xref: /linux/fs/nfs/dir.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 
43 /* #define NFS_DEBUG_VERBOSE 1 */
44 
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 		      struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.readdir	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_release,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct inode_operations nfs_dir_inode_operations = {
70 	.create		= nfs_create,
71 	.lookup		= nfs_lookup,
72 	.link		= nfs_link,
73 	.unlink		= nfs_unlink,
74 	.symlink	= nfs_symlink,
75 	.mkdir		= nfs_mkdir,
76 	.rmdir		= nfs_rmdir,
77 	.mknod		= nfs_mknod,
78 	.rename		= nfs_rename,
79 	.permission	= nfs_permission,
80 	.getattr	= nfs_getattr,
81 	.setattr	= nfs_setattr,
82 };
83 
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 	.create		= nfs_create,
87 	.lookup		= nfs_lookup,
88 	.link		= nfs_link,
89 	.unlink		= nfs_unlink,
90 	.symlink	= nfs_symlink,
91 	.mkdir		= nfs_mkdir,
92 	.rmdir		= nfs_rmdir,
93 	.mknod		= nfs_mknod,
94 	.rename		= nfs_rename,
95 	.permission	= nfs_permission,
96 	.getattr	= nfs_getattr,
97 	.setattr	= nfs_setattr,
98 	.listxattr	= nfs3_listxattr,
99 	.getxattr	= nfs3_getxattr,
100 	.setxattr	= nfs3_setxattr,
101 	.removexattr	= nfs3_removexattr,
102 };
103 #endif  /* CONFIG_NFS_V3 */
104 
105 #ifdef CONFIG_NFS_V4
106 
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 	.create		= nfs_create,
110 	.lookup		= nfs_atomic_lookup,
111 	.link		= nfs_link,
112 	.unlink		= nfs_unlink,
113 	.symlink	= nfs_symlink,
114 	.mkdir		= nfs_mkdir,
115 	.rmdir		= nfs_rmdir,
116 	.mknod		= nfs_mknod,
117 	.rename		= nfs_rename,
118 	.permission	= nfs_permission,
119 	.getattr	= nfs_getattr,
120 	.setattr	= nfs_setattr,
121 	.getxattr       = nfs4_getxattr,
122 	.setxattr       = nfs4_setxattr,
123 	.listxattr      = nfs4_listxattr,
124 };
125 
126 #endif /* CONFIG_NFS_V4 */
127 
128 /*
129  * Open file
130  */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 	int res;
135 
136 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 			filp->f_path.dentry->d_parent->d_name.name,
138 			filp->f_path.dentry->d_name.name);
139 
140 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141 
142 	/* Call generic open code in order to cache credentials */
143 	res = nfs_open(inode, filp);
144 	return res;
145 }
146 
147 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	unsigned long	page_index;
152 	__be32		*ptr;
153 	u64		*dir_cookie;
154 	loff_t		current_index;
155 	struct nfs_entry *entry;
156 	decode_dirent_t	decode;
157 	int		plus;
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	int		timestamp_valid;
161 } nfs_readdir_descriptor_t;
162 
163 /* Now we cache directories properly, by stuffing the dirent
164  * data directly in the page cache.
165  *
166  * Inode invalidation due to refresh etc. takes care of
167  * _everything_, no sloppy entry flushing logic, no extraneous
168  * copying, network direct to page cache, the way it was meant
169  * to be.
170  *
171  * NOTE: Dirent information verification is done always by the
172  *	 page-in of the RPC reply, nowhere else, this simplies
173  *	 things substantially.
174  */
175 static
176 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
177 {
178 	struct file	*file = desc->file;
179 	struct inode	*inode = file->f_path.dentry->d_inode;
180 	struct rpc_cred	*cred = nfs_file_cred(file);
181 	unsigned long	timestamp, gencount;
182 	int		error;
183 
184 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
185 			__func__, (long long)desc->entry->cookie,
186 			page->index);
187 
188  again:
189 	timestamp = jiffies;
190 	gencount = nfs_inc_attr_generation_counter();
191 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
192 					  NFS_SERVER(inode)->dtsize, desc->plus);
193 	if (error < 0) {
194 		/* We requested READDIRPLUS, but the server doesn't grok it */
195 		if (error == -ENOTSUPP && desc->plus) {
196 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
197 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
198 			desc->plus = 0;
199 			goto again;
200 		}
201 		goto error;
202 	}
203 	desc->timestamp = timestamp;
204 	desc->gencount = gencount;
205 	desc->timestamp_valid = 1;
206 	SetPageUptodate(page);
207 	/* Ensure consistent page alignment of the data.
208 	 * Note: assumes we have exclusive access to this mapping either
209 	 *	 through inode->i_mutex or some other mechanism.
210 	 */
211 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
212 		/* Should never happen */
213 		nfs_zap_mapping(inode, inode->i_mapping);
214 	}
215 	unlock_page(page);
216 	return 0;
217  error:
218 	unlock_page(page);
219 	return -EIO;
220 }
221 
222 static inline
223 int dir_decode(nfs_readdir_descriptor_t *desc)
224 {
225 	__be32	*p = desc->ptr;
226 	p = desc->decode(p, desc->entry, desc->plus);
227 	if (IS_ERR(p))
228 		return PTR_ERR(p);
229 	desc->ptr = p;
230 	if (desc->timestamp_valid) {
231 		desc->entry->fattr->time_start = desc->timestamp;
232 		desc->entry->fattr->gencount = desc->gencount;
233 	} else
234 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
235 	return 0;
236 }
237 
238 static inline
239 void dir_page_release(nfs_readdir_descriptor_t *desc)
240 {
241 	kunmap(desc->page);
242 	page_cache_release(desc->page);
243 	desc->page = NULL;
244 	desc->ptr = NULL;
245 }
246 
247 /*
248  * Given a pointer to a buffer that has already been filled by a call
249  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
250  *
251  * If the end of the buffer has been reached, return -EAGAIN, if not,
252  * return the offset within the buffer of the next entry to be
253  * read.
254  */
255 static inline
256 int find_dirent(nfs_readdir_descriptor_t *desc)
257 {
258 	struct nfs_entry *entry = desc->entry;
259 	int		loop_count = 0,
260 			status;
261 
262 	while((status = dir_decode(desc)) == 0) {
263 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
264 				__func__, (unsigned long long)entry->cookie);
265 		if (entry->prev_cookie == *desc->dir_cookie)
266 			break;
267 		if (loop_count++ > 200) {
268 			loop_count = 0;
269 			schedule();
270 		}
271 	}
272 	return status;
273 }
274 
275 /*
276  * Given a pointer to a buffer that has already been filled by a call
277  * to readdir, find the entry at offset 'desc->file->f_pos'.
278  *
279  * If the end of the buffer has been reached, return -EAGAIN, if not,
280  * return the offset within the buffer of the next entry to be
281  * read.
