xref: /linux/fs/nfs/dir.c (revision b595076a180a56d1bb170e6eceda6eb9d76f4cd3)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/vmalloc.h>
37 
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 #include "fscache.h"
42 
43 /* #define NFS_DEBUG_VERBOSE 1 */
44 
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 		      struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 static int nfs_readdir_clear_array(struct page*, gfp_t);
60 
61 const struct file_operations nfs_dir_operations = {
62 	.llseek		= nfs_llseek_dir,
63 	.read		= generic_read_dir,
64 	.readdir	= nfs_readdir,
65 	.open		= nfs_opendir,
66 	.release	= nfs_release,
67 	.fsync		= nfs_fsync_dir,
68 };
69 
70 const struct inode_operations nfs_dir_inode_operations = {
71 	.create		= nfs_create,
72 	.lookup		= nfs_lookup,
73 	.link		= nfs_link,
74 	.unlink		= nfs_unlink,
75 	.symlink	= nfs_symlink,
76 	.mkdir		= nfs_mkdir,
77 	.rmdir		= nfs_rmdir,
78 	.mknod		= nfs_mknod,
79 	.rename		= nfs_rename,
80 	.permission	= nfs_permission,
81 	.getattr	= nfs_getattr,
82 	.setattr	= nfs_setattr,
83 };
84 
85 const struct address_space_operations nfs_dir_addr_space_ops = {
86 	.releasepage = nfs_readdir_clear_array,
87 };
88 
89 #ifdef CONFIG_NFS_V3
90 const struct inode_operations nfs3_dir_inode_operations = {
91 	.create		= nfs_create,
92 	.lookup		= nfs_lookup,
93 	.link		= nfs_link,
94 	.unlink		= nfs_unlink,
95 	.symlink	= nfs_symlink,
96 	.mkdir		= nfs_mkdir,
97 	.rmdir		= nfs_rmdir,
98 	.mknod		= nfs_mknod,
99 	.rename		= nfs_rename,
100 	.permission	= nfs_permission,
101 	.getattr	= nfs_getattr,
102 	.setattr	= nfs_setattr,
103 	.listxattr	= nfs3_listxattr,
104 	.getxattr	= nfs3_getxattr,
105 	.setxattr	= nfs3_setxattr,
106 	.removexattr	= nfs3_removexattr,
107 };
108 #endif  /* CONFIG_NFS_V3 */
109 
110 #ifdef CONFIG_NFS_V4
111 
112 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
113 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
114 const struct inode_operations nfs4_dir_inode_operations = {
115 	.create		= nfs_open_create,
116 	.lookup		= nfs_atomic_lookup,
117 	.link		= nfs_link,
118 	.unlink		= nfs_unlink,
119 	.symlink	= nfs_symlink,
120 	.mkdir		= nfs_mkdir,
121 	.rmdir		= nfs_rmdir,
122 	.mknod		= nfs_mknod,
123 	.rename		= nfs_rename,
124 	.permission	= nfs_permission,
125 	.getattr	= nfs_getattr,
126 	.setattr	= nfs_setattr,
127 	.getxattr       = nfs4_getxattr,
128 	.setxattr       = nfs4_setxattr,
129 	.listxattr      = nfs4_listxattr,
130 };
131 
132 #endif /* CONFIG_NFS_V4 */
133 
134 /*
135  * Open file
136  */
137 static int
138 nfs_opendir(struct inode *inode, struct file *filp)
139 {
140 	int res;
141 
142 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
143 			filp->f_path.dentry->d_parent->d_name.name,
144 			filp->f_path.dentry->d_name.name);
145 
146 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
147 
148 	/* Call generic open code in order to cache credentials */
149 	res = nfs_open(inode, filp);
150 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
151 		/* This is a mountpoint, so d_revalidate will never
152 		 * have been called, so we need to refresh the
153 		 * inode (for close-open consistency) ourselves.
154 		 */
155 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
156 	}
157 	return res;
158 }
159 
160 struct nfs_cache_array_entry {
161 	u64 cookie;
162 	u64 ino;
163 	struct qstr string;
164 };
165 
166 struct nfs_cache_array {
167 	unsigned int size;
168 	int eof_index;
169 	u64 last_cookie;
170 	struct nfs_cache_array_entry array[0];
171 };
172 
173 #define MAX_READDIR_ARRAY ((PAGE_SIZE - sizeof(struct nfs_cache_array)) / sizeof(struct nfs_cache_array_entry))
174 
175 typedef __be32 * (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, struct nfs_server *, int);
176 typedef struct {
177 	struct file	*file;
178 	struct page	*page;
179 	unsigned long	page_index;
180 	u64		*dir_cookie;
181 	loff_t		current_index;
182 	decode_dirent_t	decode;
183 
184 	unsigned long	timestamp;
185 	unsigned long	gencount;
186 	unsigned int	cache_entry_index;
187 	unsigned int	plus:1;
188 	unsigned int	eof:1;
189 } nfs_readdir_descriptor_t;
190 
191 /*
192  * The caller is responsible for calling nfs_readdir_release_array(page)
193  */
194 static
195 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
196 {
197 	if (page == NULL)
198 		return ERR_PTR(-EIO);
199 	return (struct nfs_cache_array *)kmap(page);
200 }
201 
202 static
203 void nfs_readdir_release_array(struct page *page)
204 {
205 	kunmap(page);
206 }
207 
208 /*
209  * we are freeing strings created by nfs_add_to_readdir_array()
210  */
211 static
212 int nfs_readdir_clear_array(struct page *page, gfp_t mask)
213 {
214 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
215 	int i;
216 	for (i = 0; i < array->size; i++)
217 		kfree(array->array[i].string.name);
218 	nfs_readdir_release_array(page);
219 	return 0;
220 }
221 
222 /*
223  * the caller is responsible for freeing qstr.name
224  * when called by nfs_readdir_add_to_array, the strings will be freed in
225  * nfs_clear_readdir_array()
226  */
227 static
228 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
229 {
230 	string->len = len;
231 	string->name = kmemdup(name, len, GFP_KERNEL);
232 	if (string->name == NULL)
233 		return -ENOMEM;
234 	string->hash = full_name_hash(name, len);
235 	return 0;
236 }
237 
238 static
239 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
240 {
241 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
242 	struct nfs_cache_array_entry *cache_entry;
243 	int ret;
244 
245 	if (IS_ERR(array))
246 		return PTR_ERR(array);
247 	ret = -EIO;
248 	if (array->size >= MAX_READDIR_ARRAY)
249 		goto out;
250 
251 	cache_entry = &array->array[array->size];
252 	cache_entry->cookie = entry->prev_cookie;
253 	cache_entry->ino = entry->ino;
254 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
255 	if (ret)
256 		goto out;
257 	array->last_cookie = entry->cookie;
258 	if (entry->eof == 1)
259 		array->eof_index = array->size;
260 	array->size++;
261 out:
262 	nfs_readdir_release_array(page);
263 	return ret;
264 }
265 
266 static
267 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
268 {
269 	loff_t diff = desc->file->f_pos - desc->current_index;
270 	unsigned int index;
271 
272 	if (diff < 0)
273 		goto out_eof;
274 	if (diff >= array->size) {
275 		if (array->eof_index > 0)
276 			goto out_eof;
277 		desc->current_index += array->size;
278 		return -EAGAIN;
279 	}
280 
281 	index = (unsigned int)diff;
282 	*desc->dir_cookie = array->array[index].cookie;
283 	desc->cache_entry_index = index;
284 	if (index == array->eof_index)
285 		desc->eof = 1;
286 	return 0;
287 out_eof:
288 	desc->eof = 1;
289 	return -EBADCOOKIE;
290 }
291 
292 static
293 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
294 {
295 	int i;
296 	int status = -EAGAIN;
297 
298 	for (i = 0; i < array->size; i++) {
299 		if (i == array->eof_index) {
300 			desc->eof = 1;
301 			status = -EBADCOOKIE;
302 		}
303 		if (array->array[i].cookie == *desc->dir_cookie) {
304 			desc->cache_entry_index = i;
305 			status = 0;
306 			break;
307 		}
308 	}
309 
310 	return status;
311 }
312 
313 static
314 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
315 {
316 	struct nfs_cache_array *array;
