xref: /linux/fs/nfs/dir.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 
43 /* #define NFS_DEBUG_VERBOSE 1 */
44 
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 		      struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.readdir	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_release,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct inode_operations nfs_dir_inode_operations = {
70 	.create		= nfs_create,
71 	.lookup		= nfs_lookup,
72 	.link		= nfs_link,
73 	.unlink		= nfs_unlink,
74 	.symlink	= nfs_symlink,
75 	.mkdir		= nfs_mkdir,
76 	.rmdir		= nfs_rmdir,
77 	.mknod		= nfs_mknod,
78 	.rename		= nfs_rename,
79 	.permission	= nfs_permission,
80 	.getattr	= nfs_getattr,
81 	.setattr	= nfs_setattr,
82 };
83 
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 	.create		= nfs_create,
87 	.lookup		= nfs_lookup,
88 	.link		= nfs_link,
89 	.unlink		= nfs_unlink,
90 	.symlink	= nfs_symlink,
91 	.mkdir		= nfs_mkdir,
92 	.rmdir		= nfs_rmdir,
93 	.mknod		= nfs_mknod,
94 	.rename		= nfs_rename,
95 	.permission	= nfs_permission,
96 	.getattr	= nfs_getattr,
97 	.setattr	= nfs_setattr,
98 	.listxattr	= nfs3_listxattr,
99 	.getxattr	= nfs3_getxattr,
100 	.setxattr	= nfs3_setxattr,
101 	.removexattr	= nfs3_removexattr,
102 };
103 #endif  /* CONFIG_NFS_V3 */
104 
105 #ifdef CONFIG_NFS_V4
106 
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 	.create		= nfs_create,
110 	.lookup		= nfs_atomic_lookup,
111 	.link		= nfs_link,
112 	.unlink		= nfs_unlink,
113 	.symlink	= nfs_symlink,
114 	.mkdir		= nfs_mkdir,
115 	.rmdir		= nfs_rmdir,
116 	.mknod		= nfs_mknod,
117 	.rename		= nfs_rename,
118 	.permission	= nfs_permission,
119 	.getattr	= nfs_getattr,
120 	.setattr	= nfs_setattr,
121 	.getxattr       = nfs4_getxattr,
122 	.setxattr       = nfs4_setxattr,
123 	.listxattr      = nfs4_listxattr,
124 };
125 
126 #endif /* CONFIG_NFS_V4 */
127 
128 /*
129  * Open file
130  */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 	int res;
135 
136 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 			filp->f_path.dentry->d_parent->d_name.name,
138 			filp->f_path.dentry->d_name.name);
139 
140 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141 
142 	/* Call generic open code in order to cache credentials */
143 	res = nfs_open(inode, filp);
144 	return res;
145 }
146 
147 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	unsigned long	page_index;
152 	__be32		*ptr;
153 	u64		*dir_cookie;
154 	loff_t		current_index;
155 	struct nfs_entry *entry;
156 	decode_dirent_t	decode;
157 	int		plus;
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	int		timestamp_valid;
161 } nfs_readdir_descriptor_t;
162 
163 /* Now we cache directories properly, by stuffing the dirent
164  * data directly in the page cache.
165  *
166  * Inode invalidation due to refresh etc. takes care of
167  * _everything_, no sloppy entry flushing logic, no extraneous
168  * copying, network direct to page cache, the way it was meant
169  * to be.
170  *
171  * NOTE: Dirent information verification is done always by the
172  *	 page-in of the RPC reply, nowhere else, this simplies
173  *	 things substantially.
174  */
175 static
176 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
177 {
178 	struct file	*file = desc->file;
179 	struct inode	*inode = file->f_path.dentry->d_inode;
180 	struct rpc_cred	*cred = nfs_file_cred(file);
181 	unsigned long	timestamp, gencount;
182 	int		error;
183 
184 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
185 			__func__, (long long)desc->entry->cookie,
186 			page->index);
187 
188  again:
189 	timestamp = jiffies;
190 	gencount = nfs_inc_attr_generation_counter();
191 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
192 					  NFS_SERVER(inode)->dtsize, desc->plus);
193 	if (error < 0) {
194 		/* We requested READDIRPLUS, but the server doesn't grok it */
195 		if (error == -ENOTSUPP && desc->plus) {
196 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
197 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
198 			desc->plus = 0;
199 			goto again;
200 		}
201 		goto error;
202 	}
203 	desc->timestamp = timestamp;
204 	desc->gencount = gencount;
205 	desc->timestamp_valid = 1;
206 	SetPageUptodate(page);
207 	/* Ensure consistent page alignment of the data.
208 	 * Note: assumes we have exclusive access to this mapping either
209 	 *	 through inode->i_mutex or some other mechanism.
210 	 */
211 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
212 		/* Should never happen */
213 		nfs_zap_mapping(inode, inode->i_mapping);
214 	}
215 	unlock_page(page);
216 	return 0;
217  error:
218 	unlock_page(page);
219 	return -EIO;
220 }
221 
222 static inline
223 int dir_decode(nfs_readdir_descriptor_t *desc)
224 {
225 	__be32	*p = desc->ptr;
226 	p = desc->decode(p, desc->entry, desc->plus);
227 	if (IS_ERR(p))
228 		return PTR_ERR(p);
229 	desc->ptr = p;
230 	if (desc->timestamp_valid) {
231 		desc->entry->fattr->time_start = desc->timestamp;
232 		desc->entry->fattr->gencount = desc->gencount;
233 	} else
234 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
235 	return 0;
236 }
237 
238 static inline
239 void dir_page_release(nfs_readdir_descriptor_t *desc)
240 {
241 	kunmap(desc->page);
242 	page_cache_release(desc->page);
243 	desc->page = NULL;
244 	desc->ptr = NULL;
245 }
246 
247 /*
248  * Given a pointer to a buffer that has already been filled by a call
249  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
250  *
251  * If the end of the buffer has been reached, return -EAGAIN, if not,
252  * return the offset within the buffer of the next entry to be
253  * read.
254  */
255 static inline
256 int find_dirent(nfs_readdir_descriptor_t *desc)
257 {
258 	struct nfs_entry *entry = desc->entry;
259 	int		loop_count = 0,
260 			status;
261 
262 	while((status = dir_decode(desc)) == 0) {
263 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
264 				__func__, (unsigned long long)entry->cookie);
265 		if (entry->prev_cookie == *desc->dir_cookie)
266 			break;
267 		if (loop_count++ > 200) {
268 			loop_count = 0;
269 			schedule();
270 		}
271 	}
272 	return status;
273 }
274 
275 /*
276  * Given a pointer to a buffer that has already been filled by a call
277  * to readdir, find the entry at offset 'desc->file->f_pos'.
278  *
279  * If the end of the buffer has been reached, return -EAGAIN, if not,
280  * return the offset within the buffer of the next entry to be
281  * read.