282  */
283 static inline
284 int find_dirent_index(nfs_readdir_descriptor_t *desc)
285 {
286 	struct nfs_entry *entry = desc->entry;
287 	int		loop_count = 0,
288 			status;
289 
290 	for(;;) {
291 		status = dir_decode(desc);
292 		if (status)
293 			break;
294 
295 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
296 				(unsigned long long)entry->cookie, desc->current_index);
297 
298 		if (desc->file->f_pos == desc->current_index) {
299 			*desc->dir_cookie = entry->cookie;
300 			break;
301 		}
302 		desc->current_index++;
303 		if (loop_count++ > 200) {
304 			loop_count = 0;
305 			schedule();
306 		}
307 	}
308 	return status;
309 }
310 
311 /*
312  * Find the given page, and call find_dirent() or find_dirent_index in
313  * order to try to return the next entry.
314  */
315 static inline
316 int find_dirent_page(nfs_readdir_descriptor_t *desc)
317 {
318 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
319 	struct page	*page;
320 	int		status;
321 
322 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
323 			__func__, desc->page_index,
324 			(long long) *desc->dir_cookie);
325 
326 	/* If we find the page in the page_cache, we cannot be sure
327 	 * how fresh the data is, so we will ignore readdir_plus attributes.
328 	 */
329 	desc->timestamp_valid = 0;
330 	page = read_cache_page(inode->i_mapping, desc->page_index,
331 			       (filler_t *)nfs_readdir_filler, desc);
332 	if (IS_ERR(page)) {
333 		status = PTR_ERR(page);
334 		goto out;
335 	}
336 
337 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
338 	desc->page = page;
339 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
340 	if (*desc->dir_cookie != 0)
341 		status = find_dirent(desc);
342 	else
343 		status = find_dirent_index(desc);
344 	if (status < 0)
345 		dir_page_release(desc);
346  out:
347 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
348 	return status;
349 }
350 
351 /*
352  * Recurse through the page cache pages, and return a
353  * filled nfs_entry structure of the next directory entry if possible.
354  *
355  * The target for the search is '*desc->dir_cookie' if non-0,
356  * 'desc->file->f_pos' otherwise
357  */
358 static inline
359 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
360 {
361 	int		loop_count = 0;
362 	int		res;
363 
364 	/* Always search-by-index from the beginning of the cache */
365 	if (*desc->dir_cookie == 0) {
366 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
367 				(long long)desc->file->f_pos);
368 		desc->page_index = 0;
369 		desc->entry->cookie = desc->entry->prev_cookie = 0;
370 		desc->entry->eof = 0;
371 		desc->current_index = 0;
372 	} else
373 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
374 				(unsigned long long)*desc->dir_cookie);
375 
376 	for (;;) {
377 		res = find_dirent_page(desc);
378 		if (res != -EAGAIN)
379 			break;
380 		/* Align to beginning of next page */
381 		desc->page_index ++;
382 		if (loop_count++ > 200) {
383 			loop_count = 0;
384 			schedule();
385 		}
386 	}
387 
388 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
389 	return res;
390 }
391 
392 static inline unsigned int dt_type(struct inode *inode)
393 {
394 	return (inode->i_mode >> 12) & 15;
395 }
396 
397 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
398 
399 /*
400  * Once we've found the start of the dirent within a page: fill 'er up...
401  */
402 static
403 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
404 		   filldir_t filldir)
405 {
406 	struct file	*file = desc->file;
407 	struct nfs_entry *entry = desc->entry;
408 	struct dentry	*dentry = NULL;
409 	u64		fileid;
410 	int		loop_count = 0,
411 			res;
412 
413 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
414 			(unsigned long long)entry->cookie);
415 
416 	for(;;) {
417 		unsigned d_type = DT_UNKNOWN;
418 		/* Note: entry->prev_cookie contains the cookie for
419 		 *	 retrieving the current dirent on the server */
420 		fileid = entry->ino;
421 
422 		/* Get a dentry if we have one */
423 		if (dentry != NULL)
424 			dput(dentry);
425 		dentry = nfs_readdir_lookup(desc);
426 
427 		/* Use readdirplus info */
428 		if (dentry != NULL && dentry->d_inode != NULL) {
429 			d_type = dt_type(dentry->d_inode);
430 			fileid = NFS_FILEID(dentry->d_inode);
431 		}
432 
433 		res = filldir(dirent, entry->name, entry->len,
434 			      file->f_pos, nfs_compat_user_ino64(fileid),
435 			      d_type);
436 		if (res < 0)
437 			break;
438 		file->f_pos++;
439 		*desc->dir_cookie = entry->cookie;
440 		if (dir_decode(desc) != 0) {
441 			desc->page_index ++;
442 			break;
443 		}
444 		if (loop_count++ > 200) {
445 			loop_count = 0;
446 			schedule();
447 		}
448 	}
449 	dir_page_release(desc);
450 	if (dentry != NULL)
451 		dput(dentry);
452 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 			(unsigned long long)*desc->dir_cookie, res);
454 	return res;
455 }
456 
457 /*
458  * If we cannot find a cookie in our cache, we suspect that this is
459  * because it points to a deleted file, so we ask the server to return
460  * whatever it thinks is the next entry. We then feed this to filldir.
461  * If all goes well, we should then be able to find our way round the
462  * cache on the next call to readdir_search_pagecache();
463  *
464  * NOTE: we cannot add the anonymous page to the pagecache because
465  *	 the data it contains might not be page aligned. Besides,
466  *	 we should already have a complete representation of the
467  *	 directory in the page cache by the time we get here.
468  */
469 static inline
470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471 		     filldir_t filldir)
472 {
473 	struct file	*file = desc->file;
474 	struct inode	*inode = file->f_path.dentry->d_inode;
475 	struct rpc_cred	*cred = nfs_file_cred(file);
476 	struct page	*page = NULL;
477 	int		status;
478 	unsigned long	timestamp, gencount;
479 
480 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 			(unsigned long long)*desc->dir_cookie);
482 
483 	page = alloc_page(GFP_HIGHUSER);
484 	if (!page) {
485 		status = -ENOMEM;
486 		goto out;
487 	}
488 	timestamp = jiffies;
489 	gencount = nfs_inc_attr_generation_counter();
490 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
491 						*desc->dir_cookie, page,
492 						NFS_SERVER(inode)->dtsize,
493 						desc->plus);
494 	desc->page = page;
495 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
496 	if (status >= 0) {
497 		desc->timestamp = timestamp;
498 		desc->gencount = gencount;
499 		desc->timestamp_valid = 1;
500 		if ((status = dir_decode(desc)) == 0)
501 			desc->entry->prev_cookie = *desc->dir_cookie;
502 	} else
503 		status = -EIO;
504 	if (status < 0)
505 		goto out_release;
506 
507 	status = nfs_do_filldir(desc, dirent, filldir);
508 
509 	/* Reset read descriptor so it searches the page cache from
510 	 * the start upon the next call to readdir_search_pagecache() */
511 	desc->page_index = 0;
512 	desc->entry->cookie = desc->entry->prev_cookie = 0;
513 	desc->entry->eof = 0;
514  out:
515 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
516 			__func__, status);
517 	return status;
518  out_release:
519 	dir_page_release(desc);
520 	goto out;
521 }
522 
523 /* The file offset position represents the dirent entry number.  A
524    last cookie cache takes care of the common case of reading the
525    whole directory.
