xref: /linux/fs/nfs/dir.c (revision b2cb6011bcaf5bba08b55f20e3eea9cdd415ec9d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/nfs/dir.c
4   *
5   *  Copyright (C) 1992  Rick Sladkey
6   *
7   *  nfs directory handling functions
8   *
9   * 10 Apr 1996	Added silly rename for unlink	--okir
10   * 28 Sep 1996	Improved directory cache --okir
11   * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12   *              Re-implemented silly rename for unlink, newly implemented
13   *              silly rename for nfs_rename() following the suggestions
14   *              of Olaf Kirch (okir) found in this file.
15   *              Following Linus comments on my original hack, this version
16   *              depends only on the dcache stuff and doesn't touch the inode
17   *              layer (iput() and friends).
18   *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19   */
20  
21  #include <linux/compat.h>
22  #include <linux/module.h>
23  #include <linux/time.h>
24  #include <linux/errno.h>
25  #include <linux/stat.h>
26  #include <linux/fcntl.h>
27  #include <linux/string.h>
28  #include <linux/kernel.h>
29  #include <linux/slab.h>
30  #include <linux/mm.h>
31  #include <linux/sunrpc/clnt.h>
32  #include <linux/nfs_fs.h>
33  #include <linux/nfs_mount.h>
34  #include <linux/pagemap.h>
35  #include <linux/pagevec.h>
36  #include <linux/namei.h>
37  #include <linux/mount.h>
38  #include <linux/swap.h>
39  #include <linux/sched.h>
40  #include <linux/kmemleak.h>
41  #include <linux/xattr.h>
42  #include <linux/hash.h>
43  
44  #include "delegation.h"
45  #include "iostat.h"
46  #include "internal.h"
47  #include "fscache.h"
48  
49  #include "nfstrace.h"
50  
51  /* #define NFS_DEBUG_VERBOSE 1 */
52  
53  static int nfs_opendir(struct inode *, struct file *);
54  static int nfs_closedir(struct inode *, struct file *);
55  static int nfs_readdir(struct file *, struct dir_context *);
56  static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57  static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58  static void nfs_readdir_clear_array(struct folio *);
59  static int nfs_do_create(struct inode *dir, struct dentry *dentry,
60  			 umode_t mode, int open_flags);
61  
62  const struct file_operations nfs_dir_operations = {
63  	.llseek		= nfs_llseek_dir,
64  	.read		= generic_read_dir,
65  	.iterate_shared	= nfs_readdir,
66  	.open		= nfs_opendir,
67  	.release	= nfs_closedir,
68  	.fsync		= nfs_fsync_dir,
69  };
70  
71  const struct address_space_operations nfs_dir_aops = {
72  	.free_folio = nfs_readdir_clear_array,
73  };
74  
75  #define NFS_INIT_DTSIZE PAGE_SIZE
76  
77  static struct nfs_open_dir_context *
78  alloc_nfs_open_dir_context(struct inode *dir)
79  {
80  	struct nfs_inode *nfsi = NFS_I(dir);
81  	struct nfs_open_dir_context *ctx;
82  
83  	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
84  	if (ctx != NULL) {
85  		ctx->attr_gencount = nfsi->attr_gencount;
86  		ctx->dtsize = NFS_INIT_DTSIZE;
87  		spin_lock(&dir->i_lock);
88  		if (list_empty(&nfsi->open_files) &&
89  		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
90  			nfs_set_cache_invalid(dir,
91  					      NFS_INO_INVALID_DATA |
92  						      NFS_INO_REVAL_FORCED);
93  		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
94  		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
95  		spin_unlock(&dir->i_lock);
96  		return ctx;
97  	}
98  	return  ERR_PTR(-ENOMEM);
99  }
100  
101  static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
102  {
103  	spin_lock(&dir->i_lock);
104  	list_del_rcu(&ctx->list);
105  	spin_unlock(&dir->i_lock);
106  	kfree_rcu(ctx, rcu_head);
107  }
108  
109  /*
110   * Open file
111   */
112  static int
113  nfs_opendir(struct inode *inode, struct file *filp)
114  {
115  	int res = 0;
116  	struct nfs_open_dir_context *ctx;
117  
118  	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
119  
120  	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
121  
122  	ctx = alloc_nfs_open_dir_context(inode);
123  	if (IS_ERR(ctx)) {
124  		res = PTR_ERR(ctx);
125  		goto out;
126  	}
127  	filp->private_data = ctx;
128  out:
129  	return res;
130  }
131  
132  static int
133  nfs_closedir(struct inode *inode, struct file *filp)
134  {
135  	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
136  	return 0;
137  }
138  
139  struct nfs_cache_array_entry {
140  	u64 cookie;
141  	u64 ino;
142  	const char *name;
143  	unsigned int name_len;
144  	unsigned char d_type;
145  };
146  
147  struct nfs_cache_array {
148  	u64 change_attr;
149  	u64 last_cookie;
150  	unsigned int size;
151  	unsigned char folio_full : 1,
152  		      folio_is_eof : 1,
153  		      cookies_are_ordered : 1;
154  	struct nfs_cache_array_entry array[];
155  };
156  
157  struct nfs_readdir_descriptor {
158  	struct file	*file;
159  	struct folio	*folio;
160  	struct dir_context *ctx;
161  	pgoff_t		folio_index;
162  	pgoff_t		folio_index_max;
163  	u64		dir_cookie;
164  	u64		last_cookie;
165  	loff_t		current_index;
166  
167  	__be32		verf[NFS_DIR_VERIFIER_SIZE];
168  	unsigned long	dir_verifier;
169  	unsigned long	timestamp;
170  	unsigned long	gencount;
171  	unsigned long	attr_gencount;
172  	unsigned int	cache_entry_index;
173  	unsigned int	buffer_fills;
174  	unsigned int	dtsize;
175  	bool clear_cache;
176  	bool plus;
177  	bool eob;
178  	bool eof;
179  };
180  
181  static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
182  {
183  	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
184  	unsigned int maxsize = server->dtsize;
185  
186  	if (sz > maxsize)
187  		sz = maxsize;
188  	if (sz < NFS_MIN_FILE_IO_SIZE)
189  		sz = NFS_MIN_FILE_IO_SIZE;
190  	desc->dtsize = sz;
191  }
192  
193  static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
194  {
195  	nfs_set_dtsize(desc, desc->dtsize >> 1);
196  }
197  
198  static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
199  {
200  	nfs_set_dtsize(desc, desc->dtsize << 1);
201  }
202  
203  static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
204  					 u64 change_attr)
205  {
206  	struct nfs_cache_array *array;
207  
208  	array = kmap_local_folio(folio, 0);
209  	array->change_attr = change_attr;
210  	array->last_cookie = last_cookie;
211  	array->size = 0;
212  	array->folio_full = 0;
213  	array->folio_is_eof = 0;
214  	array->cookies_are_ordered = 1;
215  	kunmap_local(array);
216  }
217  
218  /*
219   * we are freeing strings created by nfs_add_to_readdir_array()
220   */
221  static void nfs_readdir_clear_array(struct folio *folio)
222  {
223  	struct nfs_cache_array *array;
224  	unsigned int i;
225  
226  	array = kmap_local_folio(folio, 0);
227  	for (i = 0; i < array->size; i++)
228  		kfree(array->array[i].name);
229  	array->size = 0;
230  	kunmap_local(array);
231  }
232  
233  static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
234  					   u64 change_attr)
235  {
236  	nfs_readdir_clear_array(folio);
237  	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
238  }
239  
240  static struct folio *
241  nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
242  {
243  	struct folio *folio = folio_alloc(gfp_flags, 0);
244  	if (folio)
245  		nfs_readdir_folio_init_array(folio, last_cookie, 0);
246  	return folio;
247  }
248  
249  static void nfs_readdir_folio_array_free(struct folio *folio)
250  {
251  	if (folio) {
252  		nfs_readdir_clear_array(folio);
253  		folio_put(folio);
254  	}
255  }
256  
257  static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
258  {
259  	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
260  }
261  
262  static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
263  {
264  	array->folio_is_eof = 1;
265  	array->folio_full = 1;
266  }
267  
268  static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
269  {
270  	return array->folio_full;
271  }
272  
273  /*
274   * the caller is responsible for freeing qstr.name
275   * when called by nfs_readdir_add_to_array, the strings will be freed in
276   * nfs_clear_readdir_array()
277   */
278  static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
279  {
280  	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
281  
282  	/*
283  	 * Avoid a kmemleak false positive. The pointer to the name is stored
284  	 * in a page cache page which kmemleak does not scan.
285  	 */
286  	if (ret != NULL)
287  		kmemleak_not_leak(ret);
288  	return ret;
289  }
290  
291  static size_t nfs_readdir_array_maxentries(void)
292  {
293  	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
294  	       sizeof(struct nfs_cache_array_entry);
295  }
296  
297  /*
298   * Check that the next array entry lies entirely within the page bounds
299   */
300  static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
301  {
302  	if (array->folio_full)
303  		return -ENOSPC;
304  	if (array->size == nfs_readdir_array_maxentries()) {
305  		array->folio_full = 1;
306  		return -ENOSPC;
307  	}
308  	return 0;
309  }
310  
311  static int nfs_readdir_folio_array_append(struct folio *folio,
312  					  const struct nfs_entry *entry,
313  					  u64 *cookie)
314  {
315  	struct nfs_cache_array *array;
316  	struct nfs_cache_array_entry *cache_entry;
317  	const char *name;
318  	int ret = -ENOMEM;
319  
320  	name = nfs_readdir_copy_name(entry->name, entry->len);
321  
322  	array = kmap_local_folio(folio, 0);
323  	if (!name)
324  		goto out;
325  	ret = nfs_readdir_array_can_expand(array);
326  	if (ret) {
327  		kfree(name);
328  		goto out;
329  	}
330  
331  	cache_entry = &array->array[array->size];
332  	cache_entry->cookie = array->last_cookie;
333  	cache_entry->ino = entry->ino;
334  	cache_entry->d_type = entry->d_type;
335  	cache_entry->name_len = entry->len;
336  	cache_entry->name = name;
337  	array->last_cookie = entry->cookie;
338  	if (array->last_cookie <= cache_entry->cookie)
339  		array->cookies_are_ordered = 0;
340  	array->size++;
341  	if (entry->eof != 0)
342  		nfs_readdir_array_set_eof(array);
343  out:
344  	*cookie = array->last_cookie;
345  	kunmap_local(array);
346  	return ret;
347  }
348  
349  #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
350  /*
351   * Hash algorithm allowing content addressible access to sequences
352   * of directory cookies. Content is addressed by the value of the
353   * cookie index of the first readdir entry in a page.
354   *
355   * We select only the first 18 bits to avoid issues with excessive
356   * memory use for the page cache XArray. 18 bits should allow the caching
357   * of 262144 pages of sequences of readdir entries. Since each page holds
358   * 127 readdir entries for a typical 64-bit system, that works out to a
359   * cache of ~ 33 million entries per directory.
