ret;
814 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
815 	return 0;
816 }
817 
818 /* Perform conversion from xdr to cache array */
819 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
820 				    struct nfs_entry *entry,
821 				    struct page **xdr_pages, unsigned int buflen,
822 				    struct folio **arrays, size_t narrays,
823 				    u64 change_attr)
824 {
825 	struct address_space *mapping = desc->file->f_mapping;
826 	struct folio *new, *folio = *arrays;
827 	struct xdr_stream stream;
828 	struct page *scratch;
829 	struct xdr_buf buf;
830 	u64 cookie;
831 	int status;
832 
833 	scratch = alloc_page(GFP_KERNEL);
834 	if (scratch == NULL)
835 		return -ENOMEM;
836 
837 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
838 	xdr_set_scratch_page(&stream, scratch);
839 
840 	do {
841 		status = nfs_readdir_entry_decode(desc, entry, &stream);
842 		if (status != 0)
843 			break;
844 
845 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
846 		if (status != -ENOSPC)
847 			continue;
848 
849 		if (folio->mapping != mapping) {
850 			if (!--narrays)
851 				break;
852 			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
853 			if (!new)
854 				break;
855 			arrays++;
856 			*arrays = folio = new;
857 		} else {
858 			new = nfs_readdir_folio_get_next(mapping, cookie,
859 							 change_attr);
860 			if (!new)
861 				break;
862 			if (folio != *arrays)
863 				nfs_readdir_folio_unlock_and_put(folio);
864 			folio = new;
865 		}
866 		desc->folio_index_max++;
867 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
868 	} while (!status && !entry->eof);
869 
870 	switch (status) {
871 	case -EBADCOOKIE:
872 		if (!entry->eof)
873 			break;
874 		nfs_readdir_folio_set_eof(folio);
875 		fallthrough;
876 	case -EAGAIN:
877 		status = 0;
878 		break;
879 	case -ENOSPC:
880 		status = 0;
881 		if (!desc->plus)
882 			break;
883 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
884 			;
885 	}
886 
887 	if (folio != *arrays)
888 		nfs_readdir_folio_unlock_and_put(folio);
889 
890 	put_page(scratch);
891 	return status;
892 }
893 
894 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
895 {
896 	while (npages--)
897 		put_page(pages[npages]);
898 	kfree(pages);
899 }
900 
901 /*
902  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
903  * to nfs_readdir_free_pages()
904  */
905 static struct page **nfs_readdir_alloc_pages(size_t npages)
906 {
907 	struct page **pages;
908 	size_t i;
909 
910 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
911 	if (!pages)
912 		return NULL;
913 	for (i = 0; i < npages; i++) {
914 		struct page *page = alloc_page(GFP_KERNEL);
915 		if (page == NULL)
916 			goto out_freepages;
917 		pages[i] = page;
918 	}
919 	return pages;
920 
921 out_freepages:
922 	nfs_readdir_free_pages(pages, i);
923 	return NULL;
924 }
925 
926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
927 				    __be32 *verf_arg, __be32 *verf_res,
928 				    struct folio **arrays, size_t narrays)
929 {
930 	u64 change_attr;
931 	struct page **pages;
932 	struct folio *folio = *arrays;
933 	struct nfs_entry *entry;
934 	size_t array_size;
935 	struct inode *inode = file_inode(desc->file);
936 	unsigned int dtsize = desc->dtsize;
937 	unsigned int pglen;
938 	int status = -ENOMEM;
939 
940 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
941 	if (!entry)
942 		return -ENOMEM;
943 	entry->cookie = nfs_readdir_folio_last_cookie(folio);
944 	entry->fh = nfs_alloc_fhandle();
945 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
946 	entry->server = NFS_SERVER(inode);
947 	if (entry->fh == NULL || entry->fattr == NULL)
948 		goto out;
949 
950 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
951 	pages = nfs_readdir_alloc_pages(array_size);
952 	if (!pages)
953 		goto out;
954 
955 	change_attr = inode_peek_iversion_raw(inode);
956 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
957 					dtsize, verf_res);
958 	if (status < 0)
959 		goto free_pages;
960 
961 	pglen = status;
962 	if (pglen != 0)
963 		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
964 						  arrays, narrays, change_attr);
965 	else
966 		nfs_readdir_folio_set_eof(folio);
967 	desc->buffer_fills++;
968 
969 free_pages:
970 	nfs_readdir_free_pages(pages, array_size);
971 out:
972 	nfs_free_fattr(entry->fattr);
973 	nfs_free_fhandle(entry->fh);
974 	kfree(entry);
975 	return status;
976 }
977 
978 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
979 {
980 	folio_put(desc->folio);
981 	desc->folio = NULL;
982 }
983 
984 static void
985 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
986 {
987 	folio_unlock(desc->folio);
988 	nfs_readdir_folio_put(desc);
989 }
990 
991 static struct folio *
992 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
993 {
994 	struct address_space *mapping = desc->file->f_mapping;
995 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
996 	u64 cookie = desc->last_cookie;
997 	struct folio *folio;
998 
999 	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1000 	if (!folio)
1001 		return NULL;
1002 	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1003 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1004 	return folio;
1005 }
1006 
1007 /*
1008  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009  * and locks the page to prevent removal from the page cache.
1010  */
1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1012 {
1013 	struct inode *inode = file_inode(desc->file);
1014 	struct nfs_inode *nfsi = NFS_I(inode);
1015 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1016 	int res;
1017 
1018 	desc->folio = nfs_readdir_folio_get_cached(desc);
1019 	if (!desc->folio)
1020 		return -ENOMEM;
1021 	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1022 		/* Grow the dtsize if we had to go back for more pages */
1023 		if (desc->folio_index == desc->folio_index_max)
1024 			nfs_grow_dtsize(desc);
1025 		desc->folio_index_max = desc->folio_index;
1026 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027 					     desc->last_cookie,
1028 					     desc->folio->index, desc->dtsize);
1029 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030 					       &desc->folio, 1);
1031 		if (res < 0) {
1032 			nfs_readdir_folio_unlock_and_put_cached(desc);
1033 			trace_nfs_readdir_cache_fill_done(inode, res);
1034 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035 				invalidate_inode_pages2(desc->file->f_mapping);
1036 				nfs_readdir_rewind_search(desc);
1037 				trace_nfs_readdir_invalidate_cache_range(
1038 					inode, 0, MAX_LFS_FILESIZE);
1039 				return -EAGAIN;
1040 			}
1041 			return res;
1042 		}
1043 		/*
1044 		 * Set the cookie verifier if the page cache was empty
1045 		 */
1046 		if (desc->last_cookie == 0 &&
1047 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048 			memcpy(nfsi->cookieverf, verf,
1049 			       sizeof(nfsi->cookieverf));
1050 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051 						      -1);
1052 			trace_nfs_readdir_invalidate_cache_range(
1053 				inode, 1, MAX_LFS_FILESIZE);
1054 		}
1055 		desc->clear_cache = false;
1056 	}
1057 	res = nfs_readdir_search_array(desc);
1058 	if (res == 0)
1059 		return 0;
1060 	nfs_readdir_folio_unlock_and_put_cached(desc);
1061 	return res;
1062 }
1063 
1064 /* Search for desc->dir_cookie from the beginning of the page cache */
1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1066 {
1067 	int res;
1068 
1069 	do {
1070 		res = find_and_lock_cache_page(desc);
1071 	} while (res == -EAGAIN);
1072 	return res;
1073 }
1074 
1075 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1076 
1077 /*
1078  * Once we've found the start of the dirent within a page: fill 'er up...
1079  */
1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081 			   const __be32 *verf)
1082 {
1083 	struct file	*file = desc->file;
1084 	struct nfs_cache_array *array;
1085 	unsigned int i;
1086 	bool first_emit = !desc->dir_cookie;
1087 
1088 	array = kmap_local_folio(desc->folio, 0);
1089 	for (i = desc->cache_entry_index; i < array->size; i++) {
1090 		struct nfs_cache_array_entry *ent;
1091 
1092 		/*
1093 		 * nfs_readdir_handle_cache_misses return force clear at
1094 		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1095 		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1096 		 * entries need be emitted here.
1097 		 */
1098 		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1099 			desc->eob = true;
1100 			break;
1101 		}
1102 
1103 		ent = &array->array[i];
1104 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1105 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1106 			desc->eob = true;
1107 			break;
1108 		}
1109 		memcpy(desc->verf, verf, sizeof(desc->verf));
1110 		if (i == array->size - 1) {
1111 			desc->dir_cookie = array->last_cookie;
1112 			nfs_readdir_seek_next_array(array, desc);
1113 		} else {
1114 			desc->dir_cookie = array->array[i + 1].cookie;
1115 			desc->last_cookie = array->array[0].cookie;
1116 		}
1117 		if (nfs_readdir_use_cookie(file))
1118 			desc->ctx->pos = desc->dir_cookie;
1119 		else
1120 			desc->ctx->pos++;
1121 	}
1122 	if (array->folio_is_eof)
1123 		desc->eof = !desc->eob;
1124 
1125 	kunmap_local(array);
1126 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1127 			(unsigned long long)desc->dir_cookie);
1128 }
1129 
1130 /*
1131  * If we cannot find a cookie in our cache, we suspect that this is
1132  * because it points to a deleted file, so we ask the server to return
1133  * whatever it thinks is the next entry. We then feed this to filldir.
