1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_clear_array(struct folio *); 59 static int nfs_do_create(struct inode *dir, struct dentry *dentry, 60 umode_t mode, int open_flags); 61 62 const struct file_operations nfs_dir_operations = { 63 .llseek = nfs_llseek_dir, 64 .read = generic_read_dir, 65 .iterate_shared = nfs_readdir, 66 .open = nfs_opendir, 67 .release = nfs_closedir, 68 .fsync = nfs_fsync_dir, 69 }; 70 71 const struct address_space_operations nfs_dir_aops = { 72 .free_folio = nfs_readdir_clear_array, 73 }; 74 75 #define NFS_INIT_DTSIZE PAGE_SIZE 76 77 static struct nfs_open_dir_context * 78 alloc_nfs_open_dir_context(struct inode *dir) 79 { 80 struct nfs_inode *nfsi = NFS_I(dir); 81 struct nfs_open_dir_context *ctx; 82 83 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 84 if (ctx != NULL) { 85 ctx->attr_gencount = nfsi->attr_gencount; 86 ctx->dtsize = NFS_INIT_DTSIZE; 87 spin_lock(&dir->i_lock); 88 if (list_empty(&nfsi->open_files) && 89 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 90 nfs_set_cache_invalid(dir, 91 NFS_INO_INVALID_DATA | 92 NFS_INO_REVAL_FORCED); 93 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 94 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 95 spin_unlock(&dir->i_lock); 96 return ctx; 97 } 98 return ERR_PTR(-ENOMEM); 99 } 100 101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 102 { 103 spin_lock(&dir->i_lock); 104 list_del_rcu(&ctx->list); 105 spin_unlock(&dir->i_lock); 106 kfree_rcu(ctx, rcu_head); 107 } 108 109 /* 110 * Open file 111 */ 112 static int 113 nfs_opendir(struct inode *inode, struct file *filp) 114 { 115 int res = 0; 116 struct nfs_open_dir_context *ctx; 117 118 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 119 120 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 121 122 ctx = alloc_nfs_open_dir_context(inode); 123 if (IS_ERR(ctx)) { 124 res = PTR_ERR(ctx); 125 goto out; 126 } 127 filp->private_data = ctx; 128 out: 129 return res; 130 } 131 132 static int 133 nfs_closedir(struct inode *inode, struct file *filp) 134 { 135 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 136 return 0; 137 } 138 139 struct nfs_cache_array_entry { 140 u64 cookie; 141 u64 ino; 142 const char *name; 143 unsigned int name_len; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 u64 change_attr; 149 u64 last_cookie; 150 unsigned int size; 151 unsigned char folio_full : 1, 152 folio_is_eof : 1, 153 cookies_are_ordered : 1; 154 struct nfs_cache_array_entry array[] __counted_by(size); 155 }; 156 157 struct nfs_readdir_descriptor { 158 struct file *file; 159 struct folio *folio; 160 struct dir_context *ctx; 161 pgoff_t folio_index; 162 pgoff_t folio_index_max; 163 u64 dir_cookie; 164 u64 last_cookie; 165 loff_t current_index; 166 167 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 168 unsigned long dir_verifier; 169 unsigned long timestamp; 170 unsigned long gencount; 171 unsigned long attr_gencount; 172 unsigned int cache_entry_index; 173 unsigned int buffer_fills; 174 unsigned int dtsize; 175 bool clear_cache; 176 bool plus; 177 bool eob; 178 bool eof; 179 }; 180 181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 182 { 183 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 184 unsigned int maxsize = server->dtsize; 185 186 if (sz > maxsize) 187 sz = maxsize; 188 if (sz < NFS_MIN_FILE_IO_SIZE) 189 sz = NFS_MIN_FILE_IO_SIZE; 190 desc->dtsize = sz; 191 } 192 193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 194 { 195 nfs_set_dtsize(desc, desc->dtsize >> 1); 196 } 197 198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 199 { 200 nfs_set_dtsize(desc, desc->dtsize << 1); 201 } 202 203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, 204 u64 change_attr) 205 { 206 struct nfs_cache_array *array; 207 208 array = kmap_local_folio(folio, 0); 209 array->change_attr = change_attr; 210 array->last_cookie = last_cookie; 211 array->size = 0; 212 array->folio_full = 0; 213 array->folio_is_eof = 0; 214 array->cookies_are_ordered = 1; 215 kunmap_local(array); 216 } 217 218 /* 219 * we are freeing strings created by nfs_add_to_readdir_array() 220 */ 221 static void nfs_readdir_clear_array(struct folio *folio) 222 { 223 struct nfs_cache_array *array; 224 unsigned int i; 225 226 array = kmap_local_folio(folio, 0); 227 for (i = 0; i < array->size; i++) 228 kfree(array->array[i].name); 229 array->size = 0; 230 kunmap_local(array); 231 } 232 233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, 234 u64 change_attr) 235 { 236 nfs_readdir_clear_array(folio); 237 nfs_readdir_folio_init_array(folio, last_cookie, change_attr); 238 } 239 240 static struct folio * 241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) 242 { 243 struct folio *folio = folio_alloc(gfp_flags, 0); 244 if (folio) 245 nfs_readdir_folio_init_array(folio, last_cookie, 0); 246 return folio; 247 } 248 249 static void nfs_readdir_folio_array_free(struct folio *folio) 250 { 251 if (folio) { 252 nfs_readdir_clear_array(folio); 253 folio_put(folio); 254 } 255 } 256 257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 258 { 259 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 260 } 261 262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 263 { 264 array->folio_is_eof = 1; 265 array->folio_full = 1; 266 } 267 268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 269 { 270 return array->folio_full; 271 } 272 273 /* 274 * the caller is responsible for freeing qstr.name 275 * when called by nfs_readdir_add_to_array, the strings will be freed in 276 * nfs_clear_readdir_array() 277 */ 278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 279 { 280 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 281 282 /* 283 * Avoid a kmemleak false positive. The pointer to the name is stored 284 * in a page cache page which kmemleak does not scan. 285 */ 286 if (ret != NULL) 287 kmemleak_not_leak(ret); 288 return ret; 289 } 290 291 static size_t nfs_readdir_array_maxentries(void) 292 { 293 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 294 sizeof(struct nfs_cache_array_entry); 295 } 296 297 /* 298 * Check that the next array entry lies entirely within the page bounds 299 */ 300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 301 { 302 if (array->folio_full) 303 return -ENOSPC; 304 if (array->size == nfs_readdir_array_maxentries()) { 305 array->folio_full = 1; 306 return -ENOSPC; 307 } 308 return 0; 309 } 310 311 static int nfs_readdir_folio_array_append(struct folio *folio, 312 const struct nfs_entry *entry, 313 u64 *cookie) 314 { 315 struct nfs_cache_array *array; 316 struct nfs_cache_array_entry *cache_entry; 317 const char *name; 318 int ret = -ENOMEM; 319 320 name = nfs_readdir_copy_name(entry->name, entry->len); 321 322 array = kmap_local_folio(folio, 0); 323 if (!name) 324 goto out; 325 ret = nfs_readdir_array_can_expand(array); 326 if (ret) { 327 kfree(name); 328 goto out; 329 } 330 331 array->size++; 332 cache_entry = &array->array[array->size - 1]; 333 cache_entry->cookie = array->last_cookie; 334 cache_entry->ino = entry->ino; 335 cache_entry->d_type = entry->d_type; 336 cache_entry->name_len = entry->len; 337 cache_entry->name = name; 338 array->last_cookie = entry->cookie; 339 if (array->last_cookie <= cache_entry->cookie) 340 array->cookies_are_ordered = 0; 341 if (entry->eof != 0) 342 nfs_readdir_array_set_eof(array); 343 out: 344 *cookie = array->last_cookie; 345 kunmap_local(array); 346 return ret; 347 } 348 349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 350 /* 351 * Hash algorithm allowing content addressible access to sequences 352 * of directory cookies. Content is addressed by the value of the 353 * cookie index of the first readdir entry in a page. 354 * 355 * We select only the first 18 bits to avoid issues with excessive 356 * memory use for the page cache XArray. 18 bits should allow the caching 357 * of 262144 pages of sequences of readdir entries. Since each page holds 358 * 127 readdir entries for a typical 64-bit system, that works out to a 359 * cache of ~ 33 million entries per directory. 360 */ 361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) 362 { 363 if (cookie == 0) 364 return 0; 365 return hash_64(cookie, 18); 366 } 367 368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, 369 u64 change_attr) 370 { 371 struct nfs_cache_array *array = kmap_local_folio(folio, 0); 372 int ret = true; 373 374 if (array->change_attr != change_attr) 375 ret = false; 376 if (nfs_readdir_array_index_cookie(array) != last_cookie) 377 ret = false; 378 kunmap_local(array); 379 return ret; 380 } 381 382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio) 383 { 384 folio_unlock(folio); 385 folio_put(folio); 386 } 387 388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, 389 u64 change_attr) 390 { 391 if (folio_test_uptodate(folio)) { 392 if (nfs_readdir_folio_validate(folio, cookie, change_attr)) 393 return; 394 nfs_readdir_clear_array(folio); 395 } 396 nfs_readdir_folio_init_array(folio, cookie, change_attr); 397 folio_mark_uptodate(folio); 398 } 399 400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, 401 u64 cookie, u64 change_attr) 402 { 403 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 404 struct folio *folio; 405 406 folio = filemap_grab_folio(mapping, index); 407 if (IS_ERR(folio)) 408 return NULL; 409 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 410 return folio; 411 } 412 413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio) 414 { 415 struct nfs_cache_array *array; 416 u64 ret; 417 418 array = kmap_local_folio(folio, 0); 419 ret = array->last_cookie; 420 kunmap_local(array); 421 return ret; 422 } 423 424 static bool nfs_readdir_folio_needs_filling(struct folio *folio) 425 { 426 struct nfs_cache_array *array; 427 bool ret; 428 429 array = kmap_local_folio(folio, 0); 430 ret = !nfs_readdir_array_is_full(array); 431 kunmap_local(array); 432 return ret; 433 } 434 435 static void nfs_readdir_folio_set_eof(struct folio *folio) 436 { 437 struct nfs_cache_array *array; 438 439 array = kmap_local_folio(folio, 0); 440 nfs_readdir_array_set_eof(array); 441 kunmap_local(array); 442 } 443 444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, 445 u64 cookie, u64 change_attr) 446 { 447 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 448 struct folio *folio; 449 450 folio = __filemap_get_folio(mapping, index, 451 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 452 mapping_gfp_mask(mapping)); 453 if (IS_ERR(folio)) 454 return NULL; 455 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 456 if (nfs_readdir_folio_last_cookie(folio) != cookie) 457 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 458 return folio; 459 } 460 461 static inline 462 int is_32bit_api(void) 463 { 464 #ifdef CONFIG_COMPAT 465 return in_compat_syscall(); 466 #else 467 return (BITS_PER_LONG == 32); 468 #endif 469 } 470 471 static 472 bool nfs_readdir_use_cookie(const struct file *filp) 473 { 474 if ((filp->f_mode & FMODE_32BITHASH) || 475 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 476 return false; 477 return true; 478 } 479 480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 481 struct nfs_readdir_descriptor *desc) 482 { 483 if (array->folio_full) { 484 desc->last_cookie = array->last_cookie; 485 desc->current_index += array->size; 486 desc->cache_entry_index = 0; 487 desc->folio_index++; 488 } else 489 desc->last_cookie = nfs_readdir_array_index_cookie(array); 490 } 491 492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 493 { 494 desc->current_index = 0; 495 desc->last_cookie = 0; 496 desc->folio_index = 0; 497 } 498 499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 500 struct nfs_readdir_descriptor *desc) 501 { 502 loff_t diff = desc->ctx->pos - desc->current_index; 503 unsigned int index; 504 505 if (diff < 0) 506 goto out_eof; 507 if (diff >= array->size) { 508 if (array->folio_is_eof) 509 goto out_eof; 510 nfs_readdir_seek_next_array(array, desc); 511 return -EAGAIN; 512 } 513 514 index = (unsigned int)diff; 515 desc->dir_cookie = array->array[index].cookie; 516 desc->cache_entry_index = index; 517 return 0; 518 out_eof: 519 desc->eof = true; 520 return -EBADCOOKIE; 521 } 