1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_free_folio(struct folio *); 59 60 const struct file_operations nfs_dir_operations = { 61 .llseek = nfs_llseek_dir, 62 .read = generic_read_dir, 63 .iterate_shared = nfs_readdir, 64 .open = nfs_opendir, 65 .release = nfs_closedir, 66 .fsync = nfs_fsync_dir, 67 }; 68 69 const struct address_space_operations nfs_dir_aops = { 70 .free_folio = nfs_readdir_free_folio, 71 }; 72 73 #define NFS_INIT_DTSIZE PAGE_SIZE 74 75 static struct nfs_open_dir_context * 76 alloc_nfs_open_dir_context(struct inode *dir) 77 { 78 struct nfs_inode *nfsi = NFS_I(dir); 79 struct nfs_open_dir_context *ctx; 80 81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 82 if (ctx != NULL) { 83 ctx->attr_gencount = nfsi->attr_gencount; 84 ctx->dtsize = NFS_INIT_DTSIZE; 85 spin_lock(&dir->i_lock); 86 if (list_empty(&nfsi->open_files) && 87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 88 nfs_set_cache_invalid(dir, 89 NFS_INO_INVALID_DATA | 90 NFS_INO_REVAL_FORCED); 91 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 93 spin_unlock(&dir->i_lock); 94 return ctx; 95 } 96 return ERR_PTR(-ENOMEM); 97 } 98 99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 100 { 101 spin_lock(&dir->i_lock); 102 list_del_rcu(&ctx->list); 103 spin_unlock(&dir->i_lock); 104 kfree_rcu(ctx, rcu_head); 105 } 106 107 /* 108 * Open file 109 */ 110 static int 111 nfs_opendir(struct inode *inode, struct file *filp) 112 { 113 int res = 0; 114 struct nfs_open_dir_context *ctx; 115 116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 117 118 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 119 120 ctx = alloc_nfs_open_dir_context(inode); 121 if (IS_ERR(ctx)) { 122 res = PTR_ERR(ctx); 123 goto out; 124 } 125 filp->private_data = ctx; 126 out: 127 return res; 128 } 129 130 static int 131 nfs_closedir(struct inode *inode, struct file *filp) 132 { 133 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 134 return 0; 135 } 136 137 struct nfs_cache_array_entry { 138 u64 cookie; 139 u64 ino; 140 const char *name; 141 unsigned int name_len; 142 unsigned char d_type; 143 }; 144 145 struct nfs_cache_array { 146 u64 change_attr; 147 u64 last_cookie; 148 unsigned int size; 149 unsigned char page_full : 1, 150 page_is_eof : 1, 151 cookies_are_ordered : 1; 152 struct nfs_cache_array_entry array[]; 153 }; 154 155 struct nfs_readdir_descriptor { 156 struct file *file; 157 struct page *page; 158 struct dir_context *ctx; 159 pgoff_t page_index; 160 pgoff_t page_index_max; 161 u64 dir_cookie; 162 u64 last_cookie; 163 loff_t current_index; 164 165 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 166 unsigned long dir_verifier; 167 unsigned long timestamp; 168 unsigned long gencount; 169 unsigned long attr_gencount; 170 unsigned int cache_entry_index; 171 unsigned int buffer_fills; 172 unsigned int dtsize; 173 bool clear_cache; 174 bool plus; 175 bool eob; 176 bool eof; 177 }; 178 179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 180 { 181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 182 unsigned int maxsize = server->dtsize; 183 184 if (sz > maxsize) 185 sz = maxsize; 186 if (sz < NFS_MIN_FILE_IO_SIZE) 187 sz = NFS_MIN_FILE_IO_SIZE; 188 desc->dtsize = sz; 189 } 190 191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 192 { 193 nfs_set_dtsize(desc, desc->dtsize >> 1); 194 } 195 196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 197 { 198 nfs_set_dtsize(desc, desc->dtsize << 1); 199 } 200 201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie, 202 u64 change_attr) 203 { 204 struct nfs_cache_array *array; 205 206 array = kmap_atomic(page); 207 array->change_attr = change_attr; 208 array->last_cookie = last_cookie; 209 array->size = 0; 210 array->page_full = 0; 211 array->page_is_eof = 0; 212 array->cookies_are_ordered = 1; 213 kunmap_atomic(array); 214 } 215 216 /* 217 * we are freeing strings created by nfs_add_to_readdir_array() 218 */ 219 static void nfs_readdir_clear_array(struct page *page) 220 { 221 struct nfs_cache_array *array; 222 unsigned int i; 223 224 array = kmap_atomic(page); 225 for (i = 0; i < array->size; i++) 226 kfree(array->array[i].name); 227 array->size = 0; 228 kunmap_atomic(array); 229 } 230 231 static void nfs_readdir_free_folio(struct folio *folio) 232 { 233 nfs_readdir_clear_array(&folio->page); 234 } 235 236 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie, 237 u64 change_attr) 238 { 239 nfs_readdir_clear_array(page); 240 nfs_readdir_page_init_array(page, last_cookie, change_attr); 241 } 242 243 static struct page * 244 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags) 245 { 246 struct page *page = alloc_page(gfp_flags); 247 if (page) 248 nfs_readdir_page_init_array(page, last_cookie, 0); 249 return page; 250 } 251 252 static void nfs_readdir_page_array_free(struct page *page) 253 { 254 if (page) { 255 nfs_readdir_clear_array(page); 256 put_page(page); 257 } 258 } 259 260 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 261 { 262 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 263 } 264 265 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 266 { 267 array->page_is_eof = 1; 268 array->page_full = 1; 269 } 270 271 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 272 { 273 return array->page_full; 274 } 275 276 /* 277 * the caller is responsible for freeing qstr.name 278 * when called by nfs_readdir_add_to_array, the strings will be freed in 279 * nfs_clear_readdir_array() 280 */ 281 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 282 { 283 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 284 285 /* 286 * Avoid a kmemleak false positive. The pointer to the name is stored 287 * in a page cache page which kmemleak does not scan. 288 */ 289 if (ret != NULL) 290 kmemleak_not_leak(ret); 291 return ret; 292 } 293 294 static size_t nfs_readdir_array_maxentries(void) 295 { 296 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 297 sizeof(struct nfs_cache_array_entry); 298 } 299 300 /* 301 * Check that the next array entry lies entirely within the page bounds 302 */ 303 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 304 { 305 if (array->page_full) 306 return -ENOSPC; 307 if (array->size == nfs_readdir_array_maxentries()) { 308 array->page_full = 1; 309 return -ENOSPC; 310 } 311 return 0; 312 } 313 314 static int nfs_readdir_page_array_append(struct page *page, 315 const struct nfs_entry *entry, 316 u64 *cookie) 317 { 318 struct nfs_cache_array *array; 319 struct nfs_cache_array_entry *cache_entry; 320 const char *name; 321 int ret = -ENOMEM; 322 323 name = nfs_readdir_copy_name(entry->name, entry->len); 324 325 array = kmap_atomic(page); 326 if (!name) 327 goto out; 328 ret = nfs_readdir_array_can_expand(array); 329 if (ret) { 330 kfree(name); 331 goto out; 332 } 333 334 cache_entry = &array->array[array->size]; 335 cache_entry->cookie = array->last_cookie; 336 cache_entry->ino = entry->ino; 337 cache_entry->d_type = entry->d_type; 338 cache_entry->name_len = entry->len; 339 cache_entry->name = name; 340 array->last_cookie = entry->cookie; 341 if (array->last_cookie <= cache_entry->cookie) 342 array->cookies_are_ordered = 0; 343 array->size++; 344 if (entry->eof != 0) 345 nfs_readdir_array_set_eof(array); 346 out: 347 *cookie = array->last_cookie; 348 kunmap_atomic(array); 349 return ret; 350 } 351 352 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 353 /* 354 * Hash algorithm allowing content addressible access to sequences 355 * of directory cookies. Content is addressed by the value of the 356 * cookie index of the first readdir entry in a page. 357 * 358 * We select only the first 18 bits to avoid issues with excessive 359 * memory use for the page cache XArray. 18 bits should allow the caching 360 * of 262144 pages of sequences of readdir entries. Since each page holds 361 * 127 readdir entries for a typical 64-bit system, that works out to a 362 * cache of ~ 33 million entries per directory. 363 */ 364 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie) 365 { 366 if (cookie == 0) 367 return 0; 368 return hash_64(cookie, 18); 369 } 370 371 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie, 372 u64 change_attr) 373 { 374 struct nfs_cache_array *array = kmap_atomic(page); 375 int ret = true; 376 377 if (array->change_attr != change_attr) 378 ret = false; 379 if (nfs_readdir_array_index_cookie(array) != last_cookie) 380 ret = false; 381 kunmap_atomic(array); 382 return ret; 383 } 384 385 static void nfs_readdir_page_unlock_and_put(struct page *page) 386 { 387 unlock_page(page); 388 put_page(page); 389 } 390 391 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie, 392 u64 change_attr) 393 { 394 if (PageUptodate(page)) { 395 if (nfs_readdir_page_validate(page, cookie, change_attr)) 396 return; 397 nfs_readdir_clear_array(page); 398 } 399 nfs_readdir_page_init_array(page, cookie, change_attr); 400 SetPageUptodate(page); 401 } 402 403 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping, 404 u64 cookie, u64 change_attr) 405 { 406 pgoff_t index = nfs_readdir_page_cookie_hash(cookie); 407 struct page *page; 408 409 page = grab_cache_page(mapping, index); 410 if (!page) 411 return NULL; 412 nfs_readdir_page_init_and_validate(page, cookie, change_attr); 413 return page; 414 } 415 416 static u64 nfs_readdir_page_last_cookie(struct page *page) 417 { 418 struct nfs_cache_array *array; 419 u64 ret; 420 421 array = kmap_atomic(page); 422 ret = array->last_cookie; 423 kunmap_atomic(array); 424 return ret; 425 } 426 427 static bool nfs_readdir_page_needs_filling(struct page *page) 428 { 429 struct nfs_cache_array *array; 430 bool ret; 431 432 array = kmap_atomic(page); 433 ret = !nfs_readdir_array_is_full(array); 434 kunmap_atomic(array); 435 return ret; 436 } 437 438 static void nfs_readdir_page_set_eof(struct page *page) 439 { 440 struct nfs_cache_array *array; 441 442 array = kmap_atomic(page); 443 nfs_readdir_array_set_eof(array); 444 kunmap_atomic(array); 445 } 446 447 static struct page *nfs_readdir_page_get_next(struct address_space *mapping, 448 u64 cookie, u64 change_attr) 449 { 450 pgoff_t index = nfs_readdir_page_cookie_hash(cookie); 451 struct page *page; 452 453 page = grab_cache_page_nowait(mapping, index); 454 if (!page) 455 return NULL; 456 nfs_readdir_page_init_and_validate(page, cookie, change_attr); 457 if (nfs_readdir_page_last_cookie(page) != cookie) 458 nfs_readdir_page_reinit_array(page, cookie, change_attr); 459 return page; 460 } 461 462 static inline 463 int is_32bit_api(void) 464 { 465 #ifdef CONFIG_COMPAT 466 return in_compat_syscall(); 467 #else 468 return (BITS_PER_LONG == 32); 469 #endif 470 } 471 472 static 473 bool nfs_readdir_use_cookie(const struct file *filp) 474 { 475 if ((filp->f_mode & FMODE_32BITHASH) || 476 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 477 return false; 478 return true; 479 } 480 481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 482 struct nfs_readdir_descriptor *desc) 483 { 484 if (array->page_full) { 485 desc->last_cookie = array->last_cookie; 486 desc->current_index += array->size; 487 desc->cache_entry_index = 0; 488 desc->page_index++; 489 } else 490 desc->last_cookie = nfs_readdir_array_index_cookie(array); 491 } 492 493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 494 { 495 desc->current_index = 0; 496 desc->last_cookie = 0; 497 desc->page_index = 0; 498 } 499 