1134  * If all goes well, we should then be able to find our way round the
1135  * cache on the next call to readdir_search_pagecache();
1136  *
1137  * NOTE: we cannot add the anonymous page to the pagecache because
1138  *	 the data it contains might not be page aligned. Besides,
1139  *	 we should already have a complete representation of the
1140  *	 directory in the page cache by the time we get here.
1141  */
1142 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1143 {
1144 	struct folio	**arrays;
1145 	size_t		i, sz = 512;
1146 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1147 	int		status = -ENOMEM;
1148 
1149 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1150 			(unsigned long long)desc->dir_cookie);
1151 
1152 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1153 	if (!arrays)
1154 		goto out;
1155 	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1156 	if (!arrays[0])
1157 		goto out;
1158 
1159 	desc->folio_index = 0;
1160 	desc->cache_entry_index = 0;
1161 	desc->last_cookie = desc->dir_cookie;
1162 	desc->folio_index_max = 0;
1163 
1164 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1165 				   -1, desc->dtsize);
1166 
1167 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1168 	if (status < 0) {
1169 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1170 		goto out_free;
1171 	}
1172 
1173 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1174 		desc->folio = arrays[i];
1175 		nfs_do_filldir(desc, verf);
1176 	}
1177 	desc->folio = NULL;
1178 
1179 	/*
1180 	 * Grow the dtsize if we have to go back for more pages,
1181 	 * or shrink it if we're reading too many.
1182 	 */
1183 	if (!desc->eof) {
1184 		if (!desc->eob)
1185 			nfs_grow_dtsize(desc);
1186 		else if (desc->buffer_fills == 1 &&
1187 			 i < (desc->folio_index_max >> 1))
1188 			nfs_shrink_dtsize(desc);
1189 	}
1190 out_free:
1191 	for (i = 0; i < sz && arrays[i]; i++)
1192 		nfs_readdir_folio_array_free(arrays[i]);
1193 out:
1194 	if (!nfs_readdir_use_cookie(desc->file))
1195 		nfs_readdir_rewind_search(desc);
1196 	desc->folio_index_max = -1;
1197 	kfree(arrays);
1198 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1199 	return status;
1200 }
1201 
1202 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1203 					    struct nfs_readdir_descriptor *desc,
1204 					    unsigned int cache_misses,
1205 					    bool force_clear)
1206 {
1207 	if (desc->ctx->pos == 0 || !desc->plus)
1208 		return false;
1209 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1210 		return false;
1211 	trace_nfs_readdir_force_readdirplus(inode);
1212 	return true;
1213 }
1214 
1215 /* The file offset position represents the dirent entry number.  A
1216    last cookie cache takes care of the common case of reading the
1217    whole directory.
1218  */
1219 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1220 {
1221 	struct dentry	*dentry = file_dentry(file);
1222 	struct inode	*inode = d_inode(dentry);
1223 	struct nfs_inode *nfsi = NFS_I(inode);
1224 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1225 	struct nfs_readdir_descriptor *desc;
1226 	unsigned int cache_hits, cache_misses;
1227 	bool force_clear;
1228 	int res;
1229 
1230 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1231 			file, (long long)ctx->pos);
1232 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1233 
1234 	/*
1235 	 * ctx->pos points to the dirent entry number.
1236 	 * *desc->dir_cookie has the cookie for the next entry. We have
1237 	 * to either find the entry with the appropriate number or
1238 	 * revalidate the cookie.
1239 	 */
1240 	nfs_revalidate_mapping(inode, file->f_mapping);
1241 
1242 	res = -ENOMEM;
1243 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1244 	if (!desc)
1245 		goto out;
1246 	desc->file = file;
1247 	desc->ctx = ctx;
1248 	desc->folio_index_max = -1;
1249 
1250 	spin_lock(&file->f_lock);
1251 	desc->dir_cookie = dir_ctx->dir_cookie;
1252 	desc->folio_index = dir_ctx->page_index;
1253 	desc->last_cookie = dir_ctx->last_cookie;
1254 	desc->attr_gencount = dir_ctx->attr_gencount;
1255 	desc->eof = dir_ctx->eof;
1256 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1257 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1258 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1259 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1260 	force_clear = dir_ctx->force_clear;
1261 	spin_unlock(&file->f_lock);
1262 
1263 	if (desc->eof) {
1264 		res = 0;
1265 		goto out_free;
1266 	}
1267 
1268 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1269 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1270 						      force_clear);
1271 	desc->clear_cache = force_clear;
1272 
1273 	do {
1274 		res = readdir_search_pagecache(desc);
1275 
1276 		if (res == -EBADCOOKIE) {
1277 			res = 0;
1278 			/* This means either end of directory */
1279 			if (desc->dir_cookie && !desc->eof) {
1280 				/* Or that the server has 'lost' a cookie */
1281 				res = uncached_readdir(desc);
1282 				if (res == 0)
1283 					continue;
1284 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1285 					res = 0;
1286 			}
1287 			break;
1288 		}
1289 		if (res == -ETOOSMALL && desc->plus) {
1290 			nfs_zap_caches(inode);
1291 			desc->plus = false;
1292 			desc->eof = false;
1293 			continue;
1294 		}
1295 		if (res < 0)
1296 			break;
1297 
1298 		nfs_do_filldir(desc, nfsi->cookieverf);
1299 		nfs_readdir_folio_unlock_and_put_cached(desc);
1300 		if (desc->folio_index == desc->folio_index_max)
1301 			desc->clear_cache = force_clear;
1302 	} while (!desc->eob && !desc->eof);
1303 
1304 	spin_lock(&file->f_lock);
1305 	dir_ctx->dir_cookie = desc->dir_cookie;
1306 	dir_ctx->last_cookie = desc->last_cookie;
1307 	dir_ctx->attr_gencount = desc->attr_gencount;
1308 	dir_ctx->page_index = desc->folio_index;
1309 	dir_ctx->force_clear = force_clear;
1310 	dir_ctx->eof = desc->eof;
1311 	dir_ctx->dtsize = desc->dtsize;
1312 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1313 	spin_unlock(&file->f_lock);
1314 out_free:
1315 	kfree(desc);
1316 
1317 out:
1318 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1319 	return res;
1320 }
1321 
1322 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1323 {
1324 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1325 
1326 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1327 			filp, offset, whence);
1328 
1329 	switch (whence) {
1330 	default:
1331 		return -EINVAL;
1332 	case SEEK_SET:
1333 		if (offset < 0)
1334 			return -EINVAL;
1335 		spin_lock(&filp->f_lock);
1336 		break;
1337 	case SEEK_CUR:
1338 		if (offset == 0)
1339 			return filp->f_pos;
1340 		spin_lock(&filp->f_lock);
1341 		offset += filp->f_pos;
1342 		if (offset < 0) {
1343 			spin_unlock(&filp->f_lock);
1344 			return -EINVAL;
1345 		}
1346 	}
1347 	if (offset != filp->f_pos) {
1348 		filp->f_pos = offset;
1349 		dir_ctx->page_index = 0;
1350 		if (!nfs_readdir_use_cookie(filp)) {
1351 			dir_ctx->dir_cookie = 0;
1352 			dir_ctx->last_cookie = 0;
1353 		} else {
1354 			dir_ctx->dir_cookie = offset;
1355 			dir_ctx->last_cookie = offset;
1356 		}
1357 		dir_ctx->eof = false;
1358 	}
1359 	spin_unlock(&filp->f_lock);
1360 	return offset;
1361 }
1362 
1363 /*
1364  * All directory operations under NFS are synchronous, so fsync()
1365  * is a dummy operation.
1366  */
1367 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1368 			 int datasync)
1369 {
1370 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1371 
1372 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1373 	return 0;
1374 }
1375 
1376 /**
1377  * nfs_force_lookup_revalidate - Mark the directory as having changed
1378  * @dir: pointer to directory inode
1379  *
1380  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1381  * full lookup on all child dentries of 'dir' whenever a change occurs
1382  * on the server that might have invalidated our dcache.
1383  *
1384  * Note that we reserve bit '0' as a tag to let us know when a dentry
1385  * was revalidated while holding a delegation on its inode.
1386  *
1387  * The caller should be holding dir->i_lock
1388  */
1389 void nfs_force_lookup_revalidate(struct inode *dir)
1390 {
1391 	NFS_I(dir)->cache_change_attribute += 2;
1392 }
1393 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1394 
1395 /**
1396  * nfs_verify_change_attribute - Detects NFS remote directory changes
1397  * @dir: pointer to parent directory inode
1398  * @verf: previously saved change attribute
1399  *
1400  * Return "false" if the verifiers doesn't match the change attribute.
1401  * This would usually indicate that the directory contents have changed on
1402  * the server, and that any dentries need revalidating.
1403  */
1404 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1405 {
1406 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1407 }
1408 
1409 static void nfs_set_verifier_delegated(unsigned long *verf)
1410 {
1411 	*verf |= 1UL;
1412 }
1413 
1414 #if IS_ENABLED(CONFIG_NFS_V4)
1415 static void nfs_unset_verifier_delegated(unsigned long *verf)
1416 {
1417 	*verf &= ~1UL;
1418 }
1419 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1420 
1421 static bool nfs_test_verifier_delegated(unsigned long verf)
1422 {
1423 	return verf & 1;
1424 }
1425 
1426 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1427 {
1428 	return nfs_test_verifier_delegated(dentry->d_time);
1429 }
1430 
1431 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1432 {
1433 	struct inode *inode = d_inode(dentry);
1434 	struct inode *dir = d_inode(dentry->d_parent);
1435 
1436 	if (!nfs_verify_change_attribute(dir, verf))
1437 		return;
1438 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1439 		nfs_set_verifier_delegated(&verf);
1440 	dentry->d_time = verf;
1441 }
1442 
1443 /**
1444  * nfs_set_verifier - save a parent directory verifier in the dentry
1445  * @dentry: pointer to dentry
1446  * @verf: verifier to save
1447  *
1448  * Saves the parent directory verifier in @dentry. If the inode has
1449  * a delegation, we also tag the dentry as having been revalidated
1450  * while holding a delegation so that we know we don't have to
1451  * look it up again after a directory change.
