xref: /linux/fs/nfs/dir.c (revision 9b371c6cc37f954360989eec41c2ddc5a6b83917)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/nfs/dir.c
4   *
5   *  Copyright (C) 1992  Rick Sladkey
6   *
7   *  nfs directory handling functions
8   *
9   * 10 Apr 1996	Added silly rename for unlink	--okir
10   * 28 Sep 1996	Improved directory cache --okir
11   * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12   *              Re-implemented silly rename for unlink, newly implemented
13   *              silly rename for nfs_rename() following the suggestions
14   *              of Olaf Kirch (okir) found in this file.
15   *              Following Linus comments on my original hack, this version
16   *              depends only on the dcache stuff and doesn't touch the inode
17   *              layer (iput() and friends).
18   *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19   */
20  
21  #include <linux/module.h>
22  #include <linux/time.h>
23  #include <linux/errno.h>
24  #include <linux/stat.h>
25  #include <linux/fcntl.h>
26  #include <linux/string.h>
27  #include <linux/kernel.h>
28  #include <linux/slab.h>
29  #include <linux/mm.h>
30  #include <linux/sunrpc/clnt.h>
31  #include <linux/nfs_fs.h>
32  #include <linux/nfs_mount.h>
33  #include <linux/pagemap.h>
34  #include <linux/pagevec.h>
35  #include <linux/namei.h>
36  #include <linux/mount.h>
37  #include <linux/swap.h>
38  #include <linux/sched.h>
39  #include <linux/kmemleak.h>
40  #include <linux/xattr.h>
41  
42  #include "delegation.h"
43  #include "iostat.h"
44  #include "internal.h"
45  #include "fscache.h"
46  
47  #include "nfstrace.h"
48  
49  /* #define NFS_DEBUG_VERBOSE 1 */
50  
51  static int nfs_opendir(struct inode *, struct file *);
52  static int nfs_closedir(struct inode *, struct file *);
53  static int nfs_readdir(struct file *, struct dir_context *);
54  static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55  static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56  static void nfs_readdir_clear_array(struct page*);
57  
58  const struct file_operations nfs_dir_operations = {
59  	.llseek		= nfs_llseek_dir,
60  	.read		= generic_read_dir,
61  	.iterate_shared	= nfs_readdir,
62  	.open		= nfs_opendir,
63  	.release	= nfs_closedir,
64  	.fsync		= nfs_fsync_dir,
65  };
66  
67  const struct address_space_operations nfs_dir_aops = {
68  	.freepage = nfs_readdir_clear_array,
69  };
70  
71  static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72  {
73  	struct nfs_inode *nfsi = NFS_I(dir);
74  	struct nfs_open_dir_context *ctx;
75  	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76  	if (ctx != NULL) {
77  		ctx->duped = 0;
78  		ctx->attr_gencount = nfsi->attr_gencount;
79  		ctx->dir_cookie = 0;
80  		ctx->dup_cookie = 0;
81  		spin_lock(&dir->i_lock);
82  		if (list_empty(&nfsi->open_files) &&
83  		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
84  			nfs_set_cache_invalid(dir,
85  					      NFS_INO_INVALID_DATA |
86  						      NFS_INO_REVAL_FORCED);
87  		list_add(&ctx->list, &nfsi->open_files);
88  		spin_unlock(&dir->i_lock);
89  		return ctx;
90  	}
91  	return  ERR_PTR(-ENOMEM);
92  }
93  
94  static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95  {
96  	spin_lock(&dir->i_lock);
97  	list_del(&ctx->list);
98  	spin_unlock(&dir->i_lock);
99  	kfree(ctx);
100  }
101  
102  /*
103   * Open file
104   */
105  static int
106  nfs_opendir(struct inode *inode, struct file *filp)
107  {
108  	int res = 0;
109  	struct nfs_open_dir_context *ctx;
110  
111  	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
112  
113  	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
114  
115  	ctx = alloc_nfs_open_dir_context(inode);
116  	if (IS_ERR(ctx)) {
117  		res = PTR_ERR(ctx);
118  		goto out;
119  	}
120  	filp->private_data = ctx;
121  out:
122  	return res;
123  }
124  
125  static int
126  nfs_closedir(struct inode *inode, struct file *filp)
127  {
128  	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
129  	return 0;
130  }
131  
132  struct nfs_cache_array_entry {
133  	u64 cookie;
134  	u64 ino;
135  	const char *name;
136  	unsigned int name_len;
137  	unsigned char d_type;
138  };
139  
140  struct nfs_cache_array {
141  	u64 last_cookie;
142  	unsigned int size;
143  	unsigned char page_full : 1,
144  		      page_is_eof : 1,
145  		      cookies_are_ordered : 1;
146  	struct nfs_cache_array_entry array[];
147  };
148  
149  struct nfs_readdir_descriptor {
150  	struct file	*file;
151  	struct page	*page;
152  	struct dir_context *ctx;
153  	pgoff_t		page_index;
154  	u64		dir_cookie;
155  	u64		last_cookie;
156  	u64		dup_cookie;
157  	loff_t		current_index;
158  	loff_t		prev_index;
159  
160  	__be32		verf[NFS_DIR_VERIFIER_SIZE];
161  	unsigned long	dir_verifier;
162  	unsigned long	timestamp;
163  	unsigned long	gencount;
164  	unsigned long	attr_gencount;
165  	unsigned int	cache_entry_index;
166  	signed char duped;
167  	bool plus;
168  	bool eof;
169  };
170  
171  static void nfs_readdir_array_init(struct nfs_cache_array *array)
172  {
173  	memset(array, 0, sizeof(struct nfs_cache_array));
174  }
175  
176  static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
177  {
178  	struct nfs_cache_array *array;
179  
180  	array = kmap_atomic(page);
181  	nfs_readdir_array_init(array);
182  	array->last_cookie = last_cookie;
183  	array->cookies_are_ordered = 1;
184  	kunmap_atomic(array);
185  }
186  
187  /*
188   * we are freeing strings created by nfs_add_to_readdir_array()
189   */
190  static
191  void nfs_readdir_clear_array(struct page *page)
192  {
193  	struct nfs_cache_array *array;
194  	int i;
195  
196  	array = kmap_atomic(page);
197  	for (i = 0; i < array->size; i++)
198  		kfree(array->array[i].name);
199  	nfs_readdir_array_init(array);
200  	kunmap_atomic(array);
201  }
202  
203  static struct page *
204  nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
205  {
206  	struct page *page = alloc_page(gfp_flags);
207  	if (page)
208  		nfs_readdir_page_init_array(page, last_cookie);
209  	return page;
210  }
211  
212  static void nfs_readdir_page_array_free(struct page *page)
213  {
214  	if (page) {
215  		nfs_readdir_clear_array(page);
216  		put_page(page);
217  	}
218  }
219  
220  static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
221  {
222  	array->page_is_eof = 1;
223  	array->page_full = 1;
224  }
225  
226  static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
227  {
228  	return array->page_full;
229  }
230  
231  /*
232   * the caller is responsible for freeing qstr.name
233   * when called by nfs_readdir_add_to_array, the strings will be freed in
234   * nfs_clear_readdir_array()
235   */
236  static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
237  {
238  	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
239  
240  	/*
241  	 * Avoid a kmemleak false positive. The pointer to the name is stored
242  	 * in a page cache page which kmemleak does not scan.
243  	 */
244  	if (ret != NULL)
245  		kmemleak_not_leak(ret);
246  	return ret;
247  }
248  
249  /*
250   * Check that the next array entry lies entirely within the page bounds
251   */
252  static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
253  {
254  	struct nfs_cache_array_entry *cache_entry;
255  
256  	if (array->page_full)
257  		return -ENOSPC;
258  	cache_entry = &array->array[array->size + 1];
259  	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
260  		array->page_full = 1;
261  		return -ENOSPC;
262  	}
263  	return 0;
264  }
265  
266  static
267  int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
268  {
269  	struct nfs_cache_array *array;
270  	struct nfs_cache_array_entry *cache_entry;
271  	const char *name;
272  	int ret;
273  
274  	name = nfs_readdir_copy_name(entry->name, entry->len);
275  	if (!name)
276  		return -ENOMEM;
277  
278  	array = kmap_atomic(page);
279  	ret = nfs_readdir_array_can_expand(array);
280  	if (ret) {
281  		kfree(name);
282  		goto out;
283  	}
284  
285  	cache_entry = &array->array[array->size];
286  	cache_entry->cookie = entry->prev_cookie;
287  	cache_entry->ino = entry->ino;
288  	cache_entry->d_type = entry->d_type;
289  	cache_entry->name_len = entry->len;
290  	cache_entry->name = name;
291  	array->last_cookie = entry->cookie;
292  	if (array->last_cookie <= cache_entry->cookie)
293  		array->cookies_are_ordered = 0;
294  	array->size++;
295  	if (entry->eof != 0)
296  		nfs_readdir_array_set_eof(array);
297  out:
298  	kunmap_atomic(array);
299  	return ret;
300  }
301  
302  static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
303  						pgoff_t index, u64 last_cookie)
304  {
305  	struct page *page;
306  
307  	page = grab_cache_page(mapping, index);
308  	if (page && !PageUptodate(page)) {
309  		nfs_readdir_page_init_array(page, last_cookie);
310  		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
311  			nfs_zap_mapping(mapping->host, mapping);
312  		SetPageUptodate(page);
313  	}
314  
315  	return page;
316  }
317  
318  static u64 nfs_readdir_page_last_cookie(struct page *page)
319  {
320  	struct nfs_cache_array *array;
321  	u64 ret;
322  
323  	array = kmap_atomic(page);
324  	ret = array->last_cookie;
325  	kunmap_atomic(array);
326  	return ret;
327  }
328  
329  static bool nfs_readdir_page_needs_filling(struct page *page)
330  {
331  	struct nfs_cache_array *array;
332  	bool ret;
333  
334  	array = kmap_atomic(page);
335  	ret = !nfs_readdir_array_is_full(array);
336  	kunmap_atomic(array);
337  	return ret;
338  }
339  
340  static void nfs_readdir_page_set_eof(struct page *page)
341  {
342  	struct nfs_cache_array *array;
343  
344  	array = kmap_atomic(page);
345  	nfs_readdir_array_set_eof(array);
346  	kunmap_atomic(array);
347  }
348  
349  static void nfs_readdir_page_unlock_and_put(struct page *page)
350  {
351  	unlock_page(page);
352  	put_page(page);
353  }
354  
355  static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
356  					      pgoff_t index, u64 cookie)
357  {
358  	struct page *page;
359  
360  	page = nfs_readdir_page_get_locked(mapping, index, cookie);
361  	if (page) {
362  		if (nfs_readdir_page_last_cookie(page) == cookie)
363  			return page;
364  		nfs_readdir_page_unlock_and_put(page);
365  	}
366  	return NULL;
367  }
368  
369  static inline
370  int is_32bit_api(void)
371  {
372  #ifdef CONFIG_COMPAT
373  	return in_compat_syscall();
374  #else
375  	return (BITS_PER_LONG == 32);
376  #endif
377  }
378  
379  static
380  bool nfs_readdir_use_cookie(const struct file *filp)
381  {
382  	if ((filp->f_mode & FMODE_32BITHASH) ||
383  	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
384  		return false;
385  	return true;
386  }
387  
388  static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
389  				      struct nfs_readdir_descriptor *desc)
390  {
391  	loff_t diff = desc->ctx->pos - desc->current_index;
392  	unsigned int index;
393  
394  	if (diff < 0)
395  		goto out_eof;
396  	if (diff >= array->size) {
397  		if (array->page_is_eof)
398  			goto out_eof;
399  		return -EAGAIN;
400  	}
401  
402  	index = (unsigned int)diff;
403  	desc->dir_cookie = array->array[index].cookie;
404  	desc->cache_entry_index = index;
405  	return 0;
406  out_eof:
407  	desc->eof = true;
408  	return -EBADCOOKIE;
409  }
410  
411  static bool
412  nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
413  {
414  	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
415  		return false;
416  	smp_rmb();
417  	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
418  }
419  
420  static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
421  					      u64 cookie)
422  {
423  	if (!array->cookies_are_ordered)
424  		return true;
425  	/* Optimisation for monotonically increasing cookies */
426  	if (cookie >= array->last_cookie)
427  		return false;
428  	if (array->size && cookie < array->array[0].cookie)
429  		return false;
430  	return true;
431  }
432  
433  static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
434  					 struct nfs_readdir_descriptor *desc)
435  {
436  	int i;
437  	loff_t new_pos;
438  	int status = -EAGAIN;
439  
440  	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
441  		goto check_eof;
442  
443  	for (i = 0; i < array->size; i++) {
444  		if (array->array[i].cookie == desc->dir_cookie) {
445  			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
446  
447  			new_pos = desc->current_index + i;
448  			if (desc->attr_gencount != nfsi->attr_gencount ||
449  			    !nfs_readdir_inode_mapping_valid(nfsi)) {
450  				desc->duped = 0;
451  				desc->attr_gencount = nfsi->attr_gencount;
452  			} else if (new_pos < desc->prev_index) {
453  				if (desc->duped > 0
454  				    && desc->dup_cookie == desc->dir_cookie) {
455  					if (printk_ratelimit()) {
456  						pr_notice("NFS: directory %pD2 contains a readdir loop."
