1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/pagevec.h> 33 #include <linux/namei.h> 34 #include <linux/mount.h> 35 #include <linux/sched.h> 36 #include <linux/vmalloc.h> 37 #include <linux/kmemleak.h> 38 39 #include "delegation.h" 40 #include "iostat.h" 41 #include "internal.h" 42 #include "fscache.h" 43 44 /* #define NFS_DEBUG_VERBOSE 1 */ 45 46 static int nfs_opendir(struct inode *, struct file *); 47 static int nfs_readdir(struct file *, void *, filldir_t); 48 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 49 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 50 static int nfs_mkdir(struct inode *, struct dentry *, int); 51 static int nfs_rmdir(struct inode *, struct dentry *); 52 static int nfs_unlink(struct inode *, struct dentry *); 53 static int nfs_symlink(struct inode *, struct dentry *, const char *); 54 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 55 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 56 static int nfs_rename(struct inode *, struct dentry *, 57 struct inode *, struct dentry *); 58 static int nfs_fsync_dir(struct file *, int); 59 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 60 static void nfs_readdir_clear_array(struct page*); 61 62 const struct file_operations nfs_dir_operations = { 63 .llseek = nfs_llseek_dir, 64 .read = generic_read_dir, 65 .readdir = nfs_readdir, 66 .open = nfs_opendir, 67 .release = nfs_release, 68 .fsync = nfs_fsync_dir, 69 }; 70 71 const struct inode_operations nfs_dir_inode_operations = { 72 .create = nfs_create, 73 .lookup = nfs_lookup, 74 .link = nfs_link, 75 .unlink = nfs_unlink, 76 .symlink = nfs_symlink, 77 .mkdir = nfs_mkdir, 78 .rmdir = nfs_rmdir, 79 .mknod = nfs_mknod, 80 .rename = nfs_rename, 81 .permission = nfs_permission, 82 .getattr = nfs_getattr, 83 .setattr = nfs_setattr, 84 }; 85 86 const struct address_space_operations nfs_dir_aops = { 87 .freepage = nfs_readdir_clear_array, 88 }; 89 90 #ifdef CONFIG_NFS_V3 91 const struct inode_operations nfs3_dir_inode_operations = { 92 .create = nfs_create, 93 .lookup = nfs_lookup, 94 .link = nfs_link, 95 .unlink = nfs_unlink, 96 .symlink = nfs_symlink, 97 .mkdir = nfs_mkdir, 98 .rmdir = nfs_rmdir, 99 .mknod = nfs_mknod, 100 .rename = nfs_rename, 101 .permission = nfs_permission, 102 .getattr = nfs_getattr, 103 .setattr = nfs_setattr, 104 .listxattr = nfs3_listxattr, 105 .getxattr = nfs3_getxattr, 106 .setxattr = nfs3_setxattr, 107 .removexattr = nfs3_removexattr, 108 }; 109 #endif /* CONFIG_NFS_V3 */ 110 111 #ifdef CONFIG_NFS_V4 112 113 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 114 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd); 115 const struct inode_operations nfs4_dir_inode_operations = { 116 .create = nfs_open_create, 117 .lookup = nfs_atomic_lookup, 118 .link = nfs_link, 119 .unlink = nfs_unlink, 120 .symlink = nfs_symlink, 121 .mkdir = nfs_mkdir, 122 .rmdir = nfs_rmdir, 123 .mknod = nfs_mknod, 124 .rename = nfs_