317 	int status = -EBADCOOKIE;
318 
319 	if (desc->dir_cookie == NULL)
320 		goto out;
321 
322 	array = nfs_readdir_get_array(desc->page);
323 	if (IS_ERR(array)) {
324 		status = PTR_ERR(array);
325 		goto out;
326 	}
327 
328 	if (*desc->dir_cookie == 0)
329 		status = nfs_readdir_search_for_pos(array, desc);
330 	else
331 		status = nfs_readdir_search_for_cookie(array, desc);
332 
333 	nfs_readdir_release_array(desc->page);
334 out:
335 	return status;
336 }
337 
338 /* Fill a page with xdr information before transferring to the cache page */
339 static
340 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
341 			struct nfs_entry *entry, struct file *file, struct inode *inode)
342 {
343 	struct rpc_cred	*cred = nfs_file_cred(file);
344 	unsigned long	timestamp, gencount;
345 	int		error;
346 
347  again:
348 	timestamp = jiffies;
349 	gencount = nfs_inc_attr_generation_counter();
350 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
351 					  NFS_SERVER(inode)->dtsize, desc->plus);
352 	if (error < 0) {
353 		/* We requested READDIRPLUS, but the server doesn't grok it */
354 		if (error == -ENOTSUPP && desc->plus) {
355 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
356 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
357 			desc->plus = 0;
358 			goto again;
359 		}
360 		goto error;
361 	}
362 	desc->timestamp = timestamp;
363 	desc->gencount = gencount;
364 error:
365 	return error;
366 }
367 
368 /* Fill in an entry based on the xdr code stored in desc->page */
369 static
370 int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, struct xdr_stream *stream)
371 {
372 	__be32 *p = desc->decode(stream, entry, NFS_SERVER(desc->file->f_path.dentry->d_inode), desc->plus);
373 	if (IS_ERR(p))
374 		return PTR_ERR(p);
375 
376 	entry->fattr->time_start = desc->timestamp;
377 	entry->fattr->gencount = desc->gencount;
378 	return 0;
379 }
380 
381 static
382 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
383 {
384 	struct nfs_inode *node;
385 	if (dentry->d_inode == NULL)
386 		goto different;
387 	node = NFS_I(dentry->d_inode);
388 	if (node->fh.size != entry->fh->size)
389 		goto different;
390 	if (strncmp(node->fh.data, entry->fh->data, node->fh.size) != 0)
391 		goto different;
392 	return 1;
393 different:
394 	return 0;
395 }
396 
397 static
398 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
399 {
400 	struct qstr filename = {
401 		.len = entry->len,
402 		.name = entry->name,
403 	};
404 	struct dentry *dentry;
405 	struct dentry *alias;
406 	struct inode *dir = parent->d_inode;
407 	struct inode *inode;
408 
409 	if (filename.name[0] == '.') {
410 		if (filename.len == 1)
411 			return;
412 		if (filename.len == 2 && filename.name[1] == '.')
413 			return;
414 	}
415 	filename.hash = full_name_hash(filename.name, filename.len);
416 
417 	dentry = d_lookup(parent, &filename);
418 	if (dentry != NULL) {
419 		if (nfs_same_file(dentry, entry)) {
420 			nfs_refresh_inode(dentry->d_inode, entry->fattr);
421 			goto out;
422 		} else {
423 			d_drop(dentry);
424 			dput(dentry);
425 		}
426 	}
427 
428 	dentry = d_alloc(parent, &filename);
429 	if (dentry == NULL)
430 		return;
431 
432 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
433 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
434 	if (IS_ERR(inode))
435 		goto out;
436 
437 	alias = d_materialise_unique(dentry, inode);
438 	if (IS_ERR(alias))
439 		goto out;
440 	else if (alias) {
441 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
442 		dput(alias);
443 	} else
444 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
445 
446 out:
447 	dput(dentry);
448 }
449 
450 /* Perform conversion from xdr to cache array */
451 static
452 void nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
453 				void *xdr_page, struct page *page, unsigned int buflen)
454 {
455 	struct xdr_stream stream;
456 	struct xdr_buf buf;
457 	__be32 *ptr = xdr_page;
458 	int status;
459 	struct nfs_cache_array *array;
460 
461 	buf.head->iov_base = xdr_page;
462 	buf.head->iov_len = buflen;
463 	buf.tail->iov_len = 0;
464 	buf.page_base = 0;
465 	buf.page_len = 0;
466 	buf.buflen = buf.head->iov_len;
467 	buf.len = buf.head->iov_len;
468 
469 	xdr_init_decode(&stream, &buf, ptr);
470 
471 
472 	do {
473 		status = xdr_decode(desc, entry, &stream);
474 		if (status != 0)
475 			break;
476 
477 		if (nfs_readdir_add_to_array(entry, page) == -1)
478 			break;
479 		if (desc->plus == 1)
480 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
481 	} while (!entry->eof);
482 
483 	if (status == -EBADCOOKIE && entry->eof) {
484 		array = nfs_readdir_get_array(page);
485 		array->eof_index = array->size - 1;
486 		status = 0;
487 		nfs_readdir_release_array(page);
488 	}
489 }
490 
491 static
492 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
493 {
494 	unsigned int i;
495 	for (i = 0; i < npages; i++)
496 		put_page(pages[i]);
497 }
498 
499 static
500 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
501 		unsigned int npages)
502 {
503 	vm_unmap_ram(ptr, npages);
504 	nfs_readdir_free_pagearray(pages, npages);
505 }
506 
507 /*
508  * nfs_readdir_large_page will allocate pages that must be freed with a call
509  * to nfs_readdir_free_large_page
510  */
511 static
512 void *nfs_readdir_large_page(struct page **pages, unsigned int npages)
513 {
514 	void *ptr;
515 	unsigned int i;
516 
517 	for (i = 0; i < npages; i++) {
518 		struct page *page = alloc_page(GFP_KERNEL);
519 		if (page == NULL)
520 			goto out_freepages;
521 		pages[i] = page;
522 	}
523 
524 	ptr = vm_map_ram(pages, npages, 0, PAGE_KERNEL);
525 	if (!IS_ERR_OR_NULL(ptr))
526 		return ptr;
527 out_freepages:
528 	nfs_readdir_free_pagearray(pages, i);
529 	return NULL;
530 }
531 
532 static
533 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
534 {
535 	struct page *pages[NFS_MAX_READDIR_PAGES];
536 	void *pages_ptr = NULL;
537 	struct nfs_entry entry;
538 	struct file	*file = desc->file;
539 	struct nfs_cache_array *array;
540 	int status = 0;
541 	unsigned int array_size = ARRAY_SIZE(pages);
542 
543 	entry.prev_cookie = 0;
544 	entry.cookie = *desc->dir_cookie;
545 	entry.eof = 0;
546 	entry.fh = nfs_alloc_fhandle();
547 	entry.fattr = nfs_alloc_fattr();
548 	if (entry.fh == NULL || entry.fattr == NULL)
549 		goto out;
550 
551 	array = nfs_readdir_get_array(page);
552 	memset(array, 0, sizeof(struct nfs_cache_array));
553 	array->eof_index = -1;
554 
555 	pages_ptr = nfs_readdir_large_page(pages, array_size);
556 	if (!pages_ptr)
557 		goto out_release_array;
558 	do {
559 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
560 
561 		if (status < 0)
562 			break;
563 		nfs_readdir_page_filler(desc, &entry, pages_ptr, page, array_size * PAGE_SIZE);
564 	} while (array->eof_index < 0 && array->size < MAX_READDIR_ARRAY);
565 
566 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
567 out_release_array:
568 	nfs_readdir_release_array(page);
569 out:
570 	nfs_free_fattr(entry.fattr);
571 	nfs_free_fhandle(entry.fh);
572 	return status;
573 }
574 
575 /*
576  * Now we cache directories properly, by converting xdr information
577  * to an array that can be used for lookups later.  This results in
578  * fewer cache pages, since we can store more information on each page.