457  								"Please contact your server vendor.  "
458  								"The file: %s has duplicate cookie %llu\n",
459  								desc->file, array->array[i].name, desc->dir_cookie);
460  					}
461  					status = -ELOOP;
462  					goto out;
463  				}
464  				desc->dup_cookie = desc->dir_cookie;
465  				desc->duped = -1;
466  			}
467  			if (nfs_readdir_use_cookie(desc->file))
468  				desc->ctx->pos = desc->dir_cookie;
469  			else
470  				desc->ctx->pos = new_pos;
471  			desc->prev_index = new_pos;
472  			desc->cache_entry_index = i;
473  			return 0;
474  		}
475  	}
476  check_eof:
477  	if (array->page_is_eof) {
478  		status = -EBADCOOKIE;
479  		if (desc->dir_cookie == array->last_cookie)
480  			desc->eof = true;
481  	}
482  out:
483  	return status;
484  }
485  
486  static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
487  {
488  	struct nfs_cache_array *array;
489  	int status;
490  
491  	array = kmap_atomic(desc->page);
492  
493  	if (desc->dir_cookie == 0)
494  		status = nfs_readdir_search_for_pos(array, desc);
495  	else
496  		status = nfs_readdir_search_for_cookie(array, desc);
497  
498  	if (status == -EAGAIN) {
499  		desc->last_cookie = array->last_cookie;
500  		desc->current_index += array->size;
501  		desc->page_index++;
502  	}
503  	kunmap_atomic(array);
504  	return status;
505  }
506  
507  /* Fill a page with xdr information before transferring to the cache page */
508  static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
509  				  __be32 *verf, u64 cookie,
510  				  struct page **pages, size_t bufsize,
511  				  __be32 *verf_res)
512  {
513  	struct inode *inode = file_inode(desc->file);
514  	struct nfs_readdir_arg arg = {
515  		.dentry = file_dentry(desc->file),
516  		.cred = desc->file->f_cred,
517  		.verf = verf,
518  		.cookie = cookie,
519  		.pages = pages,
520  		.page_len = bufsize,
521  		.plus = desc->plus,
522  	};
523  	struct nfs_readdir_res res = {
524  		.verf = verf_res,
525  	};
526  	unsigned long	timestamp, gencount;
527  	int		error;
528  
529   again:
530  	timestamp = jiffies;
531  	gencount = nfs_inc_attr_generation_counter();
532  	desc->dir_verifier = nfs_save_change_attribute(inode);
533  	error = NFS_PROTO(inode)->readdir(&arg, &res);
534  	if (error < 0) {
535  		/* We requested READDIRPLUS, but the server doesn't grok it */
536  		if (error == -ENOTSUPP && desc->plus) {
537  			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
538  			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
539  			desc->plus = arg.plus = false;
540  			goto again;
541  		}
542  		goto error;
543  	}
544  	desc->timestamp = timestamp;
545  	desc->gencount = gencount;
546  error:
547  	return error;
548  }
549  
550  static int xdr_decode(struct nfs_readdir_descriptor *desc,
551  		      struct nfs_entry *entry, struct xdr_stream *xdr)
552  {
553  	struct inode *inode = file_inode(desc->file);
554  	int error;
555  
556  	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
557  	if (error)
558  		return error;
559  	entry->fattr->time_start = desc->timestamp;
560  	entry->fattr->gencount = desc->gencount;
561  	return 0;
562  }
563  
564  /* Match file and dirent using either filehandle or fileid
565   * Note: caller is responsible for checking the fsid
566   */
567  static
568  int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
569  {
570  	struct inode *inode;
571  	struct nfs_inode *nfsi;
572  
573  	if (d_really_is_negative(dentry))
574  		return 0;
575  
576  	inode = d_inode(dentry);
577  	if (is_bad_inode(inode) || NFS_STALE(inode))
578  		return 0;
579  
580  	nfsi = NFS_I(inode);
581  	if (entry->fattr->fileid != nfsi->fileid)
582  		return 0;
583  	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
584  		return 0;
585  	return 1;
586  }
587  
588  static
589  bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
590  {
591  	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
592  		return false;
593  	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
594  		return true;
595  	if (ctx->pos == 0)
596  		return true;
597  	return false;
598  }
599  
600  /*
601   * This function is called by the lookup and getattr code to request the
602   * use of readdirplus to accelerate any future lookups in the same
603   * directory.
604   */
605  void nfs_advise_use_readdirplus(struct inode *dir)
606  {
607  	struct nfs_inode *nfsi = NFS_I(dir);
608  
609  	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
610  	    !list_empty(&nfsi->open_files))
611  		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
612  }
613  
614  /*
615   * This function is mainly for use by nfs_getattr().
616   *
617   * If this is an 'ls -l', we want to force use of readdirplus.
618   * Do this by checking if there is an active file descriptor
619   * and calling nfs_advise_use_readdirplus, then forcing a
620   * cache flush.
621   */
622  void nfs_force_use_readdirplus(struct inode *dir)
623  {
624  	struct nfs_inode *nfsi = NFS_I(dir);
625  
626  	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
627  	    !list_empty(&nfsi->open_files)) {
628  		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
629  		invalidate_mapping_pages(dir->i_mapping,
630  			nfsi->page_index + 1, -1);
631  	}
632  }
633  
634  static
635  void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
636  		unsigned long dir_verifier)
637  {
638  	struct qstr filename = QSTR_INIT(entry->name, entry->len);
639  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
640  	struct dentry *dentry;
641  	struct dentry *alias;
642  	struct inode *inode;
643  	int status;
644  
645  	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
646  		return;
647  	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
648  		return;
649  	if (filename.len == 0)
650  		return;
651  	/* Validate that the name doesn't contain any illegal '\0' */
652  	if (strnlen(filename.name, filename.len) != filename.len)
653  		return;
654  	/* ...or '/' */
655  	if (strnchr(filename.name, filename.len, '/'))
656  		return;
657  	if (filename.name[0] == '.') {
658  		if (filename.len == 1)
659  			return;
660  		if (filename.len == 2 && filename.name[1] == '.')
661  			return;
662  	}
663  	filename.hash = full_name_hash(parent, filename.name, filename.len);
664  
665  	dentry = d_lookup(parent, &filename);
666  again:
667  	if (!dentry) {
668  		dentry = d_alloc_parallel(parent, &filename, &wq);
669  		if (IS_ERR(dentry))
670  			return;
671  	}
672  	if (!d_in_lookup(dentry)) {
673  		/* Is there a mountpoint here? If so, just exit */
674  		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
675  					&entry->fattr->fsid))
676  			goto out;
677  		if (nfs_same_file(dentry, entry)) {
678  			if (!entry->fh->size)
679  				goto out;
680  			nfs_set_verifier(dentry, dir_verifier);
681  			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
682  			if (!status)
683  				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
684  			goto out;
685  		} else {
686  			d_invalidate(dentry);
687  			dput(dentry);
688  			dentry = NULL;
689  			goto again;
690  		}
691  	}
692  	if (!entry->fh->size) {
693  		d_lookup_done(dentry);
694  		goto out;
695  	}
696  
697  	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
698  	alias = d_splice_alias(inode, dentry);
699  	d_lookup_done(dentry);
700  	if (alias) {
701  		if (IS_ERR(alias))
702  			goto out;
703  		dput(dentry);
704  		dentry = alias;
705  	}
706  	nfs_set_verifier(dentry, dir_verifier);
707  out:
708  	dput(dentry);
709  }
710  
711  /* Perform conversion from xdr to cache array */
712  static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
713  				   struct nfs_entry *entry,
714  				   struct page **xdr_pages,
715  				   unsigned int buflen,
716  				   struct page **arrays,
717  				   size_t narrays)
718  {
719  	struct address_space *mapping = desc->file->f_mapping;
720  	struct xdr_stream stream;
721  	struct xdr_buf buf;
722  	struct page *scratch, *new, *page = *arrays;
723  	int status;
724  
725  	scratch = alloc_page(GFP_KERNEL);
726  	if (scratch == NULL)
727  		return -ENOMEM;
728  
729  	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
730  	xdr_set_scratch_page(&stream, scratch);
731  
732  	do {
733  		if (entry->label)
734  			entry->label->len = NFS4_MAXLABELLEN;
735  
736  		status = xdr_decode(desc, entry, &stream);
737  		if (status != 0)
738  			break;
739  
740  		if (desc->plus)
741  			nfs_prime_dcache(file_dentry(desc->file), entry,
742  					desc->dir_verifier);
743  
744  		status = nfs_readdir_add_to_array(entry, page);
745  		if (status != -ENOSPC)
746  			continue;
747  
748  		if (page->mapping != mapping) {
749  			if (!--narrays)
750  				break;
751  			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
752  							   GFP_KERNEL);
753  			if (!new)
754  				break;
755  			arrays++;
756  			*arrays = page = new;
757  		} else {
758  			new = nfs_readdir_page_get_next(mapping,
759  							page->index + 1,
760  							entry->prev_cookie);
761  			if (!new)
762  				break;
763  			if (page != *arrays)
764  				nfs_readdir_page_unlock_and_put(page);
765  			page = new;
766  		}
767  		status = nfs_readdir_add_to_array(entry, page);
768  	} while (!status && !entry->eof);
769  
770  	switch (status) {
771  	case -EBADCOOKIE:
772  		if (entry->eof) {
773  			nfs_readdir_page_set_eof(page);
774  			status = 0;
775  		}
776  		break;
777  	case -ENOSPC:
778  	case -EAGAIN:
779  		status = 0;
780  		break;
781  	}
782  
783  	if (page != *arrays)
784  		nfs_readdir_page_unlock_and_put(page);
785  
786  	put_page(scratch);
787  	return status;
788  }
789  
790  static void nfs_readdir_free_pages(struct page **pages, size_t npages)
791  {
792  	while (npages--)
793  		put_page(pages[npages]);
794  	kfree(pages);
795  }
796  
797  /*
798   * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
799   * to nfs_readdir_free_pages()
800   */
801  static struct page **nfs_readdir_alloc_pages(size_t npages)
802  {
803  	struct page **pages;
804  	size_t i;
805  
806  	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
807  	if (!pages)
808  		return NULL;
809  	for (i = 0; i < npages; i++) {
810  		struct page *page = alloc_page(GFP_KERNEL);
811  		if (page == NULL)
812  			goto out_freepages;
813  		pages[i] = page;
814  	}
815  	return pages;
816  
817  out_freepages:
818  	nfs_readdir_free_pages(pages, i);
819  	return NULL;
820  }
821  
822  static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
823  				    __be32 *verf_arg, __be32 *verf_res,
824  				    struct page **arrays, size_t narrays)
825  {
826  	struct page **pages;
827  	struct page *page = *arrays;
828  	struct nfs_entry *entry;
829  	size_t array_size;
830  	struct inode *inode = file_inode(desc->file);
831  	size_t dtsize = NFS_SERVER(inode)->dtsize;
832  	int status = -ENOMEM;
833  
834  	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
835  	if (!entry)
836  		return -ENOMEM;
837  	entry->cookie = nfs_readdir_page_last_cookie(page);
838  	entry->fh = nfs_alloc_fhandle();
839  	entry->fattr = nfs_alloc_fattr();
840  	entry->server = NFS_SERVER(inode);
841  	if (entry->fh == NULL || entry->fattr == NULL)
842  		goto out;
843  
844  	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
845  	if (IS_ERR(entry->label)) {
846  		status = PTR_ERR(entry->label);
847  		goto out;
848  	}
849  
850  	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
851  	pages = nfs_readdir_alloc_pages(array_size);
852  	if (!pages)
853  		goto out_release_label;
854  
855  	do {
856  		unsigned int pglen;
857  		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
858  						pages, dtsize,
859  						verf_res);
860  		if (status < 0)
861  			break;
862  
863  		pglen = status;
864  		if (pglen == 0) {
865  			nfs_readdir_page_set_eof(page);
866  			break;
867  		}
868  
869  		verf_arg = verf_res;
870  
871  		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
872  						 arrays, narrays);
873  	} while (!status && nfs_readdir_page_needs_filling(page));
874  
875  	nfs_readdir_free_pages(pages, array_size);
876  out_release_label:
877  	nfs4_label_free(entry->label);
878  out:
879  	nfs_free_fattr(entry->fattr);
880  	nfs_free_fhandle(entry->fh);
881  	kfree(entry);
882  	return status;
883  }
884  
885  static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
886  {
887  	put_page(desc->page);
888  	desc->page = NULL;
889  }
890  
891  static void
892  nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
893  {
894  	unlock_page(desc->page);
895  	nfs_readdir_page_put(desc);
896  }
897  
898  static struct page *
899  nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
900  {
901  	return nfs_readdir_page_get_locked(desc->file->f_mapping,
902  					   desc->page_index,
903  					   desc->last_cookie);
904  }
905  
906  /*
907   * Returns 0 if desc->dir_cookie was found on page desc->page_index
908   * and locks the page to prevent removal from the page cache.