360   */
361  static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
362  {
363  	if (cookie == 0)
364  		return 0;
365  	return hash_64(cookie, 18);
366  }
367  
368  static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
369  				       u64 change_attr)
370  {
371  	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
372  	int ret = true;
373  
374  	if (array->change_attr != change_attr)
375  		ret = false;
376  	if (nfs_readdir_array_index_cookie(array) != last_cookie)
377  		ret = false;
378  	kunmap_local(array);
379  	return ret;
380  }
381  
382  static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
383  {
384  	folio_unlock(folio);
385  	folio_put(folio);
386  }
387  
388  static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
389  						u64 change_attr)
390  {
391  	if (folio_test_uptodate(folio)) {
392  		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
393  			return;
394  		nfs_readdir_clear_array(folio);
395  	}
396  	nfs_readdir_folio_init_array(folio, cookie, change_attr);
397  	folio_mark_uptodate(folio);
398  }
399  
400  static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
401  						  u64 cookie, u64 change_attr)
402  {
403  	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
404  	struct folio *folio;
405  
406  	folio = filemap_grab_folio(mapping, index);
407  	if (IS_ERR(folio))
408  		return NULL;
409  	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
410  	return folio;
411  }
412  
413  static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
414  {
415  	struct nfs_cache_array *array;
416  	u64 ret;
417  
418  	array = kmap_local_folio(folio, 0);
419  	ret = array->last_cookie;
420  	kunmap_local(array);
421  	return ret;
422  }
423  
424  static bool nfs_readdir_folio_needs_filling(struct folio *folio)
425  {
426  	struct nfs_cache_array *array;
427  	bool ret;
428  
429  	array = kmap_local_folio(folio, 0);
430  	ret = !nfs_readdir_array_is_full(array);
431  	kunmap_local(array);
432  	return ret;
433  }
434  
435  static void nfs_readdir_folio_set_eof(struct folio *folio)
436  {
437  	struct nfs_cache_array *array;
438  
439  	array = kmap_local_folio(folio, 0);
440  	nfs_readdir_array_set_eof(array);
441  	kunmap_local(array);
442  }
443  
444  static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
445  						u64 cookie, u64 change_attr)
446  {
447  	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
448  	struct folio *folio;
449  
450  	folio = __filemap_get_folio(mapping, index,
451  			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
452  			mapping_gfp_mask(mapping));
453  	if (IS_ERR(folio))
454  		return NULL;
455  	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
456  	if (nfs_readdir_folio_last_cookie(folio) != cookie)
457  		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
458  	return folio;
459  }
460  
461  static inline
462  int is_32bit_api(void)
463  {
464  #ifdef CONFIG_COMPAT
465  	return in_compat_syscall();
466  #else
467  	return (BITS_PER_LONG == 32);
468  #endif
469  }
470  
471  static
472  bool nfs_readdir_use_cookie(const struct file *filp)
473  {
474  	if ((filp->f_mode & FMODE_32BITHASH) ||
475  	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
476  		return false;
477  	return true;
478  }
479  
480  static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
481  					struct nfs_readdir_descriptor *desc)
482  {
483  	if (array->folio_full) {
484  		desc->last_cookie = array->last_cookie;
485  		desc->current_index += array->size;
486  		desc->cache_entry_index = 0;
487  		desc->folio_index++;
488  	} else
489  		desc->last_cookie = nfs_readdir_array_index_cookie(array);
490  }
491  
492  static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
493  {
494  	desc->current_index = 0;
495  	desc->last_cookie = 0;
496  	desc->folio_index = 0;
497  }
498  
499  static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
500  				      struct nfs_readdir_descriptor *desc)
501  {
502  	loff_t diff = desc->ctx->pos - desc->current_index;
503  	unsigned int index;
504  
505  	if (diff < 0)
506  		goto out_eof;
507  	if (diff >= array->size) {
508  		if (array->folio_is_eof)
509  			goto out_eof;
510  		nfs_readdir_seek_next_array(array, desc);
511  		return -EAGAIN;
512  	}
513  
514  	index = (unsigned int)diff;
515  	desc->dir_cookie = array->array[index].cookie;
516  	desc->cache_entry_index = index;
517  	return 0;
518  out_eof:
519  	desc->eof = true;
520  	return -EBADCOOKIE;
521  }
522  
523  static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
524  					      u64 cookie)
525  {
526  	if (!array->cookies_are_ordered)
527  		return true;
528  	/* Optimisation for monotonically increasing cookies */
529  	if (cookie >= array->last_cookie)
530  		return false;
531  	if (array->size && cookie < array->array[0].cookie)
532  		return false;
533  	return true;
534  }
535  
536  static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
537  					 struct nfs_readdir_descriptor *desc)
538  {
539  	unsigned int i;
540  	int status = -EAGAIN;
541  
542  	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
543  		goto check_eof;
544  
545  	for (i = 0; i < array->size; i++) {
546  		if (array->array[i].cookie == desc->dir_cookie) {
547  			if (nfs_readdir_use_cookie(desc->file))
548  				desc->ctx->pos = desc->dir_cookie;
549  			else
550  				desc->ctx->pos = desc->current_index + i;
551  			desc->cache_entry_index = i;
552  			return 0;
553  		}
554  	}
555  check_eof:
556  	if (array->folio_is_eof) {
557  		status = -EBADCOOKIE;
558  		if (desc->dir_cookie == array->last_cookie)
559  			desc->eof = true;
560  	} else
561  		nfs_readdir_seek_next_array(array, desc);
562  	return status;
563  }
564  
565  static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
566  {
567  	struct nfs_cache_array *array;
568  	int status;
569  
570  	array = kmap_local_folio(desc->folio, 0);
571  
572  	if (desc->dir_cookie == 0)
573  		status = nfs_readdir_search_for_pos(array, desc);
574  	else
575  		status = nfs_readdir_search_for_cookie(array, desc);
576  
577  	kunmap_local(array);
578  	return status;
579  }
580  
581  /* Fill a page with xdr information before transferring to the cache page */
582  static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
583  				  __be32 *verf, u64 cookie,
584  				  struct page **pages, size_t bufsize,
585  				  __be32 *verf_res)
586  {
587  	struct inode *inode = file_inode(desc->file);
588  	struct nfs_readdir_arg arg = {
589  		.dentry = file_dentry(desc->file),
590  		.cred = desc->file->f_cred,
591  		.verf = verf,
592  		.cookie = cookie,
593  		.pages = pages,
594  		.page_len = bufsize,
595  		.plus = desc->plus,
596  	};
597  	struct nfs_readdir_res res = {
598  		.verf = verf_res,
599  	};
600  	unsigned long	timestamp, gencount;
601  	int		error;
602  
603   again:
604  	timestamp = jiffies;
605  	gencount = nfs_inc_attr_generation_counter();
606  	desc->dir_verifier = nfs_save_change_attribute(inode);
607  	error = NFS_PROTO(inode)->readdir(&arg, &res);
608  	if (error < 0) {
609  		/* We requested READDIRPLUS, but the server doesn't grok it */
610  		if (error == -ENOTSUPP && desc->plus) {
611  			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
612  			desc->plus = arg.plus = false;
613  			goto again;
614  		}
615  		goto error;
616  	}
617  	desc->timestamp = timestamp;
618  	desc->gencount = gencount;
619  error:
620  	return error;
621  }
622  
623  static int xdr_decode(struct nfs_readdir_descriptor *desc,
624  		      struct nfs_entry *entry, struct xdr_stream *xdr)
625  {
626  	struct inode *inode = file_inode(desc->file);
627  	int error;
628  
629  	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
630  	if (error)
631  		return error;
632  	entry->fattr->time_start = desc->timestamp;
633  	entry->fattr->gencount = desc->gencount;
634  	return 0;
635  }
636  
637  /* Match file and dirent using either filehandle or fileid
638   * Note: caller is responsible for checking the fsid
639   */
640  static
641  int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
642  {
643  	struct inode *inode;
644  	struct nfs_inode *nfsi;
645  
646  	if (d_really_is_negative(dentry))
647  		return 0;
648  
649  	inode = d_inode(dentry);
650  	if (is_bad_inode(inode) || NFS_STALE(inode))
651  		return 0;
652  
653  	nfsi = NFS_I(inode);
654  	if (entry->fattr->fileid != nfsi->fileid)
655  		return 0;
656  	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
657  		return 0;
658  	return 1;
659  }
660  
661  #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
662  
663  static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
664  				unsigned int cache_hits,
665  				unsigned int cache_misses)
666  {
667  	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
668  		return false;
669  	if (ctx->pos == 0 ||
670  	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
671  		return true;
672  	return false;
673  }
674  
675  /*
676   * This function is called by the getattr code to request the
677   * use of readdirplus to accelerate any future lookups in the same
678   * directory.
679   */
680  void nfs_readdir_record_entry_cache_hit(struct inode *dir)
681  {
682  	struct nfs_inode *nfsi = NFS_I(dir);
683  	struct nfs_open_dir_context *ctx;
684  
685  	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
686  	    S_ISDIR(dir->i_mode)) {
687  		rcu_read_lock();
688  		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
689  			atomic_inc(&ctx->cache_hits);
690  		rcu_read_unlock();
691  	}
692  }
693  
694  /*
695   * This function is mainly for use by nfs_getattr().
696   *
697   * If this is an 'ls -l', we want to force use of readdirplus.
698   */
699  void nfs_readdir_record_entry_cache_miss(struct inode *dir)
700  {
701  	struct nfs_inode *nfsi = NFS_I(dir);
702  	struct nfs_open_dir_context *ctx;
703  
704  	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
705  	    S_ISDIR(dir->i_mode)) {
706  		rcu_read_lock();
707  		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
708  			atomic_inc(&ctx->cache_misses);
709  		rcu_read_unlock();
710  	}
711  }
712  
713  static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
714  						unsigned int flags)
715  {
716  	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
717  		return;
718  	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
719  		return;
720  	nfs_readdir_record_entry_cache_miss(dir);
721  }
722  
723  static
724  void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
725  		unsigned long dir_verifier)
726  {
727  	struct qstr filename = QSTR_INIT(entry->name, entry->len);
728  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
729  	struct dentry *dentry;
730  	struct dentry *alias;
731  	struct inode *inode;
732  	int status;
733  
734  	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
735  		return;
736  	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
737  		return;
738  	if (filename.len == 0)
739  		return;
740  	/* Validate that the name doesn't contain any illegal '\0' */
741  	if (strnlen(filename.name, filename.len) != filename.len)
742  		return;
743  	/* ...or '/' */
744  	if (strnchr(filename.name, filename.len, '/'))
745  		return;
746  	if (filename.name[0] == '.') {
747  		if (filename.len == 1)
748  			return;
749  		if (filename.len == 2 && filename.name[1] == '.')
750  			return;
751  	}
752  	filename.hash = full_name_hash(parent, filename.name, filename.len);
753  
754  	dentry = d_lookup(parent, &filename);
755  again:
756  	if (!dentry) {
757  		dentry = d_alloc_parallel(parent, &filename, &wq);
758  		if (IS_ERR(dentry))
759  			return;
760  	}
761  	if (!d_in_lookup(dentry)) {
762  		/* Is there a mountpoint here? If so, just exit */
763  		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
764  					&entry->fattr->fsid))
765  			goto out;
766  		if (nfs_same_file(dentry, entry)) {
767  			if (!entry->fh->size)
768  				goto out;
769  			nfs_set_verifier(dentry, dir_verifier);
770  			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
771  			if (!status)
772  				nfs_setsecurity(d_inode(dentry), entry->fattr);
773  			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
774  							    dentry, 0, status);
775  			goto out;
776  		} else {
777  			trace_nfs_readdir_lookup_revalidate_failed(
778  				d_inode(parent), dentry, 0);
779  			d_invalidate(dentry);
780  			dput(dentry);
781  			dentry = NULL;
782  			goto again;
783  		}
784  	}
785  	if (!entry->fh->size) {
786  		d_lookup_done(dentry);
787  		goto out;
788  	}
789  
790  	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
791  	alias = d_splice_alias(inode, dentry);
792  	d_lookup_done(dentry);
793  	if (alias) {
794  		if (IS_ERR(alias))
795  			goto out;
796  		dput(dentry);
797  		dentry = alias;
798  	}
799  	nfs_set_verifier(dentry, dir_verifier);
800  	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
801  out:
802  	dput(dentry);
803  }
804  
805  static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
806  				    struct nfs_entry *entry,
807  				    struct xdr_stream *stream)
808  {
809  	int ret;
810  
811  	if (entry->fattr->label)
812  		entry->fattr->label->len = NFS4_MAXLABELLEN;
813  	ret = xdr_decode(desc, entry, stream);
814  	if (ret || !desc->plus)
815  		return ret;
816  	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
817  	return 0;
818  }
819  
820  /* Perform conversion from xdr to cache array */
821  static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
822  				    struct nfs_entry *entry,
823  				    struct page **xdr_pages, unsigned int buflen,
824  				    struct folio **arrays, size_t narrays,
825  				    u64 change_attr)
826  {
827  	struct address_space *mapping = desc->file->f_mapping;
828  	struct folio *new, *folio = *arrays;
829  	struct xdr_stream stream;
830  	struct page *scratch;
831  	struct xdr_buf buf;
832  	u64 cookie;
833  	int status;
834  
835  	scratch = alloc_page(GFP_KERNEL);
836  	if (scratch == NULL)
837  		return -ENOMEM;
838  
839  	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840  	xdr_set_scratch_page(&stream, scratch);
841  
842  	do {
843  		status = nfs_readdir_entry_decode(desc, entry, &stream);
844  		if (status != 0)
845  			break;
846  
847  		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
848  		if (status != -ENOSPC)
849  			continue;
850  
851  		if (folio->mapping != mapping) {
852  			if (!--narrays)
853  				break;
854  			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
855  			if (!new)
856  				break;
857  			arrays++;
858  			*arrays = folio = new;
859  		} else {
860  			new = nfs_readdir_folio_get_next(mapping, cookie,
861  							 change_attr);
862  			if (!new)
863  				break;
864  			if (folio != *arrays)
865  				nfs_readdir_folio_unlock_and_put(folio);
866  			folio = new;
867  		}
868  		desc->folio_index_max++;
869  		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
870  	} while (!status && !entry->eof);
871  
872  	switch (status) {
873  	case -EBADCOOKIE:
874  		if (!entry->eof)
875  			break;
876  		nfs_readdir_folio_set_eof(folio);
877  		fallthrough;
878  	case -EAGAIN:
879  		status = 0;
880  		break;
881  	case -ENOSPC:
882  		status = 0;
883  		if (!desc->plus)
884  			break;
885  		while (!nfs_readdir_entry_decode(desc, entry, &stream))
886  			;
887  	}
888  
889  	if (folio != *arrays)
890  		nfs_readdir_folio_unlock_and_put(folio);
891  
892  	put_page(scratch);
893  	return status;
894  }
895  
896  static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897  {
898  	while (npages--)
899  		put_page(pages[npages]);
900  	kfree(pages);
901  }
902  
903  /*
904   * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905   * to nfs_readdir_free_pages()
906   */
907  static struct page **nfs_readdir_alloc_pages(size_t npages)
908  {
909  	struct page **pages;
910  	size_t i;
911  
912  	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913  	if (!pages)
914  		return NULL;
915  	for (i = 0; i < npages; i++) {
916  		struct page *page = alloc_page(GFP_KERNEL);
917  		if (page == NULL)
918  			goto out_freepages;
919  		pages[i] = page;
920  	}
921  	return pages;
922  
923  out_freepages:
924  	nfs_readdir_free_pages(pages, i);
925  	return NULL;
926  }
927  
928  static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929  				    __be32 *verf_arg, __be32 *verf_res,
930  				    struct folio **arrays, size_t narrays)
931  {
932  	u64 change_attr;
933  	struct page **pages;
934  	struct folio *folio = *arrays;
935  	struct nfs_entry *entry;
936  	size_t array_size;
937  	struct inode *inode = file_inode(desc->file);
938  	unsigned int dtsize = desc->dtsize;
939  	unsigned int pglen;
940  	int status = -ENOMEM;
941  
942  	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943  	if (!entry)
944  		return -ENOMEM;
945  	entry->cookie = nfs_readdir_folio_last_cookie(folio);
946  	entry->fh = nfs_alloc_fhandle();
947  	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948  	entry->server = NFS_SERVER(inode);
949  	if (entry->fh == NULL || entry->fattr == NULL)
950  		goto out;
951  
952  	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953  	pages = nfs_readdir_alloc_pages(array_size);
954  	if (!pages)
955  		goto out;
956  
957  	change_attr = inode_peek_iversion_raw(inode);
958  	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959  					dtsize, verf_res);
960  	if (status < 0)
961  		goto free_pages;
962  
963  	pglen = status;
964  	if (pglen != 0)
965  		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
966  						  arrays, narrays, change_attr);
967  	else
968  		nfs_readdir_folio_set_eof(folio);
969  	desc->buffer_fills++;
970  
971  free_pages:
972  	nfs_readdir_free_pages(pages, array_size);
973  out:
974  	nfs_free_fattr(entry->fattr);
975  	nfs_free_fhandle(entry->fh);
976  	kfree(entry);
977  	return status;
978  }
979  
980  static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
981  {
982  	folio_put(desc->folio);
983  	desc->folio = NULL;
984  }
985  
986  static void
987  nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988  {
989  	folio_unlock(desc->folio);
990  	nfs_readdir_folio_put(desc);
991  }
992  
993  static struct folio *
994  nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
995  {
996  	struct address_space *mapping = desc->file->f_mapping;
997  	u64 change_attr = inode_peek_iversion_raw(mapping->host);
998  	u64 cookie = desc->last_cookie;
999  	struct folio *folio;
1000  
1001  	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1002  	if (!folio)
1003  		return NULL;
1004  	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1005  		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1006  	return folio;
1007  }
1008  
1009  /*
1010   * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011   * and locks the page to prevent removal from the page cache.