579  * We only need to convert from xdr once so future lookups are much simpler
580  */
581 static
582 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
583 {
584 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
585 
586 	if (nfs_readdir_xdr_to_array(desc, page, inode) < 0)
587 		goto error;
588 	SetPageUptodate(page);
589 
590 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
591 		/* Should never happen */
592 		nfs_zap_mapping(inode, inode->i_mapping);
593 	}
594 	unlock_page(page);
595 	return 0;
596  error:
597 	unlock_page(page);
598 	return -EIO;
599 }
600 
601 static
602 void cache_page_release(nfs_readdir_descriptor_t *desc)
603 {
604 	page_cache_release(desc->page);
605 	desc->page = NULL;
606 }
607 
608 static
609 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
610 {
611 	struct page *page;
612 	page = read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
613 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
614 	if (IS_ERR(page))
615 		desc->eof = 1;
616 	return page;
617 }
618 
619 /*
620  * Returns 0 if desc->dir_cookie was found on page desc->page_index
621  */
622 static
623 int find_cache_page(nfs_readdir_descriptor_t *desc)
624 {
625 	int res;
626 
627 	desc->page = get_cache_page(desc);
628 	if (IS_ERR(desc->page))
629 		return PTR_ERR(desc->page);
630 
631 	res = nfs_readdir_search_array(desc);
632 	if (res == 0)
633 		return 0;
634 	cache_page_release(desc);
635 	return res;
636 }
637 
638 /* Search for desc->dir_cookie from the beginning of the page cache */
639 static inline
640 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
641 {
642 	int res = -EAGAIN;
643 
644 	while (1) {
645 		res = find_cache_page(desc);
646 		if (res != -EAGAIN)
647 			break;
648 		desc->page_index++;
649 	}
650 	return res;
651 }
652 
653 static inline unsigned int dt_type(struct inode *inode)
654 {
655 	return (inode->i_mode >> 12) & 15;
656 }
657 
658 /*
659  * Once we've found the start of the dirent within a page: fill 'er up...
660  */
661 static
662 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
663 		   filldir_t filldir)
664 {
665 	struct file	*file = desc->file;
666 	int i = 0;
667 	int res = 0;
668 	struct nfs_cache_array *array = NULL;
669 	unsigned int d_type = DT_UNKNOWN;
670 	struct dentry *dentry = NULL;
671 
672 	array = nfs_readdir_get_array(desc->page);
673 
674 	for (i = desc->cache_entry_index; i < array->size; i++) {
675 		d_type = DT_UNKNOWN;
676 
677 		res = filldir(dirent, array->array[i].string.name,
678 			array->array[i].string.len, file->f_pos,
679 			nfs_compat_user_ino64(array->array[i].ino), d_type);
680 		if (res < 0)
681 			break;
682 		file->f_pos++;
683 		desc->cache_entry_index = i;
684 		if (i < (array->size-1))
685 			*desc->dir_cookie = array->array[i+1].cookie;
686 		else
687 			*desc->dir_cookie = array->last_cookie;
688 		if (i == array->eof_index) {
689 			desc->eof = 1;
690 			break;
691 		}
692 	}
693 
694 	nfs_readdir_release_array(desc->page);
695 	cache_page_release(desc);
696 	if (dentry != NULL)
697 		dput(dentry);
698 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
699 			(unsigned long long)*desc->dir_cookie, res);
700 	return res;
701 }
702 
703 /*
704  * If we cannot find a cookie in our cache, we suspect that this is
705  * because it points to a deleted file, so we ask the server to return
706  * whatever it thinks is the next entry. We then feed this to filldir.
707  * If all goes well, we should then be able to find our way round the
708  * cache on the next call to readdir_search_pagecache();
709  *
710  * NOTE: we cannot add the anonymous page to the pagecache because
711  *	 the data it contains might not be page aligned. Besides,
712  *	 we should already have a complete representation of the
713  *	 directory in the page cache by the time we get here.
714  */
715 static inline
716 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
717 		     filldir_t filldir)
718 {
719 	struct page	*page = NULL;
720 	int		status;
721 	struct inode *inode = desc->file->f_path.dentry->d_inode;
722 
723 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
724 			(unsigned long long)*desc->dir_cookie);
725 
726 	page = alloc_page(GFP_HIGHUSER);
727 	if (!page) {
728 		status = -ENOMEM;
729 		goto out;
730 	}
731 
732 	if (nfs_readdir_xdr_to_array(desc, page, inode) == -1) {
733 		status = -EIO;
734 		goto out_release;
735 	}
736 
737 	desc->page_index = 0;
738 	desc->page = page;
739 	status = nfs_do_filldir(desc, dirent, filldir);
740 
741  out:
742 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
743 			__func__, status);
744 	return status;
745  out_release:
746 	cache_page_release(desc);
747 	goto out;
748 }
749 
750 /* The file offset position represents the dirent entry number.  A
751    last cookie cache takes care of the common case of reading the
752    whole directory.
753  */
754 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
755 {
756 	struct dentry	*dentry = filp->f_path.dentry;
757 	struct inode	*inode = dentry->d_inode;
758 	nfs_readdir_descriptor_t my_desc,
759 			*desc = &my_desc;
760 	int res = -ENOMEM;
761 
762 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
763 			dentry->d_parent->d_name.name, dentry->d_name.name,
764 			(long long)filp->f_pos);
765 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
766 
767 	/*
768 	 * filp->f_pos points to the dirent entry number.
769 	 * *desc->dir_cookie has the cookie for the next entry. We have
770 	 * to either find the entry with the appropriate number or
771 	 * revalidate the cookie.
772 	 */
773 	memset(desc, 0, sizeof(*desc));
774 
775 	desc->file = filp;
776 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
777 	desc->decode = NFS_PROTO(inode)->decode_dirent;
778 	desc->plus = NFS_USE_READDIRPLUS(inode);
779 
780 	nfs_block_sillyrename(dentry);
781 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
782 	if (res < 0)
783 		goto out;
784 
785 	while (desc->eof != 1) {
786 		res = readdir_search_pagecache(desc);
787 
788 		if (res == -EBADCOOKIE) {
789 			/* This means either end of directory */
790 			if (*desc->dir_cookie && desc->eof == 0) {
791 				/* Or that the server has 'lost' a cookie */
792 				res = uncached_readdir(desc, dirent, filldir);
793 				if (res >= 0)
794 					continue;
795 			}
796 			res = 0;
797 			break;
798 		}
799 		if (res == -ETOOSMALL && desc->plus) {
800 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
801 			nfs_zap_caches(inode);
802 			desc->page_index = 0;
803 			desc->plus = 0;
804 			desc->eof = 0;
805 			continue;
806 		}
807 		if (res < 0)
808 			break;
809 
810 		res = nfs_do_filldir(desc, dirent, filldir);
811 		if (res < 0) {
812 			res = 0;
813 			break;
814 		}
815 	}
816 out:
817 	nfs_unblock_sillyrename(dentry);
818 	if (res > 0)
819 		res = 0;
820 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
821 			dentry->d_parent->d_name.name, dentry->d_name.name,
822 			res);
823 	return res;
824 }
825 
826 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
827 {
828 	struct dentry *dentry = filp->f_path.dentry;
829 	struct inode *inode = dentry->d_inode;
830 
831 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
832 			dentry->d_parent->d_name.name,
833 			dentry->d_name.name,
834 			offset, origin);
835 
836 	mutex_lock(&inode->i_mutex);
837 	switch (origin) {
838 		case 1:
839 			offset += filp->f_pos;
840 		case 0:
841 			if (offset >= 0)
842 				break;
843 		default:
844 			offset = -EINVAL;
845 			goto out;
846 	}
847 	if (offset != filp->f_pos) {
848 		filp->f_pos = offset;
849 		nfs_file_open_context(filp)->dir_cookie = 0;
850 	}
851 out:
852 	mutex_unlock(&inode->i_mutex);
853 	return offset;
854 }
855 
856 /*
857  * All directory operations under NFS are synchronous, so fsync()
858  * is a dummy operation.
859  */
860 static int nfs_fsync_dir(struct file *filp, int datasync)
861 {
862 	struct dentry *dentry = filp->f_path.dentry;
863 
864 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
865 			dentry->d_parent->d_name.name, dentry->d_name.name,
866 			datasync);
867 
868 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
869 	return 0;
870 }
871 
872 /**
873  * nfs_force_lookup_revalidate - Mark the directory as having changed
874  * @dir - pointer to directory inode
875  *
876  * This forces the revalidation code in nfs_lookup_revalidate() to do a
877  * full lookup on all child dentries of 'dir' whenever a change occurs
878  * on the server that might have invalidated our dcache.