500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 501 struct nfs_readdir_descriptor *desc) 502 { 503 loff_t diff = desc->ctx->pos - desc->current_index; 504 unsigned int index; 505 506 if (diff < 0) 507 goto out_eof; 508 if (diff >= array->size) { 509 if (array->page_is_eof) 510 goto out_eof; 511 nfs_readdir_seek_next_array(array, desc); 512 return -EAGAIN; 513 } 514 515 index = (unsigned int)diff; 516 desc->dir_cookie = array->array[index].cookie; 517 desc->cache_entry_index = index; 518 return 0; 519 out_eof: 520 desc->eof = true; 521 return -EBADCOOKIE; 522 } 523 524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 525 u64 cookie) 526 { 527 if (!array->cookies_are_ordered) 528 return true; 529 /* Optimisation for monotonically increasing cookies */ 530 if (cookie >= array->last_cookie) 531 return false; 532 if (array->size && cookie < array->array[0].cookie) 533 return false; 534 return true; 535 } 536 537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 538 struct nfs_readdir_descriptor *desc) 539 { 540 unsigned int i; 541 int status = -EAGAIN; 542 543 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 544 goto check_eof; 545 546 for (i = 0; i < array->size; i++) { 547 if (array->array[i].cookie == desc->dir_cookie) { 548 if (nfs_readdir_use_cookie(desc->file)) 549 desc->ctx->pos = desc->dir_cookie; 550 else 551 desc->ctx->pos = desc->current_index + i; 552 desc->cache_entry_index = i; 553 return 0; 554 } 555 } 556 check_eof: 557 if (array->page_is_eof) { 558 status = -EBADCOOKIE; 559 if (desc->dir_cookie == array->last_cookie) 560 desc->eof = true; 561 } else 562 nfs_readdir_seek_next_array(array, desc); 563 return status; 564 } 565 566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 567 { 568 struct nfs_cache_array *array; 569 int status; 570 571 array = kmap_atomic(desc->page); 572 573 if (desc->dir_cookie == 0) 574 status = nfs_readdir_search_for_pos(array, desc); 575 else 576 status = nfs_readdir_search_for_cookie(array, desc); 577 578 kunmap_atomic(array); 579 return status; 580 } 581 582 /* Fill a page with xdr information before transferring to the cache page */ 583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 584 __be32 *verf, u64 cookie, 585 struct page **pages, size_t bufsize, 586 __be32 *verf_res) 587 { 588 struct inode *inode = file_inode(desc->file); 589 struct nfs_readdir_arg arg = { 590 .dentry = file_dentry(desc->file), 591 .cred = desc->file->f_cred, 592 .verf = verf, 593 .cookie = cookie, 594 .pages = pages, 595 .page_len = bufsize, 596 .plus = desc->plus, 597 }; 598 struct nfs_readdir_res res = { 599 .verf = verf_res, 600 }; 601 unsigned long timestamp, gencount; 602 int error; 603 604 again: 605 timestamp = jiffies; 606 gencount = nfs_inc_attr_generation_counter(); 607 desc->dir_verifier = nfs_save_change_attribute(inode); 608 error = NFS_PROTO(inode)->readdir(&arg, &res); 609 if (error < 0) { 610 /* We requested READDIRPLUS, but the server doesn't grok it */ 611 if (error == -ENOTSUPP && desc->plus) { 612 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 613 desc->plus = arg.plus = false; 614 goto again; 615 } 616 goto error; 617 } 618 desc->timestamp = timestamp; 619 desc->gencount = gencount; 620 error: 621 return error; 622 } 623 624 static int xdr_decode(struct nfs_readdir_descriptor *desc, 625 struct nfs_entry *entry, struct xdr_stream *xdr) 626 { 627 struct inode *inode = file_inode(desc->file); 628 int error; 629 630 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 631 if (error) 632 return error; 633 entry->fattr->time_start = desc->timestamp; 634 entry->fattr->gencount = desc->gencount; 635 return 0; 636 } 637 638 /* Match file and dirent using either filehandle or fileid 639 * Note: caller is responsible for checking the fsid 640 */ 641 static 642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 643 { 644 struct inode *inode; 645 struct nfs_inode *nfsi; 646 647 if (d_really_is_negative(dentry)) 648 return 0; 649 650 inode = d_inode(dentry); 651 if (is_bad_inode(inode) || NFS_STALE(inode)) 652 return 0; 653 654 nfsi = NFS_I(inode); 655 if (entry->fattr->fileid != nfsi->fileid) 656 return 0; 657 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 658 return 0; 659 return 1; 660 } 661 662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 663 664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 665 unsigned int cache_hits, 666 unsigned int cache_misses) 667 { 668 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 669 return false; 670 if (ctx->pos == 0 || 671 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 672 return true; 673 return false; 674 } 675 676 /* 677 * This function is called by the getattr code to request the 678 * use of readdirplus to accelerate any future lookups in the same 679 * directory. 680 */ 681 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 682 { 683 struct nfs_inode *nfsi = NFS_I(dir); 684 struct nfs_open_dir_context *ctx; 685 686 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 687 S_ISDIR(dir->i_mode)) { 688 rcu_read_lock(); 689 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 690 atomic_inc(&ctx->cache_hits); 691 rcu_read_unlock(); 692 } 693 } 694 695 /* 696 * This function is mainly for use by nfs_getattr(). 697 * 698 * If this is an 'ls -l', we want to force use of readdirplus. 699 */ 700 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 701 { 702 struct nfs_inode *nfsi = NFS_I(dir); 703 struct nfs_open_dir_context *ctx; 704 705 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 706 S_ISDIR(dir->i_mode)) { 707 rcu_read_lock(); 708 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 709 atomic_inc(&ctx->cache_misses); 710 rcu_read_unlock(); 711 } 712 } 713 714 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 715 unsigned int flags) 716 { 717 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 718 return; 719 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 720 return; 721 nfs_readdir_record_entry_cache_miss(dir); 722 } 723 724 static 725 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 726 unsigned long dir_verifier) 727 { 728 struct qstr filename = QSTR_INIT(entry->name, entry->len); 729 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 730 struct dentry *dentry; 731 struct dentry *alias; 732 struct inode *inode; 733 int status; 734 735 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 736 return; 737 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 738 return; 739 if (filename.len == 0) 740 return; 741 /* Validate that the name doesn't contain any illegal '\0' */ 742 if (strnlen(filename.name, filename.len) != filename.len) 743 return; 744 /* ...or '/' */ 745 if (strnchr(filename.name, filename.len, '/')) 746 return; 747 if (filename.name[0] == '.') { 748 if (filename.len == 1) 749 return; 750 if (filename.len == 2 && filename.name[1] == '.') 751 return; 752 } 753 filename.hash = full_name_hash(parent, filename.name, filename.len); 754 755 dentry = d_lookup(parent, &filename); 756 again: 757 if (!dentry) { 758 dentry = d_alloc_parallel(parent, &filename, &wq); 759 if (IS_ERR(dentry)) 760 return; 761 } 762 if (!d_in_lookup(dentry)) { 763 /* Is there a mountpoint here? If so, just exit */ 764 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 765 &entry->fattr->fsid)) 766 goto out; 767 if (nfs_same_file(dentry, entry)) { 768 if (!entry->fh->size) 769 goto out; 770 nfs_set_verifier(dentry, dir_verifier); 771 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 772 if (!status) 773 nfs_setsecurity(d_inode(dentry), entry->fattr); 774 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 775 dentry, 0, status); 776 goto out; 777 } else { 778 trace_nfs_readdir_lookup_revalidate_failed( 779 d_inode(parent), dentry, 0); 780 d_invalidate(dentry); 781 dput(dentry); 782 dentry = NULL; 783 goto again; 784 } 785 } 786 if (!entry->fh->size) { 787 d_lookup_done(dentry); 788 goto out; 789 } 790 791 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 792 alias = d_splice_alias(inode, dentry); 793 d_lookup_done(dentry); 794 if (alias) { 795 if (IS_ERR(alias)) 796 goto out; 797 dput(dentry); 798 dentry = alias; 799 } 800 nfs_set_verifier(dentry, dir_verifier); 801 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 802 out: 803 dput(dentry); 804 } 805 806 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 807 struct nfs_entry *entry, 808 struct xdr_stream *stream) 809 { 810 int ret; 811 812 if (entry->fattr->label) 813 entry->fattr->label->len = NFS4_MAXLABELLEN; 814 ret = xdr_decode(desc, entry, stream); 815 if (ret || !desc->plus) 816 return ret; 817 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 818 return 0; 819 } 820 821 /* Perform conversion from xdr to cache array */ 822 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc, 823 struct nfs_entry *entry, 824 struct page **xdr_pages, unsigned int buflen, 825 struct page **arrays, size_t narrays, 826 u64 change_attr) 827 { 828 struct address_space *mapping = desc->file->f_mapping; 829 struct xdr_stream stream; 830 struct xdr_buf buf; 831 struct page *scratch, *new, *page = *arrays; 832 u64 cookie; 833 int status; 834 835 scratch = alloc_page(GFP_KERNEL); 836 if (scratch == NULL) 837 return -ENOMEM; 838 839 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 840 xdr_set_scratch_page(&stream, scratch); 841 842 do { 843 status = nfs_readdir_entry_decode(desc, entry, &stream); 844 if (status != 0) 845 break; 846 847 status = nfs_readdir_page_array_append(page, entry, &cookie); 848 if (status != -ENOSPC) 849 continue; 850 851 if (page->mapping != mapping) { 852 if (!--narrays) 853 break; 854 new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL); 855 if (!new) 856 break; 857 arrays++; 858 *arrays = page = new; 859 } else { 860 new = nfs_readdir_page_get_next(mapping, cookie, 861 change_attr); 862 if (!new) 863 break; 864 if (page != *arrays) 865 nfs_readdir_page_unlock_and_put(page); 866 page = new; 867 } 868 desc->page_index_max++; 869 status = nfs_readdir_page_array_append(page, entry, &cookie); 870 } while (!status && !entry->eof); 871 872 switch (status) { 873 case -EBADCOOKIE: 874 if (!entry->eof) 875 break; 876 nfs_readdir_page_set_eof(page); 877 fallthrough; 878 case -EAGAIN: 879 status = 0; 880 break; 881 case -ENOSPC: 882 status = 0; 883 if (!desc->plus) 884 break; 885 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 886 ; 887 } 888 889 if (page != *arrays) 890 nfs_readdir_page_unlock_and_put(page); 891 892 put_page(scratch); 893 return status; 894 } 895 896 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 897 { 898 while (npages--) 899 put_page(pages[npages]); 900 kfree(pages); 901 } 902 903 /* 904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 905 * to nfs_readdir_free_pages() 906 */ 907 static struct page **nfs_readdir_alloc_pages(size_t npages) 908 { 909 struct page **pages; 910 size_t i; 911 912 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 913 if (!pages) 914 return NULL; 915 for (i = 0; i < npages; i++) { 916 struct page *page = alloc_page(GFP_KERNEL); 917 if (page == NULL) 918 goto out_freepages; 919 pages[i] = page; 920 } 921 return pages; 922 923 out_freepages: 924 nfs_readdir_free_pages(pages, i); 925 return NULL; 926 } 927 928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 929 __be32 *verf_arg, __be32 *verf_res, 930 struct page **arrays, size_t narrays) 931 { 932 u64 change_attr; 