282  */
283 static inline
284 int find_dirent_index(nfs_readdir_descriptor_t *desc)
285 {
286 	struct nfs_entry *entry = desc->entry;
287 	int		loop_count = 0,
288 			status;
289 
290 	for(;;) {
291 		status = dir_decode(desc);
292 		if (status)
293 			break;
294 
295 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
296 				(unsigned long long)entry->cookie, desc->current_index);
297 
298 		if (desc->file->f_pos == desc->current_index) {
299 			*desc->dir_cookie = entry->cookie;
300 			break;
301 		}
302 		desc->current_index++;
303 		if (loop_count++ > 200) {
304 			loop_count = 0;
305 			schedule();
306 		}
307 	}
308 	return status;
309 }
310 
311 /*
312  * Find the given page, and call find_dirent() or find_dirent_index in
313  * order to try to return the next entry.
314  */
315 static inline
316 int find_dirent_page(nfs_readdir_descriptor_t *desc)
317 {
318 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
319 	struct page	*page;
320 	int		status;
321 
322 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
323 			__func__, desc->page_index,
324 			(long long) *desc->dir_cookie);
325 
326 	/* If we find the page in the page_cache, we cannot be sure
327 	 * how fresh the data is, so we will ignore readdir_plus attributes.
328 	 */
329 	desc->timestamp_valid = 0;
330 	page = read_cache_page(inode->i_mapping, desc->page_index,
331 			       (filler_t *)nfs_readdir_filler, desc);
332 	if (IS_ERR(page)) {
333 		status = PTR_ERR(page);
334 		goto out;
335 	}
336 
337 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
338 	desc->page = page;
339 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
340 	if (*desc->dir_cookie != 0)
341 		status = find_dirent(desc);
342 	else
343 		status = find_dirent_index(desc);
344 	if (status < 0)
345 		dir_page_release(desc);
346  out:
347 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
348 	return status;
349 }
350 
351 /*
352  * Recurse through the page cache pages, and return a
353  * filled nfs_entry structure of the next directory entry if possible.
354  *
355  * The target for the search is '*desc->dir_cookie' if non-0,
356  * 'desc->file->f_pos' otherwise
357  */
358 static inline
359 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
360 {
361 	int		loop_count = 0;
362 	int		res;
363 
364 	/* Always search-by-index from the beginning of the cache */
365 	if (*desc->dir_cookie == 0) {
366 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
367 				(long long)desc->file->f_pos);
368 		desc->page_index = 0;
369 		desc->entry->cookie = desc->entry->prev_cookie = 0;
370 		desc->entry->eof = 0;
371 		desc->current_index = 0;
372 	} else
373 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
374 				(unsigned long long)*desc->dir_cookie);
375 
376 	for (;;) {
377 		res = find_dirent_page(desc);
378 		if (res != -EAGAIN)
379 			break;
380 		/* Align to beginning of next page */
381 		desc->page_index ++;
382 		if (loop_count++ > 200) {
383 			loop_count = 0;
384 			schedule();
385 		}
386 	}
387 
388 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
389 	return res;
390 }
391 
392 static inline unsigned int dt_type(struct inode *inode)
393 {
394 	return (inode->i_mode >> 12) & 15;
395 }
396 
397 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
398 
399 /*
400  * Once we've found the start of the dirent within a page: fill 'er up...
401  */
402 static
403 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
404 		   filldir_t filldir)
405 {
406 	struct file	*file = desc->file;
407 	struct nfs_entry *entry = desc->entry;
408 	struct dentry	*dentry = NULL;
409 	u64		fileid;
410 	int		loop_count = 0,
411 			res;
412 
413 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
414 			(unsigned long long)entry->cookie);
415 
416 	for(;;) {
417 		unsigned d_type = DT_UNKNOWN;
418 		/* Note: entry->prev_cookie contains the cookie for
419 		 *	 retrieving the current dirent on the server */
420 		fileid = entry->ino;
421 
422 		/* Get a dentry if we have one */
423 		if (dentry != NULL)
424 			dput(dentry);
425 		dentry = nfs_readdir_lookup(desc);
426 
427 		/* Use readdirplus info */
428 		if (dentry != NULL && dentry->d_inode != NULL) {
429 			d_type = dt_type(dentry->d_inode);
430 			fileid = NFS_FILEID(dentry->d_inode);
431 		}
432 
433 		res = filldir(dirent, entry->name, entry->len,
434 			      file->f_pos, nfs_compat_user_ino64(fileid),
435 			      d_type);
436 		if (res < 0)
437 			break;
438 		file->f_pos++;
439 		*desc->dir_cookie = entry->cookie;
440 		if (dir_decode(desc) != 0) {
441 			desc->page_index ++;
442 			break;
443 		}
444 		if (loop_count++ > 200) {
445 			loop_count = 0;
446 			schedule();
447 		}
448 	}
449 	dir_page_release(desc);
450 	if (dentry != NULL)
451 		dput(dentry);
452 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 			(unsigned long long)*desc->dir_cookie, res);
454 	return res;
455 }
456 
457 /*
458  * If we cannot find a cookie in our cache, we suspect that this is
459  * because it points to a deleted file, so we ask the server to return
460  * whatever it thinks is the next entry. We then feed this to filldir.
461  * If all goes well, we should then be able to find our way round the
462  * cache on the next call to readdir_search_pagecache();
463  *
464  * NOTE: we cannot add the anonymous page to the pagecache because
465  *	 the data it contains might not be page aligned. Besides,
466  *	 we should already have a complete representation of the
467  *	 directory in the page cache by the time we get here.
468  */
469 static inline
470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471 		     filldir_t filldir)
472 {
473 	struct file	*file = desc->file;
474 	struct inode	*inode = file->f_path.dentry->d_inode;
475 	struct rpc_cred	*cred = nfs_file_cred(file);
476 	struct page	*page = NULL;
477 	int		status;
478 	unsigned long	timestamp, gencount;
479 
480 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 			(unsigned long long)*desc->dir_cookie);
482 
483 	page = alloc_page(GFP_HIGHUSER);
484 	if (!page) {
485 		status = -ENOMEM;
486 		goto out;
487 	}
488 	timestamp = jiffies;
489 	gencount = nfs_inc_attr_generation_counter();
490 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
491 						*desc->dir_cookie, page,
492 						NFS_SERVER(inode)->dtsize,
493 						desc->plus);
494 	desc->page = page;
495 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
496 	if (status >= 0) {
497 		desc->timestamp = timestamp;
498 		desc->gencount = gencount;
499 		desc->timestamp_valid = 1;
500 		if ((status = dir_decode(desc)) == 0)
501 			desc->entry->prev_cookie = *desc->dir_cookie;
502 	} else
503 		status = -EIO;
504 	if (status < 0)
505 		goto out_release;
506 
507 	status = nfs_do_filldir(desc, dirent, filldir);
508 
509 	/* Reset read descriptor so it searches the page cache from
510 	 * the start upon the next call to readdir_search_pagecache() */
511 	desc->page_index = 0;
512 	desc->entry->cookie = desc->entry->prev_cookie = 0;
513 	desc->entry->eof = 0;
514  out:
515 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
516 			__func__, status);
517 	return status;
518  out_release:
519 	dir_page_release(desc);
520 	goto out;
521 }
522 
523 /* The file offset position represents the dirent entry number.  A
524    last cookie cache takes care of the common case of reading the
525    whole directory.