1012   */
1013  static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014  {
1015  	struct inode *inode = file_inode(desc->file);
1016  	struct nfs_inode *nfsi = NFS_I(inode);
1017  	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1018  	int res;
1019  
1020  	desc->folio = nfs_readdir_folio_get_cached(desc);
1021  	if (!desc->folio)
1022  		return -ENOMEM;
1023  	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1024  		/* Grow the dtsize if we had to go back for more pages */
1025  		if (desc->folio_index == desc->folio_index_max)
1026  			nfs_grow_dtsize(desc);
1027  		desc->folio_index_max = desc->folio_index;
1028  		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029  					     desc->last_cookie,
1030  					     desc->folio->index, desc->dtsize);
1031  		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032  					       &desc->folio, 1);
1033  		if (res < 0) {
1034  			nfs_readdir_folio_unlock_and_put_cached(desc);
1035  			trace_nfs_readdir_cache_fill_done(inode, res);
1036  			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037  				invalidate_inode_pages2(desc->file->f_mapping);
1038  				nfs_readdir_rewind_search(desc);
1039  				trace_nfs_readdir_invalidate_cache_range(
1040  					inode, 0, MAX_LFS_FILESIZE);
1041  				return -EAGAIN;
1042  			}
1043  			return res;
1044  		}
1045  		/*
1046  		 * Set the cookie verifier if the page cache was empty
1047  		 */
1048  		if (desc->last_cookie == 0 &&
1049  		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050  			memcpy(nfsi->cookieverf, verf,
1051  			       sizeof(nfsi->cookieverf));
1052  			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053  						      -1);
1054  			trace_nfs_readdir_invalidate_cache_range(
1055  				inode, 1, MAX_LFS_FILESIZE);
1056  		}
1057  		desc->clear_cache = false;
1058  	}
1059  	res = nfs_readdir_search_array(desc);
1060  	if (res == 0)
1061  		return 0;
1062  	nfs_readdir_folio_unlock_and_put_cached(desc);
1063  	return res;
1064  }
1065  
1066  /* Search for desc->dir_cookie from the beginning of the page cache */
1067  static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068  {
1069  	int res;
1070  
1071  	do {
1072  		res = find_and_lock_cache_page(desc);
1073  	} while (res == -EAGAIN);
1074  	return res;
1075  }
1076  
1077  #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078  
1079  /*
1080   * Once we've found the start of the dirent within a page: fill 'er up...
1081   */
1082  static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083  			   const __be32 *verf)
1084  {
1085  	struct file	*file = desc->file;
1086  	struct nfs_cache_array *array;
1087  	unsigned int i;
1088  	bool first_emit = !desc->dir_cookie;
1089  
1090  	array = kmap_local_folio(desc->folio, 0);
1091  	for (i = desc->cache_entry_index; i < array->size; i++) {
1092  		struct nfs_cache_array_entry *ent;
1093  
1094  		/*
1095  		 * nfs_readdir_handle_cache_misses return force clear at
1096  		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1097  		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1098  		 * entries need be emitted here.
1099  		 */
1100  		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1101  			desc->eob = true;
1102  			break;
1103  		}
1104  
1105  		ent = &array->array[i];
1106  		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1107  		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1108  			desc->eob = true;
1109  			break;
1110  		}
1111  		memcpy(desc->verf, verf, sizeof(desc->verf));
1112  		if (i == array->size - 1) {
1113  			desc->dir_cookie = array->last_cookie;
1114  			nfs_readdir_seek_next_array(array, desc);
1115  		} else {
1116  			desc->dir_cookie = array->array[i + 1].cookie;
1117  			desc->last_cookie = array->array[0].cookie;
1118  		}
1119  		if (nfs_readdir_use_cookie(file))
1120  			desc->ctx->pos = desc->dir_cookie;
1121  		else
1122  			desc->ctx->pos++;
1123  	}
1124  	if (array->folio_is_eof)
1125  		desc->eof = !desc->eob;
1126  
1127  	kunmap_local(array);
1128  	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1129  			(unsigned long long)desc->dir_cookie);
1130  }
1131  
1132  /*
1133   * If we cannot find a cookie in our cache, we suspect that this is
1134   * because it points to a deleted file, so we ask the server to return
1135   * whatever it thinks is the next entry. We then feed this to filldir.
1136   * If all goes well, we should then be able to find our way round the
1137   * cache on the next call to readdir_search_pagecache();
1138   *
1139   * NOTE: we cannot add the anonymous page to the pagecache because
1140   *	 the data it contains might not be page aligned. Besides,
1141   *	 we should already have a complete representation of the
1142   *	 directory in the page cache by the time we get here.
1143   */
1144  static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1145  {
1146  	struct folio	**arrays;
1147  	size_t		i, sz = 512;
1148  	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1149  	int		status = -ENOMEM;
1150  
1151  	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1152  			(unsigned long long)desc->dir_cookie);
1153  
1154  	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1155  	if (!arrays)
1156  		goto out;
1157  	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1158  	if (!arrays[0])
1159  		goto out;
1160  
1161  	desc->folio_index = 0;
1162  	desc->cache_entry_index = 0;
1163  	desc->last_cookie = desc->dir_cookie;
1164  	desc->folio_index_max = 0;
1165  
1166  	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1167  				   -1, desc->dtsize);
1168  
1169  	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1170  	if (status < 0) {
1171  		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1172  		goto out_free;
1173  	}
1174  
1175  	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1176  		desc->folio = arrays[i];
1177  		nfs_do_filldir(desc, verf);
1178  	}
1179  	desc->folio = NULL;
1180  
1181  	/*
1182  	 * Grow the dtsize if we have to go back for more pages,
1183  	 * or shrink it if we're reading too many.
1184  	 */
1185  	if (!desc->eof) {
1186  		if (!desc->eob)
1187  			nfs_grow_dtsize(desc);
1188  		else if (desc->buffer_fills == 1 &&
1189  			 i < (desc->folio_index_max >> 1))
1190  			nfs_shrink_dtsize(desc);
1191  	}
1192  out_free:
1193  	for (i = 0; i < sz && arrays[i]; i++)
1194  		nfs_readdir_folio_array_free(arrays[i]);
1195  out:
1196  	if (!nfs_readdir_use_cookie(desc->file))
1197  		nfs_readdir_rewind_search(desc);
1198  	desc->folio_index_max = -1;
1199  	kfree(arrays);
1200  	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1201  	return status;
1202  }
1203  
1204  static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1205  					    struct nfs_readdir_descriptor *desc,
1206  					    unsigned int cache_misses,
1207  					    bool force_clear)
1208  {
1209  	if (desc->ctx->pos == 0 || !desc->plus)
1210  		return false;
1211  	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1212  		return false;
1213  	trace_nfs_readdir_force_readdirplus(inode);
1214  	return true;
1215  }
1216  
1217  /* The file offset position represents the dirent entry number.  A
1218     last cookie cache takes care of the common case of reading the
1219     whole directory.
1220   */
1221  static int nfs_readdir(struct file *file, struct dir_context *ctx)
1222  {
1223  	struct dentry	*dentry = file_dentry(file);
1224  	struct inode	*inode = d_inode(dentry);
1225  	struct nfs_inode *nfsi = NFS_I(inode);
1226  	struct nfs_open_dir_context *dir_ctx = file->private_data;
1227  	struct nfs_readdir_descriptor *desc;
1228  	unsigned int cache_hits, cache_misses;
1229  	bool force_clear;
1230  	int res;
1231  
1232  	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1233  			file, (long long)ctx->pos);
1234  	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1235  
1236  	/*
1237  	 * ctx->pos points to the dirent entry number.
1238  	 * *desc->dir_cookie has the cookie for the next entry. We have
1239  	 * to either find the entry with the appropriate number or
1240  	 * revalidate the cookie.
1241  	 */
1242  	nfs_revalidate_mapping(inode, file->f_mapping);
1243  
1244  	res = -ENOMEM;
1245  	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1246  	if (!desc)
1247  		goto out;
1248  	desc->file = file;
1249  	desc->ctx = ctx;
1250  	desc->folio_index_max = -1;
1251  
1252  	spin_lock(&file->f_lock);
1253  	desc->dir_cookie = dir_ctx->dir_cookie;
1254  	desc->folio_index = dir_ctx->page_index;
1255  	desc->last_cookie = dir_ctx->last_cookie;
1256  	desc->attr_gencount = dir_ctx->attr_gencount;
1257  	desc->eof = dir_ctx->eof;
1258  	nfs_set_dtsize(desc, dir_ctx->dtsize);
1259  	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1260  	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1261  	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1262  	force_clear = dir_ctx->force_clear;
1263  	spin_unlock(&file->f_lock);
1264  
1265  	if (desc->eof) {
1266  		res = 0;
1267  		goto out_free;
1268  	}
1269  
1270  	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1271  	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1272  						      force_clear);
1273  	desc->clear_cache = force_clear;
1274  
1275  	do {
1276  		res = readdir_search_pagecache(desc);
1277  
1278  		if (res == -EBADCOOKIE) {
1279  			res = 0;
1280  			/* This means either end of directory */
1281  			if (desc->dir_cookie && !desc->eof) {
1282  				/* Or that the server has 'lost' a cookie */
1283  				res = uncached_readdir(desc);
1284  				if (res == 0)
1285  					continue;
1286  				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1287  					res = 0;
1288  			}
1289  			break;
1290  		}
1291  		if (res == -ETOOSMALL && desc->plus) {
1292  			nfs_zap_caches(inode);
1293  			desc->plus = false;
1294  			desc->eof = false;
1295  			continue;
1296  		}
1297  		if (res < 0)
1298  			break;
1299  
1300  		nfs_do_filldir(desc, nfsi->cookieverf);
1301  		nfs_readdir_folio_unlock_and_put_cached(desc);
1302  		if (desc->folio_index == desc->folio_index_max)
1303  			desc->clear_cache = force_clear;
1304  	} while (!desc->eob && !desc->eof);
1305  
1306  	spin_lock(&file->f_lock);
1307  	dir_ctx->dir_cookie = desc->dir_cookie;
1308  	dir_ctx->last_cookie = desc->last_cookie;
1309  	dir_ctx->attr_gencount = desc->attr_gencount;
1310  	dir_ctx->page_index = desc->folio_index;
1311  	dir_ctx->force_clear = force_clear;
1312  	dir_ctx->eof = desc->eof;
1313  	dir_ctx->dtsize = desc->dtsize;
1314  	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1315  	spin_unlock(&file->f_lock);
1316  out_free:
1317  	kfree(desc);
1318  
1319  out:
1320  	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1321  	return res;
1322  }
1323  
1324  static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1325  {
1326  	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1327  
1328  	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1329  			filp, offset, whence);
1330  
1331  	switch (whence) {
1332  	default:
1333  		return -EINVAL;
1334  	case SEEK_SET:
1335  		if (offset < 0)
1336  			return -EINVAL;
1337  		spin_lock(&filp->f_lock);
1338  		break;
1339  	case SEEK_CUR:
1340  		if (offset == 0)
1341  			return filp->f_pos;
1342  		spin_lock(&filp->f_lock);
1343  		offset += filp->f_pos;
1344  		if (offset < 0) {
1345  			spin_unlock(&filp->f_lock);
1346  			return -EINVAL;
1347  		}
1348  	}
1349  	if (offset != filp->f_pos) {
1350  		filp->f_pos = offset;
1351  		dir_ctx->page_index = 0;
1352  		if (!nfs_readdir_use_cookie(filp)) {
1353  			dir_ctx->dir_cookie = 0;
1354  			dir_ctx->last_cookie = 0;
1355  		} else {
1356  			dir_ctx->dir_cookie = offset;
1357  			dir_ctx->last_cookie = offset;
1358  		}
1359  		dir_ctx->eof = false;
1360  	}
1361  	spin_unlock(&filp->f_lock);
1362  	return offset;
1363  }
1364  
1365  /*
1366   * All directory operations under NFS are synchronous, so fsync()
1367   * is a dummy operation.