1452  */
1453 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1454 {
1455 
1456 	spin_lock(&dentry->d_lock);
1457 	nfs_set_verifier_locked(dentry, verf);
1458 	spin_unlock(&dentry->d_lock);
1459 }
1460 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1461 
1462 #if IS_ENABLED(CONFIG_NFS_V4)
1463 /**
1464  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1465  * @inode: pointer to inode
1466  *
1467  * Iterates through the dentries in the inode alias list and clears
1468  * the tag used to indicate that the dentry has been revalidated
1469  * while holding a delegation.
1470  * This function is intended for use when the delegation is being
1471  * returned or revoked.
1472  */
1473 void nfs_clear_verifier_delegated(struct inode *inode)
1474 {
1475 	struct dentry *alias;
1476 
1477 	if (!inode)
1478 		return;
1479 	spin_lock(&inode->i_lock);
1480 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1481 		spin_lock(&alias->d_lock);
1482 		nfs_unset_verifier_delegated(&alias->d_time);
1483 		spin_unlock(&alias->d_lock);
1484 	}
1485 	spin_unlock(&inode->i_lock);
1486 }
1487 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1488 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1489 
1490 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1491 {
1492 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1493 	    d_really_is_negative(dentry))
1494 		return dentry->d_time == inode_peek_iversion_raw(dir);
1495 	return nfs_verify_change_attribute(dir, dentry->d_time);
1496 }
1497 
1498 /*
1499  * A check for whether or not the parent directory has changed.
1500  * In the case it has, we assume that the dentries are untrustworthy
1501  * and may need to be looked up again.
1502  * If rcu_walk prevents us from performing a full check, return 0.
1503  */
1504 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1505 			      int rcu_walk)
1506 {
1507 	if (IS_ROOT(dentry))
1508 		return 1;
1509 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1510 		return 0;
1511 	if (!nfs_dentry_verify_change(dir, dentry))
1512 		return 0;
1513 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1514 	if (nfs_mapping_need_revalidate_inode(dir)) {
1515 		if (rcu_walk)
1516 			return 0;
1517 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1518 			return 0;
1519 	}
1520 	if (!nfs_dentry_verify_change(dir, dentry))
1521 		return 0;
1522 	return 1;
1523 }
1524 
1525 /*
1526  * Use intent information to check whether or not we're going to do
1527  * an O_EXCL create using this path component.
1528  */
1529 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1530 {
1531 	if (NFS_PROTO(dir)->version == 2)
1532 		return 0;
1533 	return flags & LOOKUP_EXCL;
1534 }
1535 
1536 /*
1537  * Inode and filehandle revalidation for lookups.
1538  *
1539  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1540  * or if the intent information indicates that we're about to open this
1541  * particular file and the "nocto" mount flag is not set.
1542  *
1543  */
1544 static
1545 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1546 {
1547 	struct nfs_server *server = NFS_SERVER(inode);
1548 	int ret;
1549 
1550 	if (IS_AUTOMOUNT(inode))
1551 		return 0;
1552 
1553 	if (flags & LOOKUP_OPEN) {
1554 		switch (inode->i_mode & S_IFMT) {
1555 		case S_IFREG:
1556 			/* A NFSv4 OPEN will revalidate later */
1557 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1558 				goto out;
1559 			fallthrough;
1560 		case S_IFDIR:
1561 			if (server->flags & NFS_MOUNT_NOCTO)
1562 				break;
1563 			/* NFS close-to-open cache consistency validation */
1564 			goto out_force;
1565 		}
1566 	}
1567 
1568 	/* VFS wants an on-the-wire revalidation */
1569 	if (flags & LOOKUP_REVAL)
1570 		goto out_force;
1571 out:
1572 	if (inode->i_nlink > 0 ||
1573 	    (inode->i_nlink == 0 &&
1574 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1575 		return 0;
1576 	else
1577 		return -ESTALE;
1578 out_force:
1579 	if (flags & LOOKUP_RCU)
1580 		return -ECHILD;
1581 	ret = __nfs_revalidate_inode(server, inode);
1582 	if (ret != 0)
1583 		return ret;
1584 	goto out;
1585 }
1586 
1587 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1588 {
1589 	spin_lock(&inode->i_lock);
1590 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1591 	spin_unlock(&inode->i_lock);
1592 }
1593 
1594 /*
1595  * We judge how long we want to trust negative
1596  * dentries by looking at the parent inode mtime.
1597  *
1598  * If parent mtime has changed, we revalidate, else we wait for a
1599  * period corresponding to the parent's attribute cache timeout value.
1600  *
1601  * If LOOKUP_RCU prevents us from performing a full check, return 1
1602  * suggesting a reval is needed.
1603  *
1604  * Note that when creating a new file, or looking up a rename target,
1605  * then it shouldn't be necessary to revalidate a negative dentry.
1606  */
1607 static inline
1608 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1609 		       unsigned int flags)
1610 {
1611 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1612 		return 0;
1613 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1614 		return 1;
1615 	/* Case insensitive server? Revalidate negative dentries */
1616 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1617 		return 1;
1618 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1619 }
1620 
1621 static int
1622 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1623 			   struct inode *inode, int error)
1624 {
1625 	switch (error) {
1626 	case 1:
1627 		break;
1628 	case 0:
1629 		/*
1630 		 * We can't d_drop the root of a disconnected tree:
1631 		 * its d_hash is on the s_anon list and d_drop() would hide
1632 		 * it from shrink_dcache_for_unmount(), leading to busy
1633 		 * inodes on unmount and further oopses.
1634 		 */
1635 		if (inode && IS_ROOT(dentry))
1636 			error = 1;
1637 		break;
1638 	}
1639 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1640 	return error;
1641 }
1642 
1643 static int
1644 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1645 			       unsigned int flags)
1646 {
1647 	int ret = 1;
1648 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1649 		if (flags & LOOKUP_RCU)
1650 			return -ECHILD;
1651 		ret = 0;
1652 	}
1653 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1654 }
1655 
1656 static int
1657 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1658 				struct inode *inode)
1659 {
1660 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1661 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1662 }
1663 
1664 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1665 					struct dentry *dentry,
1666 					struct inode *inode, unsigned int flags)
1667 {
1668 	struct nfs_fh *fhandle;
1669 	struct nfs_fattr *fattr;
1670 	unsigned long dir_verifier;
1671 	int ret;
1672 
1673 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1674 
1675 	ret = -ENOMEM;
1676 	fhandle = nfs_alloc_fhandle();
1677 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1678 	if (fhandle == NULL || fattr == NULL)
1679 		goto out;
1680 
1681 	dir_verifier = nfs_save_change_attribute(dir);
1682 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1683 	if (ret < 0) {
1684 		switch (ret) {
1685 		case -ESTALE:
1686 		case -ENOENT:
1687 			ret = 0;
1688 			break;
1689 		case -ETIMEDOUT:
1690 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1691 				ret = 1;
1692 		}
1693 		goto out;
1694 	}
1695 
1696 	/* Request help from readdirplus */
1697 	nfs_lookup_advise_force_readdirplus(dir, flags);
1698 
1699 	ret = 0;
1700 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1701 		goto out;
1702 	if (nfs_refresh_inode(inode, fattr) < 0)
1703 		goto out;
1704 
1705 	nfs_setsecurity(inode, fattr);
1706 	nfs_set_verifier(dentry, dir_verifier);
1707 
1708 	ret = 1;
1709 out:
1710 	nfs_free_fattr(fattr);
1711 	nfs_free_fhandle(fhandle);
1712 
1713 	/*
1714 	 * If the lookup failed despite the dentry change attribute being
1715 	 * a match, then we should revalidate the directory cache.
1716 	 */
1717 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1718 		nfs_mark_dir_for_revalidate(dir);
1719 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1720 }
1721 
1722 /*
1723  * This is called every time the dcache has a lookup hit,
1724  * and we should check whether we can really trust that
1725  * lookup.
1726  *
1727  * NOTE! The hit can be a negative hit too, don't assume
1728  * we have an inode!
1729  *
1730  * If the parent directory is seen to have changed, we throw out the
1731  * cached dentry and do a new lookup.