909   */
910  static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
911  {
912  	struct inode *inode = file_inode(desc->file);
913  	struct nfs_inode *nfsi = NFS_I(inode);
914  	__be32 verf[NFS_DIR_VERIFIER_SIZE];
915  	int res;
916  
917  	desc->page = nfs_readdir_page_get_cached(desc);
918  	if (!desc->page)
919  		return -ENOMEM;
920  	if (nfs_readdir_page_needs_filling(desc->page)) {
921  		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
922  					       &desc->page, 1);
923  		if (res < 0) {
924  			nfs_readdir_page_unlock_and_put_cached(desc);
925  			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
926  				invalidate_inode_pages2(desc->file->f_mapping);
927  				desc->page_index = 0;
928  				return -EAGAIN;
929  			}
930  			return res;
931  		}
932  		/*
933  		 * Set the cookie verifier if the page cache was empty
934  		 */
935  		if (desc->page_index == 0)
936  			memcpy(nfsi->cookieverf, verf,
937  			       sizeof(nfsi->cookieverf));
938  	}
939  	res = nfs_readdir_search_array(desc);
940  	if (res == 0) {
941  		nfsi->page_index = desc->page_index;
942  		return 0;
943  	}
944  	nfs_readdir_page_unlock_and_put_cached(desc);
945  	return res;
946  }
947  
948  static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
949  {
950  	struct address_space *mapping = desc->file->f_mapping;
951  	struct inode *dir = file_inode(desc->file);
952  	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
953  	loff_t size = i_size_read(dir);
954  
955  	/*
956  	 * Default to uncached readdir if the page cache is empty, and
957  	 * we're looking for a non-zero cookie in a large directory.
958  	 */
959  	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
960  }
961  
962  /* Search for desc->dir_cookie from the beginning of the page cache */
963  static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
964  {
965  	int res;
966  
967  	if (nfs_readdir_dont_search_cache(desc))
968  		return -EBADCOOKIE;
969  
970  	do {
971  		if (desc->page_index == 0) {
972  			desc->current_index = 0;
973  			desc->prev_index = 0;
974  			desc->last_cookie = 0;
975  		}
976  		res = find_and_lock_cache_page(desc);
977  	} while (res == -EAGAIN);
978  	return res;
979  }
980  
981  /*
982   * Once we've found the start of the dirent within a page: fill 'er up...
983   */
984  static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
985  			   const __be32 *verf)
986  {
987  	struct file	*file = desc->file;
988  	struct nfs_cache_array *array;
989  	unsigned int i = 0;
990  
991  	array = kmap(desc->page);
992  	for (i = desc->cache_entry_index; i < array->size; i++) {
993  		struct nfs_cache_array_entry *ent;
994  
995  		ent = &array->array[i];
996  		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
997  		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
998  			desc->eof = true;
999  			break;
1000  		}
1001  		memcpy(desc->verf, verf, sizeof(desc->verf));
1002  		if (i < (array->size-1))
1003  			desc->dir_cookie = array->array[i+1].cookie;
1004  		else
1005  			desc->dir_cookie = array->last_cookie;
1006  		if (nfs_readdir_use_cookie(file))
1007  			desc->ctx->pos = desc->dir_cookie;
1008  		else
1009  			desc->ctx->pos++;
1010  		if (desc->duped != 0)
1011  			desc->duped = 1;
1012  	}
1013  	if (array->page_is_eof)
1014  		desc->eof = true;
1015  
1016  	kunmap(desc->page);
1017  	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018  			(unsigned long long)desc->dir_cookie);
1019  }
1020  
1021  /*
1022   * If we cannot find a cookie in our cache, we suspect that this is
1023   * because it points to a deleted file, so we ask the server to return
1024   * whatever it thinks is the next entry. We then feed this to filldir.
1025   * If all goes well, we should then be able to find our way round the
1026   * cache on the next call to readdir_search_pagecache();
1027   *
1028   * NOTE: we cannot add the anonymous page to the pagecache because
1029   *	 the data it contains might not be page aligned. Besides,
1030   *	 we should already have a complete representation of the
1031   *	 directory in the page cache by the time we get here.
1032   */
1033  static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1034  {
1035  	struct page	**arrays;
1036  	size_t		i, sz = 512;
1037  	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1038  	int		status = -ENOMEM;
1039  
1040  	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041  			(unsigned long long)desc->dir_cookie);
1042  
1043  	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044  	if (!arrays)
1045  		goto out;
1046  	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047  	if (!arrays[0])
1048  		goto out;
1049  
1050  	desc->page_index = 0;
1051  	desc->last_cookie = desc->dir_cookie;
1052  	desc->duped = 0;
1053  
1054  	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1055  
1056  	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1057  		desc->page = arrays[i];
1058  		nfs_do_filldir(desc, verf);
1059  	}
1060  	desc->page = NULL;
1061  
1062  
1063  	for (i = 0; i < sz && arrays[i]; i++)
1064  		nfs_readdir_page_array_free(arrays[i]);
1065  out:
1066  	kfree(arrays);
1067  	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1068  	return status;
1069  }
1070  
1071  /* The file offset position represents the dirent entry number.  A
1072     last cookie cache takes care of the common case of reading the
1073     whole directory.
1074   */
1075  static int nfs_readdir(struct file *file, struct dir_context *ctx)
1076  {
1077  	struct dentry	*dentry = file_dentry(file);
1078  	struct inode	*inode = d_inode(dentry);
1079  	struct nfs_inode *nfsi = NFS_I(inode);
1080  	struct nfs_open_dir_context *dir_ctx = file->private_data;
1081  	struct nfs_readdir_descriptor *desc;
1082  	int res;
1083  
1084  	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1085  			file, (long long)ctx->pos);
1086  	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1087  
1088  	/*
1089  	 * ctx->pos points to the dirent entry number.
1090  	 * *desc->dir_cookie has the cookie for the next entry. We have
1091  	 * to either find the entry with the appropriate number or
1092  	 * revalidate the cookie.
1093  	 */
1094  	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1095  		res = nfs_revalidate_mapping(inode, file->f_mapping);
1096  		if (res < 0)
1097  			goto out;
1098  	}
1099  
1100  	res = -ENOMEM;
1101  	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1102  	if (!desc)
1103  		goto out;
1104  	desc->file = file;
1105  	desc->ctx = ctx;
1106  	desc->plus = nfs_use_readdirplus(inode, ctx);
1107  
1108  	spin_lock(&file->f_lock);
1109  	desc->dir_cookie = dir_ctx->dir_cookie;
1110  	desc->dup_cookie = dir_ctx->dup_cookie;
1111  	desc->duped = dir_ctx->duped;
1112  	desc->attr_gencount = dir_ctx->attr_gencount;
1113  	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1114  	spin_unlock(&file->f_lock);
1115  
1116  	do {
1117  		res = readdir_search_pagecache(desc);
1118  
1119  		if (res == -EBADCOOKIE) {
1120  			res = 0;
1121  			/* This means either end of directory */
1122  			if (desc->dir_cookie && !desc->eof) {
1123  				/* Or that the server has 'lost' a cookie */
1124  				res = uncached_readdir(desc);
1125  				if (res == 0)
1126  					continue;
1127  				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1128  					res = 0;
1129  			}
1130  			break;
1131  		}
1132  		if (res == -ETOOSMALL && desc->plus) {
1133  			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1134  			nfs_zap_caches(inode);
1135  			desc->page_index = 0;
1136  			desc->plus = false;
1137  			desc->eof = false;
1138  			continue;
1139  		}
1140  		if (res < 0)
1141  			break;
1142  
1143  		nfs_do_filldir(desc, nfsi->cookieverf);
1144  		nfs_readdir_page_unlock_and_put_cached(desc);
1145  	} while (!desc->eof);
1146  
1147  	spin_lock(&file->f_lock);
1148  	dir_ctx->dir_cookie = desc->dir_cookie;
1149  	dir_ctx->dup_cookie = desc->dup_cookie;
1150  	dir_ctx->duped = desc->duped;
1151  	dir_ctx->attr_gencount = desc->attr_gencount;
1152  	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153  	spin_unlock(&file->f_lock);
1154  
1155  	kfree(desc);
1156  
1157  out:
1158  	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1159  	return res;
1160  }
1161  
1162  static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1163  {
1164  	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1165  
1166  	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167  			filp, offset, whence);
1168  
1169  	switch (whence) {
1170  	default:
1171  		return -EINVAL;
1172  	case SEEK_SET:
1173  		if (offset < 0)
1174  			return -EINVAL;
1175  		spin_lock(&filp->f_lock);
1176  		break;
1177  	case SEEK_CUR:
1178  		if (offset == 0)
1179  			return filp->f_pos;
1180  		spin_lock(&filp->f_lock);
1181  		offset += filp->f_pos;
1182  		if (offset < 0) {
1183  			spin_unlock(&filp->f_lock);
1184  			return -EINVAL;
1185  		}
1186  	}
1187  	if (offset != filp->f_pos) {
1188  		filp->f_pos = offset;
1189  		if (nfs_readdir_use_cookie(filp))
1190  			dir_ctx->dir_cookie = offset;
1191  		else
1192  			dir_ctx->dir_cookie = 0;
1193  		if (offset == 0)
1194  			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1195  		dir_ctx->duped = 0;
1196  	}
1197  	spin_unlock(&filp->f_lock);
1198  	return offset;
1199  }
1200  
1201  /*
1202   * All directory operations under NFS are synchronous, so fsync()
1203   * is a dummy operation.