933 struct page **pages; 934 struct page *page = *arrays; 935 struct nfs_entry *entry; 936 size_t array_size; 937 struct inode *inode = file_inode(desc->file); 938 unsigned int dtsize = desc->dtsize; 939 unsigned int pglen; 940 int status = -ENOMEM; 941 942 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 943 if (!entry) 944 return -ENOMEM; 945 entry->cookie = nfs_readdir_page_last_cookie(page); 946 entry->fh = nfs_alloc_fhandle(); 947 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 948 entry->server = NFS_SERVER(inode); 949 if (entry->fh == NULL || entry->fattr == NULL) 950 goto out; 951 952 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 953 pages = nfs_readdir_alloc_pages(array_size); 954 if (!pages) 955 goto out; 956 957 change_attr = inode_peek_iversion_raw(inode); 958 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 959 dtsize, verf_res); 960 if (status < 0) 961 goto free_pages; 962 963 pglen = status; 964 if (pglen != 0) 965 status = nfs_readdir_page_filler(desc, entry, pages, pglen, 966 arrays, narrays, change_attr); 967 else 968 nfs_readdir_page_set_eof(page); 969 desc->buffer_fills++; 970 971 free_pages: 972 nfs_readdir_free_pages(pages, array_size); 973 out: 974 nfs_free_fattr(entry->fattr); 975 nfs_free_fhandle(entry->fh); 976 kfree(entry); 977 return status; 978 } 979 980 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc) 981 { 982 put_page(desc->page); 983 desc->page = NULL; 984 } 985 986 static void 987 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 988 { 989 unlock_page(desc->page); 990 nfs_readdir_page_put(desc); 991 } 992 993 static struct page * 994 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc) 995 { 996 struct address_space *mapping = desc->file->f_mapping; 997 u64 change_attr = inode_peek_iversion_raw(mapping->host); 998 u64 cookie = desc->last_cookie; 999 struct page *page; 1000 1001 page = nfs_readdir_page_get_locked(mapping, cookie, change_attr); 1002 if (!page) 1003 return NULL; 1004 if (desc->clear_cache && !nfs_readdir_page_needs_filling(page)) 1005 nfs_readdir_page_reinit_array(page, cookie, change_attr); 1006 return page; 1007 } 1008 1009 /* 1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1011 * and locks the page to prevent removal from the page cache. 1012 */ 1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1014 { 1015 struct inode *inode = file_inode(desc->file); 1016 struct nfs_inode *nfsi = NFS_I(inode); 1017 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1018 int res; 1019 1020 desc->page = nfs_readdir_page_get_cached(desc); 1021 if (!desc->page) 1022 return -ENOMEM; 1023 if (nfs_readdir_page_needs_filling(desc->page)) { 1024 /* Grow the dtsize if we had to go back for more pages */ 1025 if (desc->page_index == desc->page_index_max) 1026 nfs_grow_dtsize(desc); 1027 desc->page_index_max = desc->page_index; 1028 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1029 desc->last_cookie, 1030 desc->page->index, desc->dtsize); 1031 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1032 &desc->page, 1); 1033 if (res < 0) { 1034 nfs_readdir_page_unlock_and_put_cached(desc); 1035 trace_nfs_readdir_cache_fill_done(inode, res); 1036 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1037 invalidate_inode_pages2(desc->file->f_mapping); 1038 nfs_readdir_rewind_search(desc); 1039 trace_nfs_readdir_invalidate_cache_range( 1040 inode, 0, MAX_LFS_FILESIZE); 1041 return -EAGAIN; 1042 } 1043 return res; 1044 } 1045 /* 1046 * Set the cookie verifier if the page cache was empty 1047 */ 1048 if (desc->last_cookie == 0 && 1049 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1050 memcpy(nfsi->cookieverf, verf, 1051 sizeof(nfsi->cookieverf)); 1052 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1053 -1); 1054 trace_nfs_readdir_invalidate_cache_range( 1055 inode, 1, MAX_LFS_FILESIZE); 1056 } 1057 desc->clear_cache = false; 1058 } 1059 res = nfs_readdir_search_array(desc); 1060 if (res == 0) 1061 return 0; 1062 nfs_readdir_page_unlock_and_put_cached(desc); 1063 return res; 1064 } 1065 1066 /* Search for desc->dir_cookie from the beginning of the page cache */ 1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1068 { 1069 int res; 1070 1071 do { 1072 res = find_and_lock_cache_page(desc); 1073 } while (res == -EAGAIN); 1074 return res; 1075 } 1076 1077 /* 1078 * Once we've found the start of the dirent within a page: fill 'er up... 1079 */ 1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1081 const __be32 *verf) 1082 { 1083 struct file *file = desc->file; 1084 struct nfs_cache_array *array; 1085 unsigned int i; 1086 1087 array = kmap(desc->page); 1088 for (i = desc->cache_entry_index; i < array->size; i++) { 1089 struct nfs_cache_array_entry *ent; 1090 1091 ent = &array->array[i]; 1092 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1093 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1094 desc->eob = true; 1095 break; 1096 } 1097 memcpy(desc->verf, verf, sizeof(desc->verf)); 1098 if (i == array->size - 1) { 1099 desc->dir_cookie = array->last_cookie; 1100 nfs_readdir_seek_next_array(array, desc); 1101 } else { 1102 desc->dir_cookie = array->array[i + 1].cookie; 1103 desc->last_cookie = array->array[0].cookie; 1104 } 1105 if (nfs_readdir_use_cookie(file)) 1106 desc->ctx->pos = desc->dir_cookie; 1107 else 1108 desc->ctx->pos++; 1109 } 1110 if (array->page_is_eof) 1111 desc->eof = !desc->eob; 1112 1113 kunmap(desc->page); 1114 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1115 (unsigned long long)desc->dir_cookie); 1116 } 1117 1118 /* 1119 * If we cannot find a cookie in our cache, we suspect that this is 1120 * because it points to a deleted file, so we ask the server to return 1121 * whatever it thinks is the next entry. We then feed this to filldir. 1122 * If all goes well, we should then be able to find our way round the 1123 * cache on the next call to readdir_search_pagecache(); 1124 * 1125 * NOTE: we cannot add the anonymous page to the pagecache because 1126 * the data it contains might not be page aligned. Besides, 1127 * we should already have a complete representation of the 1128 * directory in the page cache by the time we get here. 1129 */ 1130 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1131 { 1132 struct page **arrays; 1133 size_t i, sz = 512; 1134 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1135 int status = -ENOMEM; 1136 1137 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1138 (unsigned long long)desc->dir_cookie); 1139 1140 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1141 if (!arrays) 1142 goto out; 1143 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL); 1144 if (!arrays[0]) 1145 goto out; 1146 1147 desc->page_index = 0; 1148 desc->cache_entry_index = 0; 1149 desc->last_cookie = desc->dir_cookie; 1150 desc->page_index_max = 0; 1151 1152 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1153 -1, desc->dtsize); 1154 1155 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1156 if (status < 0) { 1157 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1158 goto out_free; 1159 } 1160 1161 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1162 desc->page = arrays[i]; 1163 nfs_do_filldir(desc, verf); 1164 } 1165 desc->page = NULL; 1166 1167 /* 1168 * Grow the dtsize if we have to go back for more pages, 1169 * or shrink it if we're reading too many. 1170 */ 1171 if (!desc->eof) { 1172 if (!desc->eob) 1173 nfs_grow_dtsize(desc); 1174 else if (desc->buffer_fills == 1 && 1175 i < (desc->page_index_max >> 1)) 1176 nfs_shrink_dtsize(desc); 1177 } 1178 out_free: 1179 for (i = 0; i < sz && arrays[i]; i++) 1180 nfs_readdir_page_array_free(arrays[i]); 1181 out: 1182 if (!nfs_readdir_use_cookie(desc->file)) 1183 nfs_readdir_rewind_search(desc); 1184 desc->page_index_max = -1; 1185 kfree(arrays); 1186 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1187 return status; 1188 } 1189 1190 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1191 1192 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1193 struct nfs_readdir_descriptor *desc, 1194 unsigned int cache_misses, 1195 bool force_clear) 1196 { 1197 if (desc->ctx->pos == 0 || !desc->plus) 1198 return false; 1199 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1200 return false; 1201 trace_nfs_readdir_force_readdirplus(inode); 1202 return true; 1203 } 1204 1205 /* The file offset position represents the dirent entry number. A 1206 last cookie cache takes care of the common case of reading the 1207 whole directory. 1208 */ 1209 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1210 { 1211 struct dentry *dentry = file_dentry(file); 1212 struct inode *inode = d_inode(dentry); 1213 struct nfs_inode *nfsi = NFS_I(inode); 1214 struct nfs_open_dir_context *dir_ctx = file->private_data; 1215 struct nfs_readdir_descriptor *desc; 1216 unsigned int cache_hits, cache_misses; 1217 bool force_clear; 1218 int res; 1219 1220 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1221 file, (long long)ctx->pos); 1222 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1223 1224 /* 1225 * ctx->pos points to the dirent entry number. 1226 * *desc->dir_cookie has the cookie for the next entry. We have 1227 * to either find the entry with the appropriate number or 1228 * revalidate the cookie. 1229 */ 1230 nfs_revalidate_mapping(inode, file->f_mapping); 1231 1232 res = -ENOMEM; 1233 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1234 if (!desc) 1235 goto out; 1236 desc->file = file; 1237 desc->ctx = ctx; 1238 desc->page_index_max = -1; 1239 1240 spin_lock(&file->f_lock); 1241 desc->dir_cookie = dir_ctx->dir_cookie; 1242 desc->page_index = dir_ctx->page_index; 1243 desc->last_cookie = dir_ctx->last_cookie; 1244 desc->attr_gencount = dir_ctx->attr_gencount; 1245 desc->eof = dir_ctx->eof; 1246 nfs_set_dtsize(desc, dir_ctx->dtsize); 1247 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1248 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1249 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1250 force_clear = dir_ctx->force_clear; 1251 spin_unlock(&file->f_lock); 1252 1253 if (desc->eof) { 1254 res = 0; 1255 goto out_free; 1256 } 1257 1258 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1259 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1260 force_clear); 1261 desc->clear_cache = force_clear; 1262 1263 do { 1264 res = readdir_search_pagecache(desc); 1265 1266 if (res == -EBADCOOKIE) { 1267 res = 0; 1268 /* This means either end of directory */ 1269 if (desc->dir_cookie && !desc->eof) { 1270 /* Or that the server has 'lost' a cookie */ 1271 res = uncached_readdir(desc); 1272 if (res == 0) 1273 continue; 1274 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1275 res = 0; 1276 } 1277 break; 1278 } 1279 if (res == -ETOOSMALL && desc->plus) { 1280 nfs_zap_caches(inode); 1281 desc->plus = false; 1282 desc->eof = false; 1283 continue; 1284 } 1285 if (res < 0) 1286 break; 1287 1288 nfs_do_filldir(desc, nfsi->cookieverf); 1289 nfs_readdir_page_unlock_and_put_cached(desc); 1290 if (desc->page_index == desc->page_index_max) 1291 desc->clear_cache = force_clear; 1292 } while (!desc->eob && !desc->eof); 1293 1294 spin_lock(&file->f_lock); 1295 dir_ctx->dir_cookie = desc->dir_cookie; 1296 dir_ctx->last_cookie = desc->last_cookie; 1297 dir_ctx->attr_gencount = desc->attr_gencount; 1298 dir_ctx->page_index = desc->page_index; 1299 dir_ctx->force_clear = force_clear; 1300 dir_ctx->eof = desc->eof; 1301 dir_ctx->dtsize = desc->dtsize; 1302 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1303 spin_unlock(&file->f_lock); 1304 out_free: 1305 kfree(desc); 1306 1307 out: 1308 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1309 return res; 1310 } 1311 1312 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1313 { 1314 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1315 1316 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1317 filp, offset, whence); 1318 1319 switch (whence) { 1320 default: 1321 return -EINVAL; 1322 case SEEK_SET: 1323 if (offset < 0) 1324 return -EINVAL; 1325 spin_lock(&filp->f_lock); 1326 break; 1327 case SEEK_CUR: 1328 if (offset == 0) 1329 return filp->f_pos; 1330 spin_lock(&filp->f_lock); 1331 offset += filp->f_pos; 1332 if (offset < 0) { 1333 spin_unlock(&filp->f_lock); 1334 return -EINVAL; 1335 } 1336 } 1337 if (offset != filp->f_pos) { 1338 filp->f_pos = offset; 1339 dir_ctx->page_index = 0; 1340 if (!nfs_readdir_use_cookie(filp)) { 1341 dir_ctx->dir_cookie = 0; 1342 dir_ctx->last_cookie = 0; 1343 } else { 1344 dir_ctx->dir_cookie = offset; 1345 dir_ctx->last_cookie = offset; 1346 } 1347 dir_ctx->eof = false; 1348 } 1349 spin_unlock(&filp->f_lock); 1350 return offset; 1351 } 1352 1353 /* 1354 * All directory operations under NFS are synchronous, so fsync() 1355 * is a dummy operation. 