526  */
527 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
528 {
529 	struct dentry	*dentry = filp->f_path.dentry;
530 	struct inode	*inode = dentry->d_inode;
531 	nfs_readdir_descriptor_t my_desc,
532 			*desc = &my_desc;
533 	struct nfs_entry my_entry;
534 	struct nfs_fh	 fh;
535 	struct nfs_fattr fattr;
536 	long		res;
537 
538 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
539 			dentry->d_parent->d_name.name, dentry->d_name.name,
540 			(long long)filp->f_pos);
541 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
542 
543 	/*
544 	 * filp->f_pos points to the dirent entry number.
545 	 * *desc->dir_cookie has the cookie for the next entry. We have
546 	 * to either find the entry with the appropriate number or
547 	 * revalidate the cookie.
548 	 */
549 	memset(desc, 0, sizeof(*desc));
550 
551 	desc->file = filp;
552 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
553 	desc->decode = NFS_PROTO(inode)->decode_dirent;
554 	desc->plus = NFS_USE_READDIRPLUS(inode);
555 
556 	my_entry.cookie = my_entry.prev_cookie = 0;
557 	my_entry.eof = 0;
558 	my_entry.fh = &fh;
559 	my_entry.fattr = &fattr;
560 	nfs_fattr_init(&fattr);
561 	desc->entry = &my_entry;
562 
563 	nfs_block_sillyrename(dentry);
564 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
565 	if (res < 0)
566 		goto out;
567 
568 	while(!desc->entry->eof) {
569 		res = readdir_search_pagecache(desc);
570 
571 		if (res == -EBADCOOKIE) {
572 			/* This means either end of directory */
573 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
574 				/* Or that the server has 'lost' a cookie */
575 				res = uncached_readdir(desc, dirent, filldir);
576 				if (res >= 0)
577 					continue;
578 			}
579 			res = 0;
580 			break;
581 		}
582 		if (res == -ETOOSMALL && desc->plus) {
583 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
584 			nfs_zap_caches(inode);
585 			desc->plus = 0;
586 			desc->entry->eof = 0;
587 			continue;
588 		}
589 		if (res < 0)
590 			break;
591 
592 		res = nfs_do_filldir(desc, dirent, filldir);
593 		if (res < 0) {
594 			res = 0;
595 			break;
596 		}
597 	}
598 out:
599 	nfs_unblock_sillyrename(dentry);
600 	if (res > 0)
601 		res = 0;
602 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
603 			dentry->d_parent->d_name.name, dentry->d_name.name,
604 			res);
605 	return res;
606 }
607 
608 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
609 {
610 	struct dentry *dentry = filp->f_path.dentry;
611 	struct inode *inode = dentry->d_inode;
612 
613 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
614 			dentry->d_parent->d_name.name,
615 			dentry->d_name.name,
616 			offset, origin);
617 
618 	mutex_lock(&inode->i_mutex);
619 	switch (origin) {
620 		case 1:
621 			offset += filp->f_pos;
622 		case 0:
623 			if (offset >= 0)
624 				break;
625 		default:
626 			offset = -EINVAL;
627 			goto out;
628 	}
629 	if (offset != filp->f_pos) {
630 		filp->f_pos = offset;
631 		nfs_file_open_context(filp)->dir_cookie = 0;
632 	}
633 out:
634 	mutex_unlock(&inode->i_mutex);
635 	return offset;
636 }
637 
638 /*
639  * All directory operations under NFS are synchronous, so fsync()
640  * is a dummy operation.
641  */
642 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
643 {
644 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
645 			dentry->d_parent->d_name.name, dentry->d_name.name,
646 			datasync);
647 
648 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
649 	return 0;
650 }
651 
652 /**
653  * nfs_force_lookup_revalidate - Mark the directory as having changed
654  * @dir - pointer to directory inode
655  *
656  * This forces the revalidation code in nfs_lookup_revalidate() to do a
657  * full lookup on all child dentries of 'dir' whenever a change occurs
658  * on the server that might have invalidated our dcache.
659  *
660  * The caller should be holding dir->i_lock
661  */
662 void nfs_force_lookup_revalidate(struct inode *dir)
663 {
664 	NFS_I(dir)->cache_change_attribute++;
665 }
666 
667 /*
668  * A check for whether or not the parent directory has changed.
669  * In the case it has, we assume that the dentries are untrustworthy
670  * and may need to be looked up again.
671  */
672 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
673 {
674 	if (IS_ROOT(dentry))
675 		return 1;
676 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
677 		return 0;
678 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
679 		return 0;
680 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
681 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
682 		return 0;
683 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
684 		return 0;
685 	return 1;
686 }
687 
688 /*
689  * Return the intent data that applies to this particular path component
690  *
691  * Note that the current set of intents only apply to the very last
692  * component of the path.
693  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
694  */
695 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
696 {
697 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
698 		return 0;
699 	return nd->flags & mask;
700 }
701 
702 /*
703  * Use intent information to check whether or not we're going to do
704  * an O_EXCL create using this path component.
705  */
706 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
707 {
708 	if (NFS_PROTO(dir)->version == 2)
709 		return 0;
710 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
711 }
712 
713 /*
714  * Inode and filehandle revalidation for lookups.
715  *
716  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
717  * or if the intent information indicates that we're about to open this
718  * particular file and the "nocto" mount flag is not set.
719  *
720  */
721 static inline
722 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
723 {
724 	struct nfs_server *server = NFS_SERVER(inode);
725 
726 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
727 		return 0;
728 	if (nd != NULL) {
729 		/* VFS wants an on-the-wire revalidation */
730 		if (nd->flags & LOOKUP_REVAL)
731 			goto out_force;
732 		/* This is an open(2) */
733 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
734 				!(server->flags & NFS_MOUNT_NOCTO) &&
735 				(S_ISREG(inode->i_mode) ||
736 				 S_ISDIR(inode->i_mode)))
737 			goto out_force;
738 		return 0;
739 	}
740 	return nfs_revalidate_inode(server, inode);
741 out_force:
742 	return __nfs_revalidate_inode(server, inode);
743 }
744 
745 /*
746  * We judge how long we want to trust negative
747  * dentries by looking at the parent inode mtime.
748  *
749  * If parent mtime has changed, we revalidate, else we wait for a
750  * period corresponding to the parent's attribute cache timeout value.
751  */
752 static inline
753 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
754 		       struct nameidata *nd)
755 {
756 	/* Don't revalidate a negative dentry if we're creating a new file */
757 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
758 		return 0;
759 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
760 		return 1;
761 	return !nfs_check_verifier(dir, dentry);
762 }
763 
764 /*
765  * This is called every time the dcache has a lookup hit,
766  * and we should check whether we can really trust that
767  * lookup.
768  *
769  * NOTE! The hit can be a negative hit too, don't assume
770  * we have an inode!
771  *
772  * If the parent directory is seen to have changed, we throw out the
773  * cached dentry and do a new lookup.