526  */
527 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
528 {
529 	struct dentry	*dentry = filp->f_path.dentry;
530 	struct inode	*inode = dentry->d_inode;
531 	nfs_readdir_descriptor_t my_desc,
532 			*desc = &my_desc;
533 	struct nfs_entry my_entry;
534 	struct nfs_fh	 fh;
535 	struct nfs_fattr fattr;
536 	long		res;
537 
538 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
539 			dentry->d_parent->d_name.name, dentry->d_name.name,
540 			(long long)filp->f_pos);
541 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
542 
543 	/*
544 	 * filp->f_pos points to the dirent entry number.
545 	 * *desc->dir_cookie has the cookie for the next entry. We have
546 	 * to either find the entry with the appropriate number or
547 	 * revalidate the cookie.
548 	 */
549 	memset(desc, 0, sizeof(*desc));
550 
551 	desc->file = filp;
552 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
553 	desc->decode = NFS_PROTO(inode)->decode_dirent;
554 	desc->plus = NFS_USE_READDIRPLUS(inode);
555 
556 	my_entry.cookie = my_entry.prev_cookie = 0;
557 	my_entry.eof = 0;
558 	my_entry.fh = &fh;
559 	my_entry.fattr = &fattr;
560 	nfs_fattr_init(&fattr);
561 	desc->entry = &my_entry;
562 
563 	nfs_block_sillyrename(dentry);
564 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
565 	if (res < 0)
566 		goto out;
567 
568 	while(!desc->entry->eof) {
569 		res = readdir_search_pagecache(desc);
570 
571 		if (res == -EBADCOOKIE) {
572 			/* This means either end of directory */
573 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
574 				/* Or that the server has 'lost' a cookie */
575 				res = uncached_readdir(desc, dirent, filldir);
576 				if (res >= 0)
577 					continue;
578 			}
579 			res = 0;
580 			break;
581 		}
582 		if (res == -ETOOSMALL && desc->plus) {
583 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
584 			nfs_zap_caches(inode);
585 			desc->plus = 0;
586 			desc->entry->eof = 0;
587 			continue;
588 		}
589 		if (res < 0)
590 			break;
591 
592 		res = nfs_do_filldir(desc, dirent, filldir);
593 		if (res < 0) {
594 			res = 0;
595 			break;
596 		}
597 	}
598 out:
599 	nfs_unblock_sillyrename(dentry);
600 	if (res > 0)
601 		res = 0;
602 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
603 			dentry->d_parent->d_name.name, dentry->d_name.name,
604 			res);
605 	return res;
606 }
607 
608 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
609 {
610 	struct dentry *dentry = filp->f_path.dentry;
611 	struct inode *inode = dentry->d_inode;
612 
613 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
614 			dentry->d_parent->d_name.name,
615 			dentry->d_name.name,
616 			offset, origin);
617 
618 	mutex_lock(&inode->i_mutex);
619 	switch (origin) {
620 		case 1:
621 			offset += filp->f_pos;
622 		case 0:
623 			if (offset >= 0)
624 				break;
625 		default:
626 			offset = -EINVAL;
627 			goto out;
628 	}
629 	if (offset != filp->f_pos) {
630 		filp->f_pos = offset;
631 		nfs_file_open_context(filp)->dir_cookie = 0;
632 	}
633 out:
634 	mutex_unlock(&inode->i_mutex);
635 	return offset;
636 }
637 
638 /*
639  * All directory operations under NFS are synchronous, so fsync()
640  * is a dummy operation.
641  */
642 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
643 {
644 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
645 			dentry->d_parent->d_name.name, dentry->d_name.name,
646 			datasync);
647 
648 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
649 	return 0;
650 }
651 
652 /**
653  * nfs_force_lookup_revalidate - Mark the directory as having changed
654  * @dir - pointer to directory inode
655  *
656  * This forces the revalidation code in nfs_lookup_revalidate() to do a
657  * full lookup on all child dentries of 'dir' whenever a change occurs
658  * on the server that might have invalidated our dcache.
659  *
660  * The caller should be holding dir->i_lock
661  */
662 void nfs_force_lookup_revalidate(struct inode *dir)
663 {
664 	NFS_I(dir)->cache_change_attribute++;
665 }
666 
667 /*
668  * A check for whether or not the parent directory has changed.
669  * In the case it has, we assume that the dentries are untrustworthy
670  * and may need to be looked up again.
671  */
672 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
673 {
674 	if (IS_ROOT(dentry))
675 		return 1;
676 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
677 		return 0;
678 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
679 		return 0;
680 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
681 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
682 		return 0;
683 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
684 		return 0;
685 	return 1;
686 }
687 
688 /*
689  * Return the intent data that applies to this particular path component
690  *
691  * Note that the current set of intents only apply to the very last
692  * component of the path.
693  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
694  */
695 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
696 {
697 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
698 		return 0;
699 	return nd->flags & mask;
700 }
701 
702 /*
703  * Use intent information to check whether or not we're going to do
704  * an O_EXCL create using this path component.
705  */
706 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
707 {
708 	if (NFS_PROTO(dir)->version == 2)
709 		return 0;
710 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
711 }
712 
713 /*
714  * Inode and filehandle revalidation for lookups.
715  *
716  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
717  * or if the intent information indicates that we're about to open this
718  * particular file and the "nocto" mount flag is not set.
719  *
720  */
721 static inline
722 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
723 {
724 	struct nfs_server *server = NFS_SERVER(inode);
725 
726 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
727 		return 0;
728 	if (nd != NULL) {
729 		/* VFS wants an on-the-wire revalidation */
730 		if (nd->flags & LOOKUP_REVAL)
731 			goto out_force;
732 		/* This is an open(2) */
733 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
734 				!(server->flags & NFS_MOUNT_NOCTO) &&
735 				(S_ISREG(inode->i_mode) ||
736 				 S_ISDIR(inode->i_mode)))
737 			goto out_force;
738 		return 0;
739 	}
740 	return nfs_revalidate_inode(server, inode);
741 out_force:
742 	return __nfs_revalidate_inode(server, inode);
743 }
744 
745 /*
746  * We judge how long we want to trust negative
747  * dentries by looking at the parent inode mtime.
748  *
749  * If parent mtime has changed, we revalidate, else we wait for a
750  * period corresponding to the parent's attribute cache timeout value.
751  */
752 static inline
753 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
754 		       struct nameidata *nd)
755 {
756 	/* Don't revalidate a negative dentry if we're creating a new file */
757 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
758 		return 0;
759 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
760 		return 1;
761 	return !nfs_check_verifier(dir, dentry);
762 }
763 
764 /*
765  * This is called every time the dcache has a lookup hit,
766  * and we should check whether we can really trust that
767  * lookup.
768  *
769  * NOTE! The hit can be a negative hit too, don't assume
770  * we have an inode!
771  *
772  * If the parent directory is seen to have changed, we throw out the
773  * cached dentry and do a new lookup.