522 523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 524 u64 cookie) 525 { 526 if (!array->cookies_are_ordered) 527 return true; 528 /* Optimisation for monotonically increasing cookies */ 529 if (cookie >= array->last_cookie) 530 return false; 531 if (array->size && cookie < array->array[0].cookie) 532 return false; 533 return true; 534 } 535 536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 537 struct nfs_readdir_descriptor *desc) 538 { 539 unsigned int i; 540 int status = -EAGAIN; 541 542 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 543 goto check_eof; 544 545 for (i = 0; i < array->size; i++) { 546 if (array->array[i].cookie == desc->dir_cookie) { 547 if (nfs_readdir_use_cookie(desc->file)) 548 desc->ctx->pos = desc->dir_cookie; 549 else 550 desc->ctx->pos = desc->current_index + i; 551 desc->cache_entry_index = i; 552 return 0; 553 } 554 } 555 check_eof: 556 if (array->folio_is_eof) { 557 status = -EBADCOOKIE; 558 if (desc->dir_cookie == array->last_cookie) 559 desc->eof = true; 560 } else 561 nfs_readdir_seek_next_array(array, desc); 562 return status; 563 } 564 565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 566 { 567 struct nfs_cache_array *array; 568 int status; 569 570 array = kmap_local_folio(desc->folio, 0); 571 572 if (desc->dir_cookie == 0) 573 status = nfs_readdir_search_for_pos(array, desc); 574 else 575 status = nfs_readdir_search_for_cookie(array, desc); 576 577 kunmap_local(array); 578 return status; 579 } 580 581 /* Fill a page with xdr information before transferring to the cache page */ 582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 583 __be32 *verf, u64 cookie, 584 struct page **pages, size_t bufsize, 585 __be32 *verf_res) 586 { 587 struct inode *inode = file_inode(desc->file); 588 struct nfs_readdir_arg arg = { 589 .dentry = file_dentry(desc->file), 590 .cred = desc->file->f_cred, 591 .verf = verf, 592 .cookie = cookie, 593 .pages = pages, 594 .page_len = bufsize, 595 .plus = desc->plus, 596 }; 597 struct nfs_readdir_res res = { 598 .verf = verf_res, 599 }; 600 unsigned long timestamp, gencount; 601 int error; 602 603 again: 604 timestamp = jiffies; 605 gencount = nfs_inc_attr_generation_counter(); 606 desc->dir_verifier = nfs_save_change_attribute(inode); 607 error = NFS_PROTO(inode)->readdir(&arg, &res); 608 if (error < 0) { 609 /* We requested READDIRPLUS, but the server doesn't grok it */ 610 if (error == -ENOTSUPP && desc->plus) { 611 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 612 desc->plus = arg.plus = false; 613 goto again; 614 } 615 goto error; 616 } 617 desc->timestamp = timestamp; 618 desc->gencount = gencount; 619 error: 620 return error; 621 } 622 623 static int xdr_decode(struct nfs_readdir_descriptor *desc, 624 struct nfs_entry *entry, struct xdr_stream *xdr) 625 { 626 struct inode *inode = file_inode(desc->file); 627 int error; 628 629 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 630 if (error) 631 return error; 632 entry->fattr->time_start = desc->timestamp; 633 entry->fattr->gencount = desc->gencount; 634 return 0; 635 } 636 637 /* Match file and dirent using either filehandle or fileid 638 * Note: caller is responsible for checking the fsid 639 */ 640 static 641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 642 { 643 struct inode *inode; 644 struct nfs_inode *nfsi; 645 646 if (d_really_is_negative(dentry)) 647 return 0; 648 649 inode = d_inode(dentry); 650 if (is_bad_inode(inode) || NFS_STALE(inode)) 651 return 0; 652 653 nfsi = NFS_I(inode); 654 if (entry->fattr->fileid != nfsi->fileid) 655 return 0; 656 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 657 return 0; 658 return 1; 659 } 660 661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 662 663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 664 unsigned int cache_hits, 665 unsigned int cache_misses) 666 { 667 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 668 return false; 669 if (NFS_SERVER(dir)->flags & NFS_MOUNT_FORCE_RDIRPLUS) 670 return true; 671 if (ctx->pos == 0 || 672 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 673 return true; 674 return false; 675 } 676 677 /* 678 * This function is called by the getattr code to request the 679 * use of readdirplus to accelerate any future lookups in the same 680 * directory. 681 */ 682 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 683 { 684 struct nfs_inode *nfsi = NFS_I(dir); 685 struct nfs_open_dir_context *ctx; 686 687 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 688 S_ISDIR(dir->i_mode)) { 689 rcu_read_lock(); 690 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 691 atomic_inc(&ctx->cache_hits); 692 rcu_read_unlock(); 693 } 694 } 695 696 /* 697 * This function is mainly for use by nfs_getattr(). 698 * 699 * If this is an 'ls -l', we want to force use of readdirplus. 700 */ 701 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 702 { 703 struct nfs_inode *nfsi = NFS_I(dir); 704 struct nfs_open_dir_context *ctx; 705 706 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 707 S_ISDIR(dir->i_mode)) { 708 rcu_read_lock(); 709 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 710 atomic_inc(&ctx->cache_misses); 711 rcu_read_unlock(); 712 } 713 } 714 715 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 716 unsigned int flags) 717 { 718 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 719 return; 720 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 721 return; 722 nfs_readdir_record_entry_cache_miss(dir); 723 } 724 725 static 726 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 727 unsigned long dir_verifier) 728 { 729 struct qstr filename = QSTR_INIT(entry->name, entry->len); 730 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 731 struct dentry *dentry; 732 struct dentry *alias; 733 struct inode *inode; 734 int status; 735 736 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 737 return; 738 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 739 return; 740 if (filename.len == 0) 741 return; 742 /* Validate that the name doesn't contain any illegal '\0' */ 743 if (strnlen(filename.name, filename.len) != filename.len) 744 return; 745 /* ...or '/' */ 746 if (strnchr(filename.name, filename.len, '/')) 747 return; 748 if (filename.name[0] == '.') { 749 if (filename.len == 1) 750 return; 751 if (filename.len == 2 && filename.name[1] == '.') 752 return; 753 } 754 filename.hash = full_name_hash(parent, filename.name, filename.len); 755 756 dentry = d_lookup(parent, &filename); 757 again: 758 if (!dentry) { 759 dentry = d_alloc_parallel(parent, &filename, &wq); 760 if (IS_ERR(dentry)) 761 return; 762 } 763 if (!d_in_lookup(dentry)) { 764 /* Is there a mountpoint here? If so, just exit */ 765 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 766 &entry->fattr->fsid)) 767 goto out; 768 if (nfs_same_file(dentry, entry)) { 769 if (!entry->fh->size) 770 goto out; 771 nfs_set_verifier(dentry, dir_verifier); 772 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 773 if (!status) 774 nfs_setsecurity(d_inode(dentry), entry->fattr); 775 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 776 dentry, 0, status); 777 goto out; 778 } else { 779 trace_nfs_readdir_lookup_revalidate_failed( 780 d_inode(parent), dentry, 0); 781 d_invalidate(dentry); 782 dput(dentry); 783 dentry = NULL; 784 goto again; 785 } 786 } 787 if (!entry->fh->size) { 788 d_lookup_done(dentry); 789 goto out; 790 } 791 792 nfs_set_verifier(dentry, dir_verifier); 793 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 794 alias = d_splice_alias(inode, dentry); 795 d_lookup_done(dentry); 796 if (alias) { 797 if (IS_ERR(alias)) 798 goto out; 799 nfs_set_verifier(alias, dir_verifier); 800 dput(dentry); 801 dentry = alias; 802 } 803 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 804 out: 805 dput(dentry); 806 } 807 808 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 809 struct nfs_entry *entry, 810 struct xdr_stream *stream) 811 { 812 int ret; 813 814 if (entry->fattr->label) 815 entry->fattr->label->len = NFS4_MAXLABELLEN; 816 ret = xdr_decode(desc, entry, stream); 817 if (ret || !desc->plus) 818 return ret; 819 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 820 return 0; 821 } 822 823 /* Perform conversion from xdr to cache array */ 824 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, 825 struct nfs_entry *entry, 826 struct page **xdr_pages, unsigned int buflen, 827 struct folio **arrays, size_t narrays, 828 u64 change_attr) 829 { 830 struct address_space *mapping = desc->file->f_mapping; 831 struct folio *new, *folio = *arrays; 832 struct xdr_stream stream; 833 struct folio *scratch; 834 struct xdr_buf buf; 835 u64 cookie; 836 int status; 837 838 scratch = folio_alloc(GFP_KERNEL, 0); 839 if (scratch == NULL) 840 return -ENOMEM; 841 842 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 843 xdr_set_scratch_folio(&stream, scratch); 844 845 do { 846 status = nfs_readdir_entry_decode(desc, entry, &stream); 847 if (status != 0) 848 break; 849 850 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 851 if (status != -ENOSPC) 852 continue; 853 854 if (folio->mapping != mapping) { 855 if (!--narrays) 856 break; 857 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); 858 if (!new) 859 break; 860 arrays++; 861 *arrays = folio = new; 862 } else { 863 new = nfs_readdir_folio_get_next(mapping, cookie, 864 change_attr); 865 if (!new) 866 break; 867 if (folio != *arrays) 868 nfs_readdir_folio_unlock_and_put(folio); 869 folio = new; 870 } 871 desc->folio_index_max++; 872 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 873 } while (!status && !entry->eof); 874 875 switch (status) { 876 case -EBADCOOKIE: 877 if (!entry->eof) 878 break; 879 nfs_readdir_folio_set_eof(folio); 880 fallthrough; 881 case -EAGAIN: 882 status = 0; 883 break; 884 case -ENOSPC: 885 status = 0; 886 if (!desc->plus) 887 break; 888 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 889 ; 890 } 891 892 if (folio != *arrays) 893 nfs_readdir_folio_unlock_and_put(folio); 894 895 folio_put(scratch); 896 return status; 897 } 898 899 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 900 { 901 while (npages--) 902 put_page(pages[npages]); 903 kfree(pages); 904 } 905 906 /* 907 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 908 * to nfs_readdir_free_pages() 909 */ 910 static struct page **nfs_readdir_alloc_pages(size_t npages) 911 { 912 struct page **pages; 913 size_t i; 914 915 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 916 if (!pages) 917 return NULL; 918 for (i = 0; i < npages; i++) { 919 struct page *page = alloc_page(GFP_KERNEL); 920 if (page == NULL) 921 goto out_freepages; 922 pages[i] = page; 923 } 924 return pages; 925 926 out_freepages: 927 nfs_readdir_free_pages(pages, i); 928 return NULL; 929 } 930 931 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 932 __be32 *verf_arg, __be32 *verf_res, 933 struct folio **arrays, size_t narrays) 934 { 935 u64 change_attr; 936 struct page **pages; 937 struct folio *folio = *arrays; 938 struct nfs_entry *entry; 939 size_t array_size; 940 struct inode *inode = file_inode(desc->file); 941 unsigned int dtsize = desc->dtsize; 942 unsigned int pglen; 943 int status = -ENOMEM; 944 945 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 946 if (!entry) 947 return -ENOMEM; 948 entry->cookie = nfs_readdir_folio_last_cookie(folio); 949 entry->fh = nfs_alloc_fhandle(); 950 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 951 entry->server = NFS_SERVER(inode); 952 if (entry->fh == NULL || entry->fattr == NULL) 953 goto out; 954 955 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 956 pages = nfs_readdir_alloc_pages(array_size); 957 if (!pages) 958 goto out; 959 960 change_attr = inode_peek_iversion_raw(inode); 961 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 962 dtsize, verf_res); 963 if (status < 0) 964 goto free_pages; 965 966 pglen = status; 967 if (pglen != 0) 968 status = nfs_readdir_folio_filler(desc, entry, pages, pglen, 969 arrays, narrays, change_attr); 970 else 971 nfs_readdir_folio_set_eof(folio); 972 desc->buffer_fills++; 973 974 free_pages: 975 nfs_readdir_free_pages(pages, array_size); 976 out: 977 nfs_free_fattr(entry->fattr); 978 nfs_free_fhandle(entry->fh); 979 kfree(entry); 980 return status; 981 } 982 983 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) 984 { 985 folio_put(desc->folio); 986 desc->folio = NULL; 987 } 988 989 static void 990 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 991 { 992 folio_unlock(desc->folio); 993 nfs_readdir_folio_put(desc); 994 } 995 996 static struct folio * 997 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) 998 { 999 struct address_space *mapping = desc->file->f_mapping; 1000 u64 change_attr = inode_peek_iversion_raw(mapping->host); 1001 u64 cookie = desc->last_cookie; 1002 struct folio *folio; 1003 1004 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); 1005 if (!folio) 1006 return NULL; 1007 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) 1008 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 1009 return folio; 1010 } 1011 1012 /* 1013 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1014 * and locks the page to prevent removal from the page cache. 