774  */
775 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
776 {
777 	struct inode *dir;
778 	struct inode *inode;
779 	struct dentry *parent;
780 	int error;
781 	struct nfs_fh fhandle;
782 	struct nfs_fattr fattr;
783 
784 	parent = dget_parent(dentry);
785 	dir = parent->d_inode;
786 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
787 	inode = dentry->d_inode;
788 
789 	if (!inode) {
790 		if (nfs_neg_need_reval(dir, dentry, nd))
791 			goto out_bad;
792 		goto out_valid;
793 	}
794 
795 	if (is_bad_inode(inode)) {
796 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
797 				__func__, dentry->d_parent->d_name.name,
798 				dentry->d_name.name);
799 		goto out_bad;
800 	}
801 
802 	if (nfs_have_delegation(inode, FMODE_READ))
803 		goto out_set_verifier;
804 
805 	/* Force a full look up iff the parent directory has changed */
806 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
807 		if (nfs_lookup_verify_inode(inode, nd))
808 			goto out_zap_parent;
809 		goto out_valid;
810 	}
811 
812 	if (NFS_STALE(inode))
813 		goto out_bad;
814 
815 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
816 	if (error)
817 		goto out_bad;
818 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
819 		goto out_bad;
820 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
821 		goto out_bad;
822 
823 out_set_verifier:
824 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
825  out_valid:
826 	dput(parent);
827 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
828 			__func__, dentry->d_parent->d_name.name,
829 			dentry->d_name.name);
830 	return 1;
831 out_zap_parent:
832 	nfs_zap_caches(dir);
833  out_bad:
834 	nfs_mark_for_revalidate(dir);
835 	if (inode && S_ISDIR(inode->i_mode)) {
836 		/* Purge readdir caches. */
837 		nfs_zap_caches(inode);
838 		/* If we have submounts, don't unhash ! */
839 		if (have_submounts(dentry))
840 			goto out_valid;
841 		shrink_dcache_parent(dentry);
842 	}
843 	d_drop(dentry);
844 	dput(parent);
845 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
846 			__func__, dentry->d_parent->d_name.name,
847 			dentry->d_name.name);
848 	return 0;
849 }
850 
851 /*
852  * This is called from dput() when d_count is going to 0.
853  */
854 static int nfs_dentry_delete(struct dentry *dentry)
855 {
856 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
857 		dentry->d_parent->d_name.name, dentry->d_name.name,
858 		dentry->d_flags);
859 
860 	/* Unhash any dentry with a stale inode */
861 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
862 		return 1;
863 
864 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
865 		/* Unhash it, so that ->d_iput() would be called */
866 		return 1;
867 	}
868 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
869 		/* Unhash it, so that ancestors of killed async unlink
870 		 * files will be cleaned up during umount */
871 		return 1;
872 	}
873 	return 0;
874 
875 }
876 
877 static void nfs_drop_nlink(struct inode *inode)
878 {
879 	spin_lock(&inode->i_lock);
880 	if (inode->i_nlink > 0)
881 		drop_nlink(inode);
882 	spin_unlock(&inode->i_lock);
883 }
884 
885 /*
886  * Called when the dentry loses inode.
887  * We use it to clean up silly-renamed files.
888  */
889 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
890 {
891 	if (S_ISDIR(inode->i_mode))
892 		/* drop any readdir cache as it could easily be old */
893 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
894 
895 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
896 		drop_nlink(inode);
897 		nfs_complete_unlink(dentry, inode);
898 	}
899 	iput(inode);
900 }
901 
902 const struct dentry_operations nfs_dentry_operations = {
903 	.d_revalidate	= nfs_lookup_revalidate,
904 	.d_delete	= nfs_dentry_delete,
905 	.d_iput		= nfs_dentry_iput,
906 };
907 
908 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
909 {
910 	struct dentry *res;
911 	struct dentry *parent;
912 	struct inode *inode = NULL;
913 	int error;
914 	struct nfs_fh fhandle;
915 	struct nfs_fattr fattr;
916 
917 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
918 		dentry->d_parent->d_name.name, dentry->d_name.name);
919 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
920 
921 	res = ERR_PTR(-ENAMETOOLONG);
922 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
923 		goto out;
924 
925 	res = ERR_PTR(-ENOMEM);
926 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
927 
928 	/*
929 	 * If we're doing an exclusive create, optimize away the lookup
930 	 * but don't hash the dentry.
931 	 */
932 	if (nfs_is_exclusive_create(dir, nd)) {
933 		d_instantiate(dentry, NULL);
934 		res = NULL;
935 		goto out;
936 	}
937 
938 	parent = dentry->d_parent;
939 	/* Protect against concurrent sillydeletes */
940 	nfs_block_sillyrename(parent);
941 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
942 	if (error == -ENOENT)
943 		goto no_entry;
944 	if (error < 0) {
945 		res = ERR_PTR(error);
946 		goto out_unblock_sillyrename;
947 	}
948 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
949 	res = (struct dentry *)inode;
950 	if (IS_ERR(res))
951 		goto out_unblock_sillyrename;
952 
953 no_entry:
954 	res = d_materialise_unique(dentry, inode);
955 	if (res != NULL) {
956 		if (IS_ERR(res))
957 			goto out_unblock_sillyrename;
958 		dentry = res;
959 	}
960 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
961 out_unblock_sillyrename:
962 	nfs_unblock_sillyrename(parent);
963 out:
964 	return res;
965 }
966 
967 #ifdef CONFIG_NFS_V4
968 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
969 
970 const struct dentry_operations nfs4_dentry_operations = {
971 	.d_revalidate	= nfs_open_revalidate,
972 	.d_delete	= nfs_dentry_delete,
973 	.d_iput		= nfs_dentry_iput,
974 };
975 
976 /*
977  * Use intent information to determine whether we need to substitute
978  * the NFSv4-style stateful OPEN for the LOOKUP call
979  */
980 static int is_atomic_open(struct nameidata *nd)
981 {
982 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
983 		return 0;
984 	/* NFS does not (yet) have a stateful open for directories */
985 	if (nd->flags & LOOKUP_DIRECTORY)
986 		return 0;
987 	/* Are we trying to write to a read only partition? */
988 	if (__mnt_is_readonly(nd->path.mnt) &&
989 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
990 		return 0;
991 	return 1;
992 }
993 
994 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
995 {
996 	struct dentry *res = NULL;
997 	int error;
998 
999 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1000 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1001 
1002 	/* Check that we are indeed trying to open this file */
1003 	if (!is_atomic_open(nd))
1004 		goto no_open;
1005 
1006 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1007 		res = ERR_PTR(-ENAMETOOLONG);
1008 		goto out;
1009 	}
1010 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1011 
1012 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1013 	 * the dentry. */
1014 	if (nd->flags & LOOKUP_EXCL) {
1015 		d_instantiate(dentry, NULL);
1016 		goto out;
1017 	}
1018 
1019 	/* Open the file on the server */
1020 	res = nfs4_atomic_open(dir, dentry, nd);
1021 	if (IS_ERR(res)) {
1022 		error = PTR_ERR(res);
1023 		switch (error) {
1024 			/* Make a negative dentry */
1025 			case -ENOENT:
1026 				res = NULL;
1027 				goto out;
1028 			/* This turned out not to be a regular file */
1029 			case -EISDIR:
1030 			case -ENOTDIR:
1031 				goto no_open;
1032 			case -ELOOP:
1033 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1034 					goto no_open;
1035 			/* case -EINVAL: */
1036 			default:
1037 				goto out;
1038 		}
1039 	} else if (res != NULL)
1040 		dentry = res;
1041 out:
1042 	return res;
1043 no_open:
1044 	return nfs_lookup(dir, dentry, nd);
1045 }
1046 
1047 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1048 {
1049 	struct dentry *parent = NULL;
1050 	struct inode *inode = dentry->d_inode;
1051 	struct inode *dir;
1052 	int openflags, ret = 0;
1053 
1054 	if (!is_atomic_open(nd))
1055 		goto no_open;
1056 	parent = dget_parent(dentry);
1057 	dir = parent->d_inode;
1058 	/* We can't create new files in nfs_open_revalidate(), so we
1059 	 * optimize away revalidation of negative dentries.