1356 */ 1357 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1358 int datasync) 1359 { 1360 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1361 1362 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1363 return 0; 1364 } 1365 1366 /** 1367 * nfs_force_lookup_revalidate - Mark the directory as having changed 1368 * @dir: pointer to directory inode 1369 * 1370 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1371 * full lookup on all child dentries of 'dir' whenever a change occurs 1372 * on the server that might have invalidated our dcache. 1373 * 1374 * Note that we reserve bit '0' as a tag to let us know when a dentry 1375 * was revalidated while holding a delegation on its inode. 1376 * 1377 * The caller should be holding dir->i_lock 1378 */ 1379 void nfs_force_lookup_revalidate(struct inode *dir) 1380 { 1381 NFS_I(dir)->cache_change_attribute += 2; 1382 } 1383 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1384 1385 /** 1386 * nfs_verify_change_attribute - Detects NFS remote directory changes 1387 * @dir: pointer to parent directory inode 1388 * @verf: previously saved change attribute 1389 * 1390 * Return "false" if the verifiers doesn't match the change attribute. 1391 * This would usually indicate that the directory contents have changed on 1392 * the server, and that any dentries need revalidating. 1393 */ 1394 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1395 { 1396 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1397 } 1398 1399 static void nfs_set_verifier_delegated(unsigned long *verf) 1400 { 1401 *verf |= 1UL; 1402 } 1403 1404 #if IS_ENABLED(CONFIG_NFS_V4) 1405 static void nfs_unset_verifier_delegated(unsigned long *verf) 1406 { 1407 *verf &= ~1UL; 1408 } 1409 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1410 1411 static bool nfs_test_verifier_delegated(unsigned long verf) 1412 { 1413 return verf & 1; 1414 } 1415 1416 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1417 { 1418 return nfs_test_verifier_delegated(dentry->d_time); 1419 } 1420 1421 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1422 { 1423 struct inode *inode = d_inode(dentry); 1424 struct inode *dir = d_inode(dentry->d_parent); 1425 1426 if (!nfs_verify_change_attribute(dir, verf)) 1427 return; 1428 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1429 nfs_set_verifier_delegated(&verf); 1430 dentry->d_time = verf; 1431 } 1432 1433 /** 1434 * nfs_set_verifier - save a parent directory verifier in the dentry 1435 * @dentry: pointer to dentry 1436 * @verf: verifier to save 1437 * 1438 * Saves the parent directory verifier in @dentry. If the inode has 1439 * a delegation, we also tag the dentry as having been revalidated 1440 * while holding a delegation so that we know we don't have to 1441 * look it up again after a directory change. 1442 */ 1443 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1444 { 1445 1446 spin_lock(&dentry->d_lock); 1447 nfs_set_verifier_locked(dentry, verf); 1448 spin_unlock(&dentry->d_lock); 1449 } 1450 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1451 1452 #if IS_ENABLED(CONFIG_NFS_V4) 1453 /** 1454 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1455 * @inode: pointer to inode 1456 * 1457 * Iterates through the dentries in the inode alias list and clears 1458 * the tag used to indicate that the dentry has been revalidated 1459 * while holding a delegation. 1460 * This function is intended for use when the delegation is being 1461 * returned or revoked. 1462 */ 1463 void nfs_clear_verifier_delegated(struct inode *inode) 1464 { 1465 struct dentry *alias; 1466 1467 if (!inode) 1468 return; 1469 spin_lock(&inode->i_lock); 1470 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1471 spin_lock(&alias->d_lock); 1472 nfs_unset_verifier_delegated(&alias->d_time); 1473 spin_unlock(&alias->d_lock); 1474 } 1475 spin_unlock(&inode->i_lock); 1476 } 1477 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1478 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1479 1480 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1481 { 1482 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1483 d_really_is_negative(dentry)) 1484 return dentry->d_time == inode_peek_iversion_raw(dir); 1485 return nfs_verify_change_attribute(dir, dentry->d_time); 1486 } 1487 1488 /* 1489 * A check for whether or not the parent directory has changed. 1490 * In the case it has, we assume that the dentries are untrustworthy 1491 * and may need to be looked up again. 1492 * If rcu_walk prevents us from performing a full check, return 0. 1493 */ 1494 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1495 int rcu_walk) 1496 { 1497 if (IS_ROOT(dentry)) 1498 return 1; 1499 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1500 return 0; 1501 if (!nfs_dentry_verify_change(dir, dentry)) 1502 return 0; 1503 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1504 if (nfs_mapping_need_revalidate_inode(dir)) { 1505 if (rcu_walk) 1506 return 0; 1507 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1508 return 0; 1509 } 1510 if (!nfs_dentry_verify_change(dir, dentry)) 1511 return 0; 1512 return 1; 1513 } 1514 1515 /* 1516 * Use intent information to check whether or not we're going to do 1517 * an O_EXCL create using this path component. 1518 */ 1519 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1520 { 1521 if (NFS_PROTO(dir)->version == 2) 1522 return 0; 1523 return flags & LOOKUP_EXCL; 1524 } 1525 1526 /* 1527 * Inode and filehandle revalidation for lookups. 1528 * 1529 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1530 * or if the intent information indicates that we're about to open this 1531 * particular file and the "nocto" mount flag is not set. 1532 * 1533 */ 1534 static 1535 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1536 { 1537 struct nfs_server *server = NFS_SERVER(inode); 1538 int ret; 1539 1540 if (IS_AUTOMOUNT(inode)) 1541 return 0; 1542 1543 if (flags & LOOKUP_OPEN) { 1544 switch (inode->i_mode & S_IFMT) { 1545 case S_IFREG: 1546 /* A NFSv4 OPEN will revalidate later */ 1547 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1548 goto out; 1549 fallthrough; 1550 case S_IFDIR: 1551 if (server->flags & NFS_MOUNT_NOCTO) 1552 break; 1553 /* NFS close-to-open cache consistency validation */ 1554 goto out_force; 1555 } 1556 } 1557 1558 /* VFS wants an on-the-wire revalidation */ 1559 if (flags & LOOKUP_REVAL) 1560 goto out_force; 1561 out: 1562 if (inode->i_nlink > 0 || 1563 (inode->i_nlink == 0 && 1564 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1565 return 0; 1566 else 1567 return -ESTALE; 1568 out_force: 1569 if (flags & LOOKUP_RCU) 1570 return -ECHILD; 1571 ret = __nfs_revalidate_inode(server, inode); 1572 if (ret != 0) 1573 return ret; 1574 goto out; 1575 } 1576 1577 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1578 { 1579 spin_lock(&inode->i_lock); 1580 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1581 spin_unlock(&inode->i_lock); 1582 } 1583 1584 /* 1585 * We judge how long we want to trust negative 1586 * dentries by looking at the parent inode mtime. 1587 * 1588 * If parent mtime has changed, we revalidate, else we wait for a 1589 * period corresponding to the parent's attribute cache timeout value. 1590 * 1591 * If LOOKUP_RCU prevents us from performing a full check, return 1 1592 * suggesting a reval is needed. 1593 * 1594 * Note that when creating a new file, or looking up a rename target, 1595 * then it shouldn't be necessary to revalidate a negative dentry. 1596 */ 1597 static inline 1598 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1599 unsigned int flags) 1600 { 1601 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1602 return 0; 1603 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1604 return 1; 1605 /* Case insensitive server? Revalidate negative dentries */ 1606 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1607 return 1; 1608 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1609 } 1610 1611 static int 1612 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1613 struct inode *inode, int error) 1614 { 1615 switch (error) { 1616 case 1: 1617 break; 1618 case 0: 1619 /* 1620 * We can't d_drop the root of a disconnected tree: 1621 * its d_hash is on the s_anon list and d_drop() would hide 1622 * it from shrink_dcache_for_unmount(), leading to busy 1623 * inodes on unmount and further oopses. 1624 */ 1625 if (inode && IS_ROOT(dentry)) 1626 error = 1; 1627 break; 1628 } 1629 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1630 return error; 1631 } 1632 1633 static int 1634 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1635 unsigned int flags) 1636 { 1637 int ret = 1; 1638 if (nfs_neg_need_reval(dir, dentry, flags)) { 1639 if (flags & LOOKUP_RCU) 1640 return -ECHILD; 1641 ret = 0; 1642 } 1643 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1644 } 1645 1646 static int 1647 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1648 struct inode *inode) 1649 { 1650 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1651 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1652 } 1653 1654 static int nfs_lookup_revalidate_dentry(struct inode *dir, 1655 struct dentry *dentry, 1656 struct inode *inode, unsigned int flags) 1657 { 1658 struct nfs_fh *fhandle; 1659 struct nfs_fattr *fattr; 1660 unsigned long dir_verifier; 1661 int ret; 1662 1663 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1664 1665 ret = -ENOMEM; 1666 fhandle = nfs_alloc_fhandle(); 1667 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1668 if (fhandle == NULL || fattr == NULL) 1669 goto out; 1670 1671 dir_verifier = nfs_save_change_attribute(dir); 1672 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1673 if (ret < 0) { 1674 switch (ret) { 1675 case -ESTALE: 1676 case -ENOENT: 1677 ret = 0; 1678 break; 1679 case -ETIMEDOUT: 1680 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1681 ret = 1; 1682 } 1683 goto out; 1684 } 1685 1686 /* Request help from readdirplus */ 1687 nfs_lookup_advise_force_readdirplus(dir, flags); 1688 1689 ret = 0; 1690 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1691 goto out; 1692 if (nfs_refresh_inode(inode, fattr) < 0) 1693 goto out; 1694 1695 nfs_setsecurity(inode, fattr); 1696 nfs_set_verifier(dentry, dir_verifier); 1697 1698 ret = 1; 1699 out: 1700 nfs_free_fattr(fattr); 1701 nfs_free_fhandle(fhandle); 1702 1703 /* 1704 * If the lookup failed despite the dentry change attribute being 1705 * a match, then we should revalidate the directory cache. 