1015 */ 1016 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1017 { 1018 struct inode *inode = file_inode(desc->file); 1019 struct nfs_inode *nfsi = NFS_I(inode); 1020 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1021 int res; 1022 1023 desc->folio = nfs_readdir_folio_get_cached(desc); 1024 if (!desc->folio) 1025 return -ENOMEM; 1026 if (nfs_readdir_folio_needs_filling(desc->folio)) { 1027 /* Grow the dtsize if we had to go back for more pages */ 1028 if (desc->folio_index == desc->folio_index_max) 1029 nfs_grow_dtsize(desc); 1030 desc->folio_index_max = desc->folio_index; 1031 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1032 desc->last_cookie, 1033 desc->folio->index, desc->dtsize); 1034 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1035 &desc->folio, 1); 1036 if (res < 0) { 1037 nfs_readdir_folio_unlock_and_put_cached(desc); 1038 trace_nfs_readdir_cache_fill_done(inode, res); 1039 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1040 invalidate_inode_pages2(desc->file->f_mapping); 1041 nfs_readdir_rewind_search(desc); 1042 trace_nfs_readdir_invalidate_cache_range( 1043 inode, 0, MAX_LFS_FILESIZE); 1044 return -EAGAIN; 1045 } 1046 return res; 1047 } 1048 /* 1049 * Set the cookie verifier if the page cache was empty 1050 */ 1051 if (desc->last_cookie == 0 && 1052 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1053 memcpy(nfsi->cookieverf, verf, 1054 sizeof(nfsi->cookieverf)); 1055 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1056 -1); 1057 trace_nfs_readdir_invalidate_cache_range( 1058 inode, 1, MAX_LFS_FILESIZE); 1059 } 1060 desc->clear_cache = false; 1061 } 1062 res = nfs_readdir_search_array(desc); 1063 if (res == 0) 1064 return 0; 1065 nfs_readdir_folio_unlock_and_put_cached(desc); 1066 return res; 1067 } 1068 1069 /* Search for desc->dir_cookie from the beginning of the page cache */ 1070 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1071 { 1072 int res; 1073 1074 do { 1075 res = find_and_lock_cache_page(desc); 1076 } while (res == -EAGAIN); 1077 return res; 1078 } 1079 1080 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1081 1082 /* 1083 * Once we've found the start of the dirent within a page: fill 'er up... 1084 */ 1085 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1086 const __be32 *verf) 1087 { 1088 struct file *file = desc->file; 1089 struct nfs_cache_array *array; 1090 unsigned int i; 1091 bool first_emit = !desc->dir_cookie; 1092 1093 array = kmap_local_folio(desc->folio, 0); 1094 for (i = desc->cache_entry_index; i < array->size; i++) { 1095 struct nfs_cache_array_entry *ent; 1096 1097 /* 1098 * nfs_readdir_handle_cache_misses return force clear at 1099 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for 1100 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1 1101 * entries need be emitted here. 1102 */ 1103 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) { 1104 desc->eob = true; 1105 break; 1106 } 1107 1108 ent = &array->array[i]; 1109 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1110 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1111 desc->eob = true; 1112 break; 1113 } 1114 memcpy(desc->verf, verf, sizeof(desc->verf)); 1115 if (i == array->size - 1) { 1116 desc->dir_cookie = array->last_cookie; 1117 nfs_readdir_seek_next_array(array, desc); 1118 } else { 1119 desc->dir_cookie = array->array[i + 1].cookie; 1120 desc->last_cookie = array->array[0].cookie; 1121 } 1122 if (nfs_readdir_use_cookie(file)) 1123 desc->ctx->pos = desc->dir_cookie; 1124 else 1125 desc->ctx->pos++; 1126 } 1127 if (array->folio_is_eof) 1128 desc->eof = !desc->eob; 1129 1130 kunmap_local(array); 1131 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1132 (unsigned long long)desc->dir_cookie); 1133 } 1134 1135 /* 1136 * If we cannot find a cookie in our cache, we suspect that this is 1137 * because it points to a deleted file, so we ask the server to return 1138 * whatever it thinks is the next entry. We then feed this to filldir. 1139 * If all goes well, we should then be able to find our way round the 1140 * cache on the next call to readdir_search_pagecache(); 1141 * 1142 * NOTE: we cannot add the anonymous page to the pagecache because 1143 * the data it contains might not be page aligned. Besides, 1144 * we should already have a complete representation of the 1145 * directory in the page cache by the time we get here. 1146 */ 1147 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1148 { 1149 struct folio **arrays; 1150 size_t i, sz = 512; 1151 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1152 int status = -ENOMEM; 1153 1154 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1155 (unsigned long long)desc->dir_cookie); 1156 1157 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1158 if (!arrays) 1159 goto out; 1160 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); 1161 if (!arrays[0]) 1162 goto out; 1163 1164 desc->folio_index = 0; 1165 desc->cache_entry_index = 0; 1166 desc->last_cookie = desc->dir_cookie; 1167 desc->folio_index_max = 0; 1168 1169 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1170 -1, desc->dtsize); 1171 1172 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1173 if (status < 0) { 1174 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1175 goto out_free; 1176 } 1177 1178 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1179 desc->folio = arrays[i]; 1180 nfs_do_filldir(desc, verf); 1181 } 1182 desc->folio = NULL; 1183 1184 /* 1185 * Grow the dtsize if we have to go back for more pages, 1186 * or shrink it if we're reading too many. 1187 */ 1188 if (!desc->eof) { 1189 if (!desc->eob) 1190 nfs_grow_dtsize(desc); 1191 else if (desc->buffer_fills == 1 && 1192 i < (desc->folio_index_max >> 1)) 1193 nfs_shrink_dtsize(desc); 1194 } 1195 out_free: 1196 for (i = 0; i < sz && arrays[i]; i++) 1197 nfs_readdir_folio_array_free(arrays[i]); 1198 out: 1199 if (!nfs_readdir_use_cookie(desc->file)) 1200 nfs_readdir_rewind_search(desc); 1201 desc->folio_index_max = -1; 1202 kfree(arrays); 1203 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1204 return status; 1205 } 1206 1207 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1208 struct nfs_readdir_descriptor *desc, 1209 unsigned int cache_misses, 1210 bool force_clear) 1211 { 1212 if (desc->ctx->pos == 0 || !desc->plus) 1213 return false; 1214 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1215 return false; 1216 trace_nfs_readdir_force_readdirplus(inode); 1217 return true; 1218 } 1219 1220 /* The file offset position represents the dirent entry number. A 1221 last cookie cache takes care of the common case of reading the 1222 whole directory. 1223 */ 1224 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1225 { 1226 struct dentry *dentry = file_dentry(file); 1227 struct inode *inode = d_inode(dentry); 1228 struct nfs_inode *nfsi = NFS_I(inode); 1229 struct nfs_open_dir_context *dir_ctx = file->private_data; 1230 struct nfs_readdir_descriptor *desc; 1231 unsigned int cache_hits, cache_misses; 1232 bool force_clear; 1233 int res; 1234 1235 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1236 file, (long long)ctx->pos); 1237 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1238 1239 /* 1240 * ctx->pos points to the dirent entry number. 1241 * *desc->dir_cookie has the cookie for the next entry. We have 1242 * to either find the entry with the appropriate number or 1243 * revalidate the cookie. 1244 */ 1245 nfs_revalidate_mapping(inode, file->f_mapping); 1246 1247 res = -ENOMEM; 1248 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1249 if (!desc) 1250 goto out; 1251 desc->file = file; 1252 desc->ctx = ctx; 1253 desc->folio_index_max = -1; 1254 1255 spin_lock(&file->f_lock); 1256 desc->dir_cookie = dir_ctx->dir_cookie; 1257 desc->folio_index = dir_ctx->page_index; 1258 desc->last_cookie = dir_ctx->last_cookie; 1259 desc->attr_gencount = dir_ctx->attr_gencount; 1260 desc->eof = dir_ctx->eof; 1261 nfs_set_dtsize(desc, dir_ctx->dtsize); 1262 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1263 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1264 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1265 force_clear = dir_ctx->force_clear; 1266 spin_unlock(&file->f_lock); 1267 1268 if (desc->eof) { 1269 res = 0; 1270 goto out_free; 1271 } 1272 1273 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1274 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1275 force_clear); 1276 desc->clear_cache = force_clear; 1277 1278 do { 1279 res = readdir_search_pagecache(desc); 1280 1281 if (res == -EBADCOOKIE) { 1282 res = 0; 1283 /* This means either end of directory */ 1284 if (desc->dir_cookie && !desc->eof) { 1285 /* Or that the server has 'lost' a cookie */ 1286 res = uncached_readdir(desc); 1287 if (res == 0) 1288 continue; 1289 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1290 res = 0; 1291 } 1292 break; 1293 } 1294 if (res == -ETOOSMALL && desc->plus) { 1295 nfs_zap_caches(inode); 1296 desc->plus = false; 1297 desc->eof = false; 1298 continue; 1299 } 1300 if (res < 0) 1301 break; 1302 1303 nfs_do_filldir(desc, nfsi->cookieverf); 1304 nfs_readdir_folio_unlock_and_put_cached(desc); 1305 if (desc->folio_index == desc->folio_index_max) 1306 desc->clear_cache = force_clear; 1307 } while (!desc->eob && !desc->eof); 1308 1309 spin_lock(&file->f_lock); 1310 dir_ctx->dir_cookie = desc->dir_cookie; 1311 dir_ctx->last_cookie = desc->last_cookie; 1312 dir_ctx->attr_gencount = desc->attr_gencount; 1313 dir_ctx->page_index = desc->folio_index; 1314 dir_ctx->force_clear = force_clear; 1315 dir_ctx->eof = desc->eof; 1316 dir_ctx->dtsize = desc->dtsize; 1317 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1318 spin_unlock(&file->f_lock); 1319 out_free: 1320 kfree(desc); 1321 1322 out: 1323 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1324 return res; 1325 } 1326 1327 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1328 { 1329 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1330 1331 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1332 filp, offset, whence); 1333 1334 switch (whence) { 1335 default: 1336 return -EINVAL; 1337 case SEEK_SET: 1338 if (offset < 0) 1339 return -EINVAL; 1340 spin_lock(&filp->f_lock); 1341 break; 1342 case SEEK_CUR: 1343 if (offset == 0) 1344 return filp->f_pos; 1345 spin_lock(&filp->f_lock); 1346 offset += filp->f_pos; 1347 if (offset < 0) { 1348 spin_unlock(&filp->f_lock); 1349 return -EINVAL; 1350 } 1351 } 1352 if (offset != filp->f_pos) { 1353 filp->f_pos = offset; 1354 dir_ctx->page_index = 0; 1355 if (!nfs_readdir_use_cookie(filp)) { 1356 dir_ctx->dir_cookie = 0; 1357 dir_ctx->last_cookie = 0; 1358 } else { 1359 dir_ctx->dir_cookie = offset; 1360 dir_ctx->last_cookie = offset; 1361 } 1362 dir_ctx->eof = false; 1363 } 1364 spin_unlock(&filp->f_lock); 1365 return offset; 1366 } 1367 1368 /* 1369 * All directory operations under NFS are synchronous, so fsync() 1370 * is a dummy operation. 