1732  */
1733 static int
1734 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1735 			 unsigned int flags)
1736 {
1737 	struct inode *inode;
1738 	int error;
1739 
1740 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1741 	inode = d_inode(dentry);
1742 
1743 	if (!inode)
1744 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1745 
1746 	if (is_bad_inode(inode)) {
1747 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1748 				__func__, dentry);
1749 		goto out_bad;
1750 	}
1751 
1752 	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1753 	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1754 		goto out_bad;
1755 
1756 	if (nfs_verifier_is_delegated(dentry))
1757 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1758 
1759 	/* Force a full look up iff the parent directory has changed */
1760 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1761 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1762 		error = nfs_lookup_verify_inode(inode, flags);
1763 		if (error) {
1764 			if (error == -ESTALE)
1765 				nfs_mark_dir_for_revalidate(dir);
1766 			goto out_bad;
1767 		}
1768 		goto out_valid;
1769 	}
1770 
1771 	if (flags & LOOKUP_RCU)
1772 		return -ECHILD;
1773 
1774 	if (NFS_STALE(inode))
1775 		goto out_bad;
1776 
1777 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1778 out_valid:
1779 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1780 out_bad:
1781 	if (flags & LOOKUP_RCU)
1782 		return -ECHILD;
1783 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1784 }
1785 
1786 static int
1787 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1788 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1789 {
1790 	struct dentry *parent;
1791 	struct inode *dir;
1792 	int ret;
1793 
1794 	if (flags & LOOKUP_RCU) {
1795 		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1796 			return -ECHILD;
1797 		parent = READ_ONCE(dentry->d_parent);
1798 		dir = d_inode_rcu(parent);
1799 		if (!dir)
1800 			return -ECHILD;
1801 		ret = reval(dir, dentry, flags);
1802 		if (parent != READ_ONCE(dentry->d_parent))
1803 			return -ECHILD;
1804 	} else {
1805 		/* Wait for unlink to complete */
1806 		wait_var_event(&dentry->d_fsdata,
1807 			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1808 		parent = dget_parent(dentry);
1809 		ret = reval(d_inode(parent), dentry, flags);
1810 		dput(parent);
1811 	}
1812 	return ret;
1813 }
1814 
1815 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1816 {
1817 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1818 }
1819 
1820 /*
1821  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1822  * when we don't really care about the dentry name. This is called when a
1823  * pathwalk ends on a dentry that was not found via a normal lookup in the
1824  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1825  *
1826  * In this situation, we just want to verify that the inode itself is OK
1827  * since the dentry might have changed on the server.
1828  */
1829 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1830 {
1831 	struct inode *inode = d_inode(dentry);
1832 	int error = 0;
1833 
1834 	/*
1835 	 * I believe we can only get a negative dentry here in the case of a
1836 	 * procfs-style symlink. Just assume it's correct for now, but we may
1837 	 * eventually need to do something more here.
1838 	 */
1839 	if (!inode) {
1840 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1841 				__func__, dentry);
1842 		return 1;
1843 	}
1844 
1845 	if (is_bad_inode(inode)) {
1846 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1847 				__func__, dentry);
1848 		return 0;
1849 	}
1850 
1851 	error = nfs_lookup_verify_inode(inode, flags);
1852 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1853 			__func__, inode->i_ino, error ? "invalid" : "valid");
1854 	return !error;
1855 }
1856 
1857 /*
1858  * This is called from dput() when d_count is going to 0.
1859  */
1860 static int nfs_dentry_delete(const struct dentry *dentry)
1861 {
1862 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1863 		dentry, dentry->d_flags);
1864 
1865 	/* Unhash any dentry with a stale inode */
1866 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1867 		return 1;
1868 
1869 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1870 		/* Unhash it, so that ->d_iput() would be called */
1871 		return 1;
1872 	}
1873 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1874 		/* Unhash it, so that ancestors of killed async unlink
1875 		 * files will be cleaned up during umount */
1876 		return 1;
1877 	}
1878 	return 0;
1879 
1880 }
1881 
1882 /* Ensure that we revalidate inode->i_nlink */
1883 static void nfs_drop_nlink(struct inode *inode)
1884 {
1885 	spin_lock(&inode->i_lock);
1886 	/* drop the inode if we're reasonably sure this is the last link */
1887 	if (inode->i_nlink > 0)
1888 		drop_nlink(inode);
1889 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1890 	nfs_set_cache_invalid(
1891 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1892 			       NFS_INO_INVALID_NLINK);
1893 	spin_unlock(&inode->i_lock);
1894 }
1895 
1896 /*
1897  * Called when the dentry loses inode.
1898  * We use it to clean up silly-renamed files.
1899  */
1900 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1901 {
1902 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1903 		nfs_complete_unlink(dentry, inode);
1904 		nfs_drop_nlink(inode);
1905 	}
1906 	iput(inode);
1907 }
1908 
1909 static void nfs_d_release(struct dentry *dentry)
1910 {
1911 	/* free cached devname value, if it survived that far */
1912 	if (unlikely(dentry->d_fsdata)) {
1913 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1914 			WARN_ON(1);
1915 		else
1916 			kfree(dentry->d_fsdata);
1917 	}
1918 }
1919 
1920 const struct dentry_operations nfs_dentry_operations = {
1921 	.d_revalidate	= nfs_lookup_revalidate,
1922 	.d_weak_revalidate	= nfs_weak_revalidate,
1923 	.d_delete	= nfs_dentry_delete,
1924 	.d_iput		= nfs_dentry_iput,
1925 	.d_automount	= nfs_d_automount,
1926 	.d_release	= nfs_d_release,
1927 };
1928 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1929 
1930 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1931 {
1932 	struct dentry *res;
1933 	struct inode *inode = NULL;
1934 	struct nfs_fh *fhandle = NULL;
1935 	struct nfs_fattr *fattr = NULL;
1936 	unsigned long dir_verifier;
1937 	int error;
1938 
1939 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1940 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1941 
1942 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1943 		return ERR_PTR(-ENAMETOOLONG);
1944 
1945 	/*
1946 	 * If we're doing an exclusive create, optimize away the lookup
1947 	 * but don't hash the dentry.
1948 	 */
1949 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1950 		return NULL;
1951 
1952 	res = ERR_PTR(-ENOMEM);
1953 	fhandle = nfs_alloc_fhandle();
1954 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1955 	if (fhandle == NULL || fattr == NULL)
1956 		goto out;
1957 
1958 	dir_verifier = nfs_save_change_attribute(dir);
1959 	trace_nfs_lookup_enter(dir, dentry, flags);
1960 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1961 	if (error == -ENOENT) {
1962 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1963 			dir_verifier = inode_peek_iversion_raw(dir);
1964 		goto no_entry;
1965 	}
1966 	if (error < 0) {
1967 		res = ERR_PTR(error);
1968 		goto out;
1969 	}
1970 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1971 	res = ERR_CAST(inode);
1972 	if (IS_ERR(res))
1973 		goto out;
1974 
1975 	/* Notify readdir to use READDIRPLUS */
1976 	nfs_lookup_advise_force_readdirplus(dir, flags);
1977 
1978 no_entry:
1979 	res = d_splice_alias(inode, dentry);
1980 	if (res != NULL) {
1981 		if (IS_ERR(res))
1982 			goto out;
1983 		dentry = res;
1984 	}
1985 	nfs_set_verifier(dentry, dir_verifier);
1986 out:
1987 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1988 	nfs_free_fattr(fattr);
1989 	nfs_free_fhandle(fhandle);
1990 	return res;
1991 }
1992 EXPORT_SYMBOL_GPL(nfs_lookup);
1993 
1994 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1995 {
1996 	/* Case insensitive server? Revalidate dentries */
1997 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1998 		d_prune_aliases(inode);
1999 }
2000 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2001 
2002 #if IS_ENABLED(CONFIG_NFS_V4)
2003 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2004 
2005 const struct dentry_operations nfs4_dentry_operations = {
2006 	.d_revalidate	= nfs4_lookup_revalidate,
2007 	.d_weak_revalidate	= nfs_weak_revalidate,
2008 	.d_delete	= nfs_dentry_delete,
2009 	.d_iput		= nfs_dentry_iput,
2010 	.d_automount	= nfs_d_automount,
2011 	.d_release	= nfs_d_release,
2012 };
2013 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2014 
2015 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2016 {
2017 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2018 }
2019 
2020 static int do_open(struct inode *inode, struct file *filp)
2021 {
2022 	nfs_fscache_open_file(inode, filp);
2023 	return 0;
2024 }
2025 
2026 static int nfs_finish_open(struct nfs_open_context *ctx,
2027 			   struct dentry *dentry,
2028 			   struct file *file, unsigned open_flags)
2029 {
2030 	int err;
2031 
2032 	err = finish_open(file, dentry, do_open);
2033 	if (err)
2034 		goto out;
2035 	if (S_ISREG(file_inode(file)->i_mode))
2036 		nfs_file_set_open_context(file, ctx);
2037 	else
2038 		err = -EOPENSTALE;
2039 out:
2040 	return err;
2041 }
2042 
2043 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2044 		    struct file *file, unsigned open_flags,
2045 		    umode_t mode)
2046 {
2047 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2048 	struct nfs_open_context *ctx;
2049 	struct dentry *res;
2050 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2051 	struct inode *inode;
2052 	unsigned int lookup_flags = 0;
2053 	unsigned long dir_verifier;
2054 	bool switched = false;
2055 	int created = 0;
2056 	int err;
2057 
2058 	/* Expect a negative dentry */
2059 	BUG_ON(d_inode(dentry));
2060 
2061 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2062 			dir->i_sb->s_id, dir->i_ino, dentry);
2063 
2064 	err = nfs_check_flags(open_flags);
2065 	if (err)
2066 		return err;
2067 
2068 	/* NFS only supports OPEN on regular files */
2069 	if ((open_flags & O_DIRECTORY)) {
2070 		if (!d_in_lookup(dentry)) {
2071 			/*
2072 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2073 			 * revalidated and is fine, no need to perform lookup