1706 */ 1707 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1708 nfs_mark_dir_for_revalidate(dir); 1709 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1710 } 1711 1712 /* 1713 * This is called every time the dcache has a lookup hit, 1714 * and we should check whether we can really trust that 1715 * lookup. 1716 * 1717 * NOTE! The hit can be a negative hit too, don't assume 1718 * we have an inode! 1719 * 1720 * If the parent directory is seen to have changed, we throw out the 1721 * cached dentry and do a new lookup. 1722 */ 1723 static int 1724 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1725 unsigned int flags) 1726 { 1727 struct inode *inode; 1728 int error; 1729 1730 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1731 inode = d_inode(dentry); 1732 1733 if (!inode) 1734 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1735 1736 if (is_bad_inode(inode)) { 1737 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1738 __func__, dentry); 1739 goto out_bad; 1740 } 1741 1742 if (nfs_verifier_is_delegated(dentry)) 1743 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1744 1745 /* Force a full look up iff the parent directory has changed */ 1746 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1747 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1748 error = nfs_lookup_verify_inode(inode, flags); 1749 if (error) { 1750 if (error == -ESTALE) 1751 nfs_mark_dir_for_revalidate(dir); 1752 goto out_bad; 1753 } 1754 goto out_valid; 1755 } 1756 1757 if (flags & LOOKUP_RCU) 1758 return -ECHILD; 1759 1760 if (NFS_STALE(inode)) 1761 goto out_bad; 1762 1763 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 1764 out_valid: 1765 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1766 out_bad: 1767 if (flags & LOOKUP_RCU) 1768 return -ECHILD; 1769 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1770 } 1771 1772 static int 1773 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1774 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1775 { 1776 struct dentry *parent; 1777 struct inode *dir; 1778 int ret; 1779 1780 if (flags & LOOKUP_RCU) { 1781 parent = READ_ONCE(dentry->d_parent); 1782 dir = d_inode_rcu(parent); 1783 if (!dir) 1784 return -ECHILD; 1785 ret = reval(dir, dentry, flags); 1786 if (parent != READ_ONCE(dentry->d_parent)) 1787 return -ECHILD; 1788 } else { 1789 parent = dget_parent(dentry); 1790 ret = reval(d_inode(parent), dentry, flags); 1791 dput(parent); 1792 } 1793 return ret; 1794 } 1795 1796 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1797 { 1798 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1799 } 1800 1801 /* 1802 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1803 * when we don't really care about the dentry name. This is called when a 1804 * pathwalk ends on a dentry that was not found via a normal lookup in the 1805 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1806 * 1807 * In this situation, we just want to verify that the inode itself is OK 1808 * since the dentry might have changed on the server. 1809 */ 1810 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1811 { 1812 struct inode *inode = d_inode(dentry); 1813 int error = 0; 1814 1815 /* 1816 * I believe we can only get a negative dentry here in the case of a 1817 * procfs-style symlink. Just assume it's correct for now, but we may 1818 * eventually need to do something more here. 1819 */ 1820 if (!inode) { 1821 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1822 __func__, dentry); 1823 return 1; 1824 } 1825 1826 if (is_bad_inode(inode)) { 1827 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1828 __func__, dentry); 1829 return 0; 1830 } 1831 1832 error = nfs_lookup_verify_inode(inode, flags); 1833 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1834 __func__, inode->i_ino, error ? "invalid" : "valid"); 1835 return !error; 1836 } 1837 1838 /* 1839 * This is called from dput() when d_count is going to 0. 1840 */ 1841 static int nfs_dentry_delete(const struct dentry *dentry) 1842 { 1843 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1844 dentry, dentry->d_flags); 1845 1846 /* Unhash any dentry with a stale inode */ 1847 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1848 return 1; 1849 1850 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1851 /* Unhash it, so that ->d_iput() would be called */ 1852 return 1; 1853 } 1854 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1855 /* Unhash it, so that ancestors of killed async unlink 1856 * files will be cleaned up during umount */ 1857 return 1; 1858 } 1859 return 0; 1860 1861 } 1862 1863 /* Ensure that we revalidate inode->i_nlink */ 1864 static void nfs_drop_nlink(struct inode *inode) 1865 { 1866 spin_lock(&inode->i_lock); 1867 /* drop the inode if we're reasonably sure this is the last link */ 1868 if (inode->i_nlink > 0) 1869 drop_nlink(inode); 1870 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1871 nfs_set_cache_invalid( 1872 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1873 NFS_INO_INVALID_NLINK); 1874 spin_unlock(&inode->i_lock); 1875 } 1876 1877 /* 1878 * Called when the dentry loses inode. 1879 * We use it to clean up silly-renamed files. 1880 */ 1881 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1882 { 1883 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1884 nfs_complete_unlink(dentry, inode); 1885 nfs_drop_nlink(inode); 1886 } 1887 iput(inode); 1888 } 1889 1890 static void nfs_d_release(struct dentry *dentry) 1891 { 1892 /* free cached devname value, if it survived that far */ 1893 if (unlikely(dentry->d_fsdata)) { 1894 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1895 WARN_ON(1); 1896 else 1897 kfree(dentry->d_fsdata); 1898 } 1899 } 1900 1901 const struct dentry_operations nfs_dentry_operations = { 1902 .d_revalidate = nfs_lookup_revalidate, 1903 .d_weak_revalidate = nfs_weak_revalidate, 1904 .d_delete = nfs_dentry_delete, 1905 .d_iput = nfs_dentry_iput, 1906 .d_automount = nfs_d_automount, 1907 .d_release = nfs_d_release, 1908 }; 1909 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1910 1911 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1912 { 1913 struct dentry *res; 1914 struct inode *inode = NULL; 1915 struct nfs_fh *fhandle = NULL; 1916 struct nfs_fattr *fattr = NULL; 1917 unsigned long dir_verifier; 1918 int error; 1919 1920 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1921 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1922 1923 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1924 return ERR_PTR(-ENAMETOOLONG); 1925 1926 /* 1927 * If we're doing an exclusive create, optimize away the lookup 1928 * but don't hash the dentry. 1929 */ 1930 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1931 return NULL; 1932 1933 res = ERR_PTR(-ENOMEM); 1934 fhandle = nfs_alloc_fhandle(); 1935 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1936 if (fhandle == NULL || fattr == NULL) 1937 goto out; 1938 1939 dir_verifier = nfs_save_change_attribute(dir); 1940 trace_nfs_lookup_enter(dir, dentry, flags); 1941 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1942 if (error == -ENOENT) { 1943 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1944 dir_verifier = inode_peek_iversion_raw(dir); 1945 goto no_entry; 1946 } 1947 if (error < 0) { 1948 res = ERR_PTR(error); 1949 goto out; 1950 } 1951 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1952 res = ERR_CAST(inode); 1953 if (IS_ERR(res)) 1954 goto out; 1955 1956 /* Notify readdir to use READDIRPLUS */ 1957 nfs_lookup_advise_force_readdirplus(dir, flags); 1958 1959 no_entry: 1960 res = d_splice_alias(inode, dentry); 1961 if (res != NULL) { 1962 if (IS_ERR(res)) 1963 goto out; 1964 dentry = res; 1965 } 1966 nfs_set_verifier(dentry, dir_verifier); 1967 out: 1968 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 1969 nfs_free_fattr(fattr); 1970 nfs_free_fhandle(fhandle); 1971 return res; 1972 } 1973 EXPORT_SYMBOL_GPL(nfs_lookup); 1974 1975 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 1976 { 1977 /* Case insensitive server? Revalidate dentries */ 1978 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 1979 d_prune_aliases(inode); 1980 } 1981 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 1982 1983 #if IS_ENABLED(CONFIG_NFS_V4) 1984 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1985 1986 const struct dentry_operations nfs4_dentry_operations = { 1987 .d_revalidate = nfs4_lookup_revalidate, 1988 .d_weak_revalidate = nfs_weak_revalidate, 1989 .d_delete = nfs_dentry_delete, 1990 .d_iput = nfs_dentry_iput, 1991 .d_automount = nfs_d_automount, 1992 .d_release = nfs_d_release, 1993 }; 1994 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1995 1996 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1997 { 1998 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1999 } 2000 2001 static int do_open(struct inode *inode, struct file *filp) 2002 { 2003 nfs_fscache_open_file(inode, filp); 2004 return 0; 2005 } 2006 2007 static int nfs_finish_open(struct nfs_open_context *ctx, 2008 struct dentry *dentry, 2009 struct file *file, unsigned open_flags) 2010 { 2011 int err; 2012 2013 err = finish_open(file, dentry, do_open); 2014 if (err) 2015 goto out; 2016 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 2017 nfs_file_set_open_context(file, ctx); 2018 else 2019 err = -EOPENSTALE; 2020 out: 2021 return err; 2022 } 2023 2024 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2025 struct file *file, unsigned open_flags, 2026 umode_t mode) 2027 { 2028 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2029 struct nfs_open_context *ctx; 2030 struct dentry *res; 2031 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2032 struct inode *inode; 2033 unsigned int lookup_flags = 0; 2034 unsigned long dir_verifier; 2035 bool switched = false; 2036 int created = 0; 2037 int err; 2038 2039 /* Expect a negative dentry */ 2040 BUG_ON(d_inode(dentry)); 2041 2042 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2043 dir->i_sb->s_id, dir->i_ino, dentry); 2044 2045 err = nfs_check_flags(open_flags); 2046 if (err) 2047 return err; 2048 2049 /* NFS only supports OPEN on regular files */ 2050 if ((open_flags & O_DIRECTORY)) { 2051 if (!d_in_lookup(dentry)) { 2052 /* 2053 * Hashed negative dentry with O_DIRECTORY: dentry was 2054 * revalidated and is fine, no need to perform lookup 2055 * again 2056 */ 2057 return -ENOENT; 2058 } 2059 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2060 goto no_open; 2061 } 2062 2063 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2064 return -ENAMETOOLONG; 2065 2066 if (open_flags & O_CREAT) { 2067 struct nfs_server *server = NFS_SERVER(dir); 2068 2069 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2070 mode &= ~current_umask(); 2071 2072 attr.ia_valid |= ATTR_MODE; 2073 attr.ia_mode = mode; 2074 } 2075 if (open_flags & O_TRUNC) { 2076 attr.ia_valid |= ATTR_SIZE; 2077 attr.ia_size = 0; 2078 } 2079 2080 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2081 d_drop(dentry); 2082 switched = true; 2083 dentry = d_alloc_parallel(dentry->d_parent, 2084 &dentry->d_name, &wq); 2085 if (IS_ERR(dentry)) 2086 return PTR_ERR(dentry); 2087 if (unlikely(!d_in_lookup(dentry))) 2088 return finish_no_open(file, dentry); 2089 } 2090 2091 ctx = create_nfs_open_context(dentry, open_flags, file); 2092 err = PTR_ERR(ctx); 2093 if (IS_ERR(ctx)) 2094 goto out; 2095 2096 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2097 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2098 if (created) 2099 file->f_mode |= FMODE_CREATED; 2100 if (IS_ERR(inode)) { 2101 err = PTR_ERR(inode); 2102 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2103 put_nfs_open_context(ctx); 2104 d_drop(dentry); 2105 switch (err) { 2106 case -ENOENT: 2107 d_splice_alias(NULL, dentry); 2108 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2109 dir_verifier = inode_peek_iversion_raw(dir); 2110 else 2111 dir_verifier = nfs_save_change_attribute(dir); 2112 nfs_set_verifier(dentry, dir_verifier); 2113 break; 2114 case -EISDIR: 2115 case -ENOTDIR: 2116 goto no_open; 2117 case -ELOOP: 2118 if (!(open_flags & O_NOFOLLOW)) 2119 goto no_open; 2120 break; 2121 /* case -EINVAL: */ 2122 default: 2123 break; 2124 } 2125 goto out; 2126 } 2127 2128 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2129 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2130 put_nfs_open_context(ctx); 2131 out: 2132 if (unlikely(switched)) { 2133 d_lookup_done(dentry); 2134 dput(dentry); 2135 } 2136 return err; 2137 2138 no_open: 2139 res = nfs_lookup(dir, dentry, lookup_flags); 2140 if (!res) { 2141 inode = d_inode(dentry); 2142 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2143 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2144 res = ERR_PTR(-ENOTDIR); 2145 else if (inode && S_ISREG(inode->i_mode)) 2146 res = ERR_PTR(-EOPENSTALE); 2147 } else if (!IS_ERR(res)) { 2148 inode = d_inode(res); 2149 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2150 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2151 dput(res); 2152 res = ERR_PTR(-ENOTDIR); 2153 } else if (inode && S_ISREG(inode->i_mode)) { 2154 dput(res); 2155 res = ERR_PTR(-EOPENSTALE); 2156 } 2157 } 2158 if (switched) { 2159 d_lookup_done(dentry); 2160 if (!res) 2161 res = dentry; 2162 else 2163 dput(dentry); 2164 } 2165 if (IS_ERR(res)) 2166 return PTR_ERR(res); 2167 return finish_no_open(file, res); 2168 } 2169 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2170 2171 static int 2172 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 2173 unsigned int flags) 2174 { 2175 struct inode *inode; 2176 2177 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2178 goto full_reval; 2179 if (d_mountpoint(dentry)) 2180 goto full_reval; 2181 2182 inode = d_inode(dentry); 2183 2184 /* We can't create new files in nfs_open_revalidate(), so we 2185 * optimize away revalidation of negative dentries. 2186 */ 2187 if (inode == NULL) 2188 goto full_reval; 2189 2190 if (nfs_verifier_is_delegated(dentry)) 2191 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2192 2193 /* NFS only supports OPEN on regular files */ 2194 if (!S_ISREG(inode->i_mode)) 2195 goto full_reval; 2196 2197 /* We cannot do exclusive creation on a positive dentry */ 2198 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2199 goto reval_dentry; 2200 2201 /* Check if the directory changed */ 2202 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2203 goto reval_dentry; 2204 2205 /* Let f_op->open() actually open (and revalidate) the file */ 2206 return 1; 2207 reval_dentry: 2208 if (flags & LOOKUP_RCU) 2209 return -ECHILD; 2210 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 2211 2212 full_reval: 2213 return nfs_do_lookup_revalidate(dir, dentry, flags); 2214 } 2215 2216 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2217 { 2218 return __nfs_lookup_revalidate(dentry, flags, 2219 nfs4_do_lookup_revalidate); 2220 } 2221 2222 #endif /* CONFIG_NFSV4 */ 2223 2224 struct dentry * 2225 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2226 struct nfs_fattr *fattr) 2227 { 2228 struct dentry *parent = dget_parent(dentry); 2229 struct inode *dir = d_inode(parent); 2230 struct inode *inode; 2231 struct dentry *d; 2232 int error; 2233 2234 d_drop(dentry); 2235 2236 if (fhandle->size == 0) { 2237 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2238 if (error) 2239 goto out_error; 2240 } 2241 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2242 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2243 struct nfs_server *server = NFS_SB(dentry->d_sb); 2244 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2245 fattr, NULL); 2246 if (error < 0) 2247 goto out_error; 2248 } 2249 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2250 d = d_splice_alias(inode, dentry); 2251 out: 2252 dput(parent); 2253 return d; 2254 out_error: 2255 d = ERR_PTR(error); 2256 goto out; 2257 } 2258 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2259 2260 /* 2261 * Code common to create, mkdir, and mknod. 2262 */ 2263 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2264 struct nfs_fattr *fattr) 2265 { 2266 struct dentry *d; 2267 2268 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2269 if (IS_ERR(d)) 2270 return PTR_ERR(d); 2271 2272 /* Callers don't care */ 2273 dput(d); 2274 return 0; 2275 } 2276 EXPORT_SYMBOL_GPL(nfs_instantiate); 2277 2278 /* 2279 * Following a failed create operation, we drop the dentry rather 2280 * than retain a negative dentry. This avoids a problem in the event 2281 * that the operation succeeded on the server, but an error in the 2282 * reply path made it appear to have failed. 2283 */ 2284 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2285 struct dentry *dentry, umode_t mode, bool excl) 2286 { 2287 struct iattr attr; 2288 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2289 int error; 2290 2291 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2292 dir->i_sb->s_id, dir->i_ino, dentry); 2293 2294 attr.ia_mode = mode; 2295 attr.ia_valid = ATTR_MODE; 2296 2297 trace_nfs_create_enter(dir, dentry, open_flags); 2298 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2299 trace_nfs_create_exit(dir, dentry, open_flags, error); 2300 if (error != 0) 2301 goto out_err; 2302 return 0; 2303 out_err: 2304 d_drop(dentry); 2305 return error; 2306 } 2307 EXPORT_SYMBOL_GPL(nfs_create); 2308 2309 /* 2310 * See comments for nfs_proc_create regarding failed operations. 2311 */ 2312 int 2313 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2314 struct dentry *dentry, umode_t mode, dev_t rdev) 2315 { 2316 struct iattr attr; 2317 int status; 2318 2319 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2320 dir->i_sb->s_id, dir->i_ino, dentry); 2321 2322 attr.ia_mode = mode; 2323 attr.ia_valid = ATTR_MODE; 2324 2325 trace_nfs_mknod_enter(dir, dentry); 2326 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2327 trace_nfs_mknod_exit(dir, dentry, status); 2328 if (status != 0) 2329 goto out_err; 2330 return 0; 2331 out_err: 2332 d_drop(dentry); 2333 return status; 2334 } 2335 EXPORT_SYMBOL_GPL(nfs_mknod); 2336 2337 /* 2338 * See comments for nfs_proc_create regarding failed operations. 2339 */ 2340 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2341 struct dentry *dentry, umode_t mode) 2342 { 2343 struct iattr attr; 2344 int error; 2345 2346 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2347 dir->i_sb->s_id, dir->i_ino, dentry); 2348 2349 attr.ia_valid = ATTR_MODE; 2350 attr.ia_mode = mode | S_IFDIR; 2351 2352 trace_nfs_mkdir_enter(dir, dentry); 2353 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2354 trace_nfs_mkdir_exit(dir, dentry, error); 2355 if (error != 0) 2356 goto out_err; 2357 return 0; 2358 out_err: 2359 d_drop(dentry); 2360 return error; 2361 } 2362 EXPORT_SYMBOL_GPL(nfs_mkdir); 2363 2364 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2365 { 2366 if (simple_positive(dentry)) 2367 d_delete(dentry); 2368 } 2369 2370 static void nfs_dentry_remove_handle_error(struct inode *dir, 2371 struct dentry *dentry, int error) 2372 { 2373 switch (error) { 2374 case -ENOENT: 2375 d_delete(dentry); 2376 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2377 break; 2378 case 0: 2379 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2380 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2381 } 2382 } 2383 2384 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2385 { 2386 int error; 2387 2388 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2389 dir->i_sb->s_id, dir->i_ino, dentry); 2390 2391 trace_nfs_rmdir_enter(dir, dentry); 2392 if (d_really_is_positive(dentry)) { 2393 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2394 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2395 /* Ensure the VFS deletes this inode */ 2396 switch (error) { 2397 case 0: 2398 clear_nlink(d_inode(dentry)); 2399 break; 2400 case -ENOENT: 2401 nfs_dentry_handle_enoent(dentry); 2402 } 2403 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2404 } else 2405 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2406 nfs_dentry_remove_handle_error(dir, dentry, error); 2407 trace_nfs_rmdir_exit(dir, dentry, error); 2408 2409 return error; 2410 } 2411 EXPORT_SYMBOL_GPL(nfs_rmdir); 2412 2413 /* 2414 * Remove a file after making sure there are no pending writes, 2415 * and after checking that the file has only one user. 2416 * 2417 * We invalidate the attribute cache and free the inode prior to the operation 2418 * to avoid possible races if the server reuses the inode. 2419 */ 2420 static int nfs_safe_remove(struct dentry *dentry) 2421 { 2422 struct inode *dir = d_inode(dentry->d_parent); 2423 struct inode *inode = d_inode(dentry); 2424 int error = -EBUSY; 2425 2426 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2427 2428 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2429 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2430 error = 0; 2431 goto out; 2432 } 2433 2434 trace_nfs_remove_enter(dir, dentry); 2435 if (inode != NULL) { 2436 error = NFS_PROTO(dir)->remove(dir, dentry); 2437 if (error == 0) 2438 nfs_drop_nlink(inode); 2439 } else 2440 error = NFS_PROTO(dir)->remove(dir, dentry); 2441 if (error == -ENOENT) 2442 nfs_dentry_handle_enoent(dentry); 2443 trace_nfs_remove_exit(dir, dentry, error); 2444 out: 2445 return error; 2446 } 2447 2448 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2449 * belongs to an active ".nfs..." file and we return -EBUSY. 2450 * 2451 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2452 */ 2453 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2454 { 2455 int error; 2456 int need_rehash = 0; 2457 2458 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2459 dir->i_ino, dentry); 2460 2461 trace_nfs_unlink_enter(dir, dentry); 2462 spin_lock(&dentry->d_lock); 2463 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2464 &NFS_I(d_inode(dentry))->flags)) { 2465 spin_unlock(&dentry->d_lock); 2466 /* Start asynchronous writeout of the inode */ 2467 write_inode_now(d_inode(dentry), 0); 2468 error = nfs_sillyrename(dir, dentry); 2469 goto out; 2470 } 2471 if (!d_unhashed(dentry)) { 2472 __d_drop(dentry); 2473 need_rehash = 1; 2474 } 2475 spin_unlock(&dentry->d_lock); 2476 error = nfs_safe_remove(dentry); 2477 nfs_dentry_remove_handle_error(dir, dentry, error); 2478 if (need_rehash) 2479 d_rehash(dentry); 2480 out: 2481 trace_nfs_unlink_exit(dir, dentry, error); 2482 return error; 2483 } 2484 EXPORT_SYMBOL_GPL(nfs_unlink); 2485 2486 /* 2487 * To create a symbolic link, most file systems instantiate a new inode, 2488 * add a page to it containing the path, then write it out to the disk 2489 * using prepare_write/commit_write. 2490 * 2491 * Unfortunately the NFS client can't create the in-core inode first 2492 * because it needs a file handle to create an in-core inode (see 2493 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2494 * symlink request has completed on the server. 2495 * 2496 * So instead we allocate a raw page, copy the symname into it, then do 2497 * the SYMLINK request with the page as the buffer. If it succeeds, we 2498 * now have a new file handle and can instantiate an in-core NFS inode 2499 * and move the raw page into its mapping. 2500 */ 2501 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 2502 struct dentry *dentry, const char *symname) 2503 { 2504 struct page *page; 2505 char *kaddr; 2506 struct iattr attr; 2507 unsigned int pathlen = strlen(symname); 2508 int error; 2509 2510 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2511 dir->i_ino, dentry, symname); 2512 2513 if (pathlen > PAGE_SIZE) 2514 return -ENAMETOOLONG; 2515 2516 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2517 attr.ia_valid = ATTR_MODE; 2518 2519 page = alloc_page(GFP_USER); 2520 if (!page) 2521 return -ENOMEM; 2522 2523 kaddr = page_address(page); 2524 memcpy(kaddr, symname, pathlen); 2525 if (pathlen < PAGE_SIZE) 2526 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2527 2528 trace_nfs_symlink_enter(dir, dentry); 2529 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2530 trace_nfs_symlink_exit(dir, dentry, error); 2531 if (error != 0) { 2532 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2533 dir->i_sb->s_id, dir->i_ino, 2534 dentry, symname, error); 2535 d_drop(dentry); 2536 __free_page(page); 2537 return error; 2538 } 2539 2540 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2541 2542 /* 2543 * No big deal if we can't add this page to the page cache here. 2544 * READLINK will get the missing page from the server if needed. 2545 */ 2546 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2547 GFP_KERNEL)) { 2548 SetPageUptodate(page); 2549 unlock_page(page); 2550 /* 2551 * add_to_page_cache_lru() grabs an extra page refcount. 2552 * Drop it here to avoid leaking this page later. 2553 */ 2554 put_page(page); 2555 } else 2556 __free_page(page); 2557 2558 return 0; 2559 } 2560 EXPORT_SYMBOL_GPL(nfs_symlink); 2561 2562 int 2563 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2564 { 2565 struct inode *inode = d_inode(old_dentry); 2566 int error; 2567 2568 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2569 old_dentry, dentry); 2570 2571 trace_nfs_link_enter(inode, dir, dentry); 2572 d_drop(dentry); 2573 if (S_ISREG(inode->i_mode)) 2574 nfs_sync_inode(inode); 2575 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2576 if (error == 0) { 2577 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2578 ihold(inode); 2579 d_add(dentry, inode); 2580 } 2581 trace_nfs_link_exit(inode, dir, dentry, error); 2582 return error; 2583 } 2584 EXPORT_SYMBOL_GPL(nfs_link); 2585 2586 /* 2587 * RENAME 2588 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2589 * different file handle for the same inode after a rename (e.g. when 2590 * moving to a different directory). A fail-safe method to do so would 2591 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2592 * rename the old file using the sillyrename stuff. This way, the original 2593 * file in old_dir will go away when the last process iput()s the inode. 2594 * 2595 * FIXED. 2596 * 2597 * It actually works quite well. One needs to have the possibility for 2598 * at least one ".nfs..." file in each directory the file ever gets 2599 * moved or linked to which happens automagically with the new 2600 * implementation that only depends on the dcache stuff instead of 2601 * using the inode layer 2602 * 2603 * Unfortunately, things are a little more complicated than indicated 2604 * above. For a cross-directory move, we want to make sure we can get 2605 * rid of the old inode after the operation. This means there must be 2606 * no pending writes (if it's a file), and the use count must be 1. 2607 * If these conditions are met, we can drop the dentries before doing 2608 * the rename. 2609 */ 2610 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 2611 struct dentry *old_dentry, struct inode *new_dir, 2612 struct dentry *new_dentry, unsigned int flags) 2613 { 2614 struct inode *old_inode = d_inode(old_dentry); 2615 struct inode *new_inode = d_inode(new_dentry); 2616 struct dentry *dentry = NULL, *rehash = NULL; 2617 struct rpc_task *task; 2618 int error = -EBUSY; 2619 2620 if (flags) 2621 return -EINVAL; 2622 2623 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2624 old_dentry, new_dentry, 2625 d_count(new_dentry)); 2626 2627 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2628 /* 2629 * For non-directories, check whether the target is busy and if so, 2630 * make a copy of the dentry and then do a silly-rename. If the 2631 * silly-rename succeeds, the copied dentry is hashed and becomes 2632 * the new target. 2633 */ 2634 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2635 /* 2636 * To prevent any new references to the target during the 2637 * rename, we unhash the dentry in advance. 2638 */ 2639 if (!d_unhashed(new_dentry)) { 2640 d_drop(new_dentry); 2641 rehash = new_dentry; 2642 } 2643 2644 if (d_count(new_dentry) > 2) { 2645 int err; 2646 2647 /* copy the target dentry's name */ 2648 dentry = d_alloc(new_dentry->d_parent, 2649 &new_dentry->d_name); 2650 if (!dentry) 2651 goto out; 2652 2653 /* silly-rename the existing target ... */ 2654 err = nfs_sillyrename(new_dir, new_dentry); 2655 if (err) 2656 goto out; 2657 2658 new_dentry = dentry; 2659 rehash = NULL; 2660 new_inode = NULL; 2661 } 2662 } 2663 2664 if (S_ISREG(old_inode->i_mode)) 2665 nfs_sync_inode(old_inode); 2666 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2667 if (IS_ERR(task)) { 2668 error = PTR_ERR(task); 2669 goto out; 2670 } 2671 2672 error = rpc_wait_for_completion_task(task); 2673 if (error != 0) { 2674 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2675 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2676 smp_wmb(); 2677 } else 2678 error = task->tk_status; 2679 rpc_put_task(task); 2680 /* Ensure the inode attributes are revalidated */ 2681 if (error == 0) { 2682 spin_lock(&old_inode->i_lock); 2683 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2684 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2685 NFS_INO_INVALID_CTIME | 2686 NFS_INO_REVAL_FORCED); 2687 spin_unlock(&old_inode->i_lock); 2688 } 2689 out: 2690 if (rehash) 2691 d_rehash(rehash); 2692 trace_nfs_rename_exit(old_dir, old_dentry, 2693 new_dir, new_dentry, error); 2694 if (!error) { 2695 if (new_inode != NULL) 2696 nfs_drop_nlink(new_inode); 2697 /* 2698 * The d_move() should be here instead of in an async RPC completion 2699 * handler because we need the proper locks to move the dentry. If 2700 * we're interrupted by a signal, the async RPC completion handler 2701 * should mark the directories for revalidation. 2702 */ 2703 d_move(old_dentry, new_dentry); 2704 nfs_set_verifier(old_dentry, 2705 nfs_save_change_attribute(new_dir)); 2706 } else if (error == -ENOENT) 2707 nfs_dentry_handle_enoent(old_dentry); 2708 2709 /* new dentry created? */ 2710 if (dentry) 2711 dput(dentry); 2712 return error; 2713 } 2714 EXPORT_SYMBOL_GPL(nfs_rename); 2715 2716 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2717 static LIST_HEAD(nfs_access_lru_list); 2718 static atomic_long_t nfs_access_nr_entries; 2719 2720 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2721 module_param(nfs_access_max_cachesize, ulong, 0644); 2722 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2723 2724 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2725 { 2726 put_group_info(entry->group_info); 2727 kfree_rcu(entry, rcu_head); 2728 smp_mb__before_atomic(); 2729 atomic_long_dec(&nfs_access_nr_entries); 2730 smp_mb__after_atomic(); 2731 } 2732 2733 static void nfs_access_free_list(struct list_head *head) 2734 { 2735 struct nfs_access_entry *cache; 2736 2737 while (!list_empty(head)) { 2738 cache = list_entry(head->next, struct nfs_access_entry, lru); 2739 list_del(&cache->lru); 2740 nfs_access_free_entry(cache); 2741 } 2742 } 2743 2744 static unsigned long 2745 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2746 { 2747 LIST_HEAD(head); 2748 struct nfs_inode *nfsi, *next; 2749 struct nfs_access_entry *cache; 2750 long freed = 0; 2751 2752 spin_lock(&nfs_access_lru_lock); 2753 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2754 struct inode *inode; 2755 2756 if (nr_to_scan-- == 0) 2757 break; 2758 inode = &nfsi->vfs_inode; 2759 spin_lock(&inode->i_lock); 2760 if (list_empty(&nfsi->access_cache_entry_lru)) 2761 goto remove_lru_entry; 2762 cache = list_entry(nfsi->access_cache_entry_lru.next, 2763 struct nfs_access_entry, lru); 2764 list_move(&cache->lru, &head); 2765 rb_erase(&cache->rb_node, &nfsi->access_cache); 2766 freed++; 2767 if (!list_empty(&nfsi->access_cache_entry_lru)) 2768 list_move_tail(&nfsi->access_cache_inode_lru, 2769 &nfs_access_lru_list); 2770 else { 2771 remove_lru_entry: 2772 list_del_init(&nfsi->access_cache_inode_lru); 2773 smp_mb__before_atomic(); 2774 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2775 smp_mb__after_atomic(); 2776 } 2777 spin_unlock(&inode->i_lock); 2778 } 2779 spin_unlock(&nfs_access_lru_lock); 2780 nfs_access_free_list(&head); 2781 return freed; 2782 } 2783 2784 unsigned long 2785 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2786 { 2787 int nr_to_scan = sc->nr_to_scan; 2788 gfp_t gfp_mask = sc->gfp_mask; 2789 2790 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2791 return SHRINK_STOP; 2792 return nfs_do_access_cache_scan(nr_to_scan); 2793 } 2794 2795 2796 unsigned long 2797 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2798 { 2799 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2800 } 2801 2802 static void 2803 nfs_access_cache_enforce_limit(void) 2804 { 2805 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2806 unsigned long diff; 2807 unsigned int nr_to_scan; 2808 2809 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2810 return; 2811 nr_to_scan = 100; 2812 diff = nr_entries - nfs_access_max_cachesize; 2813 if (diff < nr_to_scan) 2814 nr_to_scan = diff; 2815 nfs_do_access_cache_scan(nr_to_scan); 2816 } 2817 2818 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2819 { 2820 struct rb_root *root_node = &nfsi->access_cache; 2821 struct rb_node *n; 2822 struct nfs_access_entry *entry; 2823 2824 /* Unhook entries from the cache */ 2825 while ((n = rb_first(root_node)) != NULL) { 2826 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2827 rb_erase(n, root_node); 2828 list_move(&entry->lru, head); 2829 } 2830 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2831 } 2832 2833 void nfs_access_zap_cache(struct inode *inode) 2834 { 2835 LIST_HEAD(head); 2836 2837 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2838 return; 2839 /* Remove from global LRU init */ 2840 spin_lock(&nfs_access_lru_lock); 2841 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2842 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2843 2844 spin_lock(&inode->i_lock); 2845 __nfs_access_zap_cache(NFS_I(inode), &head); 2846 spin_unlock(&inode->i_lock); 2847 spin_unlock(&nfs_access_lru_lock); 2848 nfs_access_free_list(&head); 2849 } 2850 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2851 2852 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2853 { 2854 struct group_info *ga, *gb; 2855 int g; 2856 2857 if (uid_lt(a->fsuid, b->fsuid)) 2858 return -1; 2859 if (uid_gt(a->fsuid, b->fsuid)) 2860 return 1; 2861 2862 if (gid_lt(a->fsgid, b->fsgid)) 2863 return -1; 2864 if (gid_gt(a->fsgid, b->fsgid)) 2865 return 1; 2866 2867 ga = a->group_info; 2868 gb = b->group_info; 2869 if (ga == gb) 2870 return 0; 2871 if (ga == NULL) 2872 return -1; 2873 if (gb == NULL) 2874 return 1; 2875 if (ga->ngroups < gb->ngroups) 2876 return -1; 2877 if (ga->ngroups > gb->ngroups) 2878 return 1; 2879 2880 for (g = 0; g < ga->ngroups; g++) { 2881 if (gid_lt(ga->gid[g], gb->gid[g])) 2882 return -1; 2883 if (gid_gt(ga->gid[g], gb->gid[g])) 2884 return 1; 2885 } 2886 return 0; 2887 } 2888 2889 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2890 { 2891 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2892 2893 while (n != NULL) { 2894 struct nfs_access_entry *entry = 2895 rb_entry(n, struct nfs_access_entry, rb_node); 2896 int cmp = access_cmp(cred, entry); 2897 2898 if (cmp < 0) 2899 n = n->rb_left; 2900 else if (cmp > 0) 2901 n = n->rb_right; 2902 else 2903 return entry; 2904 } 2905 return NULL; 2906 } 2907 2908 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 2909 { 2910 struct nfs_inode *nfsi = NFS_I(inode); 2911 struct nfs_access_entry *cache; 2912 bool retry = true; 2913 int err; 2914 2915 spin_lock(&inode->i_lock); 2916 for(;;) { 2917 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2918 goto out_zap; 2919 cache = nfs_access_search_rbtree(inode, cred); 2920 err = -ENOENT; 2921 if (cache == NULL) 2922 goto out; 2923 /* Found an entry, is our attribute cache valid? */ 2924 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2925 break; 2926 if (!retry) 2927 break; 2928 err = -ECHILD; 2929 if (!may_block) 2930 goto out; 2931 spin_unlock(&inode->i_lock); 2932 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2933 if (err) 2934 return err; 2935 spin_lock(&inode->i_lock); 2936 retry = false; 2937 } 2938 *mask = cache->mask; 2939 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2940 err = 0; 2941 out: 2942 spin_unlock(&inode->i_lock); 2943 return err; 2944 out_zap: 2945 spin_unlock(&inode->i_lock); 2946 nfs_access_zap_cache(inode); 2947 return -ENOENT; 2948 } 2949 2950 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 2951 { 2952 /* Only check the most recently returned cache entry, 2953 * but do it without locking. 2954 */ 2955 struct nfs_inode *nfsi = NFS_I(inode); 2956 struct nfs_access_entry *cache; 2957 int err = -ECHILD; 2958 struct list_head *lh; 2959 2960 rcu_read_lock(); 2961 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2962 goto out; 2963 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2964 cache = list_entry(lh, struct nfs_access_entry, lru); 2965 if (lh == &nfsi->access_cache_entry_lru || 2966 access_cmp(cred, cache) != 0) 2967 cache = NULL; 2968 if (cache == NULL) 2969 goto out; 2970 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2971 goto out; 2972 *mask = cache->mask; 2973 err = 0; 2974 out: 2975 rcu_read_unlock(); 2976 return err; 2977 } 2978 2979 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 2980 u32 *mask, bool may_block) 2981 { 2982 int status; 2983 2984 status = nfs_access_get_cached_rcu(inode, cred, mask); 2985 if (status != 0) 2986 status = nfs_access_get_cached_locked(inode, cred, mask, 2987 may_block); 2988 2989 return status; 2990 } 2991 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2992 2993 static void nfs_access_add_rbtree(struct inode *inode, 2994 struct nfs_access_entry *set, 2995 const struct cred *cred) 2996 { 2997 struct nfs_inode *nfsi = NFS_I(inode); 2998 struct rb_root *root_node = &nfsi->access_cache; 2999 struct rb_node **p = &root_node->rb_node; 3000 struct rb_node *parent = NULL; 3001 struct nfs_access_entry *entry; 3002 int cmp; 3003 3004 spin_lock(&inode->i_lock); 3005 while (*p != NULL) { 3006 parent = *p; 3007 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3008 cmp = access_cmp(cred, entry); 3009 3010 if (cmp < 0) 3011 p = &parent->rb_left; 3012 else if (cmp > 0) 3013 p = &parent->rb_right; 3014 else 3015 goto found; 3016 } 3017 rb_link_node(&set->rb_node, parent, p); 3018 rb_insert_color(&set->rb_node, root_node); 3019 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3020 spin_unlock(&inode->i_lock); 3021 return; 3022 found: 3023 rb_replace_node(parent, &set->rb_node, root_node); 3024 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3025 list_del(&entry->lru); 3026 spin_unlock(&inode->i_lock); 3027 nfs_access_free_entry(entry); 3028 } 3029 3030 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3031 const struct cred *cred) 3032 { 3033 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3034 if (cache == NULL) 3035 return; 3036 RB_CLEAR_NODE(&cache->rb_node); 3037 cache->fsuid = cred->fsuid; 3038 cache->fsgid = cred->fsgid; 3039 cache->group_info = get_group_info(cred->group_info); 3040 cache->mask = set->mask; 3041 3042 /* The above field assignments must be visible 3043 * before this item appears on the lru. We cannot easily 3044 * use rcu_assign_pointer, so just force the memory barrier. 3045 */ 3046 smp_wmb(); 3047 nfs_access_add_rbtree(inode, cache, cred); 3048 3049 /* Update accounting */ 3050 smp_mb__before_atomic(); 3051 atomic_long_inc(&nfs_access_nr_entries); 3052 smp_mb__after_atomic(); 3053 3054 /* Add inode to global LRU list */ 3055 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3056 spin_lock(&nfs_access_lru_lock); 3057 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3058 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3059 &nfs_access_lru_list); 3060 spin_unlock(&nfs_access_lru_lock); 3061 } 3062 nfs_access_cache_enforce_limit(); 3063 } 3064 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3065 3066 #define NFS_MAY_READ (NFS_ACCESS_READ) 3067 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3068 NFS_ACCESS_EXTEND | \ 3069 NFS_ACCESS_DELETE) 3070 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3071 NFS_ACCESS_EXTEND) 3072 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3073 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3074 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3075 static int 3076 nfs_access_calc_mask(u32 access_result, umode_t umode) 3077 { 3078 int mask = 0; 3079 3080 if (access_result & NFS_MAY_READ) 3081 mask |= MAY_READ; 3082 if (S_ISDIR(umode)) { 3083 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3084 mask |= MAY_WRITE; 3085 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3086 mask |= MAY_EXEC; 3087 } else if (S_ISREG(umode)) { 3088 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3089 mask |= MAY_WRITE; 3090 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3091 mask |= MAY_EXEC; 3092 } else if (access_result & NFS_MAY_WRITE) 3093 mask |= MAY_WRITE; 3094 return mask; 3095 } 3096 3097 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3098 { 3099 entry->mask = access_result; 3100 } 3101 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3102 3103 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3104 { 3105 struct nfs_access_entry cache; 3106 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3107 int cache_mask = -1; 3108 int status; 3109 3110 trace_nfs_access_enter(inode); 3111 3112 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3113 if (status == 0) 3114 goto out_cached; 3115 3116 status = -ECHILD; 3117 if (!may_block) 3118 goto out; 3119 3120 /* 3121 * Determine which access bits we want to ask for... 3122 */ 3123 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3124 nfs_access_xattr_mask(NFS_SERVER(inode)); 3125 if (S_ISDIR(inode->i_mode)) 3126 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3127 else 3128 cache.mask |= NFS_ACCESS_EXECUTE; 3129 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3130 if (status != 0) { 3131 if (status == -ESTALE) { 3132 if (!S_ISDIR(inode->i_mode)) 3133 nfs_set_inode_stale(inode); 3134 else 3135 nfs_zap_caches(inode); 3136 } 3137 goto out; 3138 } 3139 nfs_access_add_cache(inode, &cache, cred); 3140 out_cached: 3141 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3142 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3143 status = -EACCES; 3144 out: 3145 trace_nfs_access_exit(inode, mask, cache_mask, status); 3146 return status; 3147 } 3148 3149 static int nfs_open_permission_mask(int openflags) 3150 { 3151 int mask = 0; 3152 3153 if (openflags & __FMODE_EXEC) { 3154 /* ONLY check exec rights */ 3155 mask = MAY_EXEC; 3156 } else { 3157 if ((openflags & O_ACCMODE) != O_WRONLY) 3158 mask |= MAY_READ; 3159 if ((openflags & O_ACCMODE) != O_RDONLY) 3160 mask |= MAY_WRITE; 3161 } 3162 3163 return mask; 3164 } 3165 3166 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3167 { 3168 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3169 } 3170 EXPORT_SYMBOL_GPL(nfs_may_open); 3171 3172 static int nfs_execute_ok(struct inode *inode, int mask) 3173 { 3174 struct nfs_server *server = NFS_SERVER(inode); 3175 int ret = 0; 3176 3177 if (S_ISDIR(inode->i_mode)) 3178 return 0; 3179 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3180 if (mask & MAY_NOT_BLOCK) 3181 return -ECHILD; 3182 ret = __nfs_revalidate_inode(server, inode); 3183 } 3184 if (ret == 0 && !execute_ok(inode)) 3185 ret = -EACCES; 3186 return ret; 3187 } 3188 3189 int nfs_permission(struct user_namespace *mnt_userns, 3190 struct inode *inode, 3191 int mask) 3192 { 3193 const struct cred *cred = current_cred(); 3194 int res = 0; 3195 3196 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3197 3198 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3199 goto out; 3200 /* Is this sys_access() ? */ 3201 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3202 goto force_lookup; 3203 3204 switch (inode->i_mode & S_IFMT) { 3205 case S_IFLNK: 3206 goto out; 3207 case S_IFREG: 3208 if ((mask & MAY_OPEN) && 3209 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3210 return 0; 3211 break; 3212 case S_IFDIR: 3213 /* 3214 * Optimize away all write operations, since the server 3215 * will check permissions when we perform the op. 3216 */ 3217 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3218 goto out; 3219 } 3220 3221 force_lookup: 3222 if (!NFS_PROTO(inode)->access) 3223 goto out_notsup; 3224 3225 res = nfs_do_access(inode, cred, mask); 3226 out: 3227 if (!res && (mask & MAY_EXEC)) 3228 res = nfs_execute_ok(inode, mask); 3229 3230 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3231 inode->i_sb->s_id, inode->i_ino, mask, res); 3232 return res; 3233 out_notsup: 3234 if (mask & MAY_NOT_BLOCK) 3235 return -ECHILD; 3236 3237 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3238 NFS_INO_INVALID_OTHER); 3239 if (res == 0) 3240 res = generic_permission(&init_user_ns, inode, mask); 3241 goto out; 3242 } 3243 EXPORT_SYMBOL_GPL(nfs_permission); 3244