1371 */ 1372 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1373 int datasync) 1374 { 1375 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1376 1377 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1378 return 0; 1379 } 1380 1381 /** 1382 * nfs_force_lookup_revalidate - Mark the directory as having changed 1383 * @dir: pointer to directory inode 1384 * 1385 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1386 * full lookup on all child dentries of 'dir' whenever a change occurs 1387 * on the server that might have invalidated our dcache. 1388 * 1389 * Note that we reserve bit '0' as a tag to let us know when a dentry 1390 * was revalidated while holding a delegation on its inode. 1391 * 1392 * The caller should be holding dir->i_lock 1393 */ 1394 void nfs_force_lookup_revalidate(struct inode *dir) 1395 { 1396 NFS_I(dir)->cache_change_attribute += 2; 1397 } 1398 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1399 1400 /** 1401 * nfs_verify_change_attribute - Detects NFS remote directory changes 1402 * @dir: pointer to parent directory inode 1403 * @verf: previously saved change attribute 1404 * 1405 * Return "false" if the verifiers doesn't match the change attribute. 1406 * This would usually indicate that the directory contents have changed on 1407 * the server, and that any dentries need revalidating. 1408 */ 1409 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1410 { 1411 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1412 } 1413 1414 static void nfs_set_verifier_delegated(unsigned long *verf) 1415 { 1416 *verf |= 1UL; 1417 } 1418 1419 #if IS_ENABLED(CONFIG_NFS_V4) 1420 static void nfs_unset_verifier_delegated(unsigned long *verf) 1421 { 1422 *verf &= ~1UL; 1423 } 1424 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1425 1426 static bool nfs_test_verifier_delegated(unsigned long verf) 1427 { 1428 return verf & 1; 1429 } 1430 1431 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1432 { 1433 return nfs_test_verifier_delegated(dentry->d_time); 1434 } 1435 1436 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1437 { 1438 struct inode *inode = d_inode(dentry); 1439 struct inode *dir = d_inode_rcu(dentry->d_parent); 1440 1441 if (!dir || !nfs_verify_change_attribute(dir, verf)) 1442 return; 1443 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0)) 1444 nfs_set_verifier_delegated(&verf); 1445 dentry->d_time = verf; 1446 } 1447 1448 /** 1449 * nfs_set_verifier - save a parent directory verifier in the dentry 1450 * @dentry: pointer to dentry 1451 * @verf: verifier to save 1452 * 1453 * Saves the parent directory verifier in @dentry. If the inode has 1454 * a delegation, we also tag the dentry as having been revalidated 1455 * while holding a delegation so that we know we don't have to 1456 * look it up again after a directory change. 1457 */ 1458 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1459 { 1460 1461 spin_lock(&dentry->d_lock); 1462 nfs_set_verifier_locked(dentry, verf); 1463 spin_unlock(&dentry->d_lock); 1464 } 1465 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1466 1467 #if IS_ENABLED(CONFIG_NFS_V4) 1468 /** 1469 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1470 * @inode: pointer to inode 1471 * 1472 * Iterates through the dentries in the inode alias list and clears 1473 * the tag used to indicate that the dentry has been revalidated 1474 * while holding a delegation. 1475 * This function is intended for use when the delegation is being 1476 * returned or revoked. 1477 */ 1478 void nfs_clear_verifier_delegated(struct inode *inode) 1479 { 1480 struct dentry *alias; 1481 1482 if (!inode) 1483 return; 1484 spin_lock(&inode->i_lock); 1485 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1486 spin_lock(&alias->d_lock); 1487 nfs_unset_verifier_delegated(&alias->d_time); 1488 spin_unlock(&alias->d_lock); 1489 } 1490 spin_unlock(&inode->i_lock); 1491 } 1492 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1493 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1494 1495 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1496 { 1497 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1498 d_really_is_negative(dentry)) 1499 return dentry->d_time == inode_peek_iversion_raw(dir); 1500 return nfs_verify_change_attribute(dir, dentry->d_time); 1501 } 1502 1503 /* 1504 * A check for whether or not the parent directory has changed. 1505 * In the case it has, we assume that the dentries are untrustworthy 1506 * and may need to be looked up again. 1507 * If rcu_walk prevents us from performing a full check, return 0. 1508 */ 1509 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1510 int rcu_walk) 1511 { 1512 if (IS_ROOT(dentry)) 1513 return 1; 1514 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1515 return 0; 1516 if (!nfs_dentry_verify_change(dir, dentry)) 1517 return 0; 1518 1519 /* 1520 * If we have a directory delegation then we don't need to revalidate 1521 * the directory. The delegation will either get recalled or we will 1522 * receive a notification when it changes. 1523 */ 1524 if (nfs_have_directory_delegation(dir)) 1525 return 0; 1526 1527 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1528 if (nfs_mapping_need_revalidate_inode(dir)) { 1529 if (rcu_walk) 1530 return 0; 1531 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1532 return 0; 1533 } 1534 if (!nfs_dentry_verify_change(dir, dentry)) 1535 return 0; 1536 return 1; 1537 } 1538 1539 /* 1540 * Use intent information to check whether or not we're going to do 1541 * an O_EXCL create using this path component. 1542 */ 1543 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1544 { 1545 if (NFS_PROTO(dir)->version == 2) 1546 return 0; 1547 return (flags & (LOOKUP_CREATE | LOOKUP_EXCL)) == 1548 (LOOKUP_CREATE | LOOKUP_EXCL); 1549 } 1550 1551 /* 1552 * Inode and filehandle revalidation for lookups. 1553 * 1554 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1555 * or if the intent information indicates that we're about to open this 1556 * particular file and the "nocto" mount flag is not set. 1557 * 1558 */ 1559 static 1560 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1561 { 1562 struct nfs_server *server = NFS_SERVER(inode); 1563 int ret; 1564 1565 if (IS_AUTOMOUNT(inode)) 1566 return 0; 1567 1568 if (flags & LOOKUP_OPEN) { 1569 switch (inode->i_mode & S_IFMT) { 1570 case S_IFREG: 1571 /* A NFSv4 OPEN will revalidate later */ 1572 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1573 goto out; 1574 fallthrough; 1575 case S_IFDIR: 1576 if (server->flags & NFS_MOUNT_NOCTO) 1577 break; 1578 /* NFS close-to-open cache consistency validation */ 1579 goto out_force; 1580 } 1581 } 1582 1583 /* VFS wants an on-the-wire revalidation */ 1584 if (flags & LOOKUP_REVAL) 1585 goto out_force; 1586 out: 1587 if (inode->i_nlink > 0 || 1588 (inode->i_nlink == 0 && 1589 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1590 return 0; 1591 else 1592 return -ESTALE; 1593 out_force: 1594 if (flags & LOOKUP_RCU) 1595 return -ECHILD; 1596 ret = __nfs_revalidate_inode(server, inode); 1597 if (ret != 0) 1598 return ret; 1599 goto out; 1600 } 1601 1602 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1603 { 1604 spin_lock(&inode->i_lock); 1605 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1606 spin_unlock(&inode->i_lock); 1607 } 1608 1609 /* 1610 * We judge how long we want to trust negative 1611 * dentries by looking at the parent inode mtime. 1612 * 1613 * If parent mtime has changed, we revalidate, else we wait for a 1614 * period corresponding to the parent's attribute cache timeout value. 1615 * 1616 * If LOOKUP_RCU prevents us from performing a full check, return 1 1617 * suggesting a reval is needed. 1618 * 1619 * Note that when creating a new file, or looking up a rename target, 1620 * then it shouldn't be necessary to revalidate a negative dentry. 1621 */ 1622 static inline 1623 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1624 unsigned int flags) 1625 { 1626 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1627 return 0; 1628 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1629 return 1; 1630 /* Case insensitive server? Revalidate negative dentries */ 1631 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1632 return 1; 1633 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1634 } 1635 1636 static int 1637 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1638 struct inode *inode, int error) 1639 { 1640 switch (error) { 1641 case 1: 1642 break; 1643 case -ETIMEDOUT: 1644 if (inode && (IS_ROOT(dentry) || 1645 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)) 1646 error = 1; 1647 break; 1648 case -ESTALE: 1649 case -ENOENT: 1650 error = 0; 1651 fallthrough; 1652 default: 1653 /* 1654 * We can't d_drop the root of a disconnected tree: 1655 * its d_hash is on the s_anon list and d_drop() would hide 1656 * it from shrink_dcache_for_unmount(), leading to busy 1657 * inodes on unmount and further oopses. 1658 */ 1659 if (inode && IS_ROOT(dentry)) 1660 error = 1; 1661 break; 1662 } 1663 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1664 return error; 1665 } 1666 1667 static int 1668 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1669 unsigned int flags) 1670 { 1671 int ret = 1; 1672 if (nfs_neg_need_reval(dir, dentry, flags)) { 1673 if (flags & LOOKUP_RCU) 1674 return -ECHILD; 1675 ret = 0; 1676 } 1677 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1678 } 1679 1680 static int 1681 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1682 struct inode *inode) 1683 { 1684 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1685 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1686 } 1687 1688 static int nfs_lookup_revalidate_dentry(struct inode *dir, const struct qstr *name, 1689 struct dentry *dentry, 1690 struct inode *inode, unsigned int flags) 1691 { 1692 struct nfs_fh *fhandle; 1693 struct nfs_fattr *fattr; 1694 unsigned long dir_verifier; 1695 int ret; 1696 1697 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1698 1699 ret = -ENOMEM; 1700 fhandle = nfs_alloc_fhandle(); 1701 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1702 if (fhandle == NULL || fattr == NULL) 1703 goto out; 1704 1705 dir_verifier = nfs_save_change_attribute(dir); 1706 ret = NFS_PROTO(dir)->lookup(dir, dentry, name, fhandle, fattr); 1707 if (ret < 0) 1708 goto out; 1709 1710 /* Request help from readdirplus */ 1711 nfs_lookup_advise_force_readdirplus(dir, flags); 1712 1713 ret = 0; 1714 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1715 goto out; 1716 if (nfs_refresh_inode(inode, fattr) < 0) 1717 goto out; 1718 1719 nfs_setsecurity(inode, fattr); 1720 nfs_set_verifier(dentry, dir_verifier); 1721 1722 ret = 1; 1723 out: 1724 nfs_free_fattr(fattr); 1725 nfs_free_fhandle(fhandle); 1726 1727 /* 1728 * If the lookup failed despite the dentry change attribute being 1729 * a match, then we should revalidate the directory cache. 1730 */ 1731 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1732 nfs_mark_dir_for_revalidate(dir); 1733 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1734 } 1735 1736 /* 1737 * This is called every time the dcache has a lookup hit, 1738 * and we should check whether we can really trust that 1739 * lookup. 1740 * 1741 * NOTE! The hit can be a negative hit too, don't assume 1742 * we have an inode! 1743 * 1744 * If the parent directory is seen to have changed, we throw out the 1745 * cached dentry and do a new lookup. 