879  *
880  * The caller should be holding dir->i_lock
881  */
882 void nfs_force_lookup_revalidate(struct inode *dir)
883 {
884 	NFS_I(dir)->cache_change_attribute++;
885 }
886 
887 /*
888  * A check for whether or not the parent directory has changed.
889  * In the case it has, we assume that the dentries are untrustworthy
890  * and may need to be looked up again.
891  */
892 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
893 {
894 	if (IS_ROOT(dentry))
895 		return 1;
896 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
897 		return 0;
898 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
899 		return 0;
900 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
901 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
902 		return 0;
903 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
904 		return 0;
905 	return 1;
906 }
907 
908 /*
909  * Return the intent data that applies to this particular path component
910  *
911  * Note that the current set of intents only apply to the very last
912  * component of the path.
913  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
914  */
915 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
916 {
917 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
918 		return 0;
919 	return nd->flags & mask;
920 }
921 
922 /*
923  * Use intent information to check whether or not we're going to do
924  * an O_EXCL create using this path component.
925  */
926 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
927 {
928 	if (NFS_PROTO(dir)->version == 2)
929 		return 0;
930 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
931 }
932 
933 /*
934  * Inode and filehandle revalidation for lookups.
935  *
936  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
937  * or if the intent information indicates that we're about to open this
938  * particular file and the "nocto" mount flag is not set.
939  *
940  */
941 static inline
942 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
943 {
944 	struct nfs_server *server = NFS_SERVER(inode);
945 
946 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
947 		return 0;
948 	if (nd != NULL) {
949 		/* VFS wants an on-the-wire revalidation */
950 		if (nd->flags & LOOKUP_REVAL)
951 			goto out_force;
952 		/* This is an open(2) */
953 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
954 				!(server->flags & NFS_MOUNT_NOCTO) &&
955 				(S_ISREG(inode->i_mode) ||
956 				 S_ISDIR(inode->i_mode)))
957 			goto out_force;
958 		return 0;
959 	}
960 	return nfs_revalidate_inode(server, inode);
961 out_force:
962 	return __nfs_revalidate_inode(server, inode);
963 }
964 
965 /*
966  * We judge how long we want to trust negative
967  * dentries by looking at the parent inode mtime.
968  *
969  * If parent mtime has changed, we revalidate, else we wait for a
970  * period corresponding to the parent's attribute cache timeout value.
971  */
972 static inline
973 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
974 		       struct nameidata *nd)
975 {
976 	/* Don't revalidate a negative dentry if we're creating a new file */
977 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
978 		return 0;
979 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
980 		return 1;
981 	return !nfs_check_verifier(dir, dentry);
982 }
983 
984 /*
985  * This is called every time the dcache has a lookup hit,
986  * and we should check whether we can really trust that
987  * lookup.
988  *
989  * NOTE! The hit can be a negative hit too, don't assume
990  * we have an inode!
991  *
992  * If the parent directory is seen to have changed, we throw out the
993  * cached dentry and do a new lookup.
994  */
995 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
996 {
997 	struct inode *dir;
998 	struct inode *inode;
999 	struct dentry *parent;
1000 	struct nfs_fh *fhandle = NULL;
1001 	struct nfs_fattr *fattr = NULL;
1002 	int error;
1003 
1004 	parent = dget_parent(dentry);
1005 	dir = parent->d_inode;
1006 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1007 	inode = dentry->d_inode;
1008 
1009 	if (!inode) {
1010 		if (nfs_neg_need_reval(dir, dentry, nd))
1011 			goto out_bad;
1012 		goto out_valid;
1013 	}
1014 
1015 	if (is_bad_inode(inode)) {
1016 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1017 				__func__, dentry->d_parent->d_name.name,
1018 				dentry->d_name.name);
1019 		goto out_bad;
1020 	}
1021 
1022 	if (nfs_have_delegation(inode, FMODE_READ))
1023 		goto out_set_verifier;
1024 
1025 	/* Force a full look up iff the parent directory has changed */
1026 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1027 		if (nfs_lookup_verify_inode(inode, nd))
1028 			goto out_zap_parent;
1029 		goto out_valid;
1030 	}
1031 
1032 	if (NFS_STALE(inode))
1033 		goto out_bad;
1034 
1035 	error = -ENOMEM;
1036 	fhandle = nfs_alloc_fhandle();
1037 	fattr = nfs_alloc_fattr();
1038 	if (fhandle == NULL || fattr == NULL)
1039 		goto out_error;
1040 
1041 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1042 	if (error)
1043 		goto out_bad;
1044 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1045 		goto out_bad;
1046 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1047 		goto out_bad;
1048 
1049 	nfs_free_fattr(fattr);
1050 	nfs_free_fhandle(fhandle);
1051 out_set_verifier:
1052 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1053  out_valid:
1054 	dput(parent);
1055 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1056 			__func__, dentry->d_parent->d_name.name,
1057 			dentry->d_name.name);
1058 	return 1;
1059 out_zap_parent:
1060 	nfs_zap_caches(dir);
1061  out_bad:
1062 	nfs_mark_for_revalidate(dir);
1063 	if (inode && S_ISDIR(inode->i_mode)) {
1064 		/* Purge readdir caches. */
1065 		nfs_zap_caches(inode);
1066 		/* If we have submounts, don't unhash ! */
1067 		if (have_submounts(dentry))
1068 			goto out_valid;
1069 		if (dentry->d_flags & DCACHE_DISCONNECTED)
1070 			goto out_valid;
1071 		shrink_dcache_parent(dentry);
1072 	}
1073 	d_drop(dentry);
1074 	nfs_free_fattr(fattr);
1075 	nfs_free_fhandle(fhandle);
1076 	dput(parent);
1077 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1078 			__func__, dentry->d_parent->d_name.name,
1079 			dentry->d_name.name);
1080 	return 0;
1081 out_error:
1082 	nfs_free_fattr(fattr);
1083 	nfs_free_fhandle(fhandle);
1084 	dput(parent);
1085 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1086 			__func__, dentry->d_parent->d_name.name,
1087 			dentry->d_name.name, error);
1088 	return error;
1089 }
1090 
1091 /*
1092  * This is called from dput() when d_count is going to 0.
1093  */
1094 static int nfs_dentry_delete(struct dentry *dentry)
1095 {
1096 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1097 		dentry->d_parent->d_name.name, dentry->d_name.name,
1098 		dentry->d_flags);
1099 
1100 	/* Unhash any dentry with a stale inode */
1101 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1102 		return 1;
1103 
1104 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1105 		/* Unhash it, so that ->d_iput() would be called */
1106 		return 1;
1107 	}
1108 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1109 		/* Unhash it, so that ancestors of killed async unlink
1110 		 * files will be cleaned up during umount */
1111 		return 1;
1112 	}
1113 	return 0;
1114 
1115 }
1116 
1117 static void nfs_drop_nlink(struct inode *inode)
1118 {
1119 	spin_lock(&inode->i_lock);
1120 	if (inode->i_nlink > 0)
1121 		drop_nlink(inode);
1122 	spin_unlock(&inode->i_lock);
1123 }
1124 
1125 /*
1126  * Called when the dentry loses inode.
1127  * We use it to clean up silly-renamed files.
1128  */
1129 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1130 {
1131 	if (S_ISDIR(inode->i_mode))
1132 		/* drop any readdir cache as it could easily be old */
1133 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1134 
1135 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1136 		drop_nlink(inode);
1137 		nfs_complete_unlink(dentry, inode);
1138 	}
1139 	iput(inode);
1140 }
1141 
1142 const struct dentry_operations nfs_dentry_operations = {
1143 	.d_revalidate	= nfs_lookup_revalidate,
1144 	.d_delete	= nfs_dentry_delete,
1145 	.d_iput		= nfs_dentry_iput,
1146 };
1147 
1148 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1149 {
1150 	struct dentry *res;
1151 	struct dentry *parent;
1152 	struct inode *inode = NULL;
1153 	struct nfs_fh *fhandle = NULL;
1154 	struct nfs_fattr *fattr = NULL;
1155 	int error;
1156 
1157 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1158 		dentry->d_parent->d_name.name, dentry->d_name.name);
1159 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1160 
1161 	res = ERR_PTR(-ENAMETOOLONG);
1162 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1163 		goto out;
1164 
1165 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1166 
1167 	/*
1168 	 * If we're doing an exclusive create, optimize away the lookup
1169 	 * but don't hash the dentry.