1204   */
1205  static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1206  			 int datasync)
1207  {
1208  	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1209  
1210  	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1211  	return 0;
1212  }
1213  
1214  /**
1215   * nfs_force_lookup_revalidate - Mark the directory as having changed
1216   * @dir: pointer to directory inode
1217   *
1218   * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219   * full lookup on all child dentries of 'dir' whenever a change occurs
1220   * on the server that might have invalidated our dcache.
1221   *
1222   * Note that we reserve bit '0' as a tag to let us know when a dentry
1223   * was revalidated while holding a delegation on its inode.
1224   *
1225   * The caller should be holding dir->i_lock
1226   */
1227  void nfs_force_lookup_revalidate(struct inode *dir)
1228  {
1229  	NFS_I(dir)->cache_change_attribute += 2;
1230  }
1231  EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1232  
1233  /**
1234   * nfs_verify_change_attribute - Detects NFS remote directory changes
1235   * @dir: pointer to parent directory inode
1236   * @verf: previously saved change attribute
1237   *
1238   * Return "false" if the verifiers doesn't match the change attribute.
1239   * This would usually indicate that the directory contents have changed on
1240   * the server, and that any dentries need revalidating.
1241   */
1242  static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1243  {
1244  	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1245  }
1246  
1247  static void nfs_set_verifier_delegated(unsigned long *verf)
1248  {
1249  	*verf |= 1UL;
1250  }
1251  
1252  #if IS_ENABLED(CONFIG_NFS_V4)
1253  static void nfs_unset_verifier_delegated(unsigned long *verf)
1254  {
1255  	*verf &= ~1UL;
1256  }
1257  #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1258  
1259  static bool nfs_test_verifier_delegated(unsigned long verf)
1260  {
1261  	return verf & 1;
1262  }
1263  
1264  static bool nfs_verifier_is_delegated(struct dentry *dentry)
1265  {
1266  	return nfs_test_verifier_delegated(dentry->d_time);
1267  }
1268  
1269  static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1270  {
1271  	struct inode *inode = d_inode(dentry);
1272  
1273  	if (!nfs_verifier_is_delegated(dentry) &&
1274  	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1275  		goto out;
1276  	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277  		nfs_set_verifier_delegated(&verf);
1278  out:
1279  	dentry->d_time = verf;
1280  }
1281  
1282  /**
1283   * nfs_set_verifier - save a parent directory verifier in the dentry
1284   * @dentry: pointer to dentry
1285   * @verf: verifier to save
1286   *
1287   * Saves the parent directory verifier in @dentry. If the inode has
1288   * a delegation, we also tag the dentry as having been revalidated
1289   * while holding a delegation so that we know we don't have to
1290   * look it up again after a directory change.
1291   */
1292  void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1293  {
1294  
1295  	spin_lock(&dentry->d_lock);
1296  	nfs_set_verifier_locked(dentry, verf);
1297  	spin_unlock(&dentry->d_lock);
1298  }
1299  EXPORT_SYMBOL_GPL(nfs_set_verifier);
1300  
1301  #if IS_ENABLED(CONFIG_NFS_V4)
1302  /**
1303   * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1304   * @inode: pointer to inode
1305   *
1306   * Iterates through the dentries in the inode alias list and clears
1307   * the tag used to indicate that the dentry has been revalidated
1308   * while holding a delegation.
1309   * This function is intended for use when the delegation is being
1310   * returned or revoked.
1311   */
1312  void nfs_clear_verifier_delegated(struct inode *inode)
1313  {
1314  	struct dentry *alias;
1315  
1316  	if (!inode)
1317  		return;
1318  	spin_lock(&inode->i_lock);
1319  	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1320  		spin_lock(&alias->d_lock);
1321  		nfs_unset_verifier_delegated(&alias->d_time);
1322  		spin_unlock(&alias->d_lock);
1323  	}
1324  	spin_unlock(&inode->i_lock);
1325  }
1326  EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1327  #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1328  
1329  /*
1330   * A check for whether or not the parent directory has changed.
1331   * In the case it has, we assume that the dentries are untrustworthy
1332   * and may need to be looked up again.
1333   * If rcu_walk prevents us from performing a full check, return 0.
1334   */
1335  static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1336  			      int rcu_walk)
1337  {
1338  	if (IS_ROOT(dentry))
1339  		return 1;
1340  	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1341  		return 0;
1342  	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1343  		return 0;
1344  	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1345  	if (nfs_mapping_need_revalidate_inode(dir)) {
1346  		if (rcu_walk)
1347  			return 0;
1348  		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1349  			return 0;
1350  	}
1351  	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1352  		return 0;
1353  	return 1;
1354  }
1355  
1356  /*
1357   * Use intent information to check whether or not we're going to do
1358   * an O_EXCL create using this path component.
1359   */
1360  static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1361  {
1362  	if (NFS_PROTO(dir)->version == 2)
1363  		return 0;
1364  	return flags & LOOKUP_EXCL;
1365  }
1366  
1367  /*
1368   * Inode and filehandle revalidation for lookups.
1369   *
1370   * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1371   * or if the intent information indicates that we're about to open this
1372   * particular file and the "nocto" mount flag is not set.
1373   *
1374   */
1375  static
1376  int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1377  {
1378  	struct nfs_server *server = NFS_SERVER(inode);
1379  	int ret;
1380  
1381  	if (IS_AUTOMOUNT(inode))
1382  		return 0;
1383  
1384  	if (flags & LOOKUP_OPEN) {
1385  		switch (inode->i_mode & S_IFMT) {
1386  		case S_IFREG:
1387  			/* A NFSv4 OPEN will revalidate later */
1388  			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1389  				goto out;
1390  			fallthrough;
1391  		case S_IFDIR:
1392  			if (server->flags & NFS_MOUNT_NOCTO)
1393  				break;
1394  			/* NFS close-to-open cache consistency validation */
1395  			goto out_force;
1396  		}
1397  	}
1398  
1399  	/* VFS wants an on-the-wire revalidation */
1400  	if (flags & LOOKUP_REVAL)
1401  		goto out_force;
1402  out:
1403  	return (inode->i_nlink == 0) ? -ESTALE : 0;
1404  out_force:
1405  	if (flags & LOOKUP_RCU)
1406  		return -ECHILD;
1407  	ret = __nfs_revalidate_inode(server, inode);
1408  	if (ret != 0)
1409  		return ret;
1410  	goto out;
1411  }
1412  
1413  static void nfs_mark_dir_for_revalidate(struct inode *inode)
1414  {
1415  	spin_lock(&inode->i_lock);
1416  	nfs_set_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE);
1417  	spin_unlock(&inode->i_lock);
1418  }
1419  
1420  /*
1421   * We judge how long we want to trust negative
1422   * dentries by looking at the parent inode mtime.
1423   *
1424   * If parent mtime has changed, we revalidate, else we wait for a
1425   * period corresponding to the parent's attribute cache timeout value.
1426   *
1427   * If LOOKUP_RCU prevents us from performing a full check, return 1
1428   * suggesting a reval is needed.
1429   *
1430   * Note that when creating a new file, or looking up a rename target,
1431   * then it shouldn't be necessary to revalidate a negative dentry.
1432   */
1433  static inline
1434  int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1435  		       unsigned int flags)
1436  {
1437  	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1438  		return 0;
1439  	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1440  		return 1;
1441  	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1442  }
1443  
1444  static int
1445  nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1446  			   struct inode *inode, int error)
1447  {
1448  	switch (error) {
1449  	case 1:
1450  		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1451  			__func__, dentry);
1452  		return 1;
1453  	case 0:
1454  		/*
1455  		 * We can't d_drop the root of a disconnected tree:
1456  		 * its d_hash is on the s_anon list and d_drop() would hide
1457  		 * it from shrink_dcache_for_unmount(), leading to busy
1458  		 * inodes on unmount and further oopses.
1459  		 */
1460  		if (inode && IS_ROOT(dentry))
1461  			return 1;
1462  		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1463  				__func__, dentry);
1464  		return 0;
1465  	}
1466  	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1467  				__func__, dentry, error);
1468  	return error;
1469  }
1470  
1471  static int
1472  nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1473  			       unsigned int flags)
1474  {
1475  	int ret = 1;
1476  	if (nfs_neg_need_reval(dir, dentry, flags)) {
1477  		if (flags & LOOKUP_RCU)
1478  			return -ECHILD;
1479  		ret = 0;
1480  	}
1481  	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1482  }
1483  
1484  static int
1485  nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1486  				struct inode *inode)
1487  {
1488  	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1489  	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1490  }
1491  
1492  static int
1493  nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1494  			     struct inode *inode)
1495  {
1496  	struct nfs_fh *fhandle;
1497  	struct nfs_fattr *fattr;
1498  	struct nfs4_label *label;
1499  	unsigned long dir_verifier;
1500  	int ret;
1501  
1502  	ret = -ENOMEM;
1503  	fhandle = nfs_alloc_fhandle();
1504  	fattr = nfs_alloc_fattr();
1505  	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1506  	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1507  		goto out;
1508  
1509  	dir_verifier = nfs_save_change_attribute(dir);
1510  	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1511  	if (ret < 0) {
1512  		switch (ret) {
1513  		case -ESTALE:
1514  		case -ENOENT:
1515  			ret = 0;
1516  			break;
1517  		case -ETIMEDOUT:
1518  			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1519  				ret = 1;
1520  		}
1521  		goto out;
1522  	}
1523  	ret = 0;
1524  	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1525  		goto out;
1526  	if (nfs_refresh_inode(inode, fattr) < 0)
1527  		goto out;
1528  
1529  	nfs_setsecurity(inode, fattr, label);
1530  	nfs_set_verifier(dentry, dir_verifier);
1531  
1532  	/* set a readdirplus hint that we had a cache miss */
1533  	nfs_force_use_readdirplus(dir);
1534  	ret = 1;
1535  out:
1536  	nfs_free_fattr(fattr);
1537  	nfs_free_fhandle(fhandle);
1538  	nfs4_label_free(label);
1539  
1540  	/*
1541  	 * If the lookup failed despite the dentry change attribute being
1542  	 * a match, then we should revalidate the directory cache.
1543  	 */
1544  	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1545  		nfs_mark_dir_for_revalidate(dir);
1546  	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1547  }
1548  
1549  /*
1550   * This is called every time the dcache has a lookup hit,
1551   * and we should check whether we can really trust that
1552   * lookup.