1746 */ 1747 static int 1748 nfs_do_lookup_revalidate(struct inode *dir, const struct qstr *name, 1749 struct dentry *dentry, unsigned int flags) 1750 { 1751 struct inode *inode; 1752 int error = 0; 1753 1754 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1755 inode = d_inode(dentry); 1756 1757 if (!inode) 1758 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1759 1760 if (is_bad_inode(inode)) { 1761 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1762 __func__, dentry); 1763 goto out_bad; 1764 } 1765 1766 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1767 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1768 goto out_bad; 1769 1770 if (nfs_verifier_is_delegated(dentry)) 1771 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1772 1773 /* Force a full look up iff the parent directory has changed */ 1774 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1775 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1776 error = nfs_lookup_verify_inode(inode, flags); 1777 if (error) { 1778 if (error == -ESTALE) 1779 nfs_mark_dir_for_revalidate(dir); 1780 goto out_bad; 1781 } 1782 goto out_valid; 1783 } 1784 1785 if (flags & LOOKUP_RCU) 1786 return -ECHILD; 1787 1788 if (NFS_STALE(inode)) 1789 goto out_bad; 1790 1791 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags); 1792 out_valid: 1793 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1794 out_bad: 1795 if (flags & LOOKUP_RCU) 1796 return -ECHILD; 1797 return nfs_lookup_revalidate_done(dir, dentry, inode, error); 1798 } 1799 1800 static int 1801 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1802 { 1803 if (flags & LOOKUP_RCU) { 1804 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1805 return -ECHILD; 1806 } else { 1807 /* Wait for unlink to complete - see unblock_revalidate() */ 1808 wait_var_event(&dentry->d_fsdata, 1809 smp_load_acquire(&dentry->d_fsdata) 1810 != NFS_FSDATA_BLOCKED); 1811 } 1812 return 0; 1813 } 1814 1815 static int nfs_lookup_revalidate(struct inode *dir, const struct qstr *name, 1816 struct dentry *dentry, unsigned int flags) 1817 { 1818 if (__nfs_lookup_revalidate(dentry, flags)) 1819 return -ECHILD; 1820 return nfs_do_lookup_revalidate(dir, name, dentry, flags); 1821 } 1822 1823 static void block_revalidate(struct dentry *dentry) 1824 { 1825 /* old devname - just in case */ 1826 kfree(dentry->d_fsdata); 1827 1828 /* Any new reference that could lead to an open 1829 * will take ->d_lock in lookup_open() -> d_lookup(). 1830 * Holding this lock ensures we cannot race with 1831 * __nfs_lookup_revalidate() and removes and need 1832 * for further barriers. 1833 */ 1834 lockdep_assert_held(&dentry->d_lock); 1835 1836 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 1837 } 1838 1839 static void unblock_revalidate(struct dentry *dentry) 1840 { 1841 store_release_wake_up(&dentry->d_fsdata, NULL); 1842 } 1843 1844 /* 1845 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1846 * when we don't really care about the dentry name. This is called when a 1847 * pathwalk ends on a dentry that was not found via a normal lookup in the 1848 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1849 * 1850 * In this situation, we just want to verify that the inode itself is OK 1851 * since the dentry might have changed on the server. 1852 */ 1853 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1854 { 1855 struct inode *inode = d_inode(dentry); 1856 int error = 0; 1857 1858 /* 1859 * I believe we can only get a negative dentry here in the case of a 1860 * procfs-style symlink. Just assume it's correct for now, but we may 1861 * eventually need to do something more here. 1862 */ 1863 if (!inode) { 1864 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1865 __func__, dentry); 1866 return 1; 1867 } 1868 1869 if (is_bad_inode(inode)) { 1870 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1871 __func__, dentry); 1872 return 0; 1873 } 1874 1875 error = nfs_lookup_verify_inode(inode, flags); 1876 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1877 __func__, inode->i_ino, error ? "invalid" : "valid"); 1878 return !error; 1879 } 1880 1881 /* 1882 * This is called from dput() when d_count is going to 0. 1883 */ 1884 static int nfs_dentry_delete(const struct dentry *dentry) 1885 { 1886 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1887 dentry, dentry->d_flags); 1888 1889 /* Unhash any dentry with a stale inode */ 1890 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1891 return 1; 1892 1893 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1894 /* Unhash it, so that ->d_iput() would be called */ 1895 return 1; 1896 } 1897 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1898 /* Unhash it, so that ancestors of killed async unlink 1899 * files will be cleaned up during umount */ 1900 return 1; 1901 } 1902 return 0; 1903 1904 } 1905 1906 /* Ensure that we revalidate inode->i_nlink */ 1907 static void nfs_drop_nlink(struct inode *inode, unsigned long gencount) 1908 { 1909 struct nfs_inode *nfsi = NFS_I(inode); 1910 1911 spin_lock(&inode->i_lock); 1912 /* drop the inode if we're reasonably sure this is the last link */ 1913 if (inode->i_nlink > 0 && gencount == nfsi->attr_gencount) 1914 drop_nlink(inode); 1915 nfsi->attr_gencount = nfs_inc_attr_generation_counter(); 1916 nfs_set_cache_invalid( 1917 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1918 NFS_INO_INVALID_NLINK); 1919 spin_unlock(&inode->i_lock); 1920 } 1921 1922 /* 1923 * Called when the dentry loses inode. 1924 * We use it to clean up silly-renamed files. 1925 */ 1926 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1927 { 1928 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1929 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount); 1930 nfs_complete_unlink(dentry, inode); 1931 nfs_drop_nlink(inode, gencount); 1932 } 1933 iput(inode); 1934 } 1935 1936 static void nfs_d_release(struct dentry *dentry) 1937 { 1938 /* free cached devname value, if it survived that far */ 1939 if (unlikely(dentry->d_fsdata)) { 1940 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1941 WARN_ON(1); 1942 else 1943 kfree(dentry->d_fsdata); 1944 } 1945 } 1946 1947 const struct dentry_operations nfs_dentry_operations = { 1948 .d_revalidate = nfs_lookup_revalidate, 1949 .d_weak_revalidate = nfs_weak_revalidate, 1950 .d_delete = nfs_dentry_delete, 1951 .d_iput = nfs_dentry_iput, 1952 .d_automount = nfs_d_automount, 1953 .d_release = nfs_d_release, 1954 }; 1955 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1956 1957 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1958 { 1959 struct dentry *res; 1960 struct inode *inode = NULL; 1961 struct nfs_fh *fhandle = NULL; 1962 struct nfs_fattr *fattr = NULL; 1963 unsigned long dir_verifier; 1964 int error; 1965 1966 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1967 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1968 1969 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1970 return ERR_PTR(-ENAMETOOLONG); 1971 1972 /* 1973 * If we're doing an exclusive create, optimize away the lookup 1974 * but don't hash the dentry. 1975 */ 1976 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1977 return NULL; 1978 1979 res = ERR_PTR(-ENOMEM); 1980 fhandle = nfs_alloc_fhandle(); 1981 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1982 if (fhandle == NULL || fattr == NULL) 1983 goto out; 1984 1985 dir_verifier = nfs_save_change_attribute(dir); 1986 trace_nfs_lookup_enter(dir, dentry, flags); 1987 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name, 1988 fhandle, fattr); 1989 if (error == -ENOENT) { 1990 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1991 dir_verifier = inode_peek_iversion_raw(dir); 1992 goto no_entry; 1993 } 1994 if (error < 0) { 1995 res = ERR_PTR(error); 1996 goto out; 1997 } 1998 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1999 res = ERR_CAST(inode); 2000 if (IS_ERR(res)) 2001 goto out; 2002 2003 /* Notify readdir to use READDIRPLUS */ 2004 nfs_lookup_advise_force_readdirplus(dir, flags); 2005 2006 no_entry: 2007 nfs_set_verifier(dentry, dir_verifier); 2008 res = d_splice_alias(inode, dentry); 2009 if (res != NULL) { 2010 if (IS_ERR(res)) 2011 goto out; 2012 nfs_set_verifier(res, dir_verifier); 2013 dentry = res; 2014 } 2015 out: 2016 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 2017 nfs_free_fattr(fattr); 2018 nfs_free_fhandle(fhandle); 2019 return res; 2020 } 2021 EXPORT_SYMBOL_GPL(nfs_lookup); 2022 2023 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 2024 { 2025 /* Case insensitive server? Revalidate dentries */ 2026 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 2027 d_prune_aliases(inode); 2028 } 2029 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 2030 2031 #if IS_ENABLED(CONFIG_NFS_V4) 2032 static int nfs4_lookup_revalidate(struct inode *, const struct qstr *, 2033 struct dentry *, unsigned int); 2034 2035 const struct dentry_operations nfs4_dentry_operations = { 2036 .d_revalidate = nfs4_lookup_revalidate, 2037 .d_weak_revalidate = nfs_weak_revalidate, 2038 .d_delete = nfs_dentry_delete, 2039 .d_iput = nfs_dentry_iput, 2040 .d_automount = nfs_d_automount, 2041 .d_release = nfs_d_release, 2042 }; 2043 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2044 2045 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2046 { 2047 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2048 } 2049 2050 static int do_open(struct inode *inode, struct file *filp) 2051 { 2052 nfs_fscache_open_file(inode, filp); 2053 return 0; 2054 } 2055 2056 static int nfs_finish_open(struct nfs_open_context *ctx, 2057 struct dentry *dentry, 2058 struct file *file, unsigned open_flags) 2059 { 2060 int err; 2061 2062 err = finish_open(file, dentry, do_open); 2063 if (err) 2064 goto out; 2065 if (S_ISREG(file_inode(file)->i_mode)) 2066 nfs_file_set_open_context(file, ctx); 2067 else 2068 err = -EOPENSTALE; 2069 out: 2070 return err; 2071 } 2072 2073 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2074 struct file *file, unsigned open_flags, 2075 umode_t mode) 2076 { 2077 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2078 struct nfs_open_context *ctx; 2079 struct dentry *res; 2080 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2081 struct inode *inode; 2082 unsigned int lookup_flags = 0; 2083 unsigned long dir_verifier; 2084 bool switched = false; 2085 int created = 0; 2086 int err; 2087 2088 /* Expect a negative dentry */ 2089 BUG_ON(d_inode(dentry)); 2090 2091 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2092 dir->i_sb->s_id, dir->i_ino, dentry); 2093 2094 err = nfs_check_flags(open_flags); 2095 if (err) 2096 return err; 2097 2098 /* NFS only supports OPEN on regular files */ 2099 if ((open_flags & O_DIRECTORY)) { 2100 if (!d_in_lookup(dentry)) { 2101 /* 2102 * Hashed negative dentry with O_DIRECTORY: dentry was 2103 * revalidated and is fine, no need to perform lookup 2104 * again 2105 */ 2106 return -ENOENT; 2107 } 2108 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2109 goto no_open; 2110 } 2111 2112 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2113 return -ENAMETOOLONG; 2114 2115 if (open_flags & O_CREAT) { 2116 struct nfs_server *server = NFS_SERVER(dir); 2117 2118 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2119 mode &= ~current_umask(); 2120 2121 attr.ia_valid |= ATTR_MODE; 2122 attr.ia_mode = mode; 2123 } 2124 if (open_flags & O_TRUNC) { 2125 attr.ia_valid |= ATTR_SIZE; 2126 attr.ia_size = 0; 2127 } 2128 2129 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2130 d_drop(dentry); 2131 switched = true; 2132 dentry = d_alloc_parallel(dentry->d_parent, 2133 &dentry->d_name, &wq); 2134 if (IS_ERR(dentry)) 2135 return PTR_ERR(dentry); 2136 if (unlikely(!d_in_lookup(dentry))) 2137 return finish_no_open(file, dentry); 2138 } 2139 2140 ctx = create_nfs_open_context(dentry, open_flags, file); 2141 err = PTR_ERR(ctx); 2142 if (IS_ERR(ctx)) 2143 goto out; 2144 2145 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2146 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2147 if (created) 2148 file->f_mode |= FMODE_CREATED; 2149 if (IS_ERR(inode)) { 2150 err = PTR_ERR(inode); 2151 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2152 put_nfs_open_context(ctx); 2153 d_drop(dentry); 2154 switch (err) { 2155 case -ENOENT: 2156 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2157 dir_verifier = inode_peek_iversion_raw(dir); 2158 else 2159 dir_verifier = nfs_save_change_attribute(dir); 2160 nfs_set_verifier(dentry, dir_verifier); 2161 d_splice_alias(NULL, dentry); 2162 break; 2163 case -EISDIR: 2164 case -ENOTDIR: 2165 goto no_open; 2166 case -ELOOP: 2167 if (!