2074 			 * again
2075 			 */
2076 			return -ENOENT;
2077 		}
2078 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2079 		goto no_open;
2080 	}
2081 
2082 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2083 		return -ENAMETOOLONG;
2084 
2085 	if (open_flags & O_CREAT) {
2086 		struct nfs_server *server = NFS_SERVER(dir);
2087 
2088 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2089 			mode &= ~current_umask();
2090 
2091 		attr.ia_valid |= ATTR_MODE;
2092 		attr.ia_mode = mode;
2093 	}
2094 	if (open_flags & O_TRUNC) {
2095 		attr.ia_valid |= ATTR_SIZE;
2096 		attr.ia_size = 0;
2097 	}
2098 
2099 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2100 		d_drop(dentry);
2101 		switched = true;
2102 		dentry = d_alloc_parallel(dentry->d_parent,
2103 					  &dentry->d_name, &wq);
2104 		if (IS_ERR(dentry))
2105 			return PTR_ERR(dentry);
2106 		if (unlikely(!d_in_lookup(dentry)))
2107 			return finish_no_open(file, dentry);
2108 	}
2109 
2110 	ctx = create_nfs_open_context(dentry, open_flags, file);
2111 	err = PTR_ERR(ctx);
2112 	if (IS_ERR(ctx))
2113 		goto out;
2114 
2115 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2116 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2117 	if (created)
2118 		file->f_mode |= FMODE_CREATED;
2119 	if (IS_ERR(inode)) {
2120 		err = PTR_ERR(inode);
2121 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2122 		put_nfs_open_context(ctx);
2123 		d_drop(dentry);
2124 		switch (err) {
2125 		case -ENOENT:
2126 			d_splice_alias(NULL, dentry);
2127 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2128 				dir_verifier = inode_peek_iversion_raw(dir);
2129 			else
2130 				dir_verifier = nfs_save_change_attribute(dir);
2131 			nfs_set_verifier(dentry, dir_verifier);
2132 			break;
2133 		case -EISDIR:
2134 		case -ENOTDIR:
2135 			goto no_open;
2136 		case -ELOOP:
2137 			if (!(open_flags & O_NOFOLLOW))
2138 				goto no_open;
2139 			break;
2140 			/* case -EINVAL: */
2141 		default:
2142 			break;
2143 		}
2144 		goto out;
2145 	}
2146 	file->f_mode |= FMODE_CAN_ODIRECT;
2147 
2148 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2149 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2150 	put_nfs_open_context(ctx);
2151 out:
2152 	if (unlikely(switched)) {
2153 		d_lookup_done(dentry);
2154 		dput(dentry);
2155 	}
2156 	return err;
2157 
2158 no_open:
2159 	res = nfs_lookup(dir, dentry, lookup_flags);
2160 	if (!res) {
2161 		inode = d_inode(dentry);
2162 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2163 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2164 			res = ERR_PTR(-ENOTDIR);
2165 		else if (inode && S_ISREG(inode->i_mode))
2166 			res = ERR_PTR(-EOPENSTALE);
2167 	} else if (!IS_ERR(res)) {
2168 		inode = d_inode(res);
2169 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2170 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2171 			dput(res);
2172 			res = ERR_PTR(-ENOTDIR);
2173 		} else if (inode && S_ISREG(inode->i_mode)) {
2174 			dput(res);
2175 			res = ERR_PTR(-EOPENSTALE);
2176 		}
2177 	}
2178 	if (switched) {
2179 		d_lookup_done(dentry);
2180 		if (!res)
2181 			res = dentry;
2182 		else
2183 			dput(dentry);
2184 	}
2185 	if (IS_ERR(res))
2186 		return PTR_ERR(res);
2187 	return finish_no_open(file, res);
2188 }
2189 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2190 
2191 static int
2192 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2193 			  unsigned int flags)
2194 {
2195 	struct inode *inode;
2196 
2197 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2198 		goto full_reval;
2199 	if (d_mountpoint(dentry))
2200 		goto full_reval;
2201 
2202 	inode = d_inode(dentry);
2203 
2204 	/* We can't create new files in nfs_open_revalidate(), so we
2205 	 * optimize away revalidation of negative dentries.
2206 	 */
2207 	if (inode == NULL)
2208 		goto full_reval;
2209 
2210 	if (nfs_verifier_is_delegated(dentry))
2211 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2212 
2213 	/* NFS only supports OPEN on regular files */
2214 	if (!S_ISREG(inode->i_mode))
2215 		goto full_reval;
2216 
2217 	/* We cannot do exclusive creation on a positive dentry */
2218 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2219 		goto reval_dentry;
2220 
2221 	/* Check if the directory changed */
2222 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2223 		goto reval_dentry;
2224 
2225 	/* Let f_op->open() actually open (and revalidate) the file */
2226 	return 1;
2227 reval_dentry:
2228 	if (flags & LOOKUP_RCU)
2229 		return -ECHILD;
2230 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2231 
2232 full_reval:
2233 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2234 }
2235 
2236 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2237 {
2238 	return __nfs_lookup_revalidate(dentry, flags,
2239 			nfs4_do_lookup_revalidate);
2240 }
2241 
2242 #endif /* CONFIG_NFSV4 */
2243 
2244 struct dentry *
2245 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2246 				struct nfs_fattr *fattr)
2247 {
2248 	struct dentry *parent = dget_parent(dentry);
2249 	struct inode *dir = d_inode(parent);
2250 	struct inode *inode;
2251 	struct dentry *d;
2252 	int error;
2253 
2254 	d_drop(dentry);
2255 
2256 	if (fhandle->size == 0) {
2257 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2258 		if (error)
2259 			goto out_error;
2260 	}
2261 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2262 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2263 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2264 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2265 				fattr, NULL);
2266 		if (error < 0)
2267 			goto out_error;
2268 	}
2269 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2270 	d = d_splice_alias(inode, dentry);
2271 out:
2272 	dput(parent);
2273 	return d;
2274 out_error:
2275 	d = ERR_PTR(error);
2276 	goto out;
2277 }
2278 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2279 
2280 /*
2281  * Code common to create, mkdir, and mknod.
2282  */
2283 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2284 				struct nfs_fattr *fattr)
2285 {
2286 	struct dentry *d;
2287 
2288 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2289 	if (IS_ERR(d))
2290 		return PTR_ERR(d);
2291 
2292 	/* Callers don't care */
2293 	dput(d);
2294 	return 0;
2295 }
2296 EXPORT_SYMBOL_GPL(nfs_instantiate);
2297 
2298 /*
2299  * Following a failed create operation, we drop the dentry rather
2300  * than retain a negative dentry. This avoids a problem in the event
2301  * that the operation succeeded on the server, but an error in the
2302  * reply path made it appear to have failed.
2303  */
2304 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2305 	       struct dentry *dentry, umode_t mode, bool excl)
2306 {
2307 	struct iattr attr;
2308 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2309 	int error;
2310 
2311 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2312 			dir->i_sb->s_id, dir->i_ino, dentry);
2313 
2314 	attr.ia_mode = mode;
2315 	attr.ia_valid = ATTR_MODE;
2316 
2317 	trace_nfs_create_enter(dir, dentry, open_flags);
2318 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2319 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2320 	if (error != 0)
2321 		goto out_err;
2322 	return 0;
2323 out_err:
2324 	d_drop(dentry);
2325 	return error;
2326 }
2327 EXPORT_SYMBOL_GPL(nfs_create);
2328 
2329 /*
2330  * See comments for nfs_proc_create regarding failed operations.
2331  */
2332 int
2333 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2334 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2335 {
2336 	struct iattr attr;
2337 	int status;
2338 
2339 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2340 			dir->i_sb->s_id, dir->i_ino, dentry);
2341 
2342 	attr.ia_mode = mode;
2343 	attr.ia_valid = ATTR_MODE;
2344 
2345 	trace_nfs_mknod_enter(dir, dentry);
2346 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2347 	trace_nfs_mknod_exit(dir, dentry, status);
2348 	if (status != 0)
2349 		goto out_err;
2350 	return 0;
2351 out_err:
2352 	d_drop(dentry);
2353 	return status;
2354 }
2355 EXPORT_SYMBOL_GPL(nfs_mknod);
2356 
2357 /*
2358  * See comments for nfs_proc_create regarding failed operations.
2359  */
2360 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2361 	      struct dentry *dentry, umode_t mode)
2362 {
2363 	struct iattr attr;
2364 	int error;
2365 
2366 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2367 			dir->i_sb->s_id, dir->i_ino, dentry);
2368 
2369 	attr.ia_valid = ATTR_MODE;
2370 	attr.ia_mode = mode | S_IFDIR;
2371 
2372 	trace_nfs_mkdir_enter(dir, dentry);
2373 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2374 	trace_nfs_mkdir_exit(dir, dentry, error);
2375 	if (error != 0)
2376 		goto out_err;
2377 	return 0;
2378 out_err:
2379 	d_drop(dentry);
2380 	return error;
2381 }
2382 EXPORT_SYMBOL_GPL(nfs_mkdir);
2383 
2384 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2385 {
2386 	if (simple_positive(dentry))
2387 		d_delete(dentry);
2388 }
2389 
2390 static void nfs_dentry_remove_handle_error(struct inode *dir,
2391 					   struct dentry *dentry, int error)
2392 {
2393 	switch (error) {
2394 	case -ENOENT:
2395 		if (d_really_is_positive(dentry))
2396 			d_delete(dentry);
2397 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2398 		break;
2399 	case 0:
2400 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2401 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2402 	}
2403 }
2404 
2405 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2406 {
2407 	int error;
2408 
2409 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2410 			dir->i_sb->s_id, dir->i_ino, dentry);
2411 
2412 	trace_nfs_rmdir_enter(dir, dentry);
2413 	if (d_really_is_positive(dentry)) {
2414 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2415 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2416 		/* Ensure the VFS deletes this inode */
2417 		switch (error) {
2418 		case 0:
2419 			clear_nlink(d_inode(dentry));
2420 			break;
2421 		case -ENOENT:
2422 			nfs_dentry_handle_enoent(dentry);
2423 		}
2424 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2425 	} else
2426 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2427 	nfs_dentry_remove_handle_error(dir, dentry, error);
2428 	trace_nfs_rmdir_exit(dir, dentry, error);
2429 
2430 	return error;
2431 }
2432 EXPORT_SYMBOL_GPL(nfs_rmdir);
2433 
2434 /*
2435  * Remove a file after making sure there are no pending writes,
2436  * and after checking that the file has only one user.