1368   */
1369  static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1370  			 int datasync)
1371  {
1372  	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1373  
1374  	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1375  	return 0;
1376  }
1377  
1378  /**
1379   * nfs_force_lookup_revalidate - Mark the directory as having changed
1380   * @dir: pointer to directory inode
1381   *
1382   * This forces the revalidation code in nfs_lookup_revalidate() to do a
1383   * full lookup on all child dentries of 'dir' whenever a change occurs
1384   * on the server that might have invalidated our dcache.
1385   *
1386   * Note that we reserve bit '0' as a tag to let us know when a dentry
1387   * was revalidated while holding a delegation on its inode.
1388   *
1389   * The caller should be holding dir->i_lock
1390   */
1391  void nfs_force_lookup_revalidate(struct inode *dir)
1392  {
1393  	NFS_I(dir)->cache_change_attribute += 2;
1394  }
1395  EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1396  
1397  /**
1398   * nfs_verify_change_attribute - Detects NFS remote directory changes
1399   * @dir: pointer to parent directory inode
1400   * @verf: previously saved change attribute
1401   *
1402   * Return "false" if the verifiers doesn't match the change attribute.
1403   * This would usually indicate that the directory contents have changed on
1404   * the server, and that any dentries need revalidating.
1405   */
1406  static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1407  {
1408  	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1409  }
1410  
1411  static void nfs_set_verifier_delegated(unsigned long *verf)
1412  {
1413  	*verf |= 1UL;
1414  }
1415  
1416  #if IS_ENABLED(CONFIG_NFS_V4)
1417  static void nfs_unset_verifier_delegated(unsigned long *verf)
1418  {
1419  	*verf &= ~1UL;
1420  }
1421  #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1422  
1423  static bool nfs_test_verifier_delegated(unsigned long verf)
1424  {
1425  	return verf & 1;
1426  }
1427  
1428  static bool nfs_verifier_is_delegated(struct dentry *dentry)
1429  {
1430  	return nfs_test_verifier_delegated(dentry->d_time);
1431  }
1432  
1433  static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1434  {
1435  	struct inode *inode = d_inode(dentry);
1436  	struct inode *dir = d_inode_rcu(dentry->d_parent);
1437  
1438  	if (!dir || !nfs_verify_change_attribute(dir, verf))
1439  		return;
1440  	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1441  		nfs_set_verifier_delegated(&verf);
1442  	dentry->d_time = verf;
1443  }
1444  
1445  /**
1446   * nfs_set_verifier - save a parent directory verifier in the dentry
1447   * @dentry: pointer to dentry
1448   * @verf: verifier to save
1449   *
1450   * Saves the parent directory verifier in @dentry. If the inode has
1451   * a delegation, we also tag the dentry as having been revalidated
1452   * while holding a delegation so that we know we don't have to
1453   * look it up again after a directory change.
1454   */
1455  void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1456  {
1457  
1458  	spin_lock(&dentry->d_lock);
1459  	nfs_set_verifier_locked(dentry, verf);
1460  	spin_unlock(&dentry->d_lock);
1461  }
1462  EXPORT_SYMBOL_GPL(nfs_set_verifier);
1463  
1464  #if IS_ENABLED(CONFIG_NFS_V4)
1465  /**
1466   * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1467   * @inode: pointer to inode
1468   *
1469   * Iterates through the dentries in the inode alias list and clears
1470   * the tag used to indicate that the dentry has been revalidated
1471   * while holding a delegation.
1472   * This function is intended for use when the delegation is being
1473   * returned or revoked.
1474   */
1475  void nfs_clear_verifier_delegated(struct inode *inode)
1476  {
1477  	struct dentry *alias;
1478  
1479  	if (!inode)
1480  		return;
1481  	spin_lock(&inode->i_lock);
1482  	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1483  		spin_lock(&alias->d_lock);
1484  		nfs_unset_verifier_delegated(&alias->d_time);
1485  		spin_unlock(&alias->d_lock);
1486  	}
1487  	spin_unlock(&inode->i_lock);
1488  }
1489  EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1490  #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1491  
1492  static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1493  {
1494  	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1495  	    d_really_is_negative(dentry))
1496  		return dentry->d_time == inode_peek_iversion_raw(dir);
1497  	return nfs_verify_change_attribute(dir, dentry->d_time);
1498  }
1499  
1500  /*
1501   * A check for whether or not the parent directory has changed.
1502   * In the case it has, we assume that the dentries are untrustworthy
1503   * and may need to be looked up again.
1504   * If rcu_walk prevents us from performing a full check, return 0.
1505   */
1506  static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1507  			      int rcu_walk)
1508  {
1509  	if (IS_ROOT(dentry))
1510  		return 1;
1511  	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1512  		return 0;
1513  	if (!nfs_dentry_verify_change(dir, dentry))
1514  		return 0;
1515  	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1516  	if (nfs_mapping_need_revalidate_inode(dir)) {
1517  		if (rcu_walk)
1518  			return 0;
1519  		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1520  			return 0;
1521  	}
1522  	if (!nfs_dentry_verify_change(dir, dentry))
1523  		return 0;
1524  	return 1;
1525  }
1526  
1527  /*
1528   * Use intent information to check whether or not we're going to do
1529   * an O_EXCL create using this path component.
1530   */
1531  static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1532  {
1533  	if (NFS_PROTO(dir)->version == 2)
1534  		return 0;
1535  	return flags & LOOKUP_EXCL;
1536  }
1537  
1538  /*
1539   * Inode and filehandle revalidation for lookups.
1540   *
1541   * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1542   * or if the intent information indicates that we're about to open this
1543   * particular file and the "nocto" mount flag is not set.
1544   *
1545   */
1546  static
1547  int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1548  {
1549  	struct nfs_server *server = NFS_SERVER(inode);
1550  	int ret;
1551  
1552  	if (IS_AUTOMOUNT(inode))
1553  		return 0;
1554  
1555  	if (flags & LOOKUP_OPEN) {
1556  		switch (inode->i_mode & S_IFMT) {
1557  		case S_IFREG:
1558  			/* A NFSv4 OPEN will revalidate later */
1559  			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1560  				goto out;
1561  			fallthrough;
1562  		case S_IFDIR:
1563  			if (server->flags & NFS_MOUNT_NOCTO)
1564  				break;
1565  			/* NFS close-to-open cache consistency validation */
1566  			goto out_force;
1567  		}
1568  	}
1569  
1570  	/* VFS wants an on-the-wire revalidation */
1571  	if (flags & LOOKUP_REVAL)
1572  		goto out_force;
1573  out:
1574  	if (inode->i_nlink > 0 ||
1575  	    (inode->i_nlink == 0 &&
1576  	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1577  		return 0;
1578  	else
1579  		return -ESTALE;
1580  out_force:
1581  	if (flags & LOOKUP_RCU)
1582  		return -ECHILD;
1583  	ret = __nfs_revalidate_inode(server, inode);
1584  	if (ret != 0)
1585  		return ret;
1586  	goto out;
1587  }
1588  
1589  static void nfs_mark_dir_for_revalidate(struct inode *inode)
1590  {
1591  	spin_lock(&inode->i_lock);
1592  	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1593  	spin_unlock(&inode->i_lock);
1594  }
1595  
1596  /*
1597   * We judge how long we want to trust negative
1598   * dentries by looking at the parent inode mtime.
1599   *
1600   * If parent mtime has changed, we revalidate, else we wait for a
1601   * period corresponding to the parent's attribute cache timeout value.
1602   *
1603   * If LOOKUP_RCU prevents us from performing a full check, return 1
1604   * suggesting a reval is needed.
1605   *
1606   * Note that when creating a new file, or looking up a rename target,
1607   * then it shouldn't be necessary to revalidate a negative dentry.
1608   */
1609  static inline
1610  int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1611  		       unsigned int flags)
1612  {
1613  	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1614  		return 0;
1615  	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1616  		return 1;
1617  	/* Case insensitive server? Revalidate negative dentries */
1618  	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1619  		return 1;
1620  	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1621  }
1622  
1623  static int
1624  nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1625  			   struct inode *inode, int error)
1626  {
1627  	switch (error) {
1628  	case 1:
1629  		break;
1630  	case 0:
1631  		/*
1632  		 * We can't d_drop the root of a disconnected tree:
1633  		 * its d_hash is on the s_anon list and d_drop() would hide
1634  		 * it from shrink_dcache_for_unmount(), leading to busy
1635  		 * inodes on unmount and further oopses.
1636  		 */
1637  		if (inode && IS_ROOT(dentry))
1638  			error = 1;
1639  		break;
1640  	}
1641  	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1642  	return error;
1643  }
1644  
1645  static int
1646  nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1647  			       unsigned int flags)
1648  {
1649  	int ret = 1;
1650  	if (nfs_neg_need_reval(dir, dentry, flags)) {
1651  		if (flags & LOOKUP_RCU)
1652  			return -ECHILD;
1653  		ret = 0;
1654  	}
1655  	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1656  }
1657  
1658  static int
1659  nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1660  				struct inode *inode)
1661  {
1662  	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1663  	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1664  }
1665  
1666  static int nfs_lookup_revalidate_dentry(struct inode *dir,
1667  					struct dentry *dentry,
1668  					struct inode *inode, unsigned int flags)
1669  {
1670  	struct nfs_fh *fhandle;
1671  	struct nfs_fattr *fattr;
1672  	unsigned long dir_verifier;
1673  	int ret;
1674  
1675  	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1676  
1677  	ret = -ENOMEM;
1678  	fhandle = nfs_alloc_fhandle();
1679  	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1680  	if (fhandle == NULL || fattr == NULL)
1681  		goto out;
1682  
1683  	dir_verifier = nfs_save_change_attribute(dir);
1684  	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1685  	if (ret < 0) {
1686  		switch (ret) {
1687  		case -ESTALE:
1688  		case -ENOENT:
1689  			ret = 0;
1690  			break;
1691  		case -ETIMEDOUT:
1692  			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1693  				ret = 1;
1694  		}
1695  		goto out;
1696  	}
1697  
1698  	/* Request help from readdirplus */
1699  	nfs_lookup_advise_force_readdirplus(dir, flags);
1700  
1701  	ret = 0;
1702  	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1703  		goto out;
1704  	if (nfs_refresh_inode(inode, fattr) < 0)
1705  		goto out;
1706  
1707  	nfs_setsecurity(inode, fattr);
1708  	nfs_set_verifier(dentry, dir_verifier);
1709  
1710  	ret = 1;
1711  out:
1712  	nfs_free_fattr(fattr);
1713  	nfs_free_fhandle(fhandle);
1714  
1715  	/*
1716  	 * If the lookup failed despite the dentry change attribute being
1717  	 * a match, then we should revalidate the directory cache.
1718  	 */
1719  	if (!ret && nfs_dentry_verify_change(dir, dentry))
1720  		nfs_mark_dir_for_revalidate(dir);
1721  	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1722  }
1723  
1724  /*
1725   * This is called every time the dcache has a lookup hit,
1726   * and we should check whether we can really trust that
1727   * lookup.
1728   *
1729   * NOTE! The hit can be a negative hit too, don't assume
1730   * we have an inode!