(open_flags & O_NOFOLLOW)) 2168 goto no_open; 2169 break; 2170 /* case -EINVAL: */ 2171 default: 2172 break; 2173 } 2174 goto out; 2175 } 2176 file->f_mode |= FMODE_CAN_ODIRECT; 2177 2178 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2179 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2180 put_nfs_open_context(ctx); 2181 out: 2182 if (unlikely(switched)) { 2183 d_lookup_done(dentry); 2184 dput(dentry); 2185 } 2186 return err; 2187 2188 no_open: 2189 res = nfs_lookup(dir, dentry, lookup_flags); 2190 if (!res) { 2191 inode = d_inode(dentry); 2192 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2193 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2194 res = ERR_PTR(-ENOTDIR); 2195 else if (inode && S_ISREG(inode->i_mode)) 2196 res = ERR_PTR(-EOPENSTALE); 2197 } else if (!IS_ERR(res)) { 2198 inode = d_inode(res); 2199 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2200 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2201 dput(res); 2202 res = ERR_PTR(-ENOTDIR); 2203 } else if (inode && S_ISREG(inode->i_mode)) { 2204 dput(res); 2205 res = ERR_PTR(-EOPENSTALE); 2206 } 2207 } 2208 if (switched) { 2209 d_lookup_done(dentry); 2210 if (!res) 2211 res = dentry; 2212 else 2213 dput(dentry); 2214 } 2215 return finish_no_open(file, res); 2216 } 2217 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2218 2219 static int 2220 nfs_lookup_revalidate_delegated_parent(struct inode *dir, struct dentry *dentry, 2221 struct inode *inode) 2222 { 2223 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 2224 } 2225 2226 static int 2227 nfs4_lookup_revalidate(struct inode *dir, const struct qstr *name, 2228 struct dentry *dentry, unsigned int flags) 2229 { 2230 struct inode *inode; 2231 2232 if (__nfs_lookup_revalidate(dentry, flags)) 2233 return -ECHILD; 2234 2235 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 2236 2237 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2238 goto full_reval; 2239 if (d_mountpoint(dentry)) 2240 goto full_reval; 2241 2242 inode = d_inode(dentry); 2243 2244 /* We can't create new files in nfs_open_revalidate(), so we 2245 * optimize away revalidation of negative dentries. 2246 */ 2247 if (inode == NULL) 2248 goto full_reval; 2249 2250 if (nfs_verifier_is_delegated(dentry)) 2251 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2252 2253 if (nfs_have_directory_delegation(dir)) 2254 return nfs_lookup_revalidate_delegated_parent(dir, dentry, inode); 2255 2256 /* NFS only supports OPEN on regular files */ 2257 if (!S_ISREG(inode->i_mode)) 2258 goto full_reval; 2259 2260 /* We cannot do exclusive creation on a positive dentry */ 2261 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2262 goto reval_dentry; 2263 2264 /* Check if the directory changed */ 2265 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2266 goto reval_dentry; 2267 2268 /* Let f_op->open() actually open (and revalidate) the file */ 2269 return 1; 2270 reval_dentry: 2271 if (flags & LOOKUP_RCU) 2272 return -ECHILD; 2273 return nfs_lookup_revalidate_dentry(dir, name, dentry, inode, flags); 2274 2275 full_reval: 2276 return nfs_do_lookup_revalidate(dir, name, dentry, flags); 2277 } 2278 2279 #endif /* CONFIG_NFSV4 */ 2280 2281 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry, 2282 struct file *file, unsigned int open_flags, 2283 umode_t mode) 2284 { 2285 struct dentry *res = NULL; 2286 /* Same as look+open from lookup_open(), but with different O_TRUNC 2287 * handling. 2288 */ 2289 int error = 0; 2290 2291 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2292 return -ENAMETOOLONG; 2293 2294 if (open_flags & O_CREAT) { 2295 error = nfs_do_create(dir, dentry, mode, open_flags); 2296 if (!error) { 2297 file->f_mode |= FMODE_CREATED; 2298 return finish_open(file, dentry, NULL); 2299 } else if (error != -EEXIST || open_flags & O_EXCL) 2300 return error; 2301 } 2302 if (d_in_lookup(dentry)) { 2303 /* The only flags nfs_lookup considers are 2304 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and 2305 * we want those to be zero so the lookup isn't skipped. 2306 */ 2307 res = nfs_lookup(dir, dentry, 0); 2308 } 2309 return finish_no_open(file, res); 2310 2311 } 2312 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23); 2313 2314 struct dentry * 2315 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2316 struct nfs_fattr *fattr) 2317 { 2318 struct dentry *parent = dget_parent(dentry); 2319 struct inode *dir = d_inode(parent); 2320 struct inode *inode; 2321 struct dentry *d; 2322 int error; 2323 2324 d_drop(dentry); 2325 2326 if (fhandle->size == 0) { 2327 error = NFS_PROTO(dir)->lookup(dir, dentry, &dentry->d_name, 2328 fhandle, fattr); 2329 if (error) 2330 goto out_error; 2331 } 2332 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2333 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2334 struct nfs_server *server = NFS_SB(dentry->d_sb); 2335 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2336 fattr, NULL); 2337 if (error < 0) 2338 goto out_error; 2339 } 2340 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2341 d = d_splice_alias(inode, dentry); 2342 out: 2343 dput(parent); 2344 return d; 2345 out_error: 2346 d = ERR_PTR(error); 2347 goto out; 2348 } 2349 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2350 2351 /* 2352 * Code common to create, mkdir, and mknod. 2353 */ 2354 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2355 struct nfs_fattr *fattr) 2356 { 2357 struct dentry *d; 2358 2359 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2360 if (IS_ERR(d)) 2361 return PTR_ERR(d); 2362 2363 /* Callers don't care */ 2364 dput(d); 2365 return 0; 2366 } 2367 EXPORT_SYMBOL_GPL(nfs_instantiate); 2368 2369 /* 2370 * Following a failed create operation, we drop the dentry rather 2371 * than retain a negative dentry. This avoids a problem in the event 2372 * that the operation succeeded on the server, but an error in the 2373 * reply path made it appear to have failed. 2374 */ 2375 static int nfs_do_create(struct inode *dir, struct dentry *dentry, 2376 umode_t mode, int open_flags) 2377 { 2378 struct iattr attr; 2379 int error; 2380 2381 open_flags |= O_CREAT; 2382 2383 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2384 dir->i_sb->s_id, dir->i_ino, dentry); 2385 2386 attr.ia_mode = mode; 2387 attr.ia_valid = ATTR_MODE; 2388 if (open_flags & O_TRUNC) { 2389 attr.ia_size = 0; 2390 attr.ia_valid |= ATTR_SIZE; 2391 } 2392 2393 trace_nfs_create_enter(dir, dentry, open_flags); 2394 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2395 trace_nfs_create_exit(dir, dentry, open_flags, error); 2396 if (error != 0) 2397 goto out_err; 2398 return 0; 2399 out_err: 2400 d_drop(dentry); 2401 return error; 2402 } 2403 2404 int nfs_create(struct mnt_idmap *idmap, struct inode *dir, 2405 struct dentry *dentry, umode_t mode, bool excl) 2406 { 2407 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0); 2408 } 2409 EXPORT_SYMBOL_GPL(nfs_create); 2410 2411 /* 2412 * See comments for nfs_proc_create regarding failed operations. 2413 */ 2414 int 2415 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 2416 struct dentry *dentry, umode_t mode, dev_t rdev) 2417 { 2418 struct iattr attr; 2419 int status; 2420 2421 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2422 dir->i_sb->s_id, dir->i_ino, dentry); 2423 2424 attr.ia_mode = mode; 2425 attr.ia_valid = ATTR_MODE; 2426 2427 trace_nfs_mknod_enter(dir, dentry); 2428 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2429 trace_nfs_mknod_exit(dir, dentry, status); 2430 if (status != 0) 2431 goto out_err; 2432 return 0; 2433 out_err: 2434 d_drop(dentry); 2435 return status; 2436 } 2437 EXPORT_SYMBOL_GPL(nfs_mknod); 2438 2439 /* 2440 * See comments for nfs_proc_create regarding failed operations. 2441 */ 2442 struct dentry *nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2443 struct dentry *dentry, umode_t mode) 2444 { 2445 struct iattr attr; 2446 struct dentry *ret; 2447 2448 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2449 dir->i_sb->s_id, dir->i_ino, dentry); 2450 2451 attr.ia_valid = ATTR_MODE; 2452 attr.ia_mode = mode | S_IFDIR; 2453 2454 trace_nfs_mkdir_enter(dir, dentry); 2455 ret = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2456 trace_nfs_mkdir_exit(dir, dentry, PTR_ERR_OR_ZERO(ret)); 2457 return ret; 2458 } 2459 EXPORT_SYMBOL_GPL(nfs_mkdir); 2460 2461 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2462 { 2463 if (simple_positive(dentry)) 2464 d_delete(dentry); 2465 } 2466 2467 static void nfs_dentry_remove_handle_error(struct inode *dir, 2468 struct dentry *dentry, int error) 2469 { 2470 switch (error) { 2471 case -ENOENT: 2472 if (d_really_is_positive(dentry)) 2473 d_delete(dentry); 2474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2475 break; 2476 case 0: 2477 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2478 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2479 } 2480 } 2481 2482 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2483 { 2484 int error; 2485 2486 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2487 dir->i_sb->s_id, dir->i_ino, dentry); 2488 2489 trace_nfs_rmdir_enter(dir, dentry); 2490 if (d_really_is_positive(dentry)) { 2491 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2492 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2493 /* Ensure the VFS deletes this inode */ 2494 switch (error) { 2495 case 0: 2496 clear_nlink(d_inode(dentry)); 2497 break; 2498 case -ENOENT: 2499 nfs_dentry_handle_enoent(dentry); 2500 } 2501 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2502 } else 2503 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2504 nfs_dentry_remove_handle_error(dir, dentry, error); 2505 trace_nfs_rmdir_exit(dir, dentry, error); 2506 2507 return error; 2508 } 2509 EXPORT_SYMBOL_GPL(nfs_rmdir); 2510 2511 /* 2512 * Remove a file after making sure there are no pending writes, 2513 * and after checking that the file has only one user. 2514 * 2515 * We invalidate the attribute cache and free the inode prior to the operation 2516 * to avoid possible races if the server reuses the inode. 2517 */ 2518 static int nfs_safe_remove(struct dentry *dentry) 2519 { 2520 struct inode *dir = d_inode(dentry->d_parent); 2521 struct inode *inode = d_inode(dentry); 2522 int error = -EBUSY; 2523 2524 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2525 2526 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2527 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2528 error = 0; 2529 goto out; 2530 } 2531 2532 trace_nfs_remove_enter(dir, dentry); 2533 if (inode != NULL) { 2534 unsigned long gencount = READ_ONCE(NFS_I(inode)->attr_gencount); 2535 2536 error = NFS_PROTO(dir)->remove(dir, dentry); 2537 if (error == 0) 2538 nfs_drop_nlink(inode, gencount); 2539 } else 2540 error = NFS_PROTO(dir)->remove(dir, dentry); 2541 if (error == -ENOENT) 2542 nfs_dentry_handle_enoent(dentry); 2543 trace_nfs_remove_exit(dir, dentry, error); 2544 out: 2545 return error; 2546 } 2547 2548 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2549 * belongs to an active ".nfs..." file and we return -EBUSY. 2550 * 2551 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2552 */ 2553 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2554 { 2555 int error; 2556 2557 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2558 dir->i_ino, dentry); 2559 2560 trace_nfs_unlink_enter(dir, dentry); 2561 spin_lock(&dentry->d_lock); 2562 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2563 &NFS_I(d_inode(dentry))->flags)) { 2564 spin_unlock(&dentry->d_lock); 2565 /* Start asynchronous writeout of the inode */ 2566 write_inode_now(d_inode(dentry), 0); 2567 error = nfs_sillyrename(dir, dentry); 2568 goto out; 2569 } 2570 /* We must prevent any concurrent open until the unlink 2571 * completes. ->d_revalidate will wait for ->d_fsdata 2572 * to clear. We set it here to ensure no lookup succeeds until 2573 * the unlink is complete on the server. 2574 */ 2575 error = -ETXTBSY; 2576 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2577 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2578 spin_unlock(&dentry->d_lock); 2579 goto out; 2580 } 2581 block_revalidate(dentry); 2582 2583 spin_unlock(&dentry->d_lock); 2584 error = nfs_safe_remove(dentry); 2585 nfs_dentry_remove_handle_error(dir, dentry, error); 2586 unblock_revalidate(dentry); 2587 out: 2588 trace_nfs_unlink_exit(dir, dentry, error); 2589 return error; 2590 } 2591 EXPORT_SYMBOL_GPL(nfs_unlink); 2592 2593 /* 2594 * To create a symbolic link, most file systems instantiate a new inode, 2595 * add a page to it containing the path, then write it out to the disk 2596 * using prepare_write/commit_write. 