2437  *
2438  * We invalidate the attribute cache and free the inode prior to the operation
2439  * to avoid possible races if the server reuses the inode.
2440  */
2441 static int nfs_safe_remove(struct dentry *dentry)
2442 {
2443 	struct inode *dir = d_inode(dentry->d_parent);
2444 	struct inode *inode = d_inode(dentry);
2445 	int error = -EBUSY;
2446 
2447 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2448 
2449 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2450 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2451 		error = 0;
2452 		goto out;
2453 	}
2454 
2455 	trace_nfs_remove_enter(dir, dentry);
2456 	if (inode != NULL) {
2457 		error = NFS_PROTO(dir)->remove(dir, dentry);
2458 		if (error == 0)
2459 			nfs_drop_nlink(inode);
2460 	} else
2461 		error = NFS_PROTO(dir)->remove(dir, dentry);
2462 	if (error == -ENOENT)
2463 		nfs_dentry_handle_enoent(dentry);
2464 	trace_nfs_remove_exit(dir, dentry, error);
2465 out:
2466 	return error;
2467 }
2468 
2469 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2470  *  belongs to an active ".nfs..." file and we return -EBUSY.
2471  *
2472  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2473  */
2474 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2475 {
2476 	int error;
2477 
2478 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2479 		dir->i_ino, dentry);
2480 
2481 	trace_nfs_unlink_enter(dir, dentry);
2482 	spin_lock(&dentry->d_lock);
2483 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2484 					     &NFS_I(d_inode(dentry))->flags)) {
2485 		spin_unlock(&dentry->d_lock);
2486 		/* Start asynchronous writeout of the inode */
2487 		write_inode_now(d_inode(dentry), 0);
2488 		error = nfs_sillyrename(dir, dentry);
2489 		goto out;
2490 	}
2491 	/* We must prevent any concurrent open until the unlink
2492 	 * completes.  ->d_revalidate will wait for ->d_fsdata
2493 	 * to clear.  We set it here to ensure no lookup succeeds until
2494 	 * the unlink is complete on the server.
2495 	 */
2496 	error = -ETXTBSY;
2497 	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2498 	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2499 		spin_unlock(&dentry->d_lock);
2500 		goto out;
2501 	}
2502 	/* old devname */
2503 	kfree(dentry->d_fsdata);
2504 	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2505 
2506 	spin_unlock(&dentry->d_lock);
2507 	error = nfs_safe_remove(dentry);
2508 	nfs_dentry_remove_handle_error(dir, dentry, error);
2509 	dentry->d_fsdata = NULL;
2510 	wake_up_var(&dentry->d_fsdata);
2511 out:
2512 	trace_nfs_unlink_exit(dir, dentry, error);
2513 	return error;
2514 }
2515 EXPORT_SYMBOL_GPL(nfs_unlink);
2516 
2517 /*
2518  * To create a symbolic link, most file systems instantiate a new inode,
2519  * add a page to it containing the path, then write it out to the disk
2520  * using prepare_write/commit_write.
2521  *
2522  * Unfortunately the NFS client can't create the in-core inode first
2523  * because it needs a file handle to create an in-core inode (see
2524  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2525  * symlink request has completed on the server.
2526  *
2527  * So instead we allocate a raw page, copy the symname into it, then do
2528  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2529  * now have a new file handle and can instantiate an in-core NFS inode
2530  * and move the raw page into its mapping.
2531  */
2532 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2533 		struct dentry *dentry, const char *symname)
2534 {
2535 	struct folio *folio;
2536 	char *kaddr;
2537 	struct iattr attr;
2538 	unsigned int pathlen = strlen(symname);
2539 	int error;
2540 
2541 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2542 		dir->i_ino, dentry, symname);
2543 
2544 	if (pathlen > PAGE_SIZE)
2545 		return -ENAMETOOLONG;
2546 
2547 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2548 	attr.ia_valid = ATTR_MODE;
2549 
2550 	folio = folio_alloc(GFP_USER, 0);
2551 	if (!folio)
2552 		return -ENOMEM;
2553 
2554 	kaddr = folio_address(folio);
2555 	memcpy(kaddr, symname, pathlen);
2556 	if (pathlen < PAGE_SIZE)
2557 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2558 
2559 	trace_nfs_symlink_enter(dir, dentry);
2560 	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2561 	trace_nfs_symlink_exit(dir, dentry, error);
2562 	if (error != 0) {
2563 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2564 			dir->i_sb->s_id, dir->i_ino,
2565 			dentry, symname, error);
2566 		d_drop(dentry);
2567 		folio_put(folio);
2568 		return error;
2569 	}
2570 
2571 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2572 
2573 	/*
2574 	 * No big deal if we can't add this page to the page cache here.
2575 	 * READLINK will get the missing page from the server if needed.
2576 	 */
2577 	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2578 							GFP_KERNEL) == 0) {
2579 		folio_mark_uptodate(folio);
2580 		folio_unlock(folio);
2581 	}
2582 
2583 	folio_put(folio);
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL_GPL(nfs_symlink);
2587 
2588 int
2589 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2590 {
2591 	struct inode *inode = d_inode(old_dentry);
2592 	int error;
2593 
2594 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2595 		old_dentry, dentry);
2596 
2597 	trace_nfs_link_enter(inode, dir, dentry);
2598 	d_drop(dentry);
2599 	if (S_ISREG(inode->i_mode))
2600 		nfs_sync_inode(inode);
2601 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2602 	if (error == 0) {
2603 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2604 		ihold(inode);
2605 		d_add(dentry, inode);
2606 	}
2607 	trace_nfs_link_exit(inode, dir, dentry, error);
2608 	return error;
2609 }
2610 EXPORT_SYMBOL_GPL(nfs_link);
2611 
2612 static void
2613 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2614 {
2615 	struct dentry *new_dentry = data->new_dentry;
2616 
2617 	new_dentry->d_fsdata = NULL;
2618 	wake_up_var(&new_dentry->d_fsdata);
2619 }
2620 
2621 /*
2622  * RENAME
2623  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2624  * different file handle for the same inode after a rename (e.g. when
2625  * moving to a different directory). A fail-safe method to do so would
2626  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2627  * rename the old file using the sillyrename stuff. This way, the original
2628  * file in old_dir will go away when the last process iput()s the inode.
2629  *
2630  * FIXED.
2631  *
2632  * It actually works quite well. One needs to have the possibility for
2633  * at least one ".nfs..." file in each directory the file ever gets
2634  * moved or linked to which happens automagically with the new
2635  * implementation that only depends on the dcache stuff instead of
2636  * using the inode layer
2637  *
2638  * Unfortunately, things are a little more complicated than indicated
2639  * above. For a cross-directory move, we want to make sure we can get
2640  * rid of the old inode after the operation.  This means there must be
2641  * no pending writes (if it's a file), and the use count must be 1.
2642  * If these conditions are met, we can drop the dentries before doing
2643  * the rename.
2644  */
2645 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2646 	       struct dentry *old_dentry, struct inode *new_dir,
2647 	       struct dentry *new_dentry, unsigned int flags)
2648 {
2649 	struct inode *old_inode = d_inode(old_dentry);
2650 	struct inode *new_inode = d_inode(new_dentry);
2651 	struct dentry *dentry = NULL;
2652 	struct rpc_task *task;
2653 	bool must_unblock = false;
2654 	int error = -EBUSY;
2655 
2656 	if (flags)
2657 		return -EINVAL;
2658 
2659 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2660 		 old_dentry, new_dentry,
2661 		 d_count(new_dentry));
2662 
2663 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2664 	/*
2665 	 * For non-directories, check whether the target is busy and if so,
2666 	 * make a copy of the dentry and then do a silly-rename. If the
2667 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2668 	 * the new target.
2669 	 */
2670 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2671 		/* We must prevent any concurrent open until the unlink
2672 		 * completes.  ->d_revalidate will wait for ->d_fsdata
2673 		 * to clear.  We set it here to ensure no lookup succeeds until
2674 		 * the unlink is complete on the server.