1170 	 */
1171 	if (nfs_is_exclusive_create(dir, nd)) {
1172 		d_instantiate(dentry, NULL);
1173 		res = NULL;
1174 		goto out;
1175 	}
1176 
1177 	res = ERR_PTR(-ENOMEM);
1178 	fhandle = nfs_alloc_fhandle();
1179 	fattr = nfs_alloc_fattr();
1180 	if (fhandle == NULL || fattr == NULL)
1181 		goto out;
1182 
1183 	parent = dentry->d_parent;
1184 	/* Protect against concurrent sillydeletes */
1185 	nfs_block_sillyrename(parent);
1186 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1187 	if (error == -ENOENT)
1188 		goto no_entry;
1189 	if (error < 0) {
1190 		res = ERR_PTR(error);
1191 		goto out_unblock_sillyrename;
1192 	}
1193 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1194 	res = (struct dentry *)inode;
1195 	if (IS_ERR(res))
1196 		goto out_unblock_sillyrename;
1197 
1198 no_entry:
1199 	res = d_materialise_unique(dentry, inode);
1200 	if (res != NULL) {
1201 		if (IS_ERR(res))
1202 			goto out_unblock_sillyrename;
1203 		dentry = res;
1204 	}
1205 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1206 out_unblock_sillyrename:
1207 	nfs_unblock_sillyrename(parent);
1208 out:
1209 	nfs_free_fattr(fattr);
1210 	nfs_free_fhandle(fhandle);
1211 	return res;
1212 }
1213 
1214 #ifdef CONFIG_NFS_V4
1215 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1216 
1217 const struct dentry_operations nfs4_dentry_operations = {
1218 	.d_revalidate	= nfs_open_revalidate,
1219 	.d_delete	= nfs_dentry_delete,
1220 	.d_iput		= nfs_dentry_iput,
1221 };
1222 
1223 /*
1224  * Use intent information to determine whether we need to substitute
1225  * the NFSv4-style stateful OPEN for the LOOKUP call
1226  */
1227 static int is_atomic_open(struct nameidata *nd)
1228 {
1229 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1230 		return 0;
1231 	/* NFS does not (yet) have a stateful open for directories */
1232 	if (nd->flags & LOOKUP_DIRECTORY)
1233 		return 0;
1234 	/* Are we trying to write to a read only partition? */
1235 	if (__mnt_is_readonly(nd->path.mnt) &&
1236 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1237 		return 0;
1238 	return 1;
1239 }
1240 
1241 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1242 {
1243 	struct path path = {
1244 		.mnt = nd->path.mnt,
1245 		.dentry = dentry,
1246 	};
1247 	struct nfs_open_context *ctx;
1248 	struct rpc_cred *cred;
1249 	fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1250 
1251 	cred = rpc_lookup_cred();
1252 	if (IS_ERR(cred))
1253 		return ERR_CAST(cred);
1254 	ctx = alloc_nfs_open_context(&path, cred, fmode);
1255 	put_rpccred(cred);
1256 	if (ctx == NULL)
1257 		return ERR_PTR(-ENOMEM);
1258 	return ctx;
1259 }
1260 
1261 static int do_open(struct inode *inode, struct file *filp)
1262 {
1263 	nfs_fscache_set_inode_cookie(inode, filp);
1264 	return 0;
1265 }
1266 
1267 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1268 {
1269 	struct file *filp;
1270 	int ret = 0;
1271 
1272 	/* If the open_intent is for execute, we have an extra check to make */
1273 	if (ctx->mode & FMODE_EXEC) {
1274 		ret = nfs_may_open(ctx->path.dentry->d_inode,
1275 				ctx->cred,
1276 				nd->intent.open.flags);
1277 		if (ret < 0)
1278 			goto out;
1279 	}
1280 	filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1281 	if (IS_ERR(filp))
1282 		ret = PTR_ERR(filp);
1283 	else
1284 		nfs_file_set_open_context(filp, ctx);
1285 out:
1286 	put_nfs_open_context(ctx);
1287 	return ret;
1288 }
1289 
1290 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1291 {
1292 	struct nfs_open_context *ctx;
1293 	struct iattr attr;
1294 	struct dentry *res = NULL;
1295 	struct inode *inode;
1296 	int open_flags;
1297 	int err;
1298 
1299 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1300 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1301 
1302 	/* Check that we are indeed trying to open this file */
1303 	if (!is_atomic_open(nd))
1304 		goto no_open;
1305 
1306 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1307 		res = ERR_PTR(-ENAMETOOLONG);
1308 		goto out;
1309 	}
1310 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1311 
1312 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1313 	 * the dentry. */
1314 	if (nd->flags & LOOKUP_EXCL) {
1315 		d_instantiate(dentry, NULL);
1316 		goto out;
1317 	}
1318 
1319 	ctx = nameidata_to_nfs_open_context(dentry, nd);
1320 	res = ERR_CAST(ctx);
1321 	if (IS_ERR(ctx))
1322 		goto out;
1323 
1324 	open_flags = nd->intent.open.flags;
1325 	if (nd->flags & LOOKUP_CREATE) {
1326 		attr.ia_mode = nd->intent.open.create_mode;
1327 		attr.ia_valid = ATTR_MODE;
1328 		if (!IS_POSIXACL(dir))
1329 			attr.ia_mode &= ~current_umask();
1330 	} else {
1331 		open_flags &= ~(O_EXCL | O_CREAT);
1332 		attr.ia_valid = 0;
1333 	}
1334 
1335 	/* Open the file on the server */
1336 	nfs_block_sillyrename(dentry->d_parent);
1337 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1338 	if (IS_ERR(inode)) {
1339 		nfs_unblock_sillyrename(dentry->d_parent);
1340 		put_nfs_open_context(ctx);
1341 		switch (PTR_ERR(inode)) {
1342 			/* Make a negative dentry */
1343 			case -ENOENT:
1344 				d_add(dentry, NULL);
1345 				res = NULL;
1346 				goto out;
1347 			/* This turned out not to be a regular file */
1348 			case -EISDIR:
1349 			case -ENOTDIR:
1350 				goto no_open;
1351 			case -ELOOP:
1352 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1353 					goto no_open;
1354 			/* case -EINVAL: */
1355 			default:
1356 				res = ERR_CAST(inode);
1357 				goto out;
1358 		}
1359 	}
1360 	res = d_add_unique(dentry, inode);
1361 	nfs_unblock_sillyrename(dentry->d_parent);
1362 	if (res != NULL) {
1363 		dput(ctx->path.dentry);
1364 		ctx->path.dentry = dget(res);
1365 		dentry = res;
1366 	}
1367 	err = nfs_intent_set_file(nd, ctx);
1368 	if (err < 0) {
1369 		if (res != NULL)
1370 			dput(res);
1371 		return ERR_PTR(err);
1372 	}
1373 out:
1374 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1375 	return res;
1376 no_open:
1377 	return nfs_lookup(dir, dentry, nd);
1378 }
1379 
1380 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1381 {
1382 	struct dentry *parent = NULL;
1383 	struct inode *inode = dentry->d_inode;
1384 	struct inode *dir;
1385 	struct nfs_open_context *ctx;
1386 	int openflags, ret = 0;
1387 
1388 	if (!is_atomic_open(nd) || d_mountpoint(dentry))
1389 		goto no_open;
1390 
1391 	parent = dget_parent(dentry);
1392 	dir = parent->d_inode;
1393 
1394 	/* We can't create new files in nfs_open_revalidate(), so we
1395 	 * optimize away revalidation of negative dentries.