2597 * 2598 * Unfortunately the NFS client can't create the in-core inode first 2599 * because it needs a file handle to create an in-core inode (see 2600 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2601 * symlink request has completed on the server. 2602 * 2603 * So instead we allocate a raw page, copy the symname into it, then do 2604 * the SYMLINK request with the page as the buffer. If it succeeds, we 2605 * now have a new file handle and can instantiate an in-core NFS inode 2606 * and move the raw page into its mapping. 2607 */ 2608 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 2609 struct dentry *dentry, const char *symname) 2610 { 2611 struct folio *folio; 2612 char *kaddr; 2613 struct iattr attr; 2614 unsigned int pathlen = strlen(symname); 2615 int error; 2616 2617 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2618 dir->i_ino, dentry, symname); 2619 2620 if (pathlen > PAGE_SIZE) 2621 return -ENAMETOOLONG; 2622 2623 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2624 attr.ia_valid = ATTR_MODE; 2625 2626 folio = folio_alloc(GFP_USER, 0); 2627 if (!folio) 2628 return -ENOMEM; 2629 2630 kaddr = folio_address(folio); 2631 memcpy(kaddr, symname, pathlen); 2632 if (pathlen < PAGE_SIZE) 2633 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2634 2635 trace_nfs_symlink_enter(dir, dentry); 2636 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr); 2637 trace_nfs_symlink_exit(dir, dentry, error); 2638 if (error != 0) { 2639 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2640 dir->i_sb->s_id, dir->i_ino, 2641 dentry, symname, error); 2642 d_drop(dentry); 2643 folio_put(folio); 2644 return error; 2645 } 2646 2647 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2648 2649 /* 2650 * No big deal if we can't add this page to the page cache here. 2651 * READLINK will get the missing page from the server if needed. 2652 */ 2653 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0, 2654 GFP_KERNEL) == 0) { 2655 folio_mark_uptodate(folio); 2656 folio_unlock(folio); 2657 } 2658 2659 folio_put(folio); 2660 return 0; 2661 } 2662 EXPORT_SYMBOL_GPL(nfs_symlink); 2663 2664 int 2665 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2666 { 2667 struct inode *inode = d_inode(old_dentry); 2668 int error; 2669 2670 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2671 old_dentry, dentry); 2672 2673 trace_nfs_link_enter(inode, dir, dentry); 2674 d_drop(dentry); 2675 if (S_ISREG(inode->i_mode)) 2676 nfs_sync_inode(inode); 2677 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2678 if (error == 0) { 2679 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2680 ihold(inode); 2681 d_add(dentry, inode); 2682 } 2683 trace_nfs_link_exit(inode, dir, dentry, error); 2684 return error; 2685 } 2686 EXPORT_SYMBOL_GPL(nfs_link); 2687 2688 static void 2689 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2690 { 2691 struct dentry *new_dentry = data->new_dentry; 2692 2693 unblock_revalidate(new_dentry); 2694 } 2695 2696 static bool nfs_rename_is_unsafe_cross_dir(struct dentry *old_dentry, 2697 struct dentry *new_dentry) 2698 { 2699 struct nfs_server *server = NFS_SB(old_dentry->d_sb); 2700 2701 if (old_dentry->d_parent != new_dentry->d_parent) 2702 return false; 2703 if (server->fh_expire_type & NFS_FH_RENAME_UNSAFE) 2704 return !(server->fh_expire_type & NFS_FH_NOEXPIRE_WITH_OPEN); 2705 return true; 2706 } 2707 2708 /* 2709 * RENAME 2710 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2711 * different file handle for the same inode after a rename (e.g. when 2712 * moving to a different directory). A fail-safe method to do so would 2713 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2714 * rename the old file using the sillyrename stuff. This way, the original 2715 * file in old_dir will go away when the last process iput()s the inode. 2716 * 2717 * FIXED. 2718 * 2719 * It actually works quite well. One needs to have the possibility for 2720 * at least one ".nfs..." file in each directory the file ever gets 2721 * moved or linked to which happens automagically with the new 2722 * implementation that only depends on the dcache stuff instead of 2723 * using the inode layer 2724 * 2725 * Unfortunately, things are a little more complicated than indicated 2726 * above. For a cross-directory move, we want to make sure we can get 2727 * rid of the old inode after the operation. This means there must be 2728 * no pending writes (if it's a file), and the use count must be 1. 2729 * If these conditions are met, we can drop the dentries before doing 2730 * the rename. 2731 */ 2732 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, 2733 struct dentry *old_dentry, struct inode *new_dir, 2734 struct dentry *new_dentry, unsigned int flags) 2735 { 2736 struct inode *old_inode = d_inode(old_dentry); 2737 struct inode *new_inode = d_inode(new_dentry); 2738 unsigned long new_gencount = 0; 2739 struct dentry *dentry = NULL; 2740 struct rpc_task *task; 2741 bool must_unblock = false; 2742 int error = -EBUSY; 2743 2744 if (flags) 2745 return -EINVAL; 2746 2747 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2748 old_dentry, new_dentry, 2749 d_count(new_dentry)); 2750 2751 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2752 /* 2753 * For non-directories, check whether the target is busy and if so, 2754 * make a copy of the dentry and then do a silly-rename. If the 2755 * silly-rename succeeds, the copied dentry is hashed and becomes 2756 * the new target. 2757 */ 2758 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2759 /* We must prevent any concurrent open until the unlink 2760 * completes. ->d_revalidate will wait for ->d_fsdata 2761 * to clear. We set it here to ensure no lookup succeeds until 2762 * the unlink is complete on the server. 2763 */ 2764 error = -ETXTBSY; 2765 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2766 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2767 goto out; 2768 2769 spin_lock(&new_dentry->d_lock); 2770 if (d_count(new_dentry) > 2) { 2771 int err; 2772 2773 spin_unlock(&new_dentry->d_lock); 2774 2775 /* copy the target dentry's name */ 2776 dentry = d_alloc(new_dentry->d_parent, 2777 &new_dentry->d_name); 2778 if (!dentry) 2779 goto out; 2780 2781 /* silly-rename the existing target ... */ 2782 err = nfs_sillyrename(new_dir, new_dentry); 2783 if (err) 2784 goto out; 2785 2786 new_dentry = dentry; 2787 new_inode = NULL; 2788 } else { 2789 block_revalidate(new_dentry); 2790 must_unblock = true; 2791 new_gencount = NFS_I(new_inode)->attr_gencount; 2792 spin_unlock(&new_dentry->d_lock); 2793 } 2794 2795 } 2796 2797 if (S_ISREG(old_inode->i_mode) && 2798 nfs_rename_is_unsafe_cross_dir(old_dentry, new_dentry)) 2799 nfs_sync_inode(old_inode); 2800 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2801 must_unblock ? nfs_unblock_rename : NULL); 2802 if (IS_ERR(task)) { 2803 if (must_unblock) 2804 unblock_revalidate(new_dentry); 2805 error = PTR_ERR(task); 2806 goto out; 2807 } 2808 2809 error = rpc_wait_for_completion_task(task); 2810 if (error != 0) { 2811 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2812 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2813 smp_wmb(); 2814 } else 2815 error = task->tk_status; 2816 rpc_put_task(task); 2817 /* Ensure the inode attributes are revalidated */ 2818 if (error == 0) { 2819 spin_lock(&old_inode->i_lock); 2820 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2821 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2822 NFS_INO_INVALID_CTIME | 2823 NFS_INO_REVAL_FORCED); 2824 spin_unlock(&old_inode->i_lock); 2825 } 2826 out: 2827 trace_nfs_rename_exit(old_dir, old_dentry, 2828 new_dir, new_dentry, error); 2829 if (!error) { 2830 if (new_inode != NULL) 2831 nfs_drop_nlink(new_inode, new_gencount); 2832 /* 2833 * The d_move() should be here instead of in an async RPC completion 2834 * handler because we need the proper locks to move the dentry. If 2835 * we're interrupted by a signal, the async RPC completion handler 2836 * should mark the directories for revalidation. 2837 */ 2838 d_move(old_dentry, new_dentry); 2839 nfs_set_verifier(old_dentry, 2840 nfs_save_change_attribute(new_dir)); 2841 } else if (error == -ENOENT) 2842 nfs_dentry_handle_enoent(old_dentry); 2843 2844 /* new dentry created? */ 2845 if (dentry) 2846 dput(dentry); 2847 return error; 2848 } 2849 EXPORT_SYMBOL_GPL(nfs_rename); 2850 2851 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2852 static LIST_HEAD(nfs_access_lru_list); 2853 static atomic_long_t nfs_access_nr_entries; 2854 2855 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2856 module_param(nfs_access_max_cachesize, ulong, 0644); 2857 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2858 2859 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2860 { 2861 put_group_info(entry->group_info); 2862 kfree_rcu(entry, rcu_head); 2863 smp_mb__before_atomic(); 2864 atomic_long_dec(&nfs_access_nr_entries); 2865 smp_mb__after_atomic(); 2866 } 2867 2868 static void nfs_access_free_list(struct list_head *head) 2869 { 2870 struct nfs_access_entry *cache; 2871 2872 while (!list_empty(head)) { 2873 cache = list_entry(head->next, struct nfs_access_entry, lru); 2874 list_del(&cache->lru); 2875 nfs_access_free_entry(cache); 2876 } 2877 } 2878 2879 static unsigned long 2880 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2881 { 2882 LIST_HEAD(head); 2883 struct nfs_inode *nfsi, *next; 2884 struct nfs_access_entry *cache; 2885 long freed = 0; 2886 2887 spin_lock(&nfs_access_lru_lock); 2888 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2889 struct inode *inode; 2890 2891 if (nr_to_scan-- == 0) 2892 break; 2893 inode = &nfsi->vfs_inode; 2894 spin_lock(&inode->i_lock); 2895 if (list_empty(&nfsi->access_cache_entry_lru)) 2896 goto remove_lru_entry; 2897 cache = list_entry(nfsi->access_cache_entry_lru.next, 2898 struct nfs_access_entry, lru); 2899 list_move(&cache->lru, &head); 2900 rb_erase(&cache->rb_node, &nfsi->access_cache); 2901 freed++; 2902 if (!list_empty(&nfsi->access_cache_entry_lru)) 2903 list_move_tail(&nfsi->access_cache_inode_lru, 2904 &nfs_access_lru_list); 2905 else { 2906 remove_lru_entry: 2907 list_del_init(&nfsi->access_cache_inode_lru); 2908 smp_mb__before_atomic(); 2909 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2910 smp_mb__after_atomic(); 2911 } 2912 spin_unlock(&inode->i_lock); 2913 } 2914 spin_unlock(&nfs_access_lru_lock); 2915 nfs_access_free_list(&head); 2916 return freed; 2917 } 2918 2919 unsigned long 2920 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2921 { 2922 int nr_to_scan = sc->nr_to_scan; 2923 gfp_t gfp_mask = sc->gfp_mask; 2924 2925 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2926 return SHRINK_STOP; 2927 return nfs_do_access_cache_scan(nr_to_scan); 2928 } 2929 2930 2931 unsigned long 2932 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2933 { 2934 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2935 } 2936 2937 static void 2938 nfs_access_cache_enforce_limit(void) 2939 { 2940 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2941 unsigned long diff; 2942 unsigned int nr_to_scan; 2943 2944 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2945 return; 2946 nr_to_scan = 100; 2947 diff = nr_entries - nfs_access_max_cachesize; 2948 if (diff < nr_to_scan) 2949 nr_to_scan = diff; 2950 nfs_do_access_cache_scan(nr_to_scan); 2951 } 2952 2953 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2954 { 2955 struct rb_root *root_node = &nfsi->access_cache; 2956 struct rb_node *n; 2957 struct nfs_access_entry *entry; 2958 2959 /* Unhook entries from the cache */ 2960 while ((n = rb_first(root_node)) != NULL) { 2961 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2962 rb_erase(n, root_node); 2963 list_move(&entry->lru, head); 2964 } 2965 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2966 } 2967 2968 void nfs_access_zap_cache(struct inode *inode) 2969 { 2970 LIST_HEAD(head); 2971 2972 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2973 return; 2974 /* Remove from global LRU init */ 2975 spin_lock(&nfs_access_lru_lock); 2976 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2977 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2978 2979 spin_lock(&inode->i_lock); 2980 __nfs_access_zap_cache(NFS_I(inode), &head); 2981 spin_unlock(&inode->i_lock); 2982 spin_unlock(&nfs_access_lru_lock); 2983 nfs_access_free_list(&head); 2984 } 2985 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2986 2987 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2988 { 2989 struct group_info *ga, *gb; 2990 int g; 2991 2992 if (uid_lt(a->fsuid, b->fsuid)) 2993 return -1; 2994 if (uid_gt(a->fsuid, b->fsuid)) 2995 return 1; 2996 2997 if (gid_lt(a->fsgid, b->fsgid)) 2998 return -1; 2999 if (gid_gt(a->fsgid, b->fsgid)) 3000 return 1; 3001 3002 ga = a->group_info; 3003 gb = b->group_info; 3004 if (ga == gb) 3005 return 0; 3006 if (ga == NULL) 3007 return -1; 3008 if (gb == NULL) 3009 return 1; 3010 if (ga->ngroups < gb->ngroups) 3011 return -1; 3012 if (ga->ngroups > gb->ngroups) 3013 return 1; 3014 3015 for (g = 0; g < ga->ngroups; g++) { 3016 if (gid_lt(ga->gid[g], gb->gid[g])) 3017 return -1; 3018 if (gid_gt(ga->gid[g], gb->gid[g])) 3019 return 1; 3020 } 3021 return 0; 3022 } 3023 3024 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 3025 { 3026 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 3027 3028 while (n != NULL) { 3029 struct nfs_access_entry *entry = 3030 rb_entry(n, struct nfs_access_entry, rb_node); 3031 int cmp = access_cmp(cred, entry); 3032 3033 if (cmp < 0) 3034 n = n->rb_left; 3035 else if (cmp > 0) 3036 n = n->rb_right; 3037 else 3038 return entry; 3039 } 3040 return NULL; 3041 } 3042 3043 static u64 nfs_access_login_time(const struct task_struct *task, 3044 const struct cred *cred) 3045 { 3046 const struct task_struct *parent; 3047 const struct cred *pcred; 3048 u64 ret; 3049 3050 rcu_read_lock(); 3051 for (;;) { 3052 parent = rcu_dereference(task->real_parent); 3053 pcred = __task_cred(parent); 3054 if (parent == task || cred_fscmp(pcred, cred) != 0) 3055 break; 3056 task = parent; 3057 } 3058 ret = task->start_time; 3059 rcu_read_unlock(); 3060 return ret; 3061 } 3062 3063 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 3064 { 3065 struct nfs_inode *nfsi = NFS_I(inode); 3066 u64 login_time = nfs_access_login_time(current, cred); 3067 struct nfs_access_entry *cache; 3068 bool retry = true; 3069 int err; 3070 3071 spin_lock(&inode->i_lock); 3072 for(;;) { 3073 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3074 goto out_zap; 3075 cache = nfs_access_search_rbtree(inode, cred); 3076 err = -ENOENT; 3077 if (cache == NULL) 3078 goto out; 3079 /* Found an entry, is our attribute cache valid? */ 3080 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3081 break; 3082 if (!retry) 3083 break; 3084 err = -ECHILD; 3085 if (!may_block) 3086 goto out; 3087 spin_unlock(&inode->i_lock); 3088 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3089 if (err) 3090 return err; 3091 spin_lock(&inode->i_lock); 3092 retry = false; 3093 } 3094 err = -ENOENT; 3095 if ((s64)(login_time - cache->timestamp) > 0) 3096 goto out; 3097 *mask = cache->mask; 3098 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3099 err = 0; 3100 out: 3101 spin_unlock(&inode->i_lock); 3102 return err; 3103 out_zap: 3104 spin_unlock(&inode->i_lock); 3105 nfs_access_zap_cache(inode); 3106 return -ENOENT; 3107 } 3108 3109 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3110 { 3111 /* Only check the most recently returned cache entry, 3112 * but do it without locking. 3113 */ 3114 struct nfs_inode *nfsi = NFS_I(inode); 3115 u64 login_time = nfs_access_login_time(current, cred); 3116 struct nfs_access_entry *cache; 3117 int err = -ECHILD; 3118 struct list_head *lh; 3119 3120 rcu_read_lock(); 3121 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3122 goto out; 3123 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3124 cache = list_entry(lh, struct nfs_access_entry, lru); 3125 if (lh == &nfsi->access_cache_entry_lru || 3126 access_cmp(cred, cache) != 0) 3127 cache = NULL; 3128 if (cache == NULL) 3129 goto out; 3130 if ((s64)(login_time - cache->timestamp) > 0) 3131 goto out; 3132 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3133 goto out; 3134 *mask = cache->mask; 3135 err = 0; 3136 out: 3137 rcu_read_unlock(); 3138 return err; 3139 } 3140 3141 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3142 u32 *mask, bool may_block) 3143 { 3144 int status; 3145 3146 status = nfs_access_get_cached_rcu(inode, cred, mask); 3147 if (status != 0) 3148 status = nfs_access_get_cached_locked(inode, cred, mask, 3149 may_block); 3150 3151 return status; 3152 } 3153 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3154 3155 static void nfs_access_add_rbtree(struct inode *inode, 3156 struct nfs_access_entry *set, 3157 const struct cred *cred) 3158 { 3159 struct nfs_inode *nfsi = NFS_I(inode); 3160 struct rb_root *root_node = &nfsi->access_cache; 3161 struct rb_node **p = &root_node->rb_node; 3162 struct rb_node *parent = NULL; 3163 struct nfs_access_entry *entry; 3164 int cmp; 3165 3166 spin_lock(&inode->i_lock); 3167 while (*p != NULL) { 3168 parent = *p; 3169 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3170 cmp = access_cmp(cred, entry); 3171 3172 if (cmp < 0) 3173 p = &parent->rb_left; 3174 else if (cmp > 0) 3175 p = &parent->rb_right; 3176 else 3177 goto found; 3178 } 3179 rb_link_node(&set->rb_node, parent, p); 3180 rb_insert_color(&set->rb_node, root_node); 3181 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3182 spin_unlock(&inode->i_lock); 3183 return; 3184 found: 3185 rb_replace_node(parent, &set->rb_node, root_node); 3186 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3187 list_del(&entry->lru); 3188 spin_unlock(&inode->i_lock); 3189 nfs_access_free_entry(entry); 3190 } 3191 3192 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3193 const struct cred *cred) 3194 { 3195 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3196 if (cache == NULL) 3197 return; 3198 RB_CLEAR_NODE(&cache->rb_node); 3199 cache->fsuid = cred->fsuid; 3200 cache->fsgid = cred->fsgid; 3201 cache->group_info = get_group_info(cred->group_info); 3202 cache->mask = set->mask; 3203 cache->timestamp = ktime_get_ns(); 3204 3205 /* The above field assignments must be visible 3206 * before this item appears on the lru. We cannot easily 3207 * use rcu_assign_pointer, so just force the memory barrier. 3208 */ 3209 smp_wmb(); 3210 nfs_access_add_rbtree(inode, cache, cred); 3211 3212 /* Update accounting */ 3213 smp_mb__before_atomic(); 3214 atomic_long_inc(&nfs_access_nr_entries); 3215 smp_mb__after_atomic(); 3216 3217 /* Add inode to global LRU list */ 3218 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3219 spin_lock(&nfs_access_lru_lock); 3220 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3221 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3222 &nfs_access_lru_list); 3223 spin_unlock(&nfs_access_lru_lock); 3224 } 3225 nfs_access_cache_enforce_limit(); 3226 } 3227 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3228 3229 #define NFS_MAY_READ (NFS_ACCESS_READ) 3230 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3231 NFS_ACCESS_EXTEND | \ 3232 NFS_ACCESS_DELETE) 3233 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3234 NFS_ACCESS_EXTEND) 3235 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3236 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3237 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3238 static int 3239 nfs_access_calc_mask(u32 access_result, umode_t umode) 3240 { 3241 int mask = 0; 3242 3243 if (access_result & NFS_MAY_READ) 3244 mask |= MAY_READ; 3245 if (S_ISDIR(umode)) { 3246 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3247 mask |= MAY_WRITE; 3248 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3249 mask |= MAY_EXEC; 3250 } else if (S_ISREG(umode)) { 3251 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3252 mask |= MAY_WRITE; 3253 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3254 mask |= MAY_EXEC; 3255 } else if (access_result & NFS_MAY_WRITE) 3256 mask |= MAY_WRITE; 3257 return mask; 3258 } 3259 3260 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3261 { 3262 entry->mask = access_result; 3263 } 3264 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3265 3266 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3267 { 3268 struct nfs_access_entry cache; 3269 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3270 int cache_mask = -1; 3271 int status; 3272 3273 trace_nfs_access_enter(inode); 3274 3275 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3276 if (status == 0) 3277 goto out_cached; 3278 3279 status = -ECHILD; 3280 if (!may_block) 3281 goto out; 3282 3283 /* 3284 * Determine which access bits we want to ask for... 3285 */ 3286 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3287 nfs_access_xattr_mask(NFS_SERVER(inode)); 3288 if (S_ISDIR(inode->i_mode)) 3289 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3290 else 3291 cache.mask |= NFS_ACCESS_EXECUTE; 3292 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3293 if (status != 0) { 3294 if (status == -ESTALE) { 3295 if (!S_ISDIR(inode->i_mode)) 3296 nfs_set_inode_stale(inode); 3297 else 3298 nfs_zap_caches(inode); 3299 } 3300 goto out; 3301 } 3302 nfs_access_add_cache(inode, &cache, cred); 3303 out_cached: 3304 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3305 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3306 status = -EACCES; 3307 out: 3308 trace_nfs_access_exit(inode, mask, cache_mask, status); 3309 return status; 3310 } 3311 3312 static int nfs_open_permission_mask(int openflags) 3313 { 3314 int mask = 0; 3315 3316 if (openflags & __FMODE_EXEC) { 3317 /* ONLY check exec rights */ 3318 mask = MAY_EXEC; 3319 } else { 3320 if ((openflags & O_ACCMODE) != O_WRONLY) 3321 mask |= MAY_READ; 3322 if ((openflags & O_ACCMODE) != O_RDONLY) 3323 mask |= MAY_WRITE; 3324 } 3325 3326 return mask; 3327 } 3328 3329 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3330 { 3331 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3332 } 3333 EXPORT_SYMBOL_GPL(nfs_may_open); 3334 3335 static int nfs_execute_ok(struct inode *inode, int mask) 3336 { 3337 struct nfs_server *server = NFS_SERVER(inode); 3338 int ret = 0; 3339 3340 if (S_ISDIR(inode->i_mode)) 3341 return 0; 3342 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3343 if (mask & MAY_NOT_BLOCK) 3344 return -ECHILD; 3345 ret = __nfs_revalidate_inode(server, inode); 3346 } 3347 if (ret == 0 && !execute_ok(inode)) 3348 ret = -EACCES; 3349 return ret; 3350 } 3351 3352 int nfs_permission(struct mnt_idmap *idmap, 3353 struct inode *inode, 3354 int mask) 3355 { 3356 const struct cred *cred = current_cred(); 3357 int res = 0; 3358 3359 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3360 3361 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3362 goto out; 3363 /* Is this sys_access() ? */ 3364 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3365 goto force_lookup; 3366 3367 switch (inode->i_mode & S_IFMT) { 3368 case S_IFLNK: 3369 goto out; 3370 case S_IFREG: 3371 if ((mask & MAY_OPEN) && 3372 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3373 return 0; 3374 break; 3375 case S_IFDIR: 3376 /* 3377 * Optimize away all write operations, since the server 3378 * will check permissions when we perform the op. 3379 */ 3380 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3381 goto out; 3382 } 3383 3384 force_lookup: 3385 if (!NFS_PROTO(inode)->access) 3386 goto out_notsup; 3387 3388 res = nfs_do_access(inode, cred, mask); 3389 out: 3390 if (!res && (mask & MAY_EXEC)) 3391 res = nfs_execute_ok(inode, mask); 3392 3393 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3394 inode->i_sb->s_id, inode->i_ino, mask, res); 3395 return res; 3396 out_notsup: 3397 if (mask & MAY_NOT_BLOCK) 3398 return -ECHILD; 3399 3400 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3401 NFS_INO_INVALID_OTHER); 3402 if (res == 0) 3403 res = generic_permission(&nop_mnt_idmap, inode, mask); 3404 goto out; 3405 } 3406 EXPORT_SYMBOL_GPL(nfs_permission); 3407