2675 		 */
2676 		error = -ETXTBSY;
2677 		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2678 		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2679 			goto out;
2680 		if (new_dentry->d_fsdata) {
2681 			/* old devname */
2682 			kfree(new_dentry->d_fsdata);
2683 			new_dentry->d_fsdata = NULL;
2684 		}
2685 
2686 		spin_lock(&new_dentry->d_lock);
2687 		if (d_count(new_dentry) > 2) {
2688 			int err;
2689 
2690 			spin_unlock(&new_dentry->d_lock);
2691 
2692 			/* copy the target dentry's name */
2693 			dentry = d_alloc(new_dentry->d_parent,
2694 					 &new_dentry->d_name);
2695 			if (!dentry)
2696 				goto out;
2697 
2698 			/* silly-rename the existing target ... */
2699 			err = nfs_sillyrename(new_dir, new_dentry);
2700 			if (err)
2701 				goto out;
2702 
2703 			new_dentry = dentry;
2704 			new_inode = NULL;
2705 		} else {
2706 			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2707 			must_unblock = true;
2708 			spin_unlock(&new_dentry->d_lock);
2709 		}
2710 
2711 	}
2712 
2713 	if (S_ISREG(old_inode->i_mode))
2714 		nfs_sync_inode(old_inode);
2715 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2716 				must_unblock ? nfs_unblock_rename : NULL);
2717 	if (IS_ERR(task)) {
2718 		error = PTR_ERR(task);
2719 		goto out;
2720 	}
2721 
2722 	error = rpc_wait_for_completion_task(task);
2723 	if (error != 0) {
2724 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2725 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2726 		smp_wmb();
2727 	} else
2728 		error = task->tk_status;
2729 	rpc_put_task(task);
2730 	/* Ensure the inode attributes are revalidated */
2731 	if (error == 0) {
2732 		spin_lock(&old_inode->i_lock);
2733 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2734 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2735 							 NFS_INO_INVALID_CTIME |
2736 							 NFS_INO_REVAL_FORCED);
2737 		spin_unlock(&old_inode->i_lock);
2738 	}
2739 out:
2740 	trace_nfs_rename_exit(old_dir, old_dentry,
2741 			new_dir, new_dentry, error);
2742 	if (!error) {
2743 		if (new_inode != NULL)
2744 			nfs_drop_nlink(new_inode);
2745 		/*
2746 		 * The d_move() should be here instead of in an async RPC completion
2747 		 * handler because we need the proper locks to move the dentry.  If
2748 		 * we're interrupted by a signal, the async RPC completion handler
2749 		 * should mark the directories for revalidation.
2750 		 */
2751 		d_move(old_dentry, new_dentry);
2752 		nfs_set_verifier(old_dentry,
2753 					nfs_save_change_attribute(new_dir));
2754 	} else if (error == -ENOENT)
2755 		nfs_dentry_handle_enoent(old_dentry);
2756 
2757 	/* new dentry created? */
2758 	if (dentry)
2759 		dput(dentry);
2760 	return error;
2761 }
2762 EXPORT_SYMBOL_GPL(nfs_rename);
2763 
2764 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2765 static LIST_HEAD(nfs_access_lru_list);
2766 static atomic_long_t nfs_access_nr_entries;
2767 
2768 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2769 module_param(nfs_access_max_cachesize, ulong, 0644);
2770 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2771 
2772 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2773 {
2774 	put_group_info(entry->group_info);
2775 	kfree_rcu(entry, rcu_head);
2776 	smp_mb__before_atomic();
2777 	atomic_long_dec(&nfs_access_nr_entries);
2778 	smp_mb__after_atomic();
2779 }
2780 
2781 static void nfs_access_free_list(struct list_head *head)
2782 {
2783 	struct nfs_access_entry *cache;
2784 
2785 	while (!list_empty(head)) {
2786 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2787 		list_del(&cache->lru);
2788 		nfs_access_free_entry(cache);
2789 	}
2790 }
2791 
2792 static unsigned long
2793 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2794 {
2795 	LIST_HEAD(head);
2796 	struct nfs_inode *nfsi, *next;
2797 	struct nfs_access_entry *cache;
2798 	long freed = 0;
2799 
2800 	spin_lock(&nfs_access_lru_lock);
2801 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2802 		struct inode *inode;
2803 
2804 		if (nr_to_scan-- == 0)
2805 			break;
2806 		inode = &nfsi->vfs_inode;
2807 		spin_lock(&inode->i_lock);
2808 		if (list_empty(&nfsi->access_cache_entry_lru))
2809 			goto remove_lru_entry;
2810 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2811 				struct nfs_access_entry, lru);
2812 		list_move(&cache->lru, &head);
2813 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2814 		freed++;
2815 		if (!list_empty(&nfsi->access_cache_entry_lru))
2816 			list_move_tail(&nfsi->access_cache_inode_lru,
2817 					&nfs_access_lru_list);
2818 		else {
2819 remove_lru_entry:
2820 			list_del_init(&nfsi->access_cache_inode_lru);
2821 			smp_mb__before_atomic();
2822 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2823 			smp_mb__after_atomic();
2824 		}
2825 		spin_unlock(&inode->i_lock);
2826 	}
2827 	spin_unlock(&nfs_access_lru_lock);
2828 	nfs_access_free_list(&head);
2829 	return freed;
2830 }
2831 
2832 unsigned long
2833 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2834 {
2835 	int nr_to_scan = sc->nr_to_scan;
2836 	gfp_t gfp_mask = sc->gfp_mask;
2837 
2838 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2839 		return SHRINK_STOP;
2840 	return nfs_do_access_cache_scan(nr_to_scan);
2841 }
2842 
2843 
2844 unsigned long
2845 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2846 {
2847 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2848 }
2849 
2850 static void
2851 nfs_access_cache_enforce_limit(void)
2852 {
2853 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2854 	unsigned long diff;
2855 	unsigned int nr_to_scan;
2856 
2857 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2858 		return;
2859 	nr_to_scan = 100;
2860 	diff = nr_entries - nfs_access_max_cachesize;
2861 	if (diff < nr_to_scan)
2862 		nr_to_scan = diff;
2863 	nfs_do_access_cache_scan(nr_to_scan);
2864 }
2865 
2866 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2867 {
2868 	struct rb_root *root_node = &nfsi->access_cache;
2869 	struct rb_node *n;
2870 	struct nfs_access_entry *entry;
2871 
2872 	/* Unhook entries from the cache */
2873 	while ((n = rb_first(root_node)) != NULL) {
2874 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2875 		rb_erase(n, root_node);
2876 		list_move(&entry->lru, head);
2877 	}
2878 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2879 }
2880 
2881 void nfs_access_zap_cache(struct inode *inode)
2882 {
2883 	LIST_HEAD(head);
2884 
2885 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2886 		return;
2887 	/* Remove from global LRU init */
2888 	spin_lock(&nfs_access_lru_lock);
2889 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2890 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2891 
2892 	spin_lock(&inode->i_lock);
2893 	__nfs_access_zap_cache(NFS_I(inode), &head);
2894 	spin_unlock(&inode->i_lock);
2895 	spin_unlock(&nfs_access_lru_lock);
2896 	nfs_access_free_list(&head);
2897 }
2898 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2899 
2900 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2901 {
2902 	struct group_info *ga, *gb;
2903 	int g;
2904 
2905 	if (uid_lt(a->fsuid, b->fsuid))
2906 		return -1;
2907 	if (uid_gt(a->fsuid, b->fsuid))
2908 		return 1;
2909 
2910 	if (gid_lt(a->fsgid, b->fsgid))
2911 		return -1;
2912 	if (gid_gt(a->fsgid, b->fsgid))
2913 		return 1;
2914 
2915 	ga = a->group_info;
2916 	gb = b->group_info;
2917 	if (ga == gb)
2918 		return 0;
2919 	if (ga == NULL)
2920 		return -1;
2921 	if (gb == NULL)
2922 		return 1;
2923 	if (ga->ngroups < gb->ngroups)
2924 		return -1;
2925 	if (ga->ngroups > gb->ngroups)
2926 		return 1;
2927 
2928 	for (g = 0; g < ga->ngroups; g++) {
2929 		if (gid_lt(ga->gid[g], gb->gid[g]))
2930 			return -1;
2931 		if (gid_gt(ga->gid[g], gb->gid[g]))
2932 			return 1;
2933 	}
2934 	return 0;
2935 }
2936 
2937 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2938 {
2939 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2940 
2941 	while (n != NULL) {
2942 		struct nfs_access_entry *entry =
2943 			rb_entry(n, struct nfs_access_entry, rb_node);
2944 		int cmp = access_cmp(cred, entry);
2945 
2946 		if (cmp < 0)
2947 			n = n->rb_left;
2948 		else if (cmp > 0)
2949 			n = n->rb_right;
2950 		else
2951 			return entry;
2952 	}
2953 	return NULL;
2954 }
2955 
2956 static u64 nfs_access_login_time(const struct task_struct *task,
2957 				 const struct cred *cred)
2958 {
2959 	const struct task_struct *parent;
2960 	const struct cred *pcred;
2961 	u64 ret;
2962 
2963 	rcu_read_lock();
2964 	for (;;) {
2965 		parent = rcu_dereference(task->real_parent);
2966 		pcred = rcu_dereference(parent->cred);
2967 		if (parent == task || cred_fscmp(pcred, cred) != 0)
2968 			break;
2969 		task = parent;
2970 	}
2971 	ret = task->start_time;
2972 	rcu_read_unlock();
2973 	return ret;
2974 }
2975 
2976 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2977 {
2978 	struct nfs_inode *nfsi = NFS_I(inode);
2979 	u64 login_time = nfs_access_login_time(current, cred);
2980 	struct nfs_access_entry *cache;
2981 	bool retry = true;
2982 	int err;
2983 
2984 	spin_lock(&inode->i_lock);
2985 	for(;;) {
2986 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2987 			goto out_zap;
2988 		cache = nfs_access_search_rbtree(inode, cred);
2989 		err = -ENOENT;
2990 		if (cache == NULL)
2991 			goto out;
2992 		/* Found an entry, is our attribute cache valid? */
2993 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2994 			break;
2995 		if (!retry)
2996 			break;
2997 		err = -ECHILD;
2998 		if (!may_block)
2999 			goto out;
3000 		spin_unlock(&inode->i_lock);
3001 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3002 		if (err)
3003 			return err;
3004 		spin_lock(&inode->i_lock);
3005 		retry = false;
3006 	}
3007 	err = -ENOENT;
3008 	if ((s64)(login_time - cache->timestamp) > 0)
3009 		goto out;
3010 	*mask = cache->mask;
3011 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3012 	err = 0;
3013 out:
3014 	spin_unlock(&inode->i_lock);
3015 	return err;
3016 out_zap:
3017 	spin_unlock(&inode->i_lock);
3018 	nfs_access_zap_cache(inode);
3019 	return -ENOENT;
3020 }
3021 
3022 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3023 {
3024 	/* Only check the most recently returned cache entry,
3025 	 * but do it without locking.