774  */
775 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
776 {
777 	struct inode *dir;
778 	struct inode *inode;
779 	struct dentry *parent;
780 	int error;
781 	struct nfs_fh fhandle;
782 	struct nfs_fattr fattr;
783 
784 	parent = dget_parent(dentry);
785 	dir = parent->d_inode;
786 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
787 	inode = dentry->d_inode;
788 
789 	if (!inode) {
790 		if (nfs_neg_need_reval(dir, dentry, nd))
791 			goto out_bad;
792 		goto out_valid;
793 	}
794 
795 	if (is_bad_inode(inode)) {
796 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
797 				__func__, dentry->d_parent->d_name.name,
798 				dentry->d_name.name);
799 		goto out_bad;
800 	}
801 
802 	/* Force a full look up iff the parent directory has changed */
803 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
804 		if (nfs_lookup_verify_inode(inode, nd))
805 			goto out_zap_parent;
806 		goto out_valid;
807 	}
808 
809 	if (NFS_STALE(inode))
810 		goto out_bad;
811 
812 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
813 	if (error)
814 		goto out_bad;
815 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
816 		goto out_bad;
817 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
818 		goto out_bad;
819 
820 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
821  out_valid:
822 	dput(parent);
823 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
824 			__func__, dentry->d_parent->d_name.name,
825 			dentry->d_name.name);
826 	return 1;
827 out_zap_parent:
828 	nfs_zap_caches(dir);
829  out_bad:
830 	nfs_mark_for_revalidate(dir);
831 	if (inode && S_ISDIR(inode->i_mode)) {
832 		/* Purge readdir caches. */
833 		nfs_zap_caches(inode);
834 		/* If we have submounts, don't unhash ! */
835 		if (have_submounts(dentry))
836 			goto out_valid;
837 		shrink_dcache_parent(dentry);
838 	}
839 	d_drop(dentry);
840 	dput(parent);
841 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
842 			__func__, dentry->d_parent->d_name.name,
843 			dentry->d_name.name);
844 	return 0;
845 }
846 
847 /*
848  * This is called from dput() when d_count is going to 0.
849  */
850 static int nfs_dentry_delete(struct dentry *dentry)
851 {
852 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
853 		dentry->d_parent->d_name.name, dentry->d_name.name,
854 		dentry->d_flags);
855 
856 	/* Unhash any dentry with a stale inode */
857 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
858 		return 1;
859 
860 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
861 		/* Unhash it, so that ->d_iput() would be called */
862 		return 1;
863 	}
864 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
865 		/* Unhash it, so that ancestors of killed async unlink
866 		 * files will be cleaned up during umount */
867 		return 1;
868 	}
869 	return 0;
870 
871 }
872 
873 static void nfs_drop_nlink(struct inode *inode)
874 {
875 	spin_lock(&inode->i_lock);
876 	if (inode->i_nlink > 0)
877 		drop_nlink(inode);
878 	spin_unlock(&inode->i_lock);
879 }
880 
881 /*
882  * Called when the dentry loses inode.
883  * We use it to clean up silly-renamed files.
884  */
885 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
886 {
887 	if (S_ISDIR(inode->i_mode))
888 		/* drop any readdir cache as it could easily be old */
889 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
890 
891 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
892 		drop_nlink(inode);
893 		nfs_complete_unlink(dentry, inode);
894 	}
895 	iput(inode);
896 }
897 
898 struct dentry_operations nfs_dentry_operations = {
899 	.d_revalidate	= nfs_lookup_revalidate,
900 	.d_delete	= nfs_dentry_delete,
901 	.d_iput		= nfs_dentry_iput,
902 };
903 
904 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
905 {
906 	struct dentry *res;
907 	struct dentry *parent;
908 	struct inode *inode = NULL;
909 	int error;
910 	struct nfs_fh fhandle;
911 	struct nfs_fattr fattr;
912 
913 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
914 		dentry->d_parent->d_name.name, dentry->d_name.name);
915 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
916 
917 	res = ERR_PTR(-ENAMETOOLONG);
918 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
919 		goto out;
920 
921 	res = ERR_PTR(-ENOMEM);
922 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
923 
924 	/*
925 	 * If we're doing an exclusive create, optimize away the lookup
926 	 * but don't hash the dentry.
927 	 */
928 	if (nfs_is_exclusive_create(dir, nd)) {
929 		d_instantiate(dentry, NULL);
930 		res = NULL;
931 		goto out;
932 	}
933 
934 	parent = dentry->d_parent;
935 	/* Protect against concurrent sillydeletes */
936 	nfs_block_sillyrename(parent);
937 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
938 	if (error == -ENOENT)
939 		goto no_entry;
940 	if (error < 0) {
941 		res = ERR_PTR(error);
942 		goto out_unblock_sillyrename;
943 	}
944 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
945 	res = (struct dentry *)inode;
946 	if (IS_ERR(res))
947 		goto out_unblock_sillyrename;
948 
949 no_entry:
950 	res = d_materialise_unique(dentry, inode);
951 	if (res != NULL) {
952 		if (IS_ERR(res))
953 			goto out_unblock_sillyrename;
954 		dentry = res;
955 	}
956 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
957 out_unblock_sillyrename:
958 	nfs_unblock_sillyrename(parent);
959 out:
960 	return res;
961 }
962 
963 #ifdef CONFIG_NFS_V4
964 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
965 
966 struct dentry_operations nfs4_dentry_operations = {
967 	.d_revalidate	= nfs_open_revalidate,
968 	.d_delete	= nfs_dentry_delete,
969 	.d_iput		= nfs_dentry_iput,
970 };
971 
972 /*
973  * Use intent information to determine whether we need to substitute
974  * the NFSv4-style stateful OPEN for the LOOKUP call
975  */
976 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
977 {
978 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
979 		return 0;
980 	/* NFS does not (yet) have a stateful open for directories */
981 	if (nd->flags & LOOKUP_DIRECTORY)
982 		return 0;
983 	/* Are we trying to write to a read only partition? */
984 	if (__mnt_is_readonly(nd->path.mnt) &&
985 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
986 		return 0;
987 	return 1;
988 }
989 
990 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
991 {
992 	struct dentry *res = NULL;
993 	int error;
994 
995 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
996 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
997 
998 	/* Check that we are indeed trying to open this file */
999 	if (!is_atomic_open(dir, nd))
1000 		goto no_open;
1001 
1002 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1003 		res = ERR_PTR(-ENAMETOOLONG);
1004 		goto out;
1005 	}
1006 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1007 
1008 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1009 	 * the dentry. */
1010 	if (nd->flags & LOOKUP_EXCL) {
1011 		d_instantiate(dentry, NULL);
1012 		goto out;
1013 	}
1014 
1015 	/* Open the file on the server */
1016 	res = nfs4_atomic_open(dir, dentry, nd);
1017 	if (IS_ERR(res)) {
1018 		error = PTR_ERR(res);
1019 		switch (error) {
1020 			/* Make a negative dentry */
1021 			case -ENOENT:
1022 				res = NULL;
1023 				goto out;
1024 			/* This turned out not to be a regular file */
1025 			case -EISDIR:
1026 			case -ENOTDIR:
1027 				goto no_open;
1028 			case -ELOOP:
1029 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1030 					goto no_open;
1031 			/* case -EINVAL: */
1032 			default:
1033 				goto out;
1034 		}
1035 	} else if (res != NULL)
1036 		dentry = res;
1037 out:
1038 	return res;
1039 no_open:
1040 	return nfs_lookup(dir, dentry, nd);
1041 }
1042 
1043 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1044 {
1045 	struct dentry *parent = NULL;
1046 	struct inode *inode = dentry->d_inode;
1047 	struct inode *dir;
1048 	int openflags, ret = 0;
1049 
1050 	parent = dget_parent(dentry);
1051 	dir = parent->d_inode;
1052 	if (!is_atomic_open(dir, nd))
1053 		goto no_open;
1054 	/* We can't create new files in nfs_open_revalidate(), so we
1055 	 * optimize away revalidation of negative dentries.