1553   *
1554   * NOTE! The hit can be a negative hit too, don't assume
1555   * we have an inode!
1556   *
1557   * If the parent directory is seen to have changed, we throw out the
1558   * cached dentry and do a new lookup.
1559   */
1560  static int
1561  nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1562  			 unsigned int flags)
1563  {
1564  	struct inode *inode;
1565  	int error;
1566  
1567  	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1568  	inode = d_inode(dentry);
1569  
1570  	if (!inode)
1571  		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1572  
1573  	if (is_bad_inode(inode)) {
1574  		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1575  				__func__, dentry);
1576  		goto out_bad;
1577  	}
1578  
1579  	if (nfs_verifier_is_delegated(dentry))
1580  		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1581  
1582  	/* Force a full look up iff the parent directory has changed */
1583  	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1584  	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1585  		error = nfs_lookup_verify_inode(inode, flags);
1586  		if (error) {
1587  			if (error == -ESTALE)
1588  				nfs_mark_dir_for_revalidate(dir);
1589  			goto out_bad;
1590  		}
1591  		nfs_advise_use_readdirplus(dir);
1592  		goto out_valid;
1593  	}
1594  
1595  	if (flags & LOOKUP_RCU)
1596  		return -ECHILD;
1597  
1598  	if (NFS_STALE(inode))
1599  		goto out_bad;
1600  
1601  	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1602  	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1603  	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1604  	return error;
1605  out_valid:
1606  	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1607  out_bad:
1608  	if (flags & LOOKUP_RCU)
1609  		return -ECHILD;
1610  	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1611  }
1612  
1613  static int
1614  __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1615  			int (*reval)(struct inode *, struct dentry *, unsigned int))
1616  {
1617  	struct dentry *parent;
1618  	struct inode *dir;
1619  	int ret;
1620  
1621  	if (flags & LOOKUP_RCU) {
1622  		parent = READ_ONCE(dentry->d_parent);
1623  		dir = d_inode_rcu(parent);
1624  		if (!dir)
1625  			return -ECHILD;
1626  		ret = reval(dir, dentry, flags);
1627  		if (parent != READ_ONCE(dentry->d_parent))
1628  			return -ECHILD;
1629  	} else {
1630  		parent = dget_parent(dentry);
1631  		ret = reval(d_inode(parent), dentry, flags);
1632  		dput(parent);
1633  	}
1634  	return ret;
1635  }
1636  
1637  static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1638  {
1639  	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1640  }
1641  
1642  /*
1643   * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1644   * when we don't really care about the dentry name. This is called when a
1645   * pathwalk ends on a dentry that was not found via a normal lookup in the
1646   * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1647   *
1648   * In this situation, we just want to verify that the inode itself is OK
1649   * since the dentry might have changed on the server.
1650   */
1651  static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1652  {
1653  	struct inode *inode = d_inode(dentry);
1654  	int error = 0;
1655  
1656  	/*
1657  	 * I believe we can only get a negative dentry here in the case of a
1658  	 * procfs-style symlink. Just assume it's correct for now, but we may
1659  	 * eventually need to do something more here.
1660  	 */
1661  	if (!inode) {
1662  		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1663  				__func__, dentry);
1664  		return 1;
1665  	}
1666  
1667  	if (is_bad_inode(inode)) {
1668  		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1669  				__func__, dentry);
1670  		return 0;
1671  	}
1672  
1673  	error = nfs_lookup_verify_inode(inode, flags);
1674  	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1675  			__func__, inode->i_ino, error ? "invalid" : "valid");
1676  	return !error;
1677  }
1678  
1679  /*
1680   * This is called from dput() when d_count is going to 0.
1681   */
1682  static int nfs_dentry_delete(const struct dentry *dentry)
1683  {
1684  	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1685  		dentry, dentry->d_flags);
1686  
1687  	/* Unhash any dentry with a stale inode */
1688  	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1689  		return 1;
1690  
1691  	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1692  		/* Unhash it, so that ->d_iput() would be called */
1693  		return 1;
1694  	}
1695  	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1696  		/* Unhash it, so that ancestors of killed async unlink
1697  		 * files will be cleaned up during umount */
1698  		return 1;
1699  	}
1700  	return 0;
1701  
1702  }
1703  
1704  /* Ensure that we revalidate inode->i_nlink */
1705  static void nfs_drop_nlink(struct inode *inode)
1706  {
1707  	spin_lock(&inode->i_lock);
1708  	/* drop the inode if we're reasonably sure this is the last link */
1709  	if (inode->i_nlink > 0)
1710  		drop_nlink(inode);
1711  	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1712  	nfs_set_cache_invalid(
1713  		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1714  			       NFS_INO_INVALID_NLINK);
1715  	spin_unlock(&inode->i_lock);
1716  }
1717  
1718  /*
1719   * Called when the dentry loses inode.
1720   * We use it to clean up silly-renamed files.
1721   */
1722  static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1723  {
1724  	if (S_ISDIR(inode->i_mode))
1725  		/* drop any readdir cache as it could easily be old */
1726  		nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1727  
1728  	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1729  		nfs_complete_unlink(dentry, inode);
1730  		nfs_drop_nlink(inode);
1731  	}
1732  	iput(inode);
1733  }
1734  
1735  static void nfs_d_release(struct dentry *dentry)
1736  {
1737  	/* free cached devname value, if it survived that far */
1738  	if (unlikely(dentry->d_fsdata)) {
1739  		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1740  			WARN_ON(1);
1741  		else
1742  			kfree(dentry->d_fsdata);
1743  	}
1744  }
1745  
1746  const struct dentry_operations nfs_dentry_operations = {
1747  	.d_revalidate	= nfs_lookup_revalidate,
1748  	.d_weak_revalidate	= nfs_weak_revalidate,
1749  	.d_delete	= nfs_dentry_delete,
1750  	.d_iput		= nfs_dentry_iput,
1751  	.d_automount	= nfs_d_automount,
1752  	.d_release	= nfs_d_release,
1753  };
1754  EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1755  
1756  struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1757  {
1758  	struct dentry *res;
1759  	struct inode *inode = NULL;
1760  	struct nfs_fh *fhandle = NULL;
1761  	struct nfs_fattr *fattr = NULL;
1762  	struct nfs4_label *label = NULL;
1763  	unsigned long dir_verifier;
1764  	int error;
1765  
1766  	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1767  	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1768  
1769  	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1770  		return ERR_PTR(-ENAMETOOLONG);
1771  
1772  	/*
1773  	 * If we're doing an exclusive create, optimize away the lookup
1774  	 * but don't hash the dentry.
1775  	 */
1776  	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1777  		return NULL;
1778  
1779  	res = ERR_PTR(-ENOMEM);
1780  	fhandle = nfs_alloc_fhandle();
1781  	fattr = nfs_alloc_fattr();
1782  	if (fhandle == NULL || fattr == NULL)
1783  		goto out;
1784  
1785  	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1786  	if (IS_ERR(label))
1787  		goto out;
1788  
1789  	dir_verifier = nfs_save_change_attribute(dir);
1790  	trace_nfs_lookup_enter(dir, dentry, flags);
1791  	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1792  	if (error == -ENOENT)
1793  		goto no_entry;
1794  	if (error < 0) {
1795  		res = ERR_PTR(error);
1796  		goto out_label;
1797  	}
1798  	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1799  	res = ERR_CAST(inode);
1800  	if (IS_ERR(res))
1801  		goto out_label;
1802  
1803  	/* Notify readdir to use READDIRPLUS */
1804  	nfs_force_use_readdirplus(dir);
1805  
1806  no_entry:
1807  	res = d_splice_alias(inode, dentry);
1808  	if (res != NULL) {
1809  		if (IS_ERR(res))
1810  			goto out_label;
1811  		dentry = res;
1812  	}
1813  	nfs_set_verifier(dentry, dir_verifier);
1814  out_label:
1815  	trace_nfs_lookup_exit(dir, dentry, flags, error);
1816  	nfs4_label_free(label);
1817  out:
1818  	nfs_free_fattr(fattr);
1819  	nfs_free_fhandle(fhandle);
1820  	return res;
1821  }
1822  EXPORT_SYMBOL_GPL(nfs_lookup);
1823  
1824  #if IS_ENABLED(CONFIG_NFS_V4)
1825  static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1826  
1827  const struct dentry_operations nfs4_dentry_operations = {
1828  	.d_revalidate	= nfs4_lookup_revalidate,
1829  	.d_weak_revalidate	= nfs_weak_revalidate,
1830  	.d_delete	= nfs_dentry_delete,
1831  	.d_iput		= nfs_dentry_iput,
1832  	.d_automount	= nfs_d_automount,
1833  	.d_release	= nfs_d_release,
1834  };
1835  EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1836  
1837  static fmode_t flags_to_mode(int flags)
1838  {
1839  	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1840  	if ((flags & O_ACCMODE) != O_WRONLY)
1841  		res |= FMODE_READ;
1842  	if ((flags & O_ACCMODE) != O_RDONLY)
1843  		res |= FMODE_WRITE;
1844  	return res;
1845  }
1846  
1847  static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1848  {
1849  	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1850  }
1851  
1852  static int do_open(struct inode *inode, struct file *filp)
1853  {
1854  	nfs_fscache_open_file(inode, filp);
1855  	return 0;
1856  }
1857  
1858  static int nfs_finish_open(struct nfs_open_context *ctx,
1859  			   struct dentry *dentry,
1860  			   struct file *file, unsigned open_flags)
1861  {
1862  	int err;
1863  
1864  	err = finish_open(file, dentry, do_open);
1865  	if (err)
1866  		goto out;
1867  	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1868  		nfs_file_set_open_context(file, ctx);
1869  	else
1870  		err = -EOPENSTALE;
1871  out:
1872  	return err;
1873  }
1874  
1875  int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1876  		    struct file *file, unsigned open_flags,
1877  		    umode_t mode)
1878  {
1879  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1880  	struct nfs_open_context *ctx;
1881  	struct dentry *res;
1882  	struct iattr attr = { .ia_valid = ATTR_OPEN };
1883  	struct inode *inode;
1884  	unsigned int lookup_flags = 0;
1885  	bool switched = false;
1886  	int created = 0;
1887  	int err;
1888  
1889  	/* Expect a negative dentry */
1890  	BUG_ON(d_inode(dentry));
1891  
1892  	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1893  			dir->i_sb->s_id, dir->i_ino, dentry);
1894  
1895  	err = nfs_check_flags(open_flags);
1896  	if (err)
1897  		return err;
1898  
1899  	/* NFS only supports OPEN on regular files */
1900  	if ((open_flags & O_DIRECTORY)) {
1901  		if (!d_in_lookup(dentry)) {
1902  			/*
1903  			 * Hashed negative dentry with O_DIRECTORY: dentry was
1904  			 * revalidated and is fine, no need to perform lookup
1905  			 * again
1906  			 */
1907  			return -ENOENT;
1908  		}
1909  		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1910  		goto no_open;
1911  	}
1912  
1913  	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1914  		return -ENAMETOOLONG;
1915  
1916  	if (open_flags & O_CREAT) {
1917  		struct nfs_server *server = NFS_SERVER(dir);
1918  
1919  		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1920  			mode &= ~current_umask();
1921  
1922  		attr.ia_valid |= ATTR_MODE;
1923  		attr.ia_mode = mode;
1924  	}
1925  	if (open_flags & O_TRUNC) {
1926  		attr.ia_valid |= ATTR_SIZE;
1927  		attr.ia_size = 0;
1928  	}
1929  
1930  	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1931  		d_drop(dentry);
1932  		switched = true;
1933  		dentry = d_alloc_parallel(dentry->d_parent,
1934  					  &dentry->d_name, &wq);
1935  		if (IS_ERR(dentry))
1936  			return PTR_ERR(dentry);
1937  		if (unlikely(!d_in_lookup(dentry)))
1938  			return finish_no_open(file, dentry);
1939  	}
1940  
1941  	ctx = create_nfs_open_context(dentry, open_flags, file);
1942  	err = PTR_ERR(ctx);
1943  	if (IS_ERR(ctx))
1944  		goto out;
1945  
1946  	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1947  	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1948  	if (created)
1949  		file->f_mode |= FMODE_CREATED;
1950  	if (IS_ERR(inode)) {
1951  		err = PTR_ERR(inode);
1952  		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1953  		put_nfs_open_context(ctx);
1954  		d_drop(dentry);
1955  		switch (err) {
1956  		case -ENOENT:
1957  			d_splice_alias(NULL, dentry);
1958  			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1959  			break;
1960  		case -EISDIR:
1961  		case -ENOTDIR:
1962  			goto no_open;
1963  		case -ELOOP:
1964  			if (!(open_flags & O_NOFOLLOW))
1965  				goto no_open;
1966  			break;
1967  			/* case -EINVAL: */
1968  		default:
1969  			break;
1970  		}
1971  		goto out;
1972  	}
1973  
1974  	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1975  	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1976  	put_nfs_open_context(ctx);
1977  out:
1978  	if (unlikely(switched)) {
1979  		d_lookup_done(dentry);
1980  		dput(dentry);
1981  	}
1982  	return err;
1983  
1984  no_open:
1985  	res = nfs_lookup(dir, dentry, lookup_flags);
1986  	if (switched) {
1987  		d_lookup_done(dentry);
1988  		if (!res)
1989  			res = dentry;
1990  		else
1991  			dput(dentry);
1992  	}
1993  	if (IS_ERR(res))
1994  		return PTR_ERR(res);
1995  	return finish_no_open(file, res);
1996  }
1997  EXPORT_SYMBOL_GPL(nfs_atomic_open);
1998  
1999  static int
2000  nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2001  			  unsigned int flags)
2002  {
2003  	struct inode *inode;
2004  
2005  	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2006  		goto full_reval;
2007  	if (d_mountpoint(dentry))
2008  		goto full_reval;
2009  
2010  	inode = d_inode(dentry);
2011  
2012  	/* We can't create new files in nfs_open_revalidate(), so we
2013  	 * optimize away revalidation of negative dentries.