1731   *
1732   * If the parent directory is seen to have changed, we throw out the
1733   * cached dentry and do a new lookup.
1734   */
1735  static int
1736  nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1737  			 unsigned int flags)
1738  {
1739  	struct inode *inode;
1740  	int error;
1741  
1742  	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1743  	inode = d_inode(dentry);
1744  
1745  	if (!inode)
1746  		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1747  
1748  	if (is_bad_inode(inode)) {
1749  		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1750  				__func__, dentry);
1751  		goto out_bad;
1752  	}
1753  
1754  	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1755  	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1756  		goto out_bad;
1757  
1758  	if (nfs_verifier_is_delegated(dentry))
1759  		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1760  
1761  	/* Force a full look up iff the parent directory has changed */
1762  	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1763  	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1764  		error = nfs_lookup_verify_inode(inode, flags);
1765  		if (error) {
1766  			if (error == -ESTALE)
1767  				nfs_mark_dir_for_revalidate(dir);
1768  			goto out_bad;
1769  		}
1770  		goto out_valid;
1771  	}
1772  
1773  	if (flags & LOOKUP_RCU)
1774  		return -ECHILD;
1775  
1776  	if (NFS_STALE(inode))
1777  		goto out_bad;
1778  
1779  	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1780  out_valid:
1781  	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1782  out_bad:
1783  	if (flags & LOOKUP_RCU)
1784  		return -ECHILD;
1785  	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1786  }
1787  
1788  static int
1789  __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1790  			int (*reval)(struct inode *, struct dentry *, unsigned int))
1791  {
1792  	struct dentry *parent;
1793  	struct inode *dir;
1794  	int ret;
1795  
1796  	if (flags & LOOKUP_RCU) {
1797  		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1798  			return -ECHILD;
1799  		parent = READ_ONCE(dentry->d_parent);
1800  		dir = d_inode_rcu(parent);
1801  		if (!dir)
1802  			return -ECHILD;
1803  		ret = reval(dir, dentry, flags);
1804  		if (parent != READ_ONCE(dentry->d_parent))
1805  			return -ECHILD;
1806  	} else {
1807  		/* Wait for unlink to complete */
1808  		wait_var_event(&dentry->d_fsdata,
1809  			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1810  		parent = dget_parent(dentry);
1811  		ret = reval(d_inode(parent), dentry, flags);
1812  		dput(parent);
1813  	}
1814  	return ret;
1815  }
1816  
1817  static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1818  {
1819  	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1820  }
1821  
1822  /*
1823   * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1824   * when we don't really care about the dentry name. This is called when a
1825   * pathwalk ends on a dentry that was not found via a normal lookup in the
1826   * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1827   *
1828   * In this situation, we just want to verify that the inode itself is OK
1829   * since the dentry might have changed on the server.
1830   */
1831  static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1832  {
1833  	struct inode *inode = d_inode(dentry);
1834  	int error = 0;
1835  
1836  	/*
1837  	 * I believe we can only get a negative dentry here in the case of a
1838  	 * procfs-style symlink. Just assume it's correct for now, but we may
1839  	 * eventually need to do something more here.
1840  	 */
1841  	if (!inode) {
1842  		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1843  				__func__, dentry);
1844  		return 1;
1845  	}
1846  
1847  	if (is_bad_inode(inode)) {
1848  		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1849  				__func__, dentry);
1850  		return 0;
1851  	}
1852  
1853  	error = nfs_lookup_verify_inode(inode, flags);
1854  	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1855  			__func__, inode->i_ino, error ? "invalid" : "valid");
1856  	return !error;
1857  }
1858  
1859  /*
1860   * This is called from dput() when d_count is going to 0.
1861   */
1862  static int nfs_dentry_delete(const struct dentry *dentry)
1863  {
1864  	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1865  		dentry, dentry->d_flags);
1866  
1867  	/* Unhash any dentry with a stale inode */
1868  	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1869  		return 1;
1870  
1871  	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1872  		/* Unhash it, so that ->d_iput() would be called */
1873  		return 1;
1874  	}
1875  	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1876  		/* Unhash it, so that ancestors of killed async unlink
1877  		 * files will be cleaned up during umount */
1878  		return 1;
1879  	}
1880  	return 0;
1881  
1882  }
1883  
1884  /* Ensure that we revalidate inode->i_nlink */
1885  static void nfs_drop_nlink(struct inode *inode)
1886  {
1887  	spin_lock(&inode->i_lock);
1888  	/* drop the inode if we're reasonably sure this is the last link */
1889  	if (inode->i_nlink > 0)
1890  		drop_nlink(inode);
1891  	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1892  	nfs_set_cache_invalid(
1893  		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1894  			       NFS_INO_INVALID_NLINK);
1895  	spin_unlock(&inode->i_lock);
1896  }
1897  
1898  /*
1899   * Called when the dentry loses inode.
1900   * We use it to clean up silly-renamed files.
1901   */
1902  static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1903  {
1904  	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1905  		nfs_complete_unlink(dentry, inode);
1906  		nfs_drop_nlink(inode);
1907  	}
1908  	iput(inode);
1909  }
1910  
1911  static void nfs_d_release(struct dentry *dentry)
1912  {
1913  	/* free cached devname value, if it survived that far */
1914  	if (unlikely(dentry->d_fsdata)) {
1915  		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1916  			WARN_ON(1);
1917  		else
1918  			kfree(dentry->d_fsdata);
1919  	}
1920  }
1921  
1922  const struct dentry_operations nfs_dentry_operations = {
1923  	.d_revalidate	= nfs_lookup_revalidate,
1924  	.d_weak_revalidate	= nfs_weak_revalidate,
1925  	.d_delete	= nfs_dentry_delete,
1926  	.d_iput		= nfs_dentry_iput,
1927  	.d_automount	= nfs_d_automount,
1928  	.d_release	= nfs_d_release,
1929  };
1930  EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1931  
1932  struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1933  {
1934  	struct dentry *res;
1935  	struct inode *inode = NULL;
1936  	struct nfs_fh *fhandle = NULL;
1937  	struct nfs_fattr *fattr = NULL;
1938  	unsigned long dir_verifier;
1939  	int error;
1940  
1941  	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1942  	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1943  
1944  	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1945  		return ERR_PTR(-ENAMETOOLONG);
1946  
1947  	/*
1948  	 * If we're doing an exclusive create, optimize away the lookup
1949  	 * but don't hash the dentry.
1950  	 */
1951  	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1952  		return NULL;
1953  
1954  	res = ERR_PTR(-ENOMEM);
1955  	fhandle = nfs_alloc_fhandle();
1956  	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1957  	if (fhandle == NULL || fattr == NULL)
1958  		goto out;
1959  
1960  	dir_verifier = nfs_save_change_attribute(dir);
1961  	trace_nfs_lookup_enter(dir, dentry, flags);
1962  	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1963  	if (error == -ENOENT) {
1964  		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1965  			dir_verifier = inode_peek_iversion_raw(dir);
1966  		goto no_entry;
1967  	}
1968  	if (error < 0) {
1969  		res = ERR_PTR(error);
1970  		goto out;
1971  	}
1972  	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1973  	res = ERR_CAST(inode);
1974  	if (IS_ERR(res))
1975  		goto out;
1976  
1977  	/* Notify readdir to use READDIRPLUS */
1978  	nfs_lookup_advise_force_readdirplus(dir, flags);
1979  
1980  no_entry:
1981  	res = d_splice_alias(inode, dentry);
1982  	if (res != NULL) {
1983  		if (IS_ERR(res))
1984  			goto out;
1985  		dentry = res;
1986  	}
1987  	nfs_set_verifier(dentry, dir_verifier);
1988  out:
1989  	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1990  	nfs_free_fattr(fattr);
1991  	nfs_free_fhandle(fhandle);
1992  	return res;
1993  }
1994  EXPORT_SYMBOL_GPL(nfs_lookup);
1995  
1996  void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1997  {
1998  	/* Case insensitive server? Revalidate dentries */
1999  	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2000  		d_prune_aliases(inode);
2001  }
2002  EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2003  
2004  #if IS_ENABLED(CONFIG_NFS_V4)
2005  static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2006  
2007  const struct dentry_operations nfs4_dentry_operations = {
2008  	.d_revalidate	= nfs4_lookup_revalidate,
2009  	.d_weak_revalidate	= nfs_weak_revalidate,
2010  	.d_delete	= nfs_dentry_delete,
2011  	.d_iput		= nfs_dentry_iput,
2012  	.d_automount	= nfs_d_automount,
2013  	.d_release	= nfs_d_release,
2014  };
2015  EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2016  
2017  static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2018  {
2019  	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2020  }
2021  
2022  static int do_open(struct inode *inode, struct file *filp)
2023  {
2024  	nfs_fscache_open_file(inode, filp);
2025  	return 0;
2026  }
2027  
2028  static int nfs_finish_open(struct nfs_open_context *ctx,
2029  			   struct dentry *dentry,
2030  			   struct file *file, unsigned open_flags)
2031  {
2032  	int err;
2033  
2034  	err = finish_open(file, dentry, do_open);
2035  	if (err)
2036  		goto out;
2037  	if (S_ISREG(file_inode(file)->i_mode))
2038  		nfs_file_set_open_context(file, ctx);
2039  	else
2040  		err = -EOPENSTALE;
2041  out:
2042  	return err;
2043  }
2044  
2045  int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2046  		    struct file *file, unsigned open_flags,
2047  		    umode_t mode)
2048  {
2049  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2050  	struct nfs_open_context *ctx;
2051  	struct dentry *res;
2052  	struct iattr attr = { .ia_valid = ATTR_OPEN };
2053  	struct inode *inode;
2054  	unsigned int lookup_flags = 0;
2055  	unsigned long dir_verifier;
2056  	bool switched = false;
2057  	int created = 0;
2058  	int err;
2059  
2060  	/* Expect a negative dentry */
2061  	BUG_ON(d_inode(dentry));
2062  
2063  	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2064  			dir->i_sb->s_id, dir->i_ino, dentry);
2065  
2066  	err = nfs_check_flags(open_flags);
2067  	if (err)
2068  		return err;
2069  
2070  	/* NFS only supports OPEN on regular files */
2071  	if ((open_flags & O_DIRECTORY)) {
2072  		if (!d_in_lookup(dentry)) {
2073  			/*
2074  			 * Hashed negative dentry with O_DIRECTORY: dentry was
2075  			 * revalidated and is fine, no need to perform lookup
2076  			 * again
2077  			 */
2078  			return -ENOENT;
2079  		}
2080  		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2081  		goto no_open;
2082  	}
2083  
2084  	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2085  		return -ENAMETOOLONG;
2086  
2087  	if (open_flags & O_CREAT) {
2088  		struct nfs_server *server = NFS_SERVER(dir);
2089  
2090  		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2091  			mode &= ~current_umask();
2092  
2093  		attr.ia_valid |= ATTR_MODE;
2094  		attr.ia_mode = mode;
2095  	}
2096  	if (open_flags & O_TRUNC) {
2097  		attr.ia_valid |= ATTR_SIZE;
2098  		attr.ia_size = 0;
2099  	}
2100  
2101  	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2102  		d_drop(dentry);
2103  		switched = true;
2104  		dentry = d_alloc_parallel(dentry->d_parent,
2105  					  &dentry->d_name, &wq);
2106  		if (IS_ERR(dentry))
2107  			return PTR_ERR(dentry);
2108  		if (unlikely(!d_in_lookup(dentry)))
2109  			return finish_no_open(file, dentry);
2110  	}
2111  
2112  	ctx = create_nfs_open_context(dentry, open_flags, file);
2113  	err = PTR_ERR(ctx);
2114  	if (IS_ERR(ctx))
2115  		goto out;
2116  
2117  	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2118  	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2119  	if (created)
2120  		file->f_mode |= FMODE_CREATED;
2121  	if (IS_ERR(inode)) {
2122  		err = PTR_ERR(inode);
2123  		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2124  		put_nfs_open_context(ctx);
2125  		d_drop(dentry);
2126  		switch (err) {
2127  		case -ENOENT:
2128  			d_splice_alias(NULL, dentry);
2129  			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2130  				dir_verifier = inode_peek_iversion_raw(dir);
2131  			else
2132  				dir_verifier = nfs_save_change_attribute(dir);
2133  			nfs_set_verifier(dentry, dir_verifier);
2134  			break;
2135  		case -EISDIR:
2136  		case -ENOTDIR:
2137  			goto no_open;
2138  		case -ELOOP:
2139  			if (!(open_flags & O_NOFOLLOW))
2140  				goto no_open;
2141  			break;
2142  			/* case -EINVAL: */
2143  		default:
2144  			break;
2145  		}
2146  		goto out;
2147  	}
2148  	file->f_mode |= FMODE_CAN_ODIRECT;
2149  
2150  	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2151  	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2152  	put_nfs_open_context(ctx);
2153  out:
2154  	if (unlikely(switched)) {
2155  		d_lookup_done(dentry);
2156  		dput(dentry);
2157  	}
2158  	return err;
2159  
2160  no_open:
2161  	res = nfs_lookup(dir, dentry, lookup_flags);
2162  	if (!res) {
2163  		inode = d_inode(dentry);
2164  		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2165  		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2166  			res = ERR_PTR(-ENOTDIR);
2167  		else if (inode && S_ISREG(inode->i_mode))
2168  			res = ERR_PTR(-EOPENSTALE);
2169  	} else if (!IS_ERR(res)) {
2170  		inode = d_inode(res);
2171  		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2172  		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2173  			dput(res);
2174  			res = ERR_PTR(-ENOTDIR);
2175  		} else if (inode && S_ISREG(inode->i_mode)) {
2176  			dput(res);
2177  			res = ERR_PTR(-EOPENSTALE);
2178  		}
2179  	}
2180  	if (switched) {
2181  		d_lookup_done(dentry);
2182  		if (!res)
2183  			res = dentry;
2184  		else
2185  			dput(dentry);
2186  	}
2187  	if (IS_ERR(res))
2188  		return PTR_ERR(res);
2189  	return finish_no_open(file, res);
2190  }
2191  EXPORT_SYMBOL_GPL(nfs_atomic_open);
2192  
2193  static int
2194  nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2195  			  unsigned int flags)
2196  {
2197  	struct inode *inode;
2198  
2199  	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2200  
2201  	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2202  		goto full_reval;
2203  	if (d_mountpoint(dentry))
2204  		goto full_reval;
2205  
2206  	inode = d_inode(dentry);
2207  
2208  	/* We can't create new files in nfs_open_revalidate(), so we
2209  	 * optimize away revalidation of negative dentries.