1396 	 */
1397 	if (inode == NULL) {
1398 		if (!nfs_neg_need_reval(dir, dentry, nd))
1399 			ret = 1;
1400 		goto out;
1401 	}
1402 
1403 	/* NFS only supports OPEN on regular files */
1404 	if (!S_ISREG(inode->i_mode))
1405 		goto no_open_dput;
1406 	openflags = nd->intent.open.flags;
1407 	/* We cannot do exclusive creation on a positive dentry */
1408 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1409 		goto no_open_dput;
1410 	/* We can't create new files, or truncate existing ones here */
1411 	openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1412 
1413 	ctx = nameidata_to_nfs_open_context(dentry, nd);
1414 	ret = PTR_ERR(ctx);
1415 	if (IS_ERR(ctx))
1416 		goto out;
1417 	/*
1418 	 * Note: we're not holding inode->i_mutex and so may be racing with
1419 	 * operations that change the directory. We therefore save the
1420 	 * change attribute *before* we do the RPC call.
1421 	 */
1422 	inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1423 	if (IS_ERR(inode)) {
1424 		ret = PTR_ERR(inode);
1425 		switch (ret) {
1426 		case -EPERM:
1427 		case -EACCES:
1428 		case -EDQUOT:
1429 		case -ENOSPC:
1430 		case -EROFS:
1431 			goto out_put_ctx;
1432 		default:
1433 			goto out_drop;
1434 		}
1435 	}
1436 	iput(inode);
1437 	if (inode != dentry->d_inode)
1438 		goto out_drop;
1439 
1440 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1441 	ret = nfs_intent_set_file(nd, ctx);
1442 	if (ret >= 0)
1443 		ret = 1;
1444 out:
1445 	dput(parent);
1446 	return ret;
1447 out_drop:
1448 	d_drop(dentry);
1449 	ret = 0;
1450 out_put_ctx:
1451 	put_nfs_open_context(ctx);
1452 	goto out;
1453 
1454 no_open_dput:
1455 	dput(parent);
1456 no_open:
1457 	return nfs_lookup_revalidate(dentry, nd);
1458 }
1459 
1460 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1461 		struct nameidata *nd)
1462 {
1463 	struct nfs_open_context *ctx = NULL;
1464 	struct iattr attr;
1465 	int error;
1466 	int open_flags = 0;
1467 
1468 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1469 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1470 
1471 	attr.ia_mode = mode;
1472 	attr.ia_valid = ATTR_MODE;
1473 
1474 	if ((nd->flags & LOOKUP_CREATE) != 0) {
1475 		open_flags = nd->intent.open.flags;
1476 
1477 		ctx = nameidata_to_nfs_open_context(dentry, nd);
1478 		error = PTR_ERR(ctx);
1479 		if (IS_ERR(ctx))
1480 			goto out_err_drop;
1481 	}
1482 
1483 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1484 	if (error != 0)
1485 		goto out_put_ctx;
1486 	if (ctx != NULL) {
1487 		error = nfs_intent_set_file(nd, ctx);
1488 		if (error < 0)
1489 			goto out_err;
1490 	}
1491 	return 0;
1492 out_put_ctx:
1493 	if (ctx != NULL)
1494 		put_nfs_open_context(ctx);
1495 out_err_drop:
1496 	d_drop(dentry);
1497 out_err:
1498 	return error;
1499 }
1500 
1501 #endif /* CONFIG_NFSV4 */
1502 
1503 /*
1504  * Code common to create, mkdir, and mknod.
1505  */
1506 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1507 				struct nfs_fattr *fattr)
1508 {
1509 	struct dentry *parent = dget_parent(dentry);
1510 	struct inode *dir = parent->d_inode;
1511 	struct inode *inode;
1512 	int error = -EACCES;
1513 
1514 	d_drop(dentry);
1515 
1516 	/* We may have been initialized further down */
1517 	if (dentry->d_inode)
1518 		goto out;
1519 	if (fhandle->size == 0) {
1520 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1521 		if (error)
1522 			goto out_error;
1523 	}
1524 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1525 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1526 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1527 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1528 		if (error < 0)
1529 			goto out_error;
1530 	}
1531 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1532 	error = PTR_ERR(inode);
1533 	if (IS_ERR(inode))
1534 		goto out_error;
1535 	d_add(dentry, inode);
1536 out:
1537 	dput(parent);
1538 	return 0;
1539 out_error:
1540 	nfs_mark_for_revalidate(dir);
1541 	dput(parent);
1542 	return error;
1543 }
1544 
1545 /*
1546  * Following a failed create operation, we drop the dentry rather
1547  * than retain a negative dentry. This avoids a problem in the event
1548  * that the operation succeeded on the server, but an error in the
1549  * reply path made it appear to have failed.
1550  */
1551 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1552 		struct nameidata *nd)
1553 {
1554 	struct iattr attr;
1555 	int error;
1556 
1557 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1558 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1559 
1560 	attr.ia_mode = mode;
1561 	attr.ia_valid = ATTR_MODE;
1562 
1563 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1564 	if (error != 0)
1565 		goto out_err;
1566 	return 0;
1567 out_err:
1568 	d_drop(dentry);
1569 	return error;
1570 }
1571 
1572 /*
1573  * See comments for nfs_proc_create regarding failed operations.
1574  */
1575 static int
1576 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1577 {
1578 	struct iattr attr;
1579 	int status;
1580 
1581 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1582 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1583 
1584 	if (!new_valid_dev(rdev))
1585 		return -EINVAL;
1586 
1587 	attr.ia_mode = mode;
1588 	attr.ia_valid = ATTR_MODE;
1589 
1590 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1591 	if (status != 0)
1592 		goto out_err;
1593 	return 0;
1594 out_err:
1595 	d_drop(dentry);
1596 	return status;
1597 }
1598 
1599 /*
1600  * See comments for nfs_proc_create regarding failed operations.
1601  */
1602 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1603 {
1604 	struct iattr attr;
1605 	int error;
1606 
1607 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1608 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1609 
1610 	attr.ia_valid = ATTR_MODE;
1611 	attr.ia_mode = mode | S_IFDIR;
1612 
1613 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1614 	if (error != 0)
1615 		goto out_err;
1616 	return 0;
1617 out_err:
1618 	d_drop(dentry);
1619 	return error;
1620 }
1621 
1622 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1623 {
1624 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1625 		d_delete(dentry);
1626 }
1627 
1628 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1629 {
1630 	int error;
1631 
1632 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1633 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1634 
1635 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1636 	/* Ensure the VFS deletes this inode */
1637 	if (error == 0 && dentry->d_inode != NULL)
1638 		clear_nlink(dentry->d_inode);
1639 	else if (error == -ENOENT)
1640 		nfs_dentry_handle_enoent(dentry);
1641 
1642 	return error;
1643 }
1644 
1645 /*
1646  * Remove a file after making sure there are no pending writes,
1647  * and after checking that the file has only one user.
1648  *
1649  * We invalidate the attribute cache and free the inode prior to the operation
1650  * to avoid possible races if the server reuses the inode.
1651  */
1652 static int nfs_safe_remove(struct dentry *dentry)
1653 {
1654 	struct inode *dir = dentry->d_parent->d_inode;
1655 	struct inode *inode = dentry->d_inode;
1656 	int error = -EBUSY;
1657 
1658 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1659 		dentry->d_parent->d_name.name, dentry->d_name.name);
1660 
1661 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1662 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1663 		error = 0;
1664 		goto out;
1665 	}
1666 
1667 	if (inode != NULL) {
1668 		nfs_inode_return_delegation(inode);
1669 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1670 		/* The VFS may want to delete this inode */
1671 		if (error == 0)
1672 			nfs_drop_nlink(inode);
1673 		nfs_mark_for_revalidate(inode);
1674 	} else
1675 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1676 	if (error == -ENOENT)
1677 		nfs_dentry_handle_enoent(dentry);
1678 out:
1679 	return error;
1680 }
1681 
1682 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1683  *  belongs to an active ".nfs..." file and we return -EBUSY.