1060 	 */
1061 	if (inode == NULL) {
1062 		if (!nfs_neg_need_reval(dir, dentry, nd))
1063 			ret = 1;
1064 		goto out;
1065 	}
1066 
1067 	/* NFS only supports OPEN on regular files */
1068 	if (!S_ISREG(inode->i_mode))
1069 		goto no_open_dput;
1070 	openflags = nd->intent.open.flags;
1071 	/* We cannot do exclusive creation on a positive dentry */
1072 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1073 		goto no_open_dput;
1074 	/* We can't create new files, or truncate existing ones here */
1075 	openflags &= ~(O_CREAT|O_TRUNC);
1076 
1077 	/*
1078 	 * Note: we're not holding inode->i_mutex and so may be racing with
1079 	 * operations that change the directory. We therefore save the
1080 	 * change attribute *before* we do the RPC call.
1081 	 */
1082 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1083 out:
1084 	dput(parent);
1085 	if (!ret)
1086 		d_drop(dentry);
1087 	return ret;
1088 no_open_dput:
1089 	dput(parent);
1090 no_open:
1091 	return nfs_lookup_revalidate(dentry, nd);
1092 }
1093 #endif /* CONFIG_NFSV4 */
1094 
1095 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1096 {
1097 	struct dentry *parent = desc->file->f_path.dentry;
1098 	struct inode *dir = parent->d_inode;
1099 	struct nfs_entry *entry = desc->entry;
1100 	struct dentry *dentry, *alias;
1101 	struct qstr name = {
1102 		.name = entry->name,
1103 		.len = entry->len,
1104 	};
1105 	struct inode *inode;
1106 	unsigned long verf = nfs_save_change_attribute(dir);
1107 
1108 	switch (name.len) {
1109 		case 2:
1110 			if (name.name[0] == '.' && name.name[1] == '.')
1111 				return dget_parent(parent);
1112 			break;
1113 		case 1:
1114 			if (name.name[0] == '.')
1115 				return dget(parent);
1116 	}
1117 
1118 	spin_lock(&dir->i_lock);
1119 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1120 		spin_unlock(&dir->i_lock);
1121 		return NULL;
1122 	}
1123 	spin_unlock(&dir->i_lock);
1124 
1125 	name.hash = full_name_hash(name.name, name.len);
1126 	dentry = d_lookup(parent, &name);
1127 	if (dentry != NULL) {
1128 		/* Is this a positive dentry that matches the readdir info? */
1129 		if (dentry->d_inode != NULL &&
1130 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1131 				d_mountpoint(dentry))) {
1132 			if (!desc->plus || entry->fh->size == 0)
1133 				return dentry;
1134 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1135 						entry->fh) == 0)
1136 				goto out_renew;
1137 		}
1138 		/* No, so d_drop to allow one to be created */
1139 		d_drop(dentry);
1140 		dput(dentry);
1141 	}
1142 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1143 		return NULL;
1144 	if (name.len > NFS_SERVER(dir)->namelen)
1145 		return NULL;
1146 	/* Note: caller is already holding the dir->i_mutex! */
1147 	dentry = d_alloc(parent, &name);
1148 	if (dentry == NULL)
1149 		return NULL;
1150 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1151 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1152 	if (IS_ERR(inode)) {
1153 		dput(dentry);
1154 		return NULL;
1155 	}
1156 
1157 	alias = d_materialise_unique(dentry, inode);
1158 	if (alias != NULL) {
1159 		dput(dentry);
1160 		if (IS_ERR(alias))
1161 			return NULL;
1162 		dentry = alias;
1163 	}
1164 
1165 out_renew:
1166 	nfs_set_verifier(dentry, verf);
1167 	return dentry;
1168 }
1169 
1170 /*
1171  * Code common to create, mkdir, and mknod.
1172  */
1173 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1174 				struct nfs_fattr *fattr)
1175 {
1176 	struct dentry *parent = dget_parent(dentry);
1177 	struct inode *dir = parent->d_inode;
1178 	struct inode *inode;
1179 	int error = -EACCES;
1180 
1181 	d_drop(dentry);
1182 
1183 	/* We may have been initialized further down */
1184 	if (dentry->d_inode)
1185 		goto out;
1186 	if (fhandle->size == 0) {
1187 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1188 		if (error)
1189 			goto out_error;
1190 	}
1191 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1192 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1193 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1194 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1195 		if (error < 0)
1196 			goto out_error;
1197 	}
1198 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1199 	error = PTR_ERR(inode);
1200 	if (IS_ERR(inode))
1201 		goto out_error;
1202 	d_add(dentry, inode);
1203 out:
1204 	dput(parent);
1205 	return 0;
1206 out_error:
1207 	nfs_mark_for_revalidate(dir);
1208 	dput(parent);
1209 	return error;
1210 }
1211 
1212 /*
1213  * Following a failed create operation, we drop the dentry rather
1214  * than retain a negative dentry. This avoids a problem in the event
1215  * that the operation succeeded on the server, but an error in the
1216  * reply path made it appear to have failed.
1217  */
1218 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1219 		struct nameidata *nd)
1220 {
1221 	struct iattr attr;
1222 	int error;
1223 	int open_flags = 0;
1224 
1225 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1226 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1227 
1228 	attr.ia_mode = mode;
1229 	attr.ia_valid = ATTR_MODE;
1230 
1231 	if ((nd->flags & LOOKUP_CREATE) != 0)
1232 		open_flags = nd->intent.open.flags;
1233 
1234 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1235 	if (error != 0)
1236 		goto out_err;
1237 	return 0;
1238 out_err:
1239 	d_drop(dentry);
1240 	return error;
1241 }
1242 
1243 /*
1244  * See comments for nfs_proc_create regarding failed operations.
1245  */
1246 static int
1247 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1248 {
1249 	struct iattr attr;
1250 	int status;
1251 
1252 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1253 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1254 
1255 	if (!new_valid_dev(rdev))
1256 		return -EINVAL;
1257 
1258 	attr.ia_mode = mode;
1259 	attr.ia_valid = ATTR_MODE;
1260 
1261 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1262 	if (status != 0)
1263 		goto out_err;
1264 	return 0;
1265 out_err:
1266 	d_drop(dentry);
1267 	return status;
1268 }
1269 
1270 /*
1271  * See comments for nfs_proc_create regarding failed operations.