1056 	 */
1057 	if (inode == NULL) {
1058 		if (!nfs_neg_need_reval(dir, dentry, nd))
1059 			ret = 1;
1060 		goto out;
1061 	}
1062 
1063 	/* NFS only supports OPEN on regular files */
1064 	if (!S_ISREG(inode->i_mode))
1065 		goto no_open;
1066 	openflags = nd->intent.open.flags;
1067 	/* We cannot do exclusive creation on a positive dentry */
1068 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1069 		goto no_open;
1070 	/* We can't create new files, or truncate existing ones here */
1071 	openflags &= ~(O_CREAT|O_TRUNC);
1072 
1073 	/*
1074 	 * Note: we're not holding inode->i_mutex and so may be racing with
1075 	 * operations that change the directory. We therefore save the
1076 	 * change attribute *before* we do the RPC call.
1077 	 */
1078 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1079 out:
1080 	dput(parent);
1081 	if (!ret)
1082 		d_drop(dentry);
1083 	return ret;
1084 no_open:
1085 	dput(parent);
1086 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1087 		return 1;
1088 	return nfs_lookup_revalidate(dentry, nd);
1089 }
1090 #endif /* CONFIG_NFSV4 */
1091 
1092 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1093 {
1094 	struct dentry *parent = desc->file->f_path.dentry;
1095 	struct inode *dir = parent->d_inode;
1096 	struct nfs_entry *entry = desc->entry;
1097 	struct dentry *dentry, *alias;
1098 	struct qstr name = {
1099 		.name = entry->name,
1100 		.len = entry->len,
1101 	};
1102 	struct inode *inode;
1103 	unsigned long verf = nfs_save_change_attribute(dir);
1104 
1105 	switch (name.len) {
1106 		case 2:
1107 			if (name.name[0] == '.' && name.name[1] == '.')
1108 				return dget_parent(parent);
1109 			break;
1110 		case 1:
1111 			if (name.name[0] == '.')
1112 				return dget(parent);
1113 	}
1114 
1115 	spin_lock(&dir->i_lock);
1116 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1117 		spin_unlock(&dir->i_lock);
1118 		return NULL;
1119 	}
1120 	spin_unlock(&dir->i_lock);
1121 
1122 	name.hash = full_name_hash(name.name, name.len);
1123 	dentry = d_lookup(parent, &name);
1124 	if (dentry != NULL) {
1125 		/* Is this a positive dentry that matches the readdir info? */
1126 		if (dentry->d_inode != NULL &&
1127 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1128 				d_mountpoint(dentry))) {
1129 			if (!desc->plus || entry->fh->size == 0)
1130 				return dentry;
1131 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1132 						entry->fh) == 0)
1133 				goto out_renew;
1134 		}
1135 		/* No, so d_drop to allow one to be created */
1136 		d_drop(dentry);
1137 		dput(dentry);
1138 	}
1139 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1140 		return NULL;
1141 	if (name.len > NFS_SERVER(dir)->namelen)
1142 		return NULL;
1143 	/* Note: caller is already holding the dir->i_mutex! */
1144 	dentry = d_alloc(parent, &name);
1145 	if (dentry == NULL)
1146 		return NULL;
1147 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1148 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1149 	if (IS_ERR(inode)) {
1150 		dput(dentry);
1151 		return NULL;
1152 	}
1153 
1154 	alias = d_materialise_unique(dentry, inode);
1155 	if (alias != NULL) {
1156 		dput(dentry);
1157 		if (IS_ERR(alias))
1158 			return NULL;
1159 		dentry = alias;
1160 	}
1161 
1162 out_renew:
1163 	nfs_set_verifier(dentry, verf);
1164 	return dentry;
1165 }
1166 
1167 /*
1168  * Code common to create, mkdir, and mknod.
1169  */
1170 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1171 				struct nfs_fattr *fattr)
1172 {
1173 	struct dentry *parent = dget_parent(dentry);
1174 	struct inode *dir = parent->d_inode;
1175 	struct inode *inode;
1176 	int error = -EACCES;
1177 
1178 	d_drop(dentry);
1179 
1180 	/* We may have been initialized further down */
1181 	if (dentry->d_inode)
1182 		goto out;
1183 	if (fhandle->size == 0) {
1184 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1185 		if (error)
1186 			goto out_error;
1187 	}
1188 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1189 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1190 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1191 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1192 		if (error < 0)
1193 			goto out_error;
1194 	}
1195 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1196 	error = PTR_ERR(inode);
1197 	if (IS_ERR(inode))
1198 		goto out_error;
1199 	d_add(dentry, inode);
1200 out:
1201 	dput(parent);
1202 	return 0;
1203 out_error:
1204 	nfs_mark_for_revalidate(dir);
1205 	dput(parent);
1206 	return error;
1207 }
1208 
1209 /*
1210  * Following a failed create operation, we drop the dentry rather
1211  * than retain a negative dentry. This avoids a problem in the event
1212  * that the operation succeeded on the server, but an error in the
1213  * reply path made it appear to have failed.
1214  */
1215 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1216 		struct nameidata *nd)
1217 {
1218 	struct iattr attr;
1219 	int error;
1220 	int open_flags = 0;
1221 
1222 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1223 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1224 
1225 	attr.ia_mode = mode;
1226 	attr.ia_valid = ATTR_MODE;
1227 
1228 	if ((nd->flags & LOOKUP_CREATE) != 0)
1229 		open_flags = nd->intent.open.flags;
1230 
1231 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1232 	if (error != 0)
1233 		goto out_err;
1234 	return 0;
1235 out_err:
1236 	d_drop(dentry);
1237 	return error;
1238 }
1239 
1240 /*
1241  * See comments for nfs_proc_create regarding failed operations.
1242  */
1243 static int
1244 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1245 {
1246 	struct iattr attr;
1247 	int status;
1248 
1249 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1250 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1251 
1252 	if (!new_valid_dev(rdev))
1253 		return -EINVAL;
1254 
1255 	attr.ia_mode = mode;
1256 	attr.ia_valid = ATTR_MODE;
1257 
1258 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1259 	if (status != 0)
1260 		goto out_err;
1261 	return 0;
1262 out_err:
1263 	d_drop(dentry);
1264 	return status;
1265 }
1266 
1267 /*
1268  * See comments for nfs_proc_create regarding failed operations.