2210  	 */
2211  	if (inode == NULL)
2212  		goto full_reval;
2213  
2214  	if (nfs_verifier_is_delegated(dentry))
2215  		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2216  
2217  	/* NFS only supports OPEN on regular files */
2218  	if (!S_ISREG(inode->i_mode))
2219  		goto full_reval;
2220  
2221  	/* We cannot do exclusive creation on a positive dentry */
2222  	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2223  		goto reval_dentry;
2224  
2225  	/* Check if the directory changed */
2226  	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2227  		goto reval_dentry;
2228  
2229  	/* Let f_op->open() actually open (and revalidate) the file */
2230  	return 1;
2231  reval_dentry:
2232  	if (flags & LOOKUP_RCU)
2233  		return -ECHILD;
2234  	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2235  
2236  full_reval:
2237  	return nfs_do_lookup_revalidate(dir, dentry, flags);
2238  }
2239  
2240  static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2241  {
2242  	return __nfs_lookup_revalidate(dentry, flags,
2243  			nfs4_do_lookup_revalidate);
2244  }
2245  
2246  #endif /* CONFIG_NFSV4 */
2247  
2248  int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2249  			struct file *file, unsigned int open_flags,
2250  			umode_t mode)
2251  {
2252  
2253  	/* Same as look+open from lookup_open(), but with different O_TRUNC
2254  	 * handling.
2255  	 */
2256  	int error = 0;
2257  
2258  	if (open_flags & O_CREAT) {
2259  		file->f_mode |= FMODE_CREATED;
2260  		error = nfs_do_create(dir, dentry, mode, open_flags);
2261  		if (error)
2262  			return error;
2263  		return finish_open(file, dentry, NULL);
2264  	} else if (d_in_lookup(dentry)) {
2265  		/* The only flags nfs_lookup considers are
2266  		 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2267  		 * we want those to be zero so the lookup isn't skipped.
2268  		 */
2269  		struct dentry *res = nfs_lookup(dir, dentry, 0);
2270  
2271  		d_lookup_done(dentry);
2272  		if (unlikely(res)) {
2273  			if (IS_ERR(res))
2274  				return PTR_ERR(res);
2275  			return finish_no_open(file, res);
2276  		}
2277  	}
2278  	return finish_no_open(file, NULL);
2279  
2280  }
2281  EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2282  
2283  struct dentry *
2284  nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2285  				struct nfs_fattr *fattr)
2286  {
2287  	struct dentry *parent = dget_parent(dentry);
2288  	struct inode *dir = d_inode(parent);
2289  	struct inode *inode;
2290  	struct dentry *d;
2291  	int error;
2292  
2293  	d_drop(dentry);
2294  
2295  	if (fhandle->size == 0) {
2296  		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2297  		if (error)
2298  			goto out_error;
2299  	}
2300  	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2301  	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2302  		struct nfs_server *server = NFS_SB(dentry->d_sb);
2303  		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2304  				fattr, NULL);
2305  		if (error < 0)
2306  			goto out_error;
2307  	}
2308  	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2309  	d = d_splice_alias(inode, dentry);
2310  out:
2311  	dput(parent);
2312  	return d;
2313  out_error:
2314  	d = ERR_PTR(error);
2315  	goto out;
2316  }
2317  EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2318  
2319  /*
2320   * Code common to create, mkdir, and mknod.
2321   */
2322  int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2323  				struct nfs_fattr *fattr)
2324  {
2325  	struct dentry *d;
2326  
2327  	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2328  	if (IS_ERR(d))
2329  		return PTR_ERR(d);
2330  
2331  	/* Callers don't care */
2332  	dput(d);
2333  	return 0;
2334  }
2335  EXPORT_SYMBOL_GPL(nfs_instantiate);
2336  
2337  /*
2338   * Following a failed create operation, we drop the dentry rather
2339   * than retain a negative dentry. This avoids a problem in the event
2340   * that the operation succeeded on the server, but an error in the
2341   * reply path made it appear to have failed.
2342   */
2343  static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2344  			 umode_t mode, int open_flags)
2345  {
2346  	struct iattr attr;
2347  	int error;
2348  
2349  	open_flags |= O_CREAT;
2350  
2351  	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2352  			dir->i_sb->s_id, dir->i_ino, dentry);
2353  
2354  	attr.ia_mode = mode;
2355  	attr.ia_valid = ATTR_MODE;
2356  	if (open_flags & O_TRUNC) {
2357  		attr.ia_size = 0;
2358  		attr.ia_valid |= ATTR_SIZE;
2359  	}
2360  
2361  	trace_nfs_create_enter(dir, dentry, open_flags);
2362  	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2363  	trace_nfs_create_exit(dir, dentry, open_flags, error);
2364  	if (error != 0)
2365  		goto out_err;
2366  	return 0;
2367  out_err:
2368  	d_drop(dentry);
2369  	return error;
2370  }
2371  
2372  int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2373  	       struct dentry *dentry, umode_t mode, bool excl)
2374  {
2375  	return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2376  }
2377  EXPORT_SYMBOL_GPL(nfs_create);
2378  
2379  /*
2380   * See comments for nfs_proc_create regarding failed operations.
2381   */
2382  int
2383  nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2384  	  struct dentry *dentry, umode_t mode, dev_t rdev)
2385  {
2386  	struct iattr attr;
2387  	int status;
2388  
2389  	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2390  			dir->i_sb->s_id, dir->i_ino, dentry);
2391  
2392  	attr.ia_mode = mode;
2393  	attr.ia_valid = ATTR_MODE;
2394  
2395  	trace_nfs_mknod_enter(dir, dentry);
2396  	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2397  	trace_nfs_mknod_exit(dir, dentry, status);
2398  	if (status != 0)
2399  		goto out_err;
2400  	return 0;
2401  out_err:
2402  	d_drop(dentry);
2403  	return status;
2404  }
2405  EXPORT_SYMBOL_GPL(nfs_mknod);
2406  
2407  /*
2408   * See comments for nfs_proc_create regarding failed operations.
2409   */
2410  int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2411  	      struct dentry *dentry, umode_t mode)
2412  {
2413  	struct iattr attr;
2414  	int error;
2415  
2416  	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2417  			dir->i_sb->s_id, dir->i_ino, dentry);
2418  
2419  	attr.ia_valid = ATTR_MODE;
2420  	attr.ia_mode = mode | S_IFDIR;
2421  
2422  	trace_nfs_mkdir_enter(dir, dentry);
2423  	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2424  	trace_nfs_mkdir_exit(dir, dentry, error);
2425  	if (error != 0)
2426  		goto out_err;
2427  	return 0;
2428  out_err:
2429  	d_drop(dentry);
2430  	return error;
2431  }
2432  EXPORT_SYMBOL_GPL(nfs_mkdir);
2433  
2434  static void nfs_dentry_handle_enoent(struct dentry *dentry)
2435  {
2436  	if (simple_positive(dentry))
2437  		d_delete(dentry);
2438  }
2439  
2440  static void nfs_dentry_remove_handle_error(struct inode *dir,
2441  					   struct dentry *dentry, int error)
2442  {
2443  	switch (error) {
2444  	case -ENOENT:
2445  		if (d_really_is_positive(dentry))
2446  			d_delete(dentry);
2447  		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2448  		break;
2449  	case 0:
2450  		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2451  		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2452  	}
2453  }
2454  
2455  int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2456  {
2457  	int error;
2458  
2459  	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2460  			dir->i_sb->s_id, dir->i_ino, dentry);
2461  
2462  	trace_nfs_rmdir_enter(dir, dentry);
2463  	if (d_really_is_positive(dentry)) {
2464  		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2465  		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2466  		/* Ensure the VFS deletes this inode */
2467  		switch (error) {
2468  		case 0:
2469  			clear_nlink(d_inode(dentry));
2470  			break;
2471  		case -ENOENT:
2472  			nfs_dentry_handle_enoent(dentry);
2473  		}
2474  		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2475  	} else
2476  		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2477  	nfs_dentry_remove_handle_error(dir, dentry, error);
2478  	trace_nfs_rmdir_exit(dir, dentry, error);
2479  
2480  	return error;
2481  }
2482  EXPORT_SYMBOL_GPL(nfs_rmdir);
2483  
2484  /*
2485   * Remove a file after making sure there are no pending writes,
2486   * and after checking that the file has only one user.
2487   *
2488   * We invalidate the attribute cache and free the inode prior to the operation
2489   * to avoid possible races if the server reuses the inode.
2490   */
2491  static int nfs_safe_remove(struct dentry *dentry)
2492  {
2493  	struct inode *dir = d_inode(dentry->d_parent);
2494  	struct inode *inode = d_inode(dentry);
2495  	int error = -EBUSY;
2496  
2497  	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2498  
2499  	/* If the dentry was sillyrenamed, we simply call d_delete() */
2500  	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2501  		error = 0;
2502  		goto out;
2503  	}
2504  
2505  	trace_nfs_remove_enter(dir, dentry);
2506  	if (inode != NULL) {
2507  		error = NFS_PROTO(dir)->remove(dir, dentry);
2508  		if (error == 0)
2509  			nfs_drop_nlink(inode);
2510  	} else
2511  		error = NFS_PROTO(dir)->remove(dir, dentry);
2512  	if (error == -ENOENT)
2513  		nfs_dentry_handle_enoent(dentry);
2514  	trace_nfs_remove_exit(dir, dentry, error);
2515  out:
2516  	return error;
2517  }
2518  
2519  /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2520   *  belongs to an active ".nfs..." file and we return -EBUSY.
2521   *
2522   *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2523   */
2524  int nfs_unlink(struct inode *dir, struct dentry *dentry)
2525  {
2526  	int error;
2527  
2528  	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2529  		dir->i_ino, dentry);
2530  
2531  	trace_nfs_unlink_enter(dir, dentry);
2532  	spin_lock(&dentry->d_lock);
2533  	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2534  					     &NFS_I(d_inode(dentry))->flags)) {
2535  		spin_unlock(&dentry->d_lock);
2536  		/* Start asynchronous writeout of the inode */
2537  		write_inode_now(d_inode(dentry), 0);
2538  		error = nfs_sillyrename(dir, dentry);
2539  		goto out;
2540  	}
2541  	/* We must prevent any concurrent open until the unlink
2542  	 * completes.  ->d_revalidate will wait for ->d_fsdata
2543  	 * to clear.  We set it here to ensure no lookup succeeds until
2544  	 * the unlink is complete on the server.
2545  	 */
2546  	error = -ETXTBSY;
2547  	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2548  	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2549  		spin_unlock(&dentry->d_lock);
2550  		goto out;
2551  	}
2552  	/* old devname */
2553  	kfree(dentry->d_fsdata);
2554  	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2555  
2556  	spin_unlock(&dentry->d_lock);
2557  	error = nfs_safe_remove(dentry);
2558  	nfs_dentry_remove_handle_error(dir, dentry, error);
2559  	dentry->d_fsdata = NULL;
2560  	wake_up_var(&dentry->d_fsdata);
2561  out:
2562  	trace_nfs_unlink_exit(dir, dentry, error);
2563  	return error;
2564  }
2565  EXPORT_SYMBOL_GPL(nfs_unlink);
2566  
2567  /*
2568   * To create a symbolic link, most file systems instantiate a new inode,
2569   * add a page to it containing the path, then write it out to the disk
2570   * using prepare_write/commit_write.