1272  */
1273 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1274 {
1275 	struct iattr attr;
1276 	int error;
1277 
1278 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1279 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1280 
1281 	attr.ia_valid = ATTR_MODE;
1282 	attr.ia_mode = mode | S_IFDIR;
1283 
1284 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1285 	if (error != 0)
1286 		goto out_err;
1287 	return 0;
1288 out_err:
1289 	d_drop(dentry);
1290 	return error;
1291 }
1292 
1293 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1294 {
1295 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1296 		d_delete(dentry);
1297 }
1298 
1299 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1300 {
1301 	int error;
1302 
1303 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1304 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1305 
1306 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1307 	/* Ensure the VFS deletes this inode */
1308 	if (error == 0 && dentry->d_inode != NULL)
1309 		clear_nlink(dentry->d_inode);
1310 	else if (error == -ENOENT)
1311 		nfs_dentry_handle_enoent(dentry);
1312 
1313 	return error;
1314 }
1315 
1316 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1317 {
1318 	static unsigned int sillycounter;
1319 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1320 	const int      countersize = sizeof(sillycounter)*2;
1321 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1322 	char           silly[slen+1];
1323 	struct qstr    qsilly;
1324 	struct dentry *sdentry;
1325 	int            error = -EIO;
1326 
1327 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1328 		dentry->d_parent->d_name.name, dentry->d_name.name,
1329 		atomic_read(&dentry->d_count));
1330 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1331 
1332 	/*
1333 	 * We don't allow a dentry to be silly-renamed twice.
1334 	 */
1335 	error = -EBUSY;
1336 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1337 		goto out;
1338 
1339 	sprintf(silly, ".nfs%*.*Lx",
1340 		fileidsize, fileidsize,
1341 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1342 
1343 	/* Return delegation in anticipation of the rename */
1344 	nfs_inode_return_delegation(dentry->d_inode);
1345 
1346 	sdentry = NULL;
1347 	do {
1348 		char *suffix = silly + slen - countersize;
1349 
1350 		dput(sdentry);
1351 		sillycounter++;
1352 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1353 
1354 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1355 				dentry->d_name.name, silly);
1356 
1357 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1358 		/*
1359 		 * N.B. Better to return EBUSY here ... it could be
1360 		 * dangerous to delete the file while it's in use.
1361 		 */
1362 		if (IS_ERR(sdentry))
1363 			goto out;
1364 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1365 
1366 	qsilly.name = silly;
1367 	qsilly.len  = strlen(silly);
1368 	if (dentry->d_inode) {
1369 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1370 				dir, &qsilly);
1371 		nfs_mark_for_revalidate(dentry->d_inode);
1372 	} else
1373 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1374 				dir, &qsilly);
1375 	if (!error) {
1376 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1377 		d_move(dentry, sdentry);
1378 		error = nfs_async_unlink(dir, dentry);
1379  		/* If we return 0 we don't unlink */
1380 	}
1381 	dput(sdentry);
1382 out:
1383 	return error;
1384 }
1385 
1386 /*
1387  * Remove a file after making sure there are no pending writes,
1388  * and after checking that the file has only one user.
1389  *
1390  * We invalidate the attribute cache and free the inode prior to the operation
1391  * to avoid possible races if the server reuses the inode.
1392  */
1393 static int nfs_safe_remove(struct dentry *dentry)
1394 {
1395 	struct inode *dir = dentry->d_parent->d_inode;
1396 	struct inode *inode = dentry->d_inode;
1397 	int error = -EBUSY;
1398 
1399 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1400 		dentry->d_parent->d_name.name, dentry->d_name.name);
1401 
1402 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1403 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1404 		error = 0;
1405 		goto out;
1406 	}
1407 
1408 	if (inode != NULL) {
1409 		nfs_inode_return_delegation(inode);
1410 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1411 		/* The VFS may want to delete this inode */
1412 		if (error == 0)
1413 			nfs_drop_nlink(inode);
1414 		nfs_mark_for_revalidate(inode);
1415 	} else
1416 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1417 	if (error == -ENOENT)
1418 		nfs_dentry_handle_enoent(dentry);
1419 out:
1420 	return error;
1421 }
1422 
1423 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1424  *  belongs to an active ".nfs..." file and we return -EBUSY.
1425  *
1426  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1427  */
1428 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1429 {
1430 	int error;
1431 	int need_rehash = 0;
1432 
1433 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1434 		dir->i_ino, dentry->d_name.name);
1435 
1436 	spin_lock(&dcache_lock);
1437 	spin_lock(&dentry->d_lock);
1438 	if (atomic_read(&dentry->d_count) > 1) {
1439 		spin_unlock(&dentry->d_lock);
1440 		spin_unlock(&dcache_lock);
1441 		/* Start asynchronous writeout of the inode */
1442 		write_inode_now(dentry->d_inode, 0);
1443 		error = nfs_sillyrename(dir, dentry);
1444 		return error;
1445 	}
1446 	if (!d_unhashed(dentry)) {
1447 		__d_drop(dentry);
1448 		need_rehash = 1;
1449 	}
1450 	spin_unlock(&dentry->d_lock);
1451 	spin_unlock(&dcache_lock);
1452 	error = nfs_safe_remove(dentry);
1453 	if (!error || error == -ENOENT) {
1454 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1455 	} else if (need_rehash)
1456 		d_rehash(dentry);
1457 	return error;
1458 }
1459 
1460 /*
1461  * To create a symbolic link, most file systems instantiate a new inode,
1462  * add a page to it containing the path, then write it out to the disk
1463  * using prepare_write/commit_write.
1464  *
1465  * Unfortunately the NFS client can't create the in-core inode first
1466  * because it needs a file handle to create an in-core inode (see
1467  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1468  * symlink request has completed on the server.
1469  *
1470  * So instead we allocate a raw page, copy the symname into it, then do
1471  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1472  * now have a new file handle and can instantiate an in-core NFS inode
1473  * and move the raw page into its mapping.
1474  */
1475 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1476 {
1477 	struct pagevec lru_pvec;
1478 	struct page *page;
1479 	char *kaddr;
1480 	struct iattr attr;
1481 	unsigned int pathlen = strlen(symname);
1482 	int error;
1483 
1484 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1485 		dir->i_ino, dentry->d_name.name, symname);
1486 
1487 	if (pathlen > PAGE_SIZE)
1488 		return -ENAMETOOLONG;
1489 
1490 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1491 	attr.ia_valid = ATTR_MODE;
1492 
1493 	page = alloc_page(GFP_HIGHUSER);
1494 	if (!page)
1495 		return -ENOMEM;
1496 
1497 	kaddr = kmap_atomic(page, KM_USER0);
1498 	memcpy(kaddr, symname, pathlen);
1499 	if (pathlen < PAGE_SIZE)
1500 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1501 	kunmap_atomic(kaddr, KM_USER0);
1502 
1503 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1504 	if (error != 0) {
1505 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1506 			dir->i_sb->s_id, dir->i_ino,
1507 			dentry->d_name.name, symname, error);
1508 		d_drop(dentry);
1509 		__free_page(page);
1510 		return error;
1511 	}
1512 
1513 	/*
1514 	 * No big deal if we can't add this page to the page cache here.
1515 	 * READLINK will get the missing page from the server if needed.
1516 	 */
1517 	pagevec_init(&lru_pvec, 0);
1518 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1519 							GFP_KERNEL)) {
1520 		pagevec_add(&lru_pvec, page);
1521 		pagevec_lru_add_file(&lru_pvec);
1522 		SetPageUptodate(page);
1523 		unlock_page(page);
1524 	} else
1525 		__free_page(page);
1526 
1527 	return 0;
1528 }
1529 
1530 static int
1531 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1532 {
1533 	struct inode *inode = old_dentry->d_inode;
1534 	int error;
1535 
1536 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1537 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1538 		dentry->d_parent->d_name.name, dentry->d_name.name);
1539 
1540 	d_drop(dentry);
1541 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1542 	if (error == 0) {
1543 		atomic_inc(&inode->i_count);
1544 		d_add(dentry, inode);
1545 	}
1546 	return error;
1547 }
1548 
1549 /*
1550  * RENAME
1551  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1552  * different file handle for the same inode after a rename (e.g. when
1553  * moving to a different directory). A fail-safe method to do so would
1554  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1555  * rename the old file using the sillyrename stuff. This way, the original
1556  * file in old_dir will go away when the last process iput()s the inode.