1269  */
1270 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1271 {
1272 	struct iattr attr;
1273 	int error;
1274 
1275 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1276 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1277 
1278 	attr.ia_valid = ATTR_MODE;
1279 	attr.ia_mode = mode | S_IFDIR;
1280 
1281 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1282 	if (error != 0)
1283 		goto out_err;
1284 	return 0;
1285 out_err:
1286 	d_drop(dentry);
1287 	return error;
1288 }
1289 
1290 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1291 {
1292 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1293 		d_delete(dentry);
1294 }
1295 
1296 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1297 {
1298 	int error;
1299 
1300 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1301 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1302 
1303 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1304 	/* Ensure the VFS deletes this inode */
1305 	if (error == 0 && dentry->d_inode != NULL)
1306 		clear_nlink(dentry->d_inode);
1307 	else if (error == -ENOENT)
1308 		nfs_dentry_handle_enoent(dentry);
1309 
1310 	return error;
1311 }
1312 
1313 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1314 {
1315 	static unsigned int sillycounter;
1316 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1317 	const int      countersize = sizeof(sillycounter)*2;
1318 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1319 	char           silly[slen+1];
1320 	struct qstr    qsilly;
1321 	struct dentry *sdentry;
1322 	int            error = -EIO;
1323 
1324 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1325 		dentry->d_parent->d_name.name, dentry->d_name.name,
1326 		atomic_read(&dentry->d_count));
1327 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1328 
1329 	/*
1330 	 * We don't allow a dentry to be silly-renamed twice.
1331 	 */
1332 	error = -EBUSY;
1333 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1334 		goto out;
1335 
1336 	sprintf(silly, ".nfs%*.*Lx",
1337 		fileidsize, fileidsize,
1338 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1339 
1340 	/* Return delegation in anticipation of the rename */
1341 	nfs_inode_return_delegation(dentry->d_inode);
1342 
1343 	sdentry = NULL;
1344 	do {
1345 		char *suffix = silly + slen - countersize;
1346 
1347 		dput(sdentry);
1348 		sillycounter++;
1349 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1350 
1351 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1352 				dentry->d_name.name, silly);
1353 
1354 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1355 		/*
1356 		 * N.B. Better to return EBUSY here ... it could be
1357 		 * dangerous to delete the file while it's in use.
1358 		 */
1359 		if (IS_ERR(sdentry))
1360 			goto out;
1361 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1362 
1363 	qsilly.name = silly;
1364 	qsilly.len  = strlen(silly);
1365 	if (dentry->d_inode) {
1366 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1367 				dir, &qsilly);
1368 		nfs_mark_for_revalidate(dentry->d_inode);
1369 	} else
1370 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1371 				dir, &qsilly);
1372 	if (!error) {
1373 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1374 		d_move(dentry, sdentry);
1375 		error = nfs_async_unlink(dir, dentry);
1376  		/* If we return 0 we don't unlink */
1377 	}
1378 	dput(sdentry);
1379 out:
1380 	return error;
1381 }
1382 
1383 /*
1384  * Remove a file after making sure there are no pending writes,
1385  * and after checking that the file has only one user.
1386  *
1387  * We invalidate the attribute cache and free the inode prior to the operation
1388  * to avoid possible races if the server reuses the inode.
1389  */
1390 static int nfs_safe_remove(struct dentry *dentry)
1391 {
1392 	struct inode *dir = dentry->d_parent->d_inode;
1393 	struct inode *inode = dentry->d_inode;
1394 	int error = -EBUSY;
1395 
1396 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1397 		dentry->d_parent->d_name.name, dentry->d_name.name);
1398 
1399 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1400 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1401 		error = 0;
1402 		goto out;
1403 	}
1404 
1405 	if (inode != NULL) {
1406 		nfs_inode_return_delegation(inode);
1407 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1408 		/* The VFS may want to delete this inode */
1409 		if (error == 0)
1410 			nfs_drop_nlink(inode);
1411 		nfs_mark_for_revalidate(inode);
1412 	} else
1413 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1414 	if (error == -ENOENT)
1415 		nfs_dentry_handle_enoent(dentry);
1416 out:
1417 	return error;
1418 }
1419 
1420 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1421  *  belongs to an active ".nfs..." file and we return -EBUSY.
1422  *
1423  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1424  */
1425 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1426 {
1427 	int error;
1428 	int need_rehash = 0;
1429 
1430 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1431 		dir->i_ino, dentry->d_name.name);
1432 
1433 	spin_lock(&dcache_lock);
1434 	spin_lock(&dentry->d_lock);
1435 	if (atomic_read(&dentry->d_count) > 1) {
1436 		spin_unlock(&dentry->d_lock);
1437 		spin_unlock(&dcache_lock);
1438 		/* Start asynchronous writeout of the inode */
1439 		write_inode_now(dentry->d_inode, 0);
1440 		error = nfs_sillyrename(dir, dentry);
1441 		return error;
1442 	}
1443 	if (!d_unhashed(dentry)) {
1444 		__d_drop(dentry);
1445 		need_rehash = 1;
1446 	}
1447 	spin_unlock(&dentry->d_lock);
1448 	spin_unlock(&dcache_lock);
1449 	error = nfs_safe_remove(dentry);
1450 	if (!error || error == -ENOENT) {
1451 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1452 	} else if (need_rehash)
1453 		d_rehash(dentry);
1454 	return error;
1455 }
1456 
1457 /*
1458  * To create a symbolic link, most file systems instantiate a new inode,
1459  * add a page to it containing the path, then write it out to the disk
1460  * using prepare_write/commit_write.
1461  *
1462  * Unfortunately the NFS client can't create the in-core inode first
1463  * because it needs a file handle to create an in-core inode (see
1464  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1465  * symlink request has completed on the server.
1466  *
1467  * So instead we allocate a raw page, copy the symname into it, then do
1468  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1469  * now have a new file handle and can instantiate an in-core NFS inode
1470  * and move the raw page into its mapping.
1471  */
1472 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1473 {
1474 	struct pagevec lru_pvec;
1475 	struct page *page;
1476 	char *kaddr;
1477 	struct iattr attr;
1478 	unsigned int pathlen = strlen(symname);
1479 	int error;
1480 
1481 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1482 		dir->i_ino, dentry->d_name.name, symname);
1483 
1484 	if (pathlen > PAGE_SIZE)
1485 		return -ENAMETOOLONG;
1486 
1487 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1488 	attr.ia_valid = ATTR_MODE;
1489 
1490 	page = alloc_page(GFP_HIGHUSER);
1491 	if (!page)
1492 		return -ENOMEM;
1493 
1494 	kaddr = kmap_atomic(page, KM_USER0);
1495 	memcpy(kaddr, symname, pathlen);
1496 	if (pathlen < PAGE_SIZE)
1497 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1498 	kunmap_atomic(kaddr, KM_USER0);
1499 
1500 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1501 	if (error != 0) {
1502 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1503 			dir->i_sb->s_id, dir->i_ino,
1504 			dentry->d_name.name, symname, error);
1505 		d_drop(dentry);
1506 		__free_page(page);
1507 		return error;
1508 	}
1509 
1510 	/*
1511 	 * No big deal if we can't add this page to the page cache here.
1512 	 * READLINK will get the missing page from the server if needed.