3026 	 */
3027 	struct nfs_inode *nfsi = NFS_I(inode);
3028 	u64 login_time = nfs_access_login_time(current, cred);
3029 	struct nfs_access_entry *cache;
3030 	int err = -ECHILD;
3031 	struct list_head *lh;
3032 
3033 	rcu_read_lock();
3034 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3035 		goto out;
3036 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3037 	cache = list_entry(lh, struct nfs_access_entry, lru);
3038 	if (lh == &nfsi->access_cache_entry_lru ||
3039 	    access_cmp(cred, cache) != 0)
3040 		cache = NULL;
3041 	if (cache == NULL)
3042 		goto out;
3043 	if ((s64)(login_time - cache->timestamp) > 0)
3044 		goto out;
3045 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3046 		goto out;
3047 	*mask = cache->mask;
3048 	err = 0;
3049 out:
3050 	rcu_read_unlock();
3051 	return err;
3052 }
3053 
3054 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3055 			  u32 *mask, bool may_block)
3056 {
3057 	int status;
3058 
3059 	status = nfs_access_get_cached_rcu(inode, cred, mask);
3060 	if (status != 0)
3061 		status = nfs_access_get_cached_locked(inode, cred, mask,
3062 		    may_block);
3063 
3064 	return status;
3065 }
3066 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3067 
3068 static void nfs_access_add_rbtree(struct inode *inode,
3069 				  struct nfs_access_entry *set,
3070 				  const struct cred *cred)
3071 {
3072 	struct nfs_inode *nfsi = NFS_I(inode);
3073 	struct rb_root *root_node = &nfsi->access_cache;
3074 	struct rb_node **p = &root_node->rb_node;
3075 	struct rb_node *parent = NULL;
3076 	struct nfs_access_entry *entry;
3077 	int cmp;
3078 
3079 	spin_lock(&inode->i_lock);
3080 	while (*p != NULL) {
3081 		parent = *p;
3082 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3083 		cmp = access_cmp(cred, entry);
3084 
3085 		if (cmp < 0)
3086 			p = &parent->rb_left;
3087 		else if (cmp > 0)
3088 			p = &parent->rb_right;
3089 		else
3090 			goto found;
3091 	}
3092 	rb_link_node(&set->rb_node, parent, p);
3093 	rb_insert_color(&set->rb_node, root_node);
3094 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3095 	spin_unlock(&inode->i_lock);
3096 	return;
3097 found:
3098 	rb_replace_node(parent, &set->rb_node, root_node);
3099 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3100 	list_del(&entry->lru);
3101 	spin_unlock(&inode->i_lock);
3102 	nfs_access_free_entry(entry);
3103 }
3104 
3105 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3106 			  const struct cred *cred)
3107 {
3108 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3109 	if (cache == NULL)
3110 		return;
3111 	RB_CLEAR_NODE(&cache->rb_node);
3112 	cache->fsuid = cred->fsuid;
3113 	cache->fsgid = cred->fsgid;
3114 	cache->group_info = get_group_info(cred->group_info);
3115 	cache->mask = set->mask;
3116 	cache->timestamp = ktime_get_ns();
3117 
3118 	/* The above field assignments must be visible
3119 	 * before this item appears on the lru.  We cannot easily
3120 	 * use rcu_assign_pointer, so just force the memory barrier.
3121 	 */
3122 	smp_wmb();
3123 	nfs_access_add_rbtree(inode, cache, cred);
3124 
3125 	/* Update accounting */
3126 	smp_mb__before_atomic();
3127 	atomic_long_inc(&nfs_access_nr_entries);
3128 	smp_mb__after_atomic();
3129 
3130 	/* Add inode to global LRU list */
3131 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3132 		spin_lock(&nfs_access_lru_lock);
3133 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3134 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3135 					&nfs_access_lru_list);
3136 		spin_unlock(&nfs_access_lru_lock);
3137 	}
3138 	nfs_access_cache_enforce_limit();
3139 }
3140 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3141 
3142 #define NFS_MAY_READ (NFS_ACCESS_READ)
3143 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3144 		NFS_ACCESS_EXTEND | \
3145 		NFS_ACCESS_DELETE)
3146 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3147 		NFS_ACCESS_EXTEND)
3148 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3149 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3150 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3151 static int
3152 nfs_access_calc_mask(u32 access_result, umode_t umode)
3153 {
3154 	int mask = 0;
3155 
3156 	if (access_result & NFS_MAY_READ)
3157 		mask |= MAY_READ;
3158 	if (S_ISDIR(umode)) {
3159 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3160 			mask |= MAY_WRITE;
3161 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3162 			mask |= MAY_EXEC;
3163 	} else if (S_ISREG(umode)) {
3164 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3165 			mask |= MAY_WRITE;
3166 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3167 			mask |= MAY_EXEC;
3168 	} else if (access_result & NFS_MAY_WRITE)
3169 			mask |= MAY_WRITE;
3170 	return mask;
3171 }
3172 
3173 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3174 {
3175 	entry->mask = access_result;
3176 }
3177 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3178 
3179 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3180 {
3181 	struct nfs_access_entry cache;
3182 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3183 	int cache_mask = -1;
3184 	int status;
3185 
3186 	trace_nfs_access_enter(inode);
3187 
3188 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3189 	if (status == 0)
3190 		goto out_cached;
3191 
3192 	status = -ECHILD;
3193 	if (!may_block)
3194 		goto out;
3195 
3196 	/*
3197 	 * Determine which access bits we want to ask for...
3198 	 */
3199 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3200 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3201 	if (S_ISDIR(inode->i_mode))
3202 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3203 	else
3204 		cache.mask |= NFS_ACCESS_EXECUTE;
3205 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3206 	if (status != 0) {
3207 		if (status == -ESTALE) {
3208 			if (!S_ISDIR(inode->i_mode))
3209 				nfs_set_inode_stale(inode);
3210 			else
3211 				nfs_zap_caches(inode);
3212 		}
3213 		goto out;
3214 	}
3215 	nfs_access_add_cache(inode, &cache, cred);
3216 out_cached:
3217 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3218 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3219 		status = -EACCES;
3220 out:
3221 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3222 	return status;
3223 }
3224 
3225 static int nfs_open_permission_mask(int openflags)
3226 {
3227 	int mask = 0;
3228 
3229 	if (openflags & __FMODE_EXEC) {
3230 		/* ONLY check exec rights */
3231 		mask = MAY_EXEC;
3232 	} else {
3233 		if ((openflags & O_ACCMODE) != O_WRONLY)
3234 			mask |= MAY_READ;
3235 		if ((openflags & O_ACCMODE) != O_RDONLY)
3236 			mask |= MAY_WRITE;
3237 	}
3238 
3239 	return mask;
3240 }
3241 
3242 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3243 {
3244 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3245 }
3246 EXPORT_SYMBOL_GPL(nfs_may_open);
3247 
3248 static int nfs_execute_ok(struct inode *inode, int mask)
3249 {
3250 	struct nfs_server *server = NFS_SERVER(inode);
3251 	int ret = 0;
3252 
3253 	if (S_ISDIR(inode->i_mode))
3254 		return 0;
3255 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3256 		if (mask & MAY_NOT_BLOCK)
3257 			return -ECHILD;
3258 		ret = __nfs_revalidate_inode(server, inode);
3259 	}
3260 	if (ret == 0 && !execute_ok(inode))
3261 		ret = -EACCES;
3262 	return ret;
3263 }
3264 
3265 int nfs_permission(struct mnt_idmap *idmap,
3266 		   struct inode *inode,
3267 		   int mask)
3268 {
3269 	const struct cred *cred = current_cred();
3270 	int res = 0;
3271 
3272 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3273 
3274 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3275 		goto out;
3276 	/* Is this sys_access() ? */
3277 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3278 		goto force_lookup;
3279 
3280 	switch (inode->i_mode & S_IFMT) {
3281 		case S_IFLNK:
3282 			goto out;
3283 		case S_IFREG:
3284 			if ((mask & MAY_OPEN) &&
3285 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3286 				return 0;
3287 			break;
3288 		case S_IFDIR:
3289 			/*
3290 			 * Optimize away all write operations, since the server
3291 			 * will check permissions when we perform the op.
3292 			 */
3293 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3294 				goto out;
3295 	}
3296 
3297 force_lookup:
3298 	if (!NFS_PROTO(inode)->access)
3299 		goto out_notsup;
3300 
3301 	res = nfs_do_access(inode, cred, mask);
3302 out:
3303 	if (!res && (mask & MAY_EXEC))
3304 		res = nfs_execute_ok(inode, mask);
3305 
3306 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3307 		inode->i_sb->s_id, inode->i_ino, mask, res);
3308 	return res;
3309 out_notsup:
3310 	if (mask & MAY_NOT_BLOCK)
3311 		return -ECHILD;
3312 
3313 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3314 						  NFS_INO_INVALID_OTHER);
3315 	if (res == 0)
3316 		res = generic_permission(&nop_mnt_idmap, inode, mask);
3317 	goto out;
3318 }
3319 EXPORT_SYMBOL_GPL(nfs_permission);
3320