1557  *
1558  * FIXED.
1559  *
1560  * It actually works quite well. One needs to have the possibility for
1561  * at least one ".nfs..." file in each directory the file ever gets
1562  * moved or linked to which happens automagically with the new
1563  * implementation that only depends on the dcache stuff instead of
1564  * using the inode layer
1565  *
1566  * Unfortunately, things are a little more complicated than indicated
1567  * above. For a cross-directory move, we want to make sure we can get
1568  * rid of the old inode after the operation.  This means there must be
1569  * no pending writes (if it's a file), and the use count must be 1.
1570  * If these conditions are met, we can drop the dentries before doing
1571  * the rename.
1572  */
1573 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1574 		      struct inode *new_dir, struct dentry *new_dentry)
1575 {
1576 	struct inode *old_inode = old_dentry->d_inode;
1577 	struct inode *new_inode = new_dentry->d_inode;
1578 	struct dentry *dentry = NULL, *rehash = NULL;
1579 	int error = -EBUSY;
1580 
1581 	/*
1582 	 * To prevent any new references to the target during the rename,
1583 	 * we unhash the dentry and free the inode in advance.
1584 	 */
1585 	if (!d_unhashed(new_dentry)) {
1586 		d_drop(new_dentry);
1587 		rehash = new_dentry;
1588 	}
1589 
1590 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1591 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1592 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1593 		 atomic_read(&new_dentry->d_count));
1594 
1595 	/*
1596 	 * First check whether the target is busy ... we can't
1597 	 * safely do _any_ rename if the target is in use.
1598 	 *
1599 	 * For files, make a copy of the dentry and then do a
1600 	 * silly-rename. If the silly-rename succeeds, the
1601 	 * copied dentry is hashed and becomes the new target.
1602 	 */
1603 	if (!new_inode)
1604 		goto go_ahead;
1605 	if (S_ISDIR(new_inode->i_mode)) {
1606 		error = -EISDIR;
1607 		if (!S_ISDIR(old_inode->i_mode))
1608 			goto out;
1609 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1610 		int err;
1611 		/* copy the target dentry's name */
1612 		dentry = d_alloc(new_dentry->d_parent,
1613 				 &new_dentry->d_name);
1614 		if (!dentry)
1615 			goto out;
1616 
1617 		/* silly-rename the existing target ... */
1618 		err = nfs_sillyrename(new_dir, new_dentry);
1619 		if (!err) {
1620 			new_dentry = rehash = dentry;
1621 			new_inode = NULL;
1622 			/* instantiate the replacement target */
1623 			d_instantiate(new_dentry, NULL);
1624 		} else if (atomic_read(&new_dentry->d_count) > 1)
1625 			/* dentry still busy? */
1626 			goto out;
1627 	}
1628 
1629 go_ahead:
1630 	/*
1631 	 * ... prune child dentries and writebacks if needed.
1632 	 */
1633 	if (atomic_read(&old_dentry->d_count) > 1) {
1634 		if (S_ISREG(old_inode->i_mode))
1635 			nfs_wb_all(old_inode);
1636 		shrink_dcache_parent(old_dentry);
1637 	}
1638 	nfs_inode_return_delegation(old_inode);
1639 
1640 	if (new_inode != NULL)
1641 		nfs_inode_return_delegation(new_inode);
1642 
1643 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1644 					   new_dir, &new_dentry->d_name);
1645 	nfs_mark_for_revalidate(old_inode);
1646 out:
1647 	if (rehash)
1648 		d_rehash(rehash);
1649 	if (!error) {
1650 		if (new_inode != NULL)
1651 			nfs_drop_nlink(new_inode);
1652 		d_move(old_dentry, new_dentry);
1653 		nfs_set_verifier(new_dentry,
1654 					nfs_save_change_attribute(new_dir));
1655 	} else if (error == -ENOENT)
1656 		nfs_dentry_handle_enoent(old_dentry);
1657 
1658 	/* new dentry created? */
1659 	if (dentry)
1660 		dput(dentry);
1661 	return error;
1662 }
1663 
1664 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1665 static LIST_HEAD(nfs_access_lru_list);
1666 static atomic_long_t nfs_access_nr_entries;
1667 
1668 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1669 {
1670 	put_rpccred(entry->cred);
1671 	kfree(entry);
1672 	smp_mb__before_atomic_dec();
1673 	atomic_long_dec(&nfs_access_nr_entries);
1674 	smp_mb__after_atomic_dec();
1675 }
1676 
1677 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1678 {
1679 	LIST_HEAD(head);
1680 	struct nfs_inode *nfsi;
1681 	struct nfs_access_entry *cache;
1682 
1683 restart:
1684 	spin_lock(&nfs_access_lru_lock);
1685 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1686 		struct rw_semaphore *s_umount;
1687 		struct inode *inode;
1688 
1689 		if (nr_to_scan-- == 0)
1690 			break;
1691 		s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1692 		if (!down_read_trylock(s_umount))
1693 			continue;
1694 		inode = igrab(&nfsi->vfs_inode);
1695 		if (inode == NULL) {
1696 			up_read(s_umount);
1697 			continue;
1698 		}
1699 		spin_lock(&inode->i_lock);
1700 		if (list_empty(&nfsi->access_cache_entry_lru))
1701 			goto remove_lru_entry;
1702 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1703 				struct nfs_access_entry, lru);
1704 		list_move(&cache->lru, &head);
1705 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1706 		if (!list_empty(&nfsi->access_cache_entry_lru))
1707 			list_move_tail(&nfsi->access_cache_inode_lru,
1708 					&nfs_access_lru_list);
1709 		else {
1710 remove_lru_entry:
1711 			list_del_init(&nfsi->access_cache_inode_lru);
1712 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1713 		}
1714 		spin_unlock(&inode->i_lock);
1715 		spin_unlock(&nfs_access_lru_lock);
1716 		iput(inode);
1717 		up_read(s_umount);
1718 		goto restart;
1719 	}
1720 	spin_unlock(&nfs_access_lru_lock);
1721 	while (!list_empty(&head)) {
1722 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1723 		list_del(&cache->lru);
1724 		nfs_access_free_entry(cache);
1725 	}
1726 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1727 }
1728 
1729 static void __nfs_access_zap_cache(struct inode *inode)
1730 {
1731 	struct nfs_inode *nfsi = NFS_I(inode);
1732 	struct rb_root *root_node = &nfsi->access_cache;
1733 	struct rb_node *n, *dispose = NULL;
1734 	struct nfs_access_entry *entry;
1735 
1736 	/* Unhook entries from the cache */
1737 	while ((n = rb_first(root_node)) != NULL) {
1738 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1739 		rb_erase(n, root_node);
1740 		list_del(&entry->lru);
1741 		n->rb_left = dispose;
1742 		dispose = n;
1743 	}
1744 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1745 	spin_unlock(&inode->i_lock);
1746 
1747 	/* Now kill them all! */
1748 	while (dispose != NULL) {
1749 		n = dispose;
1750 		dispose = n->rb_left;
1751 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1752 	}
1753 }
1754 
1755 void nfs_access_zap_cache(struct inode *inode)
1756 {
1757 	/* Remove from global LRU init */