2014  	 */
2015  	if (inode == NULL)
2016  		goto full_reval;
2017  
2018  	if (nfs_verifier_is_delegated(dentry))
2019  		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2020  
2021  	/* NFS only supports OPEN on regular files */
2022  	if (!S_ISREG(inode->i_mode))
2023  		goto full_reval;
2024  
2025  	/* We cannot do exclusive creation on a positive dentry */
2026  	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2027  		goto reval_dentry;
2028  
2029  	/* Check if the directory changed */
2030  	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2031  		goto reval_dentry;
2032  
2033  	/* Let f_op->open() actually open (and revalidate) the file */
2034  	return 1;
2035  reval_dentry:
2036  	if (flags & LOOKUP_RCU)
2037  		return -ECHILD;
2038  	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2039  
2040  full_reval:
2041  	return nfs_do_lookup_revalidate(dir, dentry, flags);
2042  }
2043  
2044  static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2045  {
2046  	return __nfs_lookup_revalidate(dentry, flags,
2047  			nfs4_do_lookup_revalidate);
2048  }
2049  
2050  #endif /* CONFIG_NFSV4 */
2051  
2052  struct dentry *
2053  nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2054  				struct nfs_fattr *fattr,
2055  				struct nfs4_label *label)
2056  {
2057  	struct dentry *parent = dget_parent(dentry);
2058  	struct inode *dir = d_inode(parent);
2059  	struct inode *inode;
2060  	struct dentry *d;
2061  	int error;
2062  
2063  	d_drop(dentry);
2064  
2065  	if (fhandle->size == 0) {
2066  		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2067  		if (error)
2068  			goto out_error;
2069  	}
2070  	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2071  	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2072  		struct nfs_server *server = NFS_SB(dentry->d_sb);
2073  		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2074  				fattr, NULL, NULL);
2075  		if (error < 0)
2076  			goto out_error;
2077  	}
2078  	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2079  	d = d_splice_alias(inode, dentry);
2080  out:
2081  	dput(parent);
2082  	return d;
2083  out_error:
2084  	d = ERR_PTR(error);
2085  	goto out;
2086  }
2087  EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2088  
2089  /*
2090   * Code common to create, mkdir, and mknod.
2091   */
2092  int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2093  				struct nfs_fattr *fattr,
2094  				struct nfs4_label *label)
2095  {
2096  	struct dentry *d;
2097  
2098  	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2099  	if (IS_ERR(d))
2100  		return PTR_ERR(d);
2101  
2102  	/* Callers don't care */
2103  	dput(d);
2104  	return 0;
2105  }
2106  EXPORT_SYMBOL_GPL(nfs_instantiate);
2107  
2108  /*
2109   * Following a failed create operation, we drop the dentry rather
2110   * than retain a negative dentry. This avoids a problem in the event
2111   * that the operation succeeded on the server, but an error in the
2112   * reply path made it appear to have failed.
2113   */
2114  int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2115  	       struct dentry *dentry, umode_t mode, bool excl)
2116  {
2117  	struct iattr attr;
2118  	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2119  	int error;
2120  
2121  	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2122  			dir->i_sb->s_id, dir->i_ino, dentry);
2123  
2124  	attr.ia_mode = mode;
2125  	attr.ia_valid = ATTR_MODE;
2126  
2127  	trace_nfs_create_enter(dir, dentry, open_flags);
2128  	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2129  	trace_nfs_create_exit(dir, dentry, open_flags, error);
2130  	if (error != 0)
2131  		goto out_err;
2132  	return 0;
2133  out_err:
2134  	d_drop(dentry);
2135  	return error;
2136  }
2137  EXPORT_SYMBOL_GPL(nfs_create);
2138  
2139  /*
2140   * See comments for nfs_proc_create regarding failed operations.
2141   */
2142  int
2143  nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2144  	  struct dentry *dentry, umode_t mode, dev_t rdev)
2145  {
2146  	struct iattr attr;
2147  	int status;
2148  
2149  	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2150  			dir->i_sb->s_id, dir->i_ino, dentry);
2151  
2152  	attr.ia_mode = mode;
2153  	attr.ia_valid = ATTR_MODE;
2154  
2155  	trace_nfs_mknod_enter(dir, dentry);
2156  	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2157  	trace_nfs_mknod_exit(dir, dentry, status);
2158  	if (status != 0)
2159  		goto out_err;
2160  	return 0;
2161  out_err:
2162  	d_drop(dentry);
2163  	return status;
2164  }
2165  EXPORT_SYMBOL_GPL(nfs_mknod);
2166  
2167  /*
2168   * See comments for nfs_proc_create regarding failed operations.
2169   */
2170  int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2171  	      struct dentry *dentry, umode_t mode)
2172  {
2173  	struct iattr attr;
2174  	int error;
2175  
2176  	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2177  			dir->i_sb->s_id, dir->i_ino, dentry);
2178  
2179  	attr.ia_valid = ATTR_MODE;
2180  	attr.ia_mode = mode | S_IFDIR;
2181  
2182  	trace_nfs_mkdir_enter(dir, dentry);
2183  	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2184  	trace_nfs_mkdir_exit(dir, dentry, error);
2185  	if (error != 0)
2186  		goto out_err;
2187  	return 0;
2188  out_err:
2189  	d_drop(dentry);
2190  	return error;
2191  }
2192  EXPORT_SYMBOL_GPL(nfs_mkdir);
2193  
2194  static void nfs_dentry_handle_enoent(struct dentry *dentry)
2195  {
2196  	if (simple_positive(dentry))
2197  		d_delete(dentry);
2198  }
2199  
2200  int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2201  {
2202  	int error;
2203  
2204  	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2205  			dir->i_sb->s_id, dir->i_ino, dentry);
2206  
2207  	trace_nfs_rmdir_enter(dir, dentry);
2208  	if (d_really_is_positive(dentry)) {
2209  		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2210  		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2211  		/* Ensure the VFS deletes this inode */
2212  		switch (error) {
2213  		case 0:
2214  			clear_nlink(d_inode(dentry));
2215  			break;
2216  		case -ENOENT:
2217  			nfs_dentry_handle_enoent(dentry);
2218  		}
2219  		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2220  	} else
2221  		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2222  	trace_nfs_rmdir_exit(dir, dentry, error);
2223  
2224  	return error;
2225  }
2226  EXPORT_SYMBOL_GPL(nfs_rmdir);
2227  
2228  /*
2229   * Remove a file after making sure there are no pending writes,
2230   * and after checking that the file has only one user.
2231   *
2232   * We invalidate the attribute cache and free the inode prior to the operation
2233   * to avoid possible races if the server reuses the inode.
2234   */
2235  static int nfs_safe_remove(struct dentry *dentry)
2236  {
2237  	struct inode *dir = d_inode(dentry->d_parent);
2238  	struct inode *inode = d_inode(dentry);
2239  	int error = -EBUSY;
2240  
2241  	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2242  
2243  	/* If the dentry was sillyrenamed, we simply call d_delete() */
2244  	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2245  		error = 0;
2246  		goto out;
2247  	}
2248  
2249  	trace_nfs_remove_enter(dir, dentry);
2250  	if (inode != NULL) {
2251  		error = NFS_PROTO(dir)->remove(dir, dentry);
2252  		if (error == 0)
2253  			nfs_drop_nlink(inode);
2254  	} else
2255  		error = NFS_PROTO(dir)->remove(dir, dentry);
2256  	if (error == -ENOENT)
2257  		nfs_dentry_handle_enoent(dentry);
2258  	trace_nfs_remove_exit(dir, dentry, error);
2259  out:
2260  	return error;
2261  }
2262  
2263  /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2264   *  belongs to an active ".nfs..." file and we return -EBUSY.
2265   *
2266   *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2267   */
2268  int nfs_unlink(struct inode *dir, struct dentry *dentry)
2269  {
2270  	int error;
2271  	int need_rehash = 0;
2272  
2273  	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2274  		dir->i_ino, dentry);
2275  
2276  	trace_nfs_unlink_enter(dir, dentry);
2277  	spin_lock(&dentry->d_lock);
2278  	if (d_count(dentry) > 1) {
2279  		spin_unlock(&dentry->d_lock);
2280  		/* Start asynchronous writeout of the inode */
2281  		write_inode_now(d_inode(dentry), 0);
2282  		error = nfs_sillyrename(dir, dentry);
2283  		goto out;
2284  	}
2285  	if (!d_unhashed(dentry)) {
2286  		__d_drop(dentry);
2287  		need_rehash = 1;
2288  	}
2289  	spin_unlock(&dentry->d_lock);
2290  	error = nfs_safe_remove(dentry);
2291  	if (!error || error == -ENOENT) {
2292  		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2293  	} else if (need_rehash)
2294  		d_rehash(dentry);
2295  out:
2296  	trace_nfs_unlink_exit(dir, dentry, error);
2297  	return error;
2298  }
2299  EXPORT_SYMBOL_GPL(nfs_unlink);
2300  
2301  /*
2302   * To create a symbolic link, most file systems instantiate a new inode,
2303   * add a page to it containing the path, then write it out to the disk
2304   * using prepare_write/commit_write.
2305   *
2306   * Unfortunately the NFS client can't create the in-core inode first
2307   * because it needs a file handle to create an in-core inode (see
2308   * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2309   * symlink request has completed on the server.
2310   *
2311   * So instead we allocate a raw page, copy the symname into it, then do
2312   * the SYMLINK request with the page as the buffer.  If it succeeds, we
2313   * now have a new file handle and can instantiate an in-core NFS inode
2314   * and move the raw page into its mapping.
2315   */
2316  int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2317  		struct dentry *dentry, const char *symname)
2318  {
2319  	struct page *page;
2320  	char *kaddr;
2321  	struct iattr attr;
2322  	unsigned int pathlen = strlen(symname);
2323  	int error;
2324  
2325  	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2326  		dir->i_ino, dentry, symname);
2327  
2328  	if (pathlen > PAGE_SIZE)
2329  		return -ENAMETOOLONG;
2330  
2331  	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2332  	attr.ia_valid = ATTR_MODE;
2333  
2334  	page = alloc_page(GFP_USER);
2335  	if (!page)
2336  		return -ENOMEM;
2337  
2338  	kaddr = page_address(page);
2339  	memcpy(kaddr, symname, pathlen);
2340  	if (pathlen < PAGE_SIZE)
2341  		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2342  
2343  	trace_nfs_symlink_enter(dir, dentry);
2344  	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2345  	trace_nfs_symlink_exit(dir, dentry, error);
2346  	if (error != 0) {
2347  		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2348  			dir->i_sb->s_id, dir->i_ino,
2349  			dentry, symname, error);
2350  		d_drop(dentry);
2351  		__free_page(page);
2352  		return error;
2353  	}
2354  
2355  	/*
2356  	 * No big deal if we can't add this page to the page cache here.
2357  	 * READLINK will get the missing page from the server if needed.
2358  	 */
2359  	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2360  							GFP_KERNEL)) {
2361  		SetPageUptodate(page);
2362  		unlock_page(page);
2363  		/*
2364  		 * add_to_page_cache_lru() grabs an extra page refcount.
2365  		 * Drop it here to avoid leaking this page later.
2366  		 */
2367  		put_page(page);
2368  	} else
2369  		__free_page(page);
2370  
2371  	return 0;
2372  }
2373  EXPORT_SYMBOL_GPL(nfs_symlink);
2374  
2375  int
2376  nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2377  {
2378  	struct inode *inode = d_inode(old_dentry);
2379  	int error;
2380  
2381  	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2382  		old_dentry, dentry);
2383  
2384  	trace_nfs_link_enter(inode, dir, dentry);
2385  	d_drop(dentry);
2386  	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2387  	if (error == 0) {
2388  		ihold(inode);
2389  		d_add(dentry, inode);
2390  	}
2391  	trace_nfs_link_exit(inode, dir, dentry, error);
2392  	return error;
2393  }
2394  EXPORT_SYMBOL_GPL(nfs_link);
2395  
2396  /*
2397   * RENAME
2398   * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2399   * different file handle for the same inode after a rename (e.g. when
2400   * moving to a different directory). A fail-safe method to do so would
2401   * be to look up old_dir/old_name, create a link to new_dir/new_name and
2402   * rename the old file using the sillyrename stuff. This way, the original
2403   * file in old_dir will go away when the last process iput()s the inode.
2404   *
2405   * FIXED.
2406   *
2407   * It actually works quite well. One needs to have the possibility for
2408   * at least one ".nfs..." file in each directory the file ever gets
2409   * moved or linked to which happens automagically with the new
2410   * implementation that only depends on the dcache stuff instead of
2411   * using the inode layer
2412   *
2413   * Unfortunately, things are a little more complicated than indicated
2414   * above. For a cross-directory move, we want to make sure we can get
2415   * rid of the old inode after the operation.  This means there must be
2416   * no pending writes (if it's a file), and the use count must be 1.
2417   * If these conditions are met, we can drop the dentries before doing
2418   * the rename.
2419   */
2420  int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2421  	       struct dentry *old_dentry, struct inode *new_dir,
2422  	       struct dentry *new_dentry, unsigned int flags)
2423  {
2424  	struct inode *old_inode = d_inode(old_dentry);
2425  	struct inode *new_inode = d_inode(new_dentry);
2426  	struct dentry *dentry = NULL, *rehash = NULL;
2427  	struct rpc_task *task;
2428  	int error = -EBUSY;
2429  
2430  	if (flags)
2431  		return -EINVAL;
2432  
2433  	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2434  		 old_dentry, new_dentry,
2435  		 d_count(new_dentry));
2436  
2437  	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2438  	/*
2439  	 * For non-directories, check whether the target is busy and if so,
2440  	 * make a copy of the dentry and then do a silly-rename. If the
2441  	 * silly-rename succeeds, the copied dentry is hashed and becomes
2442  	 * the new target.
2443  	 */
2444  	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2445  		/*
2446  		 * To prevent any new references to the target during the
2447  		 * rename, we unhash the dentry in advance.
2448  		 */
2449  		if (!d_unhashed(new_dentry)) {
2450  			d_drop(new_dentry);
2451  			rehash = new_dentry;
2452  		}
2453  
2454  		if (d_count(new_dentry) > 2) {
2455  			int err;
2456  
2457  			/* copy the target dentry's name */
2458  			dentry = d_alloc(new_dentry->d_parent,
2459  					 &new_dentry->d_name);
2460  			if (!dentry)
2461  				goto out;
2462  
2463  			/* silly-rename the existing target ... */
2464  			err = nfs_sillyrename(new_dir, new_dentry);
2465  			if (err)
2466  				goto out;
2467  
2468  			new_dentry = dentry;
2469  			rehash = NULL;
2470  			new_inode = NULL;
2471  		}
2472  	}
2473  
2474  	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2475  	if (IS_ERR(task)) {
2476  		error = PTR_ERR(task);
2477  		goto out;
2478  	}
2479  
2480  	error = rpc_wait_for_completion_task(task);
2481  	if (error != 0) {
2482  		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2483  		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2484  		smp_wmb();
2485  	} else
2486  		error = task->tk_status;
2487  	rpc_put_task(task);
2488  	/* Ensure the inode attributes are revalidated */
2489  	if (error == 0) {
2490  		spin_lock(&old_inode->i_lock);
2491  		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2492  		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2493  							 NFS_INO_INVALID_CTIME |
2494  							 NFS_INO_REVAL_FORCED);
2495  		spin_unlock(&old_inode->i_lock);
2496  	}
2497  out:
2498  	if (rehash)
2499  		d_rehash(rehash);
2500  	trace_nfs_rename_exit(old_dir, old_dentry,
2501  			new_dir, new_dentry, error);
2502  	if (!error) {
2503  		if (new_inode != NULL)
2504  			nfs_drop_nlink(new_inode);
2505  		/*
2506  		 * The d_move() should be here instead of in an async RPC completion
2507  		 * handler because we need the proper locks to move the dentry.  If
2508  		 * we're interrupted by a signal, the async RPC completion handler
2509  		 * should mark the directories for revalidation.
2510  		 */
2511  		d_move(old_dentry, new_dentry);
2512  		nfs_set_verifier(old_dentry,
2513  					nfs_save_change_attribute(new_dir));
2514  	} else if (error == -ENOENT)
2515  		nfs_dentry_handle_enoent(old_dentry);
2516  
2517  	/* new dentry created? */
2518  	if (dentry)
2519  		dput(dentry);
2520  	return error;
2521  }
2522  EXPORT_SYMBOL_GPL(nfs_rename);
2523  
2524  static DEFINE_SPINLOCK(nfs_access_lru_lock);
2525  static LIST_HEAD(nfs_access_lru_list);
2526  static atomic_long_t nfs_access_nr_entries;
2527  
2528  static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2529  module_param(nfs_access_max_cachesize, ulong, 0644);
2530  MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2531  
2532  static void nfs_access_free_entry(struct nfs_access_entry *entry)
2533  {
2534  	put_cred(entry->cred);
2535  	kfree_rcu(entry, rcu_head);
2536  	smp_mb__before_atomic();
2537  	atomic_long_dec(&nfs_access_nr_entries);
2538  	smp_mb__after_atomic();
2539  }
2540  
2541  static void nfs_access_free_list(struct list_head *head)
2542  {
2543  	struct nfs_access_entry *cache;
2544  
2545  	while (!list_empty(head)) {
2546  		cache = list_entry(head->next, struct nfs_access_entry, lru);
2547  		list_del(&cache->lru);
2548  		nfs_access_free_entry(cache);
2549  	}
2550  }
2551  
2552  static unsigned long
2553  nfs_do_access_cache_scan(unsigned int nr_to_scan)
2554  {
2555  	LIST_HEAD(head);
2556  	struct nfs_inode *nfsi, *next;
2557  	struct nfs_access_entry *cache;
2558  	long freed = 0;
2559  
2560  	spin_lock(&nfs_access_lru_lock);
2561  	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2562  		struct inode *inode;
2563  
2564  		if (nr_to_scan-- == 0)
2565  			break;
2566  		inode = &nfsi->vfs_inode;
2567  		spin_lock(&inode->i_lock);
2568  		if (list_empty(&nfsi->access_cache_entry_lru))
2569  			goto remove_lru_entry;
2570  		cache = list_entry(nfsi->access_cache_entry_lru.next,
2571  				struct nfs_access_entry, lru);
2572  		list_move(&cache->lru, &head);
2573  		rb_erase(&cache->rb_node, &nfsi->access_cache);
2574  		freed++;
2575  		if (!list_empty(&nfsi->access_cache_entry_lru))
2576  			list_move_tail(&nfsi->access_cache_inode_lru,
2577  					&nfs_access_lru_list);
2578  		else {
2579  remove_lru_entry:
2580  			list_del_init(&nfsi->access_cache_inode_lru);
2581  			smp_mb__before_atomic();
2582  			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2583  			smp_mb__after_atomic();
2584  		}
2585  		spin_unlock(&inode->i_lock);
2586  	}
2587  	spin_unlock(&nfs_access_lru_lock);
2588  	nfs_access_free_list(&head);
2589  	return freed;
2590  }
2591  
2592  unsigned long
2593  nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2594  {
2595  	int nr_to_scan = sc->nr_to_scan;
2596  	gfp_t gfp_mask = sc->gfp_mask;
2597  
2598  	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2599  		return SHRINK_STOP;
2600  	return nfs_do_access_cache_scan(nr_to_scan);
2601  }
2602  
2603  
2604  unsigned long
2605  nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2606  {
2607  	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2608  }
2609  
2610  static void
2611  nfs_access_cache_enforce_limit(void)
2612  {
2613  	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2614  	unsigned long diff;
2615  	unsigned int nr_to_scan;
2616  
2617  	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2618  		return;
2619  	nr_to_scan = 100;
2620  	diff = nr_entries - nfs_access_max_cachesize;
2621  	if (diff < nr_to_scan)
2622  		nr_to_scan = diff;
2623  	nfs_do_access_cache_scan(nr_to_scan);
2624  }
2625  
2626  static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2627  {
2628  	struct rb_root *root_node = &nfsi->access_cache;
2629  	struct rb_node *n;
2630  	struct nfs_access_entry *entry;
2631  
2632  	/* Unhook entries from the cache */
2633  	while ((n = rb_first(root_node)) != NULL) {
2634  		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2635  		rb_erase(n, root_node);
2636  		list_move(&entry->lru, head);
2637  	}
2638  	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2639  }
2640  
2641  void nfs_access_zap_cache(struct inode *inode)
2642  {
2643  	LIST_HEAD(head);
2644  
2645  	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2646  		return;
2647  	/* Remove from global LRU init */
2648  	spin_lock(&nfs_access_lru_lock);
2649  	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2650  		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2651  
2652  	spin_lock(&inode->i_lock);
2653  	__nfs_access_zap_cache(NFS_I(inode), &head);
2654  	spin_unlock(&inode->i_lock);
2655  	spin_unlock(&nfs_access_lru_lock);
2656  	nfs_access_free_list(&head);
2657  }
2658  EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2659  
2660  static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2661  {
2662  	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2663  
2664  	while (n != NULL) {
2665  		struct nfs_access_entry *entry =
2666  			rb_entry(n, struct nfs_access_entry, rb_node);
2667  		int cmp = cred_fscmp(cred, entry->cred);
2668  
2669  		if (cmp < 0)
2670  			n = n->rb_left;
2671  		else if (cmp > 0)
2672  			n = n->rb_right;
2673  		else
2674  			return entry;
2675  	}
2676  	return NULL;
2677  }
2678  
2679  static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2680  {
2681  	struct nfs_inode *nfsi = NFS_I(inode);
2682  	struct nfs_access_entry *cache;
2683  	bool retry = true;
2684  	int err;
2685  
2686  	spin_lock(&inode->i_lock);
2687  	for(;;) {
2688  		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2689  			goto out_zap;
2690  		cache = nfs_access_search_rbtree(inode, cred);
2691  		err = -ENOENT;
2692  		if (cache == NULL)
2693  			goto out;
2694  		/* Found an entry, is our attribute cache valid? */
2695  		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2696  			break;
2697  		if (!retry)
2698  			break;
2699  		err = -ECHILD;
2700  		if (!may_block)
2701  			goto out;
2702  		spin_unlock(&inode->i_lock);
2703  		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2704  		if (err)
2705  			return err;
2706  		spin_lock(&inode->i_lock);
2707  		retry = false;
2708  	}
2709  	res->cred = cache->cred;
2710  	res->mask = cache->mask;
2711  	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2712  	err = 0;
2713  out:
2714  	spin_unlock(&inode->i_lock);
2715  	return err;
2716  out_zap:
2717  	spin_unlock(&inode->i_lock);
2718  	nfs_access_zap_cache(inode);
2719  	return -ENOENT;
2720  }
2721  
2722  static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2723  {
2724  	/* Only check the most recently returned cache entry,
2725  	 * but do it without locking.
2726  	 */
2727  	struct nfs_inode *nfsi = NFS_I(inode);
2728  	struct nfs_access_entry *cache;
2729  	int err = -ECHILD;
2730  	struct list_head *lh;
2731  
2732  	rcu_read_lock();
2733  	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2734  		goto out;
2735  	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2736  	cache = list_entry(lh, struct nfs_access_entry, lru);
2737  	if (lh == &nfsi->access_cache_entry_lru ||
2738  	    cred_fscmp(cred, cache->cred) != 0)
2739  		cache = NULL;
2740  	if (cache == NULL)
2741  		goto out;
2742  	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2743  		goto out;
2744  	res->cred = cache->cred;
2745  	res->mask = cache->mask;
2746  	err = 0;
2747  out:
2748  	rcu_read_unlock();
2749  	return err;
2750  }
2751  
2752  int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2753  nfs_access_entry *res, bool may_block)
2754  {
2755  	int status;
2756  
2757  	status = nfs_access_get_cached_rcu(inode, cred, res);
2758  	if (status != 0)
2759  		status = nfs_access_get_cached_locked(inode, cred, res,
2760  		    may_block);
2761  
2762  	return status;
2763  }
2764  EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2765  
2766  static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2767  {
2768  	struct nfs_inode *nfsi = NFS_I(inode);
2769  	struct rb_root *root_node = &nfsi->access_cache;
2770  	struct rb_node **p = &root_node->rb_node;
2771  	struct rb_node *parent = NULL;
2772  	struct nfs_access_entry *entry;
2773  	int cmp;
2774  
2775  	spin_lock(&inode->i_lock);
2776  	while (*p != NULL) {
2777  		parent = *p;
2778  		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2779  		cmp = cred_fscmp(set->cred, entry->cred);
2780  
2781  		if (cmp < 0)
2782  			p = &parent->rb_left;
2783  		else if (cmp > 0)
2784  			p = &parent->rb_right;
2785  		else
2786  			goto found;
2787  	}
2788  	rb_link_node(&set->rb_node, parent, p);
2789  	rb_insert_color(&set->rb_node, root_node);
2790  	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2791  	spin_unlock(&inode->i_lock);
2792  	return;
2793  found:
2794  	rb_replace_node(parent, &set->rb_node, root_node);
2795  	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2796  	list_del(&entry->lru);
2797  	spin_unlock(&inode->i_lock);
2798  	nfs_access_free_entry(entry);
2799  }
2800  
2801  void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2802  {
2803  	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2804  	if (cache == NULL)
2805  		return;
2806  	RB_CLEAR_NODE(&cache->rb_node);
2807  	cache->cred = get_cred(set->cred);
2808  	cache->mask = set->mask;
2809  
2810  	/* The above field assignments must be visible
2811  	 * before this item appears on the lru.  We cannot easily
2812  	 * use rcu_assign_pointer, so just force the memory barrier.
2813  	 */
2814  	smp_wmb();
2815  	nfs_access_add_rbtree(inode, cache);
2816  
2817  	/* Update accounting */
2818  	smp_mb__before_atomic();
2819  	atomic_long_inc(&nfs_access_nr_entries);
2820  	smp_mb__after_atomic();
2821  
2822  	/* Add inode to global LRU list */
2823  	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2824  		spin_lock(&nfs_access_lru_lock);
2825  		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2826  			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2827  					&nfs_access_lru_list);
2828  		spin_unlock(&nfs_access_lru_lock);
2829  	}
2830  	nfs_access_cache_enforce_limit();
2831  }
2832  EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2833  
2834  #define NFS_MAY_READ (NFS_ACCESS_READ)
2835  #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2836  		NFS_ACCESS_EXTEND | \
2837  		NFS_ACCESS_DELETE)
2838  #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2839  		NFS_ACCESS_EXTEND)
2840  #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2841  #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2842  #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2843  static int
2844  nfs_access_calc_mask(u32 access_result, umode_t umode)
2845  {
2846  	int mask = 0;
2847  
2848  	if (access_result & NFS_MAY_READ)
2849  		mask |= MAY_READ;
2850  	if (S_ISDIR(umode)) {
2851  		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2852  			mask |= MAY_WRITE;
2853  		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2854  			mask |= MAY_EXEC;
2855  	} else if (S_ISREG(umode)) {
2856  		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2857  			mask |= MAY_WRITE;
2858  		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2859  			mask |= MAY_EXEC;
2860  	} else if (access_result & NFS_MAY_WRITE)
2861  			mask |= MAY_WRITE;
2862  	return mask;
2863  }
2864  
2865  void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2866  {
2867  	entry->mask = access_result;
2868  }
2869  EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2870  
2871  static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2872  {
2873  	struct nfs_access_entry cache;
2874  	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2875  	int cache_mask = -1;
2876  	int status;
2877  
2878  	trace_nfs_access_enter(inode);
2879  
2880  	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2881  	if (status == 0)
2882  		goto out_cached;
2883  
2884  	status = -ECHILD;
2885  	if (!may_block)
2886  		goto out;
2887  
2888  	/*
2889  	 * Determine which access bits we want to ask for...
2890  	 */
2891  	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2892  	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2893  		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2894  		    NFS_ACCESS_XALIST;
2895  	}
2896  	if (S_ISDIR(inode->i_mode))
2897  		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2898  	else
2899  		cache.mask |= NFS_ACCESS_EXECUTE;
2900  	cache.cred = cred;
2901  	status = NFS_PROTO(inode)->access(inode, &cache);
2902  	if (status != 0) {
2903  		if (status == -ESTALE) {
2904  			if (!S_ISDIR(inode->i_mode))
2905  				nfs_set_inode_stale(inode);
2906  			else
2907  				nfs_zap_caches(inode);
2908  		}
2909  		goto out;
2910  	}
2911  	nfs_access_add_cache(inode, &cache);
2912  out_cached:
2913  	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2914  	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2915  		status = -EACCES;
2916  out:
2917  	trace_nfs_access_exit(inode, mask, cache_mask, status);
2918  	return status;
2919  }
2920  
2921  static int nfs_open_permission_mask(int openflags)
2922  {
2923  	int mask = 0;
2924  
2925  	if (openflags & __FMODE_EXEC) {
2926  		/* ONLY check exec rights */
2927  		mask = MAY_EXEC;
2928  	} else {
2929  		if ((openflags & O_ACCMODE) != O_WRONLY)
2930  			mask |= MAY_READ;
2931  		if ((openflags & O_ACCMODE) != O_RDONLY)
2932  			mask |= MAY_WRITE;
2933  	}
2934  
2935  	return mask;
2936  }
2937  
2938  int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2939  {
2940  	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2941  }
2942  EXPORT_SYMBOL_GPL(nfs_may_open);
2943  
2944  static int nfs_execute_ok(struct inode *inode, int mask)
2945  {
2946  	struct nfs_server *server = NFS_SERVER(inode);
2947  	int ret = 0;
2948  
2949  	if (S_ISDIR(inode->i_mode))
2950  		return 0;
2951  	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2952  		if (mask & MAY_NOT_BLOCK)
2953  			return -ECHILD;
2954  		ret = __nfs_revalidate_inode(server, inode);
2955  	}
2956  	if (ret == 0 && !execute_ok(inode))
2957  		ret = -EACCES;
2958  	return ret;
2959  }
2960  
2961  int nfs_permission(struct user_namespace *mnt_userns,
2962  		   struct inode *inode,
2963  		   int mask)
2964  {
2965  	const struct cred *cred = current_cred();
2966  	int res = 0;
2967  
2968  	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2969  
2970  	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2971  		goto out;
2972  	/* Is this sys_access() ? */
2973  	if (mask & (MAY_ACCESS | MAY_CHDIR))
2974  		goto force_lookup;
2975  
2976  	switch (inode->i_mode & S_IFMT) {
2977  		case S_IFLNK:
2978  			goto out;
2979  		case S_IFREG:
2980  			if ((mask & MAY_OPEN) &&
2981  			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2982  				return 0;
2983  			break;
2984  		case S_IFDIR:
2985  			/*
2986  			 * Optimize away all write operations, since the server
2987  			 * will check permissions when we perform the op.
2988  			 */
2989  			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2990  				goto out;
2991  	}
2992  
2993  force_lookup:
2994  	if (!NFS_PROTO(inode)->access)
2995  		goto out_notsup;
2996  
2997  	res = nfs_do_access(inode, cred, mask);
2998  out:
2999  	if (!res && (mask & MAY_EXEC))
3000  		res = nfs_execute_ok(inode, mask);
3001  
3002  	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3003  		inode->i_sb->s_id, inode->i_ino, mask, res);
3004  	return res;
3005  out_notsup:
3006  	if (mask & MAY_NOT_BLOCK)
3007  		return -ECHILD;
3008  
3009  	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3010  						  NFS_INO_INVALID_OTHER);
3011  	if (res == 0)
3012  		res = generic_permission(&init_user_ns, inode, mask);
3013  	goto out;
3014  }
3015  EXPORT_SYMBOL_GPL(nfs_permission);
3016