1513 	 */
1514 	pagevec_init(&lru_pvec, 0);
1515 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1516 							GFP_KERNEL)) {
1517 		pagevec_add(&lru_pvec, page);
1518 		pagevec_lru_add_file(&lru_pvec);
1519 		SetPageUptodate(page);
1520 		unlock_page(page);
1521 	} else
1522 		__free_page(page);
1523 
1524 	return 0;
1525 }
1526 
1527 static int
1528 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1529 {
1530 	struct inode *inode = old_dentry->d_inode;
1531 	int error;
1532 
1533 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1534 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1535 		dentry->d_parent->d_name.name, dentry->d_name.name);
1536 
1537 	d_drop(dentry);
1538 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1539 	if (error == 0) {
1540 		atomic_inc(&inode->i_count);
1541 		d_add(dentry, inode);
1542 	}
1543 	return error;
1544 }
1545 
1546 /*
1547  * RENAME
1548  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1549  * different file handle for the same inode after a rename (e.g. when
1550  * moving to a different directory). A fail-safe method to do so would
1551  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1552  * rename the old file using the sillyrename stuff. This way, the original
1553  * file in old_dir will go away when the last process iput()s the inode.
1554  *
1555  * FIXED.
1556  *
1557  * It actually works quite well. One needs to have the possibility for
1558  * at least one ".nfs..." file in each directory the file ever gets
1559  * moved or linked to which happens automagically with the new
1560  * implementation that only depends on the dcache stuff instead of
1561  * using the inode layer
1562  *
1563  * Unfortunately, things are a little more complicated than indicated
1564  * above. For a cross-directory move, we want to make sure we can get
1565  * rid of the old inode after the operation.  This means there must be
1566  * no pending writes (if it's a file), and the use count must be 1.
1567  * If these conditions are met, we can drop the dentries before doing
1568  * the rename.
1569  */
1570 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1571 		      struct inode *new_dir, struct dentry *new_dentry)
1572 {
1573 	struct inode *old_inode = old_dentry->d_inode;
1574 	struct inode *new_inode = new_dentry->d_inode;
1575 	struct dentry *dentry = NULL, *rehash = NULL;
1576 	int error = -EBUSY;
1577 
1578 	/*
1579 	 * To prevent any new references to the target during the rename,
1580 	 * we unhash the dentry and free the inode in advance.
1581 	 */
1582 	if (!d_unhashed(new_dentry)) {
1583 		d_drop(new_dentry);
1584 		rehash = new_dentry;
1585 	}
1586 
1587 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1588 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1589 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1590 		 atomic_read(&new_dentry->d_count));
1591 
1592 	/*
1593 	 * First check whether the target is busy ... we can't
1594 	 * safely do _any_ rename if the target is in use.
1595 	 *
1596 	 * For files, make a copy of the dentry and then do a
1597 	 * silly-rename. If the silly-rename succeeds, the
1598 	 * copied dentry is hashed and becomes the new target.
1599 	 */
1600 	if (!new_inode)
1601 		goto go_ahead;
1602 	if (S_ISDIR(new_inode->i_mode)) {
1603 		error = -EISDIR;
1604 		if (!S_ISDIR(old_inode->i_mode))
1605 			goto out;
1606 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1607 		int err;
1608 		/* copy the target dentry's name */
1609 		dentry = d_alloc(new_dentry->d_parent,
1610 				 &new_dentry->d_name);
1611 		if (!dentry)
1612 			goto out;
1613 
1614 		/* silly-rename the existing target ... */
1615 		err = nfs_sillyrename(new_dir, new_dentry);
1616 		if (!err) {
1617 			new_dentry = rehash = dentry;
1618 			new_inode = NULL;
1619 			/* instantiate the replacement target */
1620 			d_instantiate(new_dentry, NULL);
1621 		} else if (atomic_read(&new_dentry->d_count) > 1)
1622 			/* dentry still busy? */
1623 			goto out;
1624 	} else
1625 		nfs_drop_nlink(new_inode);
1626 
1627 go_ahead:
1628 	/*
1629 	 * ... prune child dentries and writebacks if needed.
1630 	 */
1631 	if (atomic_read(&old_dentry->d_count) > 1) {
1632 		if (S_ISREG(old_inode->i_mode))
1633 			nfs_wb_all(old_inode);
1634 		shrink_dcache_parent(old_dentry);
1635 	}
1636 	nfs_inode_return_delegation(old_inode);
1637 
1638 	if (new_inode != NULL) {
1639 		nfs_inode_return_delegation(new_inode);
1640 		d_delete(new_dentry);
1641 	}
1642 
1643 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1644 					   new_dir, &new_dentry->d_name);
1645 	nfs_mark_for_revalidate(old_inode);
1646 out:
1647 	if (rehash)
1648 		d_rehash(rehash);
1649 	if (!error) {
1650 		d_move(old_dentry, new_dentry);
1651 		nfs_set_verifier(new_dentry,
1652 					nfs_save_change_attribute(new_dir));
1653 	} else if (error == -ENOENT)
1654 		nfs_dentry_handle_enoent(old_dentry);
1655 
1656 	/* new dentry created? */
1657 	if (dentry)
1658 		dput(dentry);
1659 	return error;
1660 }
1661 
1662 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1663 static LIST_HEAD(nfs_access_lru_list);
1664 static atomic_long_t nfs_access_nr_entries;
1665 
1666 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1667 {
1668 	put_rpccred(entry->cred);
1669 	kfree(entry);
1670 	smp_mb__before_atomic_dec();
1671 	atomic_long_dec(&nfs_access_nr_entries);
1672 	smp_mb__after_atomic_dec();
1673 }
1674 
1675 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1676 {
1677 	LIST_HEAD(head);
1678 	struct nfs_inode *nfsi;
1679 	struct nfs_access_entry *cache;
1680 
1681 restart:
1682 	spin_lock(&nfs_access_lru_lock);
1683 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1684 		struct rw_semaphore *s_umount;
1685 		struct inode *inode;
1686 
1687 		if (nr_to_scan-- == 0)
1688 			break;
1689 		s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1690 		if (!down_read_trylock(s_umount))
1691 			continue;
1692 		inode = igrab(&nfsi->vfs_inode);
1693 		if (inode == NULL) {
1694 			up_read(s_umount);
1695 			continue;
1696 		}
1697 		spin_lock(&inode->i_lock);
1698 		if (list_empty(&nfsi->access_cache_entry_lru))
1699 			goto remove_lru_entry;
1700 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1701 				struct nfs_access_entry, lru);
1702 		list_move(&cache->lru, &head);
1703 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1704 		if (!list_empty(&nfsi->access_cache_entry_lru))
1705 			list_move_tail(&nfsi->access_cache_inode_lru,
1706 					&nfs_access_lru_list);
1707 		else {
1708 remove_lru_entry:
1709 			list_del_init(&nfsi->access_cache_inode_lru);
1710 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1711 		}
1712 		spin_unlock(&inode->i_lock);
1713 		spin_unlock(&nfs_access_lru_lock);
1714 		iput(inode);
1715 		up_read(s_umount);
1716 		goto restart;
1717 	}
1718 	spin_unlock(&nfs_access_lru_lock);
1719 	while (!list_empty(&head)) {
1720 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1721 		list_del(&cache->lru);
1722 		nfs_access_free_entry(cache);
1723 	}
1724 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1725 }
1726 
1727 static void __nfs_access_zap_cache(struct inode *inode)
1728 {
1729 	struct nfs_inode *nfsi = NFS_I(inode);