1758 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1759 		spin_lock(&nfs_access_lru_lock);
1760 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1761 		spin_unlock(&nfs_access_lru_lock);
1762 	}
1763 
1764 	spin_lock(&inode->i_lock);
1765 	/* This will release the spinlock */
1766 	__nfs_access_zap_cache(inode);
1767 }
1768 
1769 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1770 {
1771 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1772 	struct nfs_access_entry *entry;
1773 
1774 	while (n != NULL) {
1775 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1776 
1777 		if (cred < entry->cred)
1778 			n = n->rb_left;
1779 		else if (cred > entry->cred)
1780 			n = n->rb_right;
1781 		else
1782 			return entry;
1783 	}
1784 	return NULL;
1785 }
1786 
1787 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1788 {
1789 	struct nfs_inode *nfsi = NFS_I(inode);
1790 	struct nfs_access_entry *cache;
1791 	int err = -ENOENT;
1792 
1793 	spin_lock(&inode->i_lock);
1794 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1795 		goto out_zap;
1796 	cache = nfs_access_search_rbtree(inode, cred);
1797 	if (cache == NULL)
1798 		goto out;
1799 	if (!nfs_have_delegation(inode, FMODE_READ) &&
1800 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1801 		goto out_stale;
1802 	res->jiffies = cache->jiffies;
1803 	res->cred = cache->cred;
1804 	res->mask = cache->mask;
1805 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1806 	err = 0;
1807 out:
1808 	spin_unlock(&inode->i_lock);
1809 	return err;
1810 out_stale:
1811 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1812 	list_del(&cache->lru);
1813 	spin_unlock(&inode->i_lock);
1814 	nfs_access_free_entry(cache);
1815 	return -ENOENT;
1816 out_zap:
1817 	/* This will release the spinlock */
1818 	__nfs_access_zap_cache(inode);
1819 	return -ENOENT;
1820 }
1821 
1822 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1823 {
1824 	struct nfs_inode *nfsi = NFS_I(inode);
1825 	struct rb_root *root_node = &nfsi->access_cache;
1826 	struct rb_node **p = &root_node->rb_node;
1827 	struct rb_node *parent = NULL;
1828 	struct nfs_access_entry *entry;
1829 
1830 	spin_lock(&inode->i_lock);
1831 	while (*p != NULL) {
1832 		parent = *p;
1833 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1834 
1835 		if (set->cred < entry->cred)
1836 			p = &parent->rb_left;
1837 		else if (set->cred > entry->cred)
1838 			p = &parent->rb_right;
1839 		else
1840 			goto found;
1841 	}
1842 	rb_link_node(&set->rb_node, parent, p);
1843 	rb_insert_color(&set->rb_node, root_node);
1844 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1845 	spin_unlock(&inode->i_lock);
1846 	return;
1847 found:
1848 	rb_replace_node(parent, &set->rb_node, root_node);
1849 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1850 	list_del(&entry->lru);
1851 	spin_unlock(&inode->i_lock);
1852 	nfs_access_free_entry(entry);
1853 }
1854 
1855 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1856 {
1857 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1858 	if (cache == NULL)
1859 		return;
1860 	RB_CLEAR_NODE(&cache->rb_node);
1861 	cache->jiffies = set->jiffies;
1862 	cache->cred = get_rpccred(set->cred);
1863 	cache->mask = set->mask;
1864 
1865 	nfs_access_add_rbtree(inode, cache);
1866 
1867 	/* Update accounting */
1868 	smp_mb__before_atomic_inc();
1869 	atomic_long_inc(&nfs_access_nr_entries);
1870 	smp_mb__after_atomic_inc();
1871 
1872 	/* Add inode to global LRU list */
1873 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1874 		spin_lock(&nfs_access_lru_lock);
1875 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1876 		spin_unlock(&nfs_access_lru_lock);
1877 	}
1878 }
1879 
1880 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1881 {
1882 	struct nfs_access_entry cache;
1883 	int status;
1884 
1885 	status = nfs_access_get_cached(inode, cred, &cache);
1886 	if (status == 0)
1887 		goto out;
1888 
1889 	/* Be clever: ask server to check for all possible rights */
1890 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1891 	cache.cred = cred;
1892 	cache.jiffies = jiffies;
1893 	status = NFS_PROTO(inode)->access(inode, &cache);
1894 	if (status != 0) {
1895 		if (status == -ESTALE) {
1896 			nfs_zap_caches(inode);
1897 			if (!S_ISDIR(inode->i_mode))
1898 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1899 		}
1900 		return status;
1901 	}
1902 	nfs_access_add_cache(inode, &cache);
1903 out:
1904 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1905 		return 0;
1906 	return -EACCES;
1907 }
1908 
1909 static int nfs_open_permission_mask(int openflags)
1910 {
1911 	int mask = 0;
1912 
1913 	if (openflags & FMODE_READ)
1914 		mask |= MAY_READ;
1915 	if (openflags & FMODE_WRITE)
1916 		mask |= MAY_WRITE;
1917 	if (openflags & FMODE_EXEC)
1918 		mask |= MAY_EXEC;
1919 	return mask;
1920 }
1921 
1922 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1923 {
1924 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1925 }
1926 
1927 int nfs_permission(struct inode *inode, int mask)
1928 {
1929 	struct rpc_cred *cred;
1930 	int res = 0;
1931 
1932 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1933 
1934 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1935 		goto out;
1936 	/* Is this sys_access() ? */
1937 	if (mask & MAY_ACCESS)
1938 		goto force_lookup;
1939 
1940 	switch (inode->i_mode & S_IFMT) {
1941 		case S_IFLNK:
1942 			goto out;
1943 		case S_IFREG:
1944 			/* NFSv4 has atomic_open... */
1945 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1946 					&& (mask & MAY_OPEN))
1947 				goto out;
1948 			break;
1949 		case S_IFDIR:
1950 			/*
1951 			 * Optimize away all write operations, since the server
1952 			 * will check permissions when we perform the op.
1953 			 */
1954 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1955 				goto out;
1956 	}
1957 
1958 force_lookup:
1959 	if (!NFS_PROTO(inode)->access)
1960 		goto out_notsup;
1961 
1962 	cred = rpc_lookup_cred();
1963 	if (!IS_ERR(cred)) {
1964 		res = nfs_do_access(inode, cred, mask);
1965 		put_rpccred(cred);
1966 	} else
1967 		res = PTR_ERR(cred);
1968 out:
1969 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1970 		res = -EACCES;
1971 
1972 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1973 		inode->i_sb->s_id, inode->i_ino, mask, res);
1974 	return res;
1975 out_notsup:
1976 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1977 	if (res == 0)
1978 		res = generic_permission(inode, mask, NULL);
1979 	goto out;
1980 }
1981 
1982 /*
1983  * Local variables:
1984  *  version-control: t
1985  *  kept-new-versions: 5
1986  * End:
1987  */
1988