2571   *
2572   * Unfortunately the NFS client can't create the in-core inode first
2573   * because it needs a file handle to create an in-core inode (see
2574   * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2575   * symlink request has completed on the server.
2576   *
2577   * So instead we allocate a raw page, copy the symname into it, then do
2578   * the SYMLINK request with the page as the buffer.  If it succeeds, we
2579   * now have a new file handle and can instantiate an in-core NFS inode
2580   * and move the raw page into its mapping.
2581   */
2582  int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2583  		struct dentry *dentry, const char *symname)
2584  {
2585  	struct folio *folio;
2586  	char *kaddr;
2587  	struct iattr attr;
2588  	unsigned int pathlen = strlen(symname);
2589  	int error;
2590  
2591  	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2592  		dir->i_ino, dentry, symname);
2593  
2594  	if (pathlen > PAGE_SIZE)
2595  		return -ENAMETOOLONG;
2596  
2597  	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2598  	attr.ia_valid = ATTR_MODE;
2599  
2600  	folio = folio_alloc(GFP_USER, 0);
2601  	if (!folio)
2602  		return -ENOMEM;
2603  
2604  	kaddr = folio_address(folio);
2605  	memcpy(kaddr, symname, pathlen);
2606  	if (pathlen < PAGE_SIZE)
2607  		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2608  
2609  	trace_nfs_symlink_enter(dir, dentry);
2610  	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2611  	trace_nfs_symlink_exit(dir, dentry, error);
2612  	if (error != 0) {
2613  		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2614  			dir->i_sb->s_id, dir->i_ino,
2615  			dentry, symname, error);
2616  		d_drop(dentry);
2617  		folio_put(folio);
2618  		return error;
2619  	}
2620  
2621  	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2622  
2623  	/*
2624  	 * No big deal if we can't add this page to the page cache here.
2625  	 * READLINK will get the missing page from the server if needed.
2626  	 */
2627  	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2628  							GFP_KERNEL) == 0) {
2629  		folio_mark_uptodate(folio);
2630  		folio_unlock(folio);
2631  	}
2632  
2633  	folio_put(folio);
2634  	return 0;
2635  }
2636  EXPORT_SYMBOL_GPL(nfs_symlink);
2637  
2638  int
2639  nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2640  {
2641  	struct inode *inode = d_inode(old_dentry);
2642  	int error;
2643  
2644  	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2645  		old_dentry, dentry);
2646  
2647  	trace_nfs_link_enter(inode, dir, dentry);
2648  	d_drop(dentry);
2649  	if (S_ISREG(inode->i_mode))
2650  		nfs_sync_inode(inode);
2651  	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2652  	if (error == 0) {
2653  		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2654  		ihold(inode);
2655  		d_add(dentry, inode);
2656  	}
2657  	trace_nfs_link_exit(inode, dir, dentry, error);
2658  	return error;
2659  }
2660  EXPORT_SYMBOL_GPL(nfs_link);
2661  
2662  static void
2663  nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2664  {
2665  	struct dentry *new_dentry = data->new_dentry;
2666  
2667  	new_dentry->d_fsdata = NULL;
2668  	wake_up_var(&new_dentry->d_fsdata);
2669  }
2670  
2671  /*
2672   * RENAME
2673   * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2674   * different file handle for the same inode after a rename (e.g. when
2675   * moving to a different directory). A fail-safe method to do so would
2676   * be to look up old_dir/old_name, create a link to new_dir/new_name and
2677   * rename the old file using the sillyrename stuff. This way, the original
2678   * file in old_dir will go away when the last process iput()s the inode.
2679   *
2680   * FIXED.
2681   *
2682   * It actually works quite well. One needs to have the possibility for
2683   * at least one ".nfs..." file in each directory the file ever gets
2684   * moved or linked to which happens automagically with the new
2685   * implementation that only depends on the dcache stuff instead of
2686   * using the inode layer
2687   *
2688   * Unfortunately, things are a little more complicated than indicated
2689   * above. For a cross-directory move, we want to make sure we can get
2690   * rid of the old inode after the operation.  This means there must be
2691   * no pending writes (if it's a file), and the use count must be 1.
2692   * If these conditions are met, we can drop the dentries before doing
2693   * the rename.
2694   */
2695  int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2696  	       struct dentry *old_dentry, struct inode *new_dir,
2697  	       struct dentry *new_dentry, unsigned int flags)
2698  {
2699  	struct inode *old_inode = d_inode(old_dentry);
2700  	struct inode *new_inode = d_inode(new_dentry);
2701  	struct dentry *dentry = NULL;
2702  	struct rpc_task *task;
2703  	bool must_unblock = false;
2704  	int error = -EBUSY;
2705  
2706  	if (flags)
2707  		return -EINVAL;
2708  
2709  	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2710  		 old_dentry, new_dentry,
2711  		 d_count(new_dentry));
2712  
2713  	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2714  	/*
2715  	 * For non-directories, check whether the target is busy and if so,
2716  	 * make a copy of the dentry and then do a silly-rename. If the
2717  	 * silly-rename succeeds, the copied dentry is hashed and becomes
2718  	 * the new target.
2719  	 */
2720  	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2721  		/* We must prevent any concurrent open until the unlink
2722  		 * completes.  ->d_revalidate will wait for ->d_fsdata
2723  		 * to clear.  We set it here to ensure no lookup succeeds until
2724  		 * the unlink is complete on the server.
2725  		 */
2726  		error = -ETXTBSY;
2727  		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2728  		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2729  			goto out;
2730  		if (new_dentry->d_fsdata) {
2731  			/* old devname */
2732  			kfree(new_dentry->d_fsdata);
2733  			new_dentry->d_fsdata = NULL;
2734  		}
2735  
2736  		spin_lock(&new_dentry->d_lock);
2737  		if (d_count(new_dentry) > 2) {
2738  			int err;
2739  
2740  			spin_unlock(&new_dentry->d_lock);
2741  
2742  			/* copy the target dentry's name */
2743  			dentry = d_alloc(new_dentry->d_parent,
2744  					 &new_dentry->d_name);
2745  			if (!dentry)
2746  				goto out;
2747  
2748  			/* silly-rename the existing target ... */
2749  			err = nfs_sillyrename(new_dir, new_dentry);
2750  			if (err)
2751  				goto out;
2752  
2753  			new_dentry = dentry;
2754  			new_inode = NULL;
2755  		} else {
2756  			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2757  			must_unblock = true;
2758  			spin_unlock(&new_dentry->d_lock);
2759  		}
2760  
2761  	}
2762  
2763  	if (S_ISREG(old_inode->i_mode))
2764  		nfs_sync_inode(old_inode);
2765  	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2766  				must_unblock ? nfs_unblock_rename : NULL);
2767  	if (IS_ERR(task)) {
2768  		error = PTR_ERR(task);
2769  		goto out;
2770  	}
2771  
2772  	error = rpc_wait_for_completion_task(task);
2773  	if (error != 0) {
2774  		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2775  		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2776  		smp_wmb();
2777  	} else
2778  		error = task->tk_status;
2779  	rpc_put_task(task);
2780  	/* Ensure the inode attributes are revalidated */
2781  	if (error == 0) {
2782  		spin_lock(&old_inode->i_lock);
2783  		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2784  		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2785  							 NFS_INO_INVALID_CTIME |
2786  							 NFS_INO_REVAL_FORCED);
2787  		spin_unlock(&old_inode->i_lock);
2788  	}
2789  out:
2790  	trace_nfs_rename_exit(old_dir, old_dentry,
2791  			new_dir, new_dentry, error);
2792  	if (!error) {
2793  		if (new_inode != NULL)
2794  			nfs_drop_nlink(new_inode);
2795  		/*
2796  		 * The d_move() should be here instead of in an async RPC completion
2797  		 * handler because we need the proper locks to move the dentry.  If
2798  		 * we're interrupted by a signal, the async RPC completion handler
2799  		 * should mark the directories for revalidation.
2800  		 */
2801  		d_move(old_dentry, new_dentry);
2802  		nfs_set_verifier(old_dentry,
2803  					nfs_save_change_attribute(new_dir));
2804  	} else if (error == -ENOENT)
2805  		nfs_dentry_handle_enoent(old_dentry);
2806  
2807  	/* new dentry created? */
2808  	if (dentry)
2809  		dput(dentry);
2810  	return error;
2811  }
2812  EXPORT_SYMBOL_GPL(nfs_rename);
2813  
2814  static DEFINE_SPINLOCK(nfs_access_lru_lock);
2815  static LIST_HEAD(nfs_access_lru_list);
2816  static atomic_long_t nfs_access_nr_entries;
2817  
2818  static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2819  module_param(nfs_access_max_cachesize, ulong, 0644);
2820  MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2821  
2822  static void nfs_access_free_entry(struct nfs_access_entry *entry)
2823  {
2824  	put_group_info(entry->group_info);
2825  	kfree_rcu(entry, rcu_head);
2826  	smp_mb__before_atomic();
2827  	atomic_long_dec(&nfs_access_nr_entries);
2828  	smp_mb__after_atomic();
2829  }
2830  
2831  static void nfs_access_free_list(struct list_head *head)
2832  {
2833  	struct nfs_access_entry *cache;
2834  
2835  	while (!list_empty(head)) {
2836  		cache = list_entry(head->next, struct nfs_access_entry, lru);
2837  		list_del(&cache->lru);
2838  		nfs_access_free_entry(cache);
2839  	}
2840  }
2841  
2842  static unsigned long
2843  nfs_do_access_cache_scan(unsigned int nr_to_scan)
2844  {
2845  	LIST_HEAD(head);
2846  	struct nfs_inode *nfsi, *next;
2847  	struct nfs_access_entry *cache;
2848  	long freed = 0;
2849  
2850  	spin_lock(&nfs_access_lru_lock);
2851  	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2852  		struct inode *inode;
2853  
2854  		if (nr_to_scan-- == 0)
2855  			break;
2856  		inode = &nfsi->vfs_inode;
2857  		spin_lock(&inode->i_lock);
2858  		if (list_empty(&nfsi->access_cache_entry_lru))
2859  			goto remove_lru_entry;
2860  		cache = list_entry(nfsi->access_cache_entry_lru.next,
2861  				struct nfs_access_entry, lru);
2862  		list_move(&cache->lru, &head);
2863  		rb_erase(&cache->rb_node, &nfsi->access_cache);
2864  		freed++;
2865  		if (!list_empty(&nfsi->access_cache_entry_lru))
2866  			list_move_tail(&nfsi->access_cache_inode_lru,
2867  					&nfs_access_lru_list);
2868  		else {
2869  remove_lru_entry:
2870  			list_del_init(&nfsi->access_cache_inode_lru);
2871  			smp_mb__before_atomic();
2872  			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2873  			smp_mb__after_atomic();
2874  		}
2875  		spin_unlock(&inode->i_lock);
2876  	}
2877  	spin_unlock(&nfs_access_lru_lock);
2878  	nfs_access_free_list(&head);
2879  	return freed;
2880  }
2881  
2882  unsigned long
2883  nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2884  {
2885  	int nr_to_scan = sc->nr_to_scan;
2886  	gfp_t gfp_mask = sc->gfp_mask;
2887  
2888  	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2889  		return SHRINK_STOP;
2890  	return nfs_do_access_cache_scan(nr_to_scan);
2891  }
2892  
2893  
2894  unsigned long
2895  nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2896  {
2897  	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2898  }
2899  
2900  static void
2901  nfs_access_cache_enforce_limit(void)
2902  {
2903  	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2904  	unsigned long diff;
2905  	unsigned int nr_to_scan;
2906  
2907  	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2908  		return;
2909  	nr_to_scan = 100;
2910  	diff = nr_entries - nfs_access_max_cachesize;
2911  	if (diff < nr_to_scan)
2912  		nr_to_scan = diff;
2913  	nfs_do_access_cache_scan(nr_to_scan);
2914  }
2915  
2916  static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2917  {
2918  	struct rb_root *root_node = &nfsi->access_cache;
2919  	struct rb_node *n;
2920  	struct nfs_access_entry *entry;
2921  
2922  	/* Unhook entries from the cache */
2923  	while ((n = rb_first(root_node)) != NULL) {
2924  		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2925  		rb_erase(n, root_node);
2926  		list_move(&entry->lru, head);
2927  	}
2928  	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2929  }
2930  
2931  void nfs_access_zap_cache(struct inode *inode)
2932  {
2933  	LIST_HEAD(head);
2934  
2935  	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2936  		return;
2937  	/* Remove from global LRU init */
2938  	spin_lock(&nfs_access_lru_lock);
2939  	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2940  		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2941  
2942  	spin_lock(&inode->i_lock);
2943  	__nfs_access_zap_cache(NFS_I(inode), &head);
2944  	spin_unlock(&inode->i_lock);
2945  	spin_unlock(&nfs_access_lru_lock);
2946  	nfs_access_free_list(&head);
2947  }
2948  EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2949  
2950  static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2951  {
2952  	struct group_info *ga, *gb;
2953  	int g;
2954  
2955  	if (uid_lt(a->fsuid, b->fsuid))
2956  		return -1;
2957  	if (uid_gt(a->fsuid, b->fsuid))
2958  		return 1;
2959  
2960  	if (gid_lt(a->fsgid, b->fsgid))
2961  		return -1;
2962  	if (gid_gt(a->fsgid, b->fsgid))
2963  		return 1;
2964  
2965  	ga = a->group_info;
2966  	gb = b->group_info;
2967  	if (ga == gb)
2968  		return 0;
2969  	if (ga == NULL)
2970  		return -1;
2971  	if (gb == NULL)
2972  		return 1;
2973  	if (ga->ngroups < gb->ngroups)
2974  		return -1;
2975  	if (ga->ngroups > gb->ngroups)
2976  		return 1;
2977  
2978  	for (g = 0; g < ga->ngroups; g++) {
2979  		if (gid_lt(ga->gid[g], gb->gid[g]))
2980  			return -1;
2981  		if (gid_gt(ga->gid[g], gb->gid[g]))
2982  			return 1;
2983  	}
2984  	return 0;
2985  }
2986  
2987  static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2988  {
2989  	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2990  
2991  	while (n != NULL) {
2992  		struct nfs_access_entry *entry =
2993  			rb_entry(n, struct nfs_access_entry, rb_node);
2994  		int cmp = access_cmp(cred, entry);
2995  
2996  		if (cmp < 0)
2997  			n = n->rb_left;
2998  		else if (cmp > 0)
2999  			n = n->rb_right;
3000  		else
3001  			return entry;
3002  	}
3003  	return NULL;
3004  }
3005  
3006  static u64 nfs_access_login_time(const struct task_struct *task,
3007  				 const struct cred *cred)
3008  {
3009  	const struct task_struct *parent;
3010  	const struct cred *pcred;
3011  	u64 ret;
3012  
3013  	rcu_read_lock();
3014  	for (;;) {
3015  		parent = rcu_dereference(task->real_parent);
3016  		pcred = __task_cred(parent);
3017  		if (parent == task || cred_fscmp(pcred, cred) != 0)
3018  			break;
3019  		task = parent;
3020  	}
3021  	ret = task->start_time;
3022  	rcu_read_unlock();
3023  	return ret;
3024  }
3025  
3026  static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3027  {
3028  	struct nfs_inode *nfsi = NFS_I(inode);
3029  	u64 login_time = nfs_access_login_time(current, cred);
3030  	struct nfs_access_entry *cache;
3031  	bool retry = true;
3032  	int err;
3033  
3034  	spin_lock(&inode->i_lock);
3035  	for(;;) {
3036  		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3037  			goto out_zap;
3038  		cache = nfs_access_search_rbtree(inode, cred);
3039  		err = -ENOENT;
3040  		if (cache == NULL)
3041  			goto out;
3042  		/* Found an entry, is our attribute cache valid? */
3043  		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3044  			break;
3045  		if (!retry)
3046  			break;
3047  		err = -ECHILD;
3048  		if (!may_block)
3049  			goto out;
3050  		spin_unlock(&inode->i_lock);
3051  		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3052  		if (err)
3053  			return err;
3054  		spin_lock(&inode->i_lock);
3055  		retry = false;
3056  	}
3057  	err = -ENOENT;
3058  	if ((s64)(login_time - cache->timestamp) > 0)
3059  		goto out;
3060  	*mask = cache->mask;
3061  	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3062  	err = 0;
3063  out:
3064  	spin_unlock(&inode->i_lock);
3065  	return err;
3066  out_zap:
3067  	spin_unlock(&inode->i_lock);
3068  	nfs_access_zap_cache(inode);
3069  	return -ENOENT;
3070  }
3071  
3072  static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3073  {
3074  	/* Only check the most recently returned cache entry,
3075  	 * but do it without locking.