1684  *
1685  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1686  */
1687 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1688 {
1689 	int error;
1690 	int need_rehash = 0;
1691 
1692 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1693 		dir->i_ino, dentry->d_name.name);
1694 
1695 	spin_lock(&dcache_lock);
1696 	spin_lock(&dentry->d_lock);
1697 	if (atomic_read(&dentry->d_count) > 1) {
1698 		spin_unlock(&dentry->d_lock);
1699 		spin_unlock(&dcache_lock);
1700 		/* Start asynchronous writeout of the inode */
1701 		write_inode_now(dentry->d_inode, 0);
1702 		error = nfs_sillyrename(dir, dentry);
1703 		return error;
1704 	}
1705 	if (!d_unhashed(dentry)) {
1706 		__d_drop(dentry);
1707 		need_rehash = 1;
1708 	}
1709 	spin_unlock(&dentry->d_lock);
1710 	spin_unlock(&dcache_lock);
1711 	error = nfs_safe_remove(dentry);
1712 	if (!error || error == -ENOENT) {
1713 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1714 	} else if (need_rehash)
1715 		d_rehash(dentry);
1716 	return error;
1717 }
1718 
1719 /*
1720  * To create a symbolic link, most file systems instantiate a new inode,
1721  * add a page to it containing the path, then write it out to the disk
1722  * using prepare_write/commit_write.
1723  *
1724  * Unfortunately the NFS client can't create the in-core inode first
1725  * because it needs a file handle to create an in-core inode (see
1726  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1727  * symlink request has completed on the server.
1728  *
1729  * So instead we allocate a raw page, copy the symname into it, then do
1730  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1731  * now have a new file handle and can instantiate an in-core NFS inode
1732  * and move the raw page into its mapping.
1733  */
1734 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1735 {
1736 	struct pagevec lru_pvec;
1737 	struct page *page;
1738 	char *kaddr;
1739 	struct iattr attr;
1740 	unsigned int pathlen = strlen(symname);
1741 	int error;
1742 
1743 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1744 		dir->i_ino, dentry->d_name.name, symname);
1745 
1746 	if (pathlen > PAGE_SIZE)
1747 		return -ENAMETOOLONG;
1748 
1749 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1750 	attr.ia_valid = ATTR_MODE;
1751 
1752 	page = alloc_page(GFP_HIGHUSER);
1753 	if (!page)
1754 		return -ENOMEM;
1755 
1756 	kaddr = kmap_atomic(page, KM_USER0);
1757 	memcpy(kaddr, symname, pathlen);
1758 	if (pathlen < PAGE_SIZE)
1759 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1760 	kunmap_atomic(kaddr, KM_USER0);
1761 
1762 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1763 	if (error != 0) {
1764 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1765 			dir->i_sb->s_id, dir->i_ino,
1766 			dentry->d_name.name, symname, error);
1767 		d_drop(dentry);
1768 		__free_page(page);
1769 		return error;
1770 	}
1771 
1772 	/*
1773 	 * No big deal if we can't add this page to the page cache here.
1774 	 * READLINK will get the missing page from the server if needed.
1775 	 */
1776 	pagevec_init(&lru_pvec, 0);
1777 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1778 							GFP_KERNEL)) {
1779 		pagevec_add(&lru_pvec, page);
1780 		pagevec_lru_add_file(&lru_pvec);
1781 		SetPageUptodate(page);
1782 		unlock_page(page);
1783 	} else
1784 		__free_page(page);
1785 
1786 	return 0;
1787 }
1788 
1789 static int
1790 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1791 {
1792 	struct inode *inode = old_dentry->d_inode;
1793 	int error;
1794 
1795 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1796 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1797 		dentry->d_parent->d_name.name, dentry->d_name.name);
1798 
1799 	nfs_inode_return_delegation(inode);
1800 
1801 	d_drop(dentry);
1802 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1803 	if (error == 0) {
1804 		ihold(inode);
1805 		d_add(dentry, inode);
1806 	}
1807 	return error;
1808 }
1809 
1810 /*
1811  * RENAME
1812  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1813  * different file handle for the same inode after a rename (e.g. when
1814  * moving to a different directory). A fail-safe method to do so would
1815  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1816  * rename the old file using the sillyrename stuff. This way, the original
1817  * file in old_dir will go away when the last process iput()s the inode.
1818  *
1819  * FIXED.
1820  *
1821  * It actually works quite well. One needs to have the possibility for
1822  * at least one ".nfs..." file in each directory the file ever gets
1823  * moved or linked to which happens automagically with the new
1824  * implementation that only depends on the dcache stuff instead of
1825  * using the inode layer
1826  *
1827  * Unfortunately, things are a little more complicated than indicated
1828  * above. For a cross-directory move, we want to make sure we can get
1829  * rid of the old inode after the operation.  This means there must be
1830  * no pending writes (if it's a file), and the use count must be 1.
1831  * If these conditions are met, we can drop the dentries before doing
1832  * the rename.
1833  */
1834 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1835 		      struct inode *new_dir, struct dentry *new_dentry)
1836 {
1837 	struct inode *old_inode = old_dentry->d_inode;
1838 	struct inode *new_inode = new_dentry->d_inode;
1839 	struct dentry *dentry = NULL, *rehash = NULL;
1840 	int error = -EBUSY;
1841 
1842 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1843 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1844 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1845 		 atomic_read(&new_dentry->d_count));
1846 
1847 	/*
1848 	 * For non-directories, check whether the target is busy and if so,
1849 	 * make a copy of the dentry and then do a silly-rename. If the
1850 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1851 	 * the new target.
1852 	 */
1853 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1854 		/*
1855 		 * To prevent any new references to the target during the
1856 		 * rename, we unhash the dentry in advance.
1857 		 */
1858 		if (!d_unhashed(new_dentry)) {
1859 			d_drop(new_dentry);
1860 			rehash = new_dentry;
1861 		}
1862 
1863 		if (atomic_read(&new_dentry->d_count) > 2) {
1864 			int err;
1865 
1866 			/* copy the target dentry's name */
1867 			dentry = d_alloc(new_dentry->d_parent,
1868 					 &new_dentry->d_name);
1869 			if (!dentry)
1870 				goto out;
1871 
1872 			/* silly-rename the existing target ... */
1873 			err = nfs_sillyrename(new_dir, new_dentry);
1874 			if (err)
1875 				goto out;
1876 
1877 			new_dentry = dentry;
1878 			rehash = NULL;
1879 			new_inode = NULL;
1880 		}
1881 	}
1882 
1883 	nfs_inode_return_delegation(old_inode);
1884 	if (new_inode != NULL)
1885 		nfs_inode_return_delegation(new_inode);
1886 
1887 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1888 					   new_dir, &new_dentry->d_name);
1889 	nfs_mark_for_revalidate(old_inode);
1890 out:
1891 	if (rehash)
1892 		d_rehash(rehash);
1893 	if (!error) {
1894 		if (new_inode != NULL)
1895 			nfs_drop_nlink(new_inode);
1896 		d_move(old_dentry, new_dentry);
1897 		nfs_set_verifier(new_dentry,
1898 					nfs_save_change_attribute(new_dir));
1899 	} else if (error == -ENOENT)
1900 		nfs_dentry_handle_enoent(old_dentry);
1901 
1902 	/* new dentry created? */
1903 	if (dentry)
1904 		dput(dentry);
1905 	return error;
1906 }
1907 
1908 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1909 static LIST_HEAD(nfs_access_lru_list);
1910 static atomic_long_t nfs_access_nr_entries;
1911 
1912 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1913 {
1914 	put_rpccred(entry->cred);
1915 	kfree(entry);
1916 	smp_mb__before_atomic_dec();
1917 	atomic_long_dec(&nfs_access_nr_entries);
1918 	smp_mb__after_atomic_dec();
1919 }
1920 
1921 static void nfs_access_free_list(struct list_head *head)
1922 {
1923 	struct nfs_access_entry *cache;
1924 
1925 	while (!list_empty(head)) {
1926 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1927 		list_del(&cache->lru);
1928 		nfs_access_free_entry(cache);
1929 	}
1930 }
1931 
1932 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1933 {
1934 	LIST_HEAD(head);
1935 	struct nfs_inode *nfsi, *next;
1936 	struct nfs_access_entry *cache;
1937 
1938 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1939 		return (nr_to_scan == 0) ? 0 : -1;
1940 
1941 	spin_lock(&nfs_access_lru_lock);