1730 	struct rb_root *root_node = &nfsi->access_cache;
1731 	struct rb_node *n, *dispose = NULL;
1732 	struct nfs_access_entry *entry;
1733 
1734 	/* Unhook entries from the cache */
1735 	while ((n = rb_first(root_node)) != NULL) {
1736 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1737 		rb_erase(n, root_node);
1738 		list_del(&entry->lru);
1739 		n->rb_left = dispose;
1740 		dispose = n;
1741 	}
1742 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1743 	spin_unlock(&inode->i_lock);
1744 
1745 	/* Now kill them all! */
1746 	while (dispose != NULL) {
1747 		n = dispose;
1748 		dispose = n->rb_left;
1749 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1750 	}
1751 }
1752 
1753 void nfs_access_zap_cache(struct inode *inode)
1754 {
1755 	/* Remove from global LRU init */
1756 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1757 		spin_lock(&nfs_access_lru_lock);
1758 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1759 		spin_unlock(&nfs_access_lru_lock);
1760 	}
1761 
1762 	spin_lock(&inode->i_lock);
1763 	/* This will release the spinlock */
1764 	__nfs_access_zap_cache(inode);
1765 }
1766 
1767 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1768 {
1769 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1770 	struct nfs_access_entry *entry;
1771 
1772 	while (n != NULL) {
1773 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1774 
1775 		if (cred < entry->cred)
1776 			n = n->rb_left;
1777 		else if (cred > entry->cred)
1778 			n = n->rb_right;
1779 		else
1780 			return entry;
1781 	}
1782 	return NULL;
1783 }
1784 
1785 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1786 {
1787 	struct nfs_inode *nfsi = NFS_I(inode);
1788 	struct nfs_access_entry *cache;
1789 	int err = -ENOENT;
1790 
1791 	spin_lock(&inode->i_lock);
1792 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1793 		goto out_zap;
1794 	cache = nfs_access_search_rbtree(inode, cred);
1795 	if (cache == NULL)
1796 		goto out;
1797 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1798 		goto out_stale;
1799 	res->jiffies = cache->jiffies;
1800 	res->cred = cache->cred;
1801 	res->mask = cache->mask;
1802 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1803 	err = 0;
1804 out:
1805 	spin_unlock(&inode->i_lock);
1806 	return err;
1807 out_stale:
1808 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1809 	list_del(&cache->lru);
1810 	spin_unlock(&inode->i_lock);
1811 	nfs_access_free_entry(cache);
1812 	return -ENOENT;
1813 out_zap:
1814 	/* This will release the spinlock */
1815 	__nfs_access_zap_cache(inode);
1816 	return -ENOENT;
1817 }
1818 
1819 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1820 {
1821 	struct nfs_inode *nfsi = NFS_I(inode);
1822 	struct rb_root *root_node = &nfsi->access_cache;
1823 	struct rb_node **p = &root_node->rb_node;
1824 	struct rb_node *parent = NULL;
1825 	struct nfs_access_entry *entry;
1826 
1827 	spin_lock(&inode->i_lock);
1828 	while (*p != NULL) {
1829 		parent = *p;
1830 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1831 
1832 		if (set->cred < entry->cred)
1833 			p = &parent->rb_left;
1834 		else if (set->cred > entry->cred)
1835 			p = &parent->rb_right;
1836 		else
1837 			goto found;
1838 	}
1839 	rb_link_node(&set->rb_node, parent, p);
1840 	rb_insert_color(&set->rb_node, root_node);
1841 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1842 	spin_unlock(&inode->i_lock);
1843 	return;
1844 found:
1845 	rb_replace_node(parent, &set->rb_node, root_node);
1846 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1847 	list_del(&entry->lru);
1848 	spin_unlock(&inode->i_lock);
1849 	nfs_access_free_entry(entry);
1850 }
1851 
1852 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1853 {
1854 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1855 	if (cache == NULL)
1856 		return;
1857 	RB_CLEAR_NODE(&cache->rb_node);
1858 	cache->jiffies = set->jiffies;
1859 	cache->cred = get_rpccred(set->cred);
1860 	cache->mask = set->mask;
1861 
1862 	nfs_access_add_rbtree(inode, cache);
1863 
1864 	/* Update accounting */
1865 	smp_mb__before_atomic_inc();
1866 	atomic_long_inc(&nfs_access_nr_entries);
1867 	smp_mb__after_atomic_inc();
1868 
1869 	/* Add inode to global LRU list */
1870 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1871 		spin_lock(&nfs_access_lru_lock);
1872 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1873 		spin_unlock(&nfs_access_lru_lock);
1874 	}
1875 }
1876 
1877 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1878 {
1879 	struct nfs_access_entry cache;
1880 	int status;
1881 
1882 	status = nfs_access_get_cached(inode, cred, &cache);
1883 	if (status == 0)
1884 		goto out;
1885 
1886 	/* Be clever: ask server to check for all possible rights */
1887 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1888 	cache.cred = cred;
1889 	cache.jiffies = jiffies;
1890 	status = NFS_PROTO(inode)->access(inode, &cache);
1891 	if (status != 0)
1892 		return status;
1893 	nfs_access_add_cache(inode, &cache);
1894 out:
1895 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1896 		return 0;
1897 	return -EACCES;
1898 }
1899 
1900 static int nfs_open_permission_mask(int openflags)
1901 {
1902 	int mask = 0;
1903 
1904 	if (openflags & FMODE_READ)
1905 		mask |= MAY_READ;
1906 	if (openflags & FMODE_WRITE)
1907 		mask |= MAY_WRITE;
1908 	if (openflags & FMODE_EXEC)
1909 		mask |= MAY_EXEC;
1910 	return mask;
1911 }
1912 
1913 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1914 {
1915 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1916 }
1917 
1918 int nfs_permission(struct inode *inode, int mask)
1919 {
1920 	struct rpc_cred *cred;
1921 	int res = 0;
1922 
1923 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1924 
1925 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1926 		goto out;
1927 	/* Is this sys_access() ? */
1928 	if (mask & MAY_ACCESS)
1929 		goto force_lookup;
1930 
1931 	switch (inode->i_mode & S_IFMT) {
1932 		case S_IFLNK:
1933 			goto out;
1934 		case S_IFREG:
1935 			/* NFSv4 has atomic_open... */
1936 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1937 					&& (mask & MAY_OPEN))
1938 				goto out;
1939 			break;
1940 		case S_IFDIR:
1941 			/*
1942 			 * Optimize away all write operations, since the server
1943 			 * will check permissions when we perform the op.
1944 			 */
1945 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1946 				goto out;
1947 	}
1948 
1949 force_lookup:
1950 	if (!NFS_PROTO(inode)->access)
1951 		goto out_notsup;
1952 
1953 	cred = rpc_lookup_cred();
1954 	if (!IS_ERR(cred)) {
1955 		res = nfs_do_access(inode, cred, mask);
1956 		put_rpccred(cred);
1957 	} else
1958 		res = PTR_ERR(cred);
1959 out:
1960 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1961 		res = -EACCES;
1962 
1963 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1964 		inode->i_sb->s_id, inode->i_ino, mask, res);
1965 	return res;
1966 out_notsup:
1967 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1968 	if (res == 0)
1969 		res = generic_permission(inode, mask, NULL);
1970 	goto out;
1971 }
1972 
1973 /*
1974  * Local variables:
1975  *  version-control: t
1976  *  kept-new-versions: 5
1977  * End:
1978  */
1979