3076  	 */
3077  	struct nfs_inode *nfsi = NFS_I(inode);
3078  	u64 login_time = nfs_access_login_time(current, cred);
3079  	struct nfs_access_entry *cache;
3080  	int err = -ECHILD;
3081  	struct list_head *lh;
3082  
3083  	rcu_read_lock();
3084  	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3085  		goto out;
3086  	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3087  	cache = list_entry(lh, struct nfs_access_entry, lru);
3088  	if (lh == &nfsi->access_cache_entry_lru ||
3089  	    access_cmp(cred, cache) != 0)
3090  		cache = NULL;
3091  	if (cache == NULL)
3092  		goto out;
3093  	if ((s64)(login_time - cache->timestamp) > 0)
3094  		goto out;
3095  	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3096  		goto out;
3097  	*mask = cache->mask;
3098  	err = 0;
3099  out:
3100  	rcu_read_unlock();
3101  	return err;
3102  }
3103  
3104  int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3105  			  u32 *mask, bool may_block)
3106  {
3107  	int status;
3108  
3109  	status = nfs_access_get_cached_rcu(inode, cred, mask);
3110  	if (status != 0)
3111  		status = nfs_access_get_cached_locked(inode, cred, mask,
3112  		    may_block);
3113  
3114  	return status;
3115  }
3116  EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3117  
3118  static void nfs_access_add_rbtree(struct inode *inode,
3119  				  struct nfs_access_entry *set,
3120  				  const struct cred *cred)
3121  {
3122  	struct nfs_inode *nfsi = NFS_I(inode);
3123  	struct rb_root *root_node = &nfsi->access_cache;
3124  	struct rb_node **p = &root_node->rb_node;
3125  	struct rb_node *parent = NULL;
3126  	struct nfs_access_entry *entry;
3127  	int cmp;
3128  
3129  	spin_lock(&inode->i_lock);
3130  	while (*p != NULL) {
3131  		parent = *p;
3132  		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3133  		cmp = access_cmp(cred, entry);
3134  
3135  		if (cmp < 0)
3136  			p = &parent->rb_left;
3137  		else if (cmp > 0)
3138  			p = &parent->rb_right;
3139  		else
3140  			goto found;
3141  	}
3142  	rb_link_node(&set->rb_node, parent, p);
3143  	rb_insert_color(&set->rb_node, root_node);
3144  	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3145  	spin_unlock(&inode->i_lock);
3146  	return;
3147  found:
3148  	rb_replace_node(parent, &set->rb_node, root_node);
3149  	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3150  	list_del(&entry->lru);
3151  	spin_unlock(&inode->i_lock);
3152  	nfs_access_free_entry(entry);
3153  }
3154  
3155  void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3156  			  const struct cred *cred)
3157  {
3158  	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3159  	if (cache == NULL)
3160  		return;
3161  	RB_CLEAR_NODE(&cache->rb_node);
3162  	cache->fsuid = cred->fsuid;
3163  	cache->fsgid = cred->fsgid;
3164  	cache->group_info = get_group_info(cred->group_info);
3165  	cache->mask = set->mask;
3166  	cache->timestamp = ktime_get_ns();
3167  
3168  	/* The above field assignments must be visible
3169  	 * before this item appears on the lru.  We cannot easily
3170  	 * use rcu_assign_pointer, so just force the memory barrier.
3171  	 */
3172  	smp_wmb();
3173  	nfs_access_add_rbtree(inode, cache, cred);
3174  
3175  	/* Update accounting */
3176  	smp_mb__before_atomic();
3177  	atomic_long_inc(&nfs_access_nr_entries);
3178  	smp_mb__after_atomic();
3179  
3180  	/* Add inode to global LRU list */
3181  	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3182  		spin_lock(&nfs_access_lru_lock);
3183  		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3184  			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3185  					&nfs_access_lru_list);
3186  		spin_unlock(&nfs_access_lru_lock);
3187  	}
3188  	nfs_access_cache_enforce_limit();
3189  }
3190  EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3191  
3192  #define NFS_MAY_READ (NFS_ACCESS_READ)
3193  #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3194  		NFS_ACCESS_EXTEND | \
3195  		NFS_ACCESS_DELETE)
3196  #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3197  		NFS_ACCESS_EXTEND)
3198  #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3199  #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3200  #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3201  static int
3202  nfs_access_calc_mask(u32 access_result, umode_t umode)
3203  {
3204  	int mask = 0;
3205  
3206  	if (access_result & NFS_MAY_READ)
3207  		mask |= MAY_READ;
3208  	if (S_ISDIR(umode)) {
3209  		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3210  			mask |= MAY_WRITE;
3211  		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3212  			mask |= MAY_EXEC;
3213  	} else if (S_ISREG(umode)) {
3214  		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3215  			mask |= MAY_WRITE;
3216  		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3217  			mask |= MAY_EXEC;
3218  	} else if (access_result & NFS_MAY_WRITE)
3219  			mask |= MAY_WRITE;
3220  	return mask;
3221  }
3222  
3223  void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3224  {
3225  	entry->mask = access_result;
3226  }
3227  EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3228  
3229  static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3230  {
3231  	struct nfs_access_entry cache;
3232  	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3233  	int cache_mask = -1;
3234  	int status;
3235  
3236  	trace_nfs_access_enter(inode);
3237  
3238  	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3239  	if (status == 0)
3240  		goto out_cached;
3241  
3242  	status = -ECHILD;
3243  	if (!may_block)
3244  		goto out;
3245  
3246  	/*
3247  	 * Determine which access bits we want to ask for...
3248  	 */
3249  	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3250  		     nfs_access_xattr_mask(NFS_SERVER(inode));
3251  	if (S_ISDIR(inode->i_mode))
3252  		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3253  	else
3254  		cache.mask |= NFS_ACCESS_EXECUTE;
3255  	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3256  	if (status != 0) {
3257  		if (status == -ESTALE) {
3258  			if (!S_ISDIR(inode->i_mode))
3259  				nfs_set_inode_stale(inode);
3260  			else
3261  				nfs_zap_caches(inode);
3262  		}
3263  		goto out;
3264  	}
3265  	nfs_access_add_cache(inode, &cache, cred);
3266  out_cached:
3267  	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3268  	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3269  		status = -EACCES;
3270  out:
3271  	trace_nfs_access_exit(inode, mask, cache_mask, status);
3272  	return status;
3273  }
3274  
3275  static int nfs_open_permission_mask(int openflags)
3276  {
3277  	int mask = 0;
3278  
3279  	if (openflags & __FMODE_EXEC) {
3280  		/* ONLY check exec rights */
3281  		mask = MAY_EXEC;
3282  	} else {
3283  		if ((openflags & O_ACCMODE) != O_WRONLY)
3284  			mask |= MAY_READ;
3285  		if ((openflags & O_ACCMODE) != O_RDONLY)
3286  			mask |= MAY_WRITE;
3287  	}
3288  
3289  	return mask;
3290  }
3291  
3292  int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3293  {
3294  	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3295  }
3296  EXPORT_SYMBOL_GPL(nfs_may_open);
3297  
3298  static int nfs_execute_ok(struct inode *inode, int mask)
3299  {
3300  	struct nfs_server *server = NFS_SERVER(inode);
3301  	int ret = 0;
3302  
3303  	if (S_ISDIR(inode->i_mode))
3304  		return 0;
3305  	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3306  		if (mask & MAY_NOT_BLOCK)
3307  			return -ECHILD;
3308  		ret = __nfs_revalidate_inode(server, inode);
3309  	}
3310  	if (ret == 0 && !execute_ok(inode))
3311  		ret = -EACCES;
3312  	return ret;
3313  }
3314  
3315  int nfs_permission(struct mnt_idmap *idmap,
3316  		   struct inode *inode,
3317  		   int mask)
3318  {
3319  	const struct cred *cred = current_cred();
3320  	int res = 0;
3321  
3322  	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3323  
3324  	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3325  		goto out;
3326  	/* Is this sys_access() ? */
3327  	if (mask & (MAY_ACCESS | MAY_CHDIR))
3328  		goto force_lookup;
3329  
3330  	switch (inode->i_mode & S_IFMT) {
3331  		case S_IFLNK:
3332  			goto out;
3333  		case S_IFREG:
3334  			if ((mask & MAY_OPEN) &&
3335  			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3336  				return 0;
3337  			break;
3338  		case S_IFDIR:
3339  			/*
3340  			 * Optimize away all write operations, since the server
3341  			 * will check permissions when we perform the op.
3342  			 */
3343  			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3344  				goto out;
3345  	}
3346  
3347  force_lookup:
3348  	if (!NFS_PROTO(inode)->access)
3349  		goto out_notsup;
3350  
3351  	res = nfs_do_access(inode, cred, mask);
3352  out:
3353  	if (!res && (mask & MAY_EXEC))
3354  		res = nfs_execute_ok(inode, mask);
3355  
3356  	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3357  		inode->i_sb->s_id, inode->i_ino, mask, res);
3358  	return res;
3359  out_notsup:
3360  	if (mask & MAY_NOT_BLOCK)
3361  		return -ECHILD;
3362  
3363  	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3364  						  NFS_INO_INVALID_OTHER);
3365  	if (res == 0)
3366  		res = generic_permission(&nop_mnt_idmap, inode, mask);
3367  	goto out;
3368  }
3369  EXPORT_SYMBOL_GPL(nfs_permission);
3370