1942 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1943 		struct inode *inode;
1944 
1945 		if (nr_to_scan-- == 0)
1946 			break;
1947 		inode = &nfsi->vfs_inode;
1948 		spin_lock(&inode->i_lock);
1949 		if (list_empty(&nfsi->access_cache_entry_lru))
1950 			goto remove_lru_entry;
1951 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1952 				struct nfs_access_entry, lru);
1953 		list_move(&cache->lru, &head);
1954 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1955 		if (!list_empty(&nfsi->access_cache_entry_lru))
1956 			list_move_tail(&nfsi->access_cache_inode_lru,
1957 					&nfs_access_lru_list);
1958 		else {
1959 remove_lru_entry:
1960 			list_del_init(&nfsi->access_cache_inode_lru);
1961 			smp_mb__before_clear_bit();
1962 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1963 			smp_mb__after_clear_bit();
1964 		}
1965 		spin_unlock(&inode->i_lock);
1966 	}
1967 	spin_unlock(&nfs_access_lru_lock);
1968 	nfs_access_free_list(&head);
1969 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1970 }
1971 
1972 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1973 {
1974 	struct rb_root *root_node = &nfsi->access_cache;
1975 	struct rb_node *n;
1976 	struct nfs_access_entry *entry;
1977 
1978 	/* Unhook entries from the cache */
1979 	while ((n = rb_first(root_node)) != NULL) {
1980 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1981 		rb_erase(n, root_node);
1982 		list_move(&entry->lru, head);
1983 	}
1984 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1985 }
1986 
1987 void nfs_access_zap_cache(struct inode *inode)
1988 {
1989 	LIST_HEAD(head);
1990 
1991 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1992 		return;
1993 	/* Remove from global LRU init */
1994 	spin_lock(&nfs_access_lru_lock);
1995 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1996 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1997 
1998 	spin_lock(&inode->i_lock);
1999 	__nfs_access_zap_cache(NFS_I(inode), &head);
2000 	spin_unlock(&inode->i_lock);
2001 	spin_unlock(&nfs_access_lru_lock);
2002 	nfs_access_free_list(&head);
2003 }
2004 
2005 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2006 {
2007 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2008 	struct nfs_access_entry *entry;
2009 
2010 	while (n != NULL) {
2011 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2012 
2013 		if (cred < entry->cred)
2014 			n = n->rb_left;
2015 		else if (cred > entry->cred)
2016 			n = n->rb_right;
2017 		else
2018 			return entry;
2019 	}
2020 	return NULL;
2021 }
2022 
2023 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2024 {
2025 	struct nfs_inode *nfsi = NFS_I(inode);
2026 	struct nfs_access_entry *cache;
2027 	int err = -ENOENT;
2028 
2029 	spin_lock(&inode->i_lock);
2030 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2031 		goto out_zap;
2032 	cache = nfs_access_search_rbtree(inode, cred);
2033 	if (cache == NULL)
2034 		goto out;
2035 	if (!nfs_have_delegated_attributes(inode) &&
2036 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2037 		goto out_stale;
2038 	res->jiffies = cache->jiffies;
2039 	res->cred = cache->cred;
2040 	res->mask = cache->mask;
2041 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2042 	err = 0;
2043 out:
2044 	spin_unlock(&inode->i_lock);
2045 	return err;
2046 out_stale:
2047 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2048 	list_del(&cache->lru);
2049 	spin_unlock(&inode->i_lock);
2050 	nfs_access_free_entry(cache);
2051 	return -ENOENT;
2052 out_zap:
2053 	spin_unlock(&inode->i_lock);
2054 	nfs_access_zap_cache(inode);
2055 	return -ENOENT;
2056 }
2057 
2058 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2059 {
2060 	struct nfs_inode *nfsi = NFS_I(inode);
2061 	struct rb_root *root_node = &nfsi->access_cache;
2062 	struct rb_node **p = &root_node->rb_node;
2063 	struct rb_node *parent = NULL;
2064 	struct nfs_access_entry *entry;
2065 
2066 	spin_lock(&inode->i_lock);
2067 	while (*p != NULL) {
2068 		parent = *p;
2069 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2070 
2071 		if (set->cred < entry->cred)
2072 			p = &parent->rb_left;
2073 		else if (set->cred > entry->cred)
2074 			p = &parent->rb_right;
2075 		else
2076 			goto found;
2077 	}
2078 	rb_link_node(&set->rb_node, parent, p);
2079 	rb_insert_color(&set->rb_node, root_node);
2080 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2081 	spin_unlock(&inode->i_lock);
2082 	return;
2083 found:
2084 	rb_replace_node(parent, &set->rb_node, root_node);
2085 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2086 	list_del(&entry->lru);
2087 	spin_unlock(&inode->i_lock);
2088 	nfs_access_free_entry(entry);
2089 }
2090 
2091 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2092 {
2093 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2094 	if (cache == NULL)
2095 		return;
2096 	RB_CLEAR_NODE(&cache->rb_node);
2097 	cache->jiffies = set->jiffies;
2098 	cache->cred = get_rpccred(set->cred);
2099 	cache->mask = set->mask;
2100 
2101 	nfs_access_add_rbtree(inode, cache);
2102 
2103 	/* Update accounting */
2104 	smp_mb__before_atomic_inc();
2105 	atomic_long_inc(&nfs_access_nr_entries);
2106 	smp_mb__after_atomic_inc();
2107 
2108 	/* Add inode to global LRU list */
2109 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2110 		spin_lock(&nfs_access_lru_lock);
2111 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2112 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2113 					&nfs_access_lru_list);
2114 		spin_unlock(&nfs_access_lru_lock);
2115 	}
2116 }
2117 
2118 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2119 {
2120 	struct nfs_access_entry cache;
2121 	int status;
2122 
2123 	status = nfs_access_get_cached(inode, cred, &cache);
2124 	if (status == 0)
2125 		goto out;
2126 
2127 	/* Be clever: ask server to check for all possible rights */
2128 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2129 	cache.cred = cred;
2130 	cache.jiffies = jiffies;
2131 	status = NFS_PROTO(inode)->access(inode, &cache);
2132 	if (status != 0) {
2133 		if (status == -ESTALE) {
2134 			nfs_zap_caches(inode);
2135 			if (!S_ISDIR(inode->i_mode))
2136 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2137 		}
2138 		return status;
2139 	}
2140 	nfs_access_add_cache(inode, &cache);
2141 out:
2142 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2143 		return 0;
2144 	return -EACCES;
2145 }
2146 
2147 static int nfs_open_permission_mask(int openflags)
2148 {
2149 	int mask = 0;
2150 
2151 	if (openflags & FMODE_READ)
2152 		mask |= MAY_READ;
2153 	if (openflags & FMODE_WRITE)
2154 		mask |= MAY_WRITE;
2155 	if (openflags & FMODE_EXEC)
2156 		mask |= MAY_EXEC;
2157 	return mask;
2158 }
2159 
2160 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2161 {
2162 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2163 }
2164 
2165 int nfs_permission(struct inode *inode, int mask)
2166 {
2167 	struct rpc_cred *cred;
2168 	int res = 0;
2169 
2170 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2171 
2172 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2173 		goto out;
2174 	/* Is this sys_access() ? */
2175 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2176 		goto force_lookup;
2177 
2178 	switch (inode->i_mode & S_IFMT) {
2179 		case S_IFLNK:
2180 			goto out;
2181 		case S_IFREG:
2182 			/* NFSv4 has atomic_open... */
2183 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2184 					&& (mask & MAY_OPEN)
2185 					&& !(mask & MAY_EXEC))
2186 				goto out;
2187 			break;
2188 		case S_IFDIR:
2189 			/*
2190 			 * Optimize away all write operations, since the server
2191 			 * will check permissions when we perform the op.
2192 			 */
2193 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2194 				goto out;
2195 	}
2196 
2197 force_lookup:
2198 	if (!NFS_PROTO(inode)->access)
2199 		goto out_notsup;
2200 
2201 	cred = rpc_lookup_cred();
2202 	if (!IS_ERR(cred)) {
2203 		res = nfs_do_access(inode, cred, mask);
2204 		put_rpccred(cred);
2205 	} else
2206 		res = PTR_ERR(cred);
2207 out:
2208 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2209 		res = -EACCES;
2210 
2211 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2212 		inode->i_sb->s_id, inode->i_ino, mask, res);
2213 	return res;
2214 out_notsup:
2215 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2216 	if (res == 0)
2217 		res = generic_permission(inode, mask, NULL);
2218 	goto out;
2219 }
2220 
2221 /*
2222  * Local variables:
2223  *  version-control: t
2224  *  kept-new-versions: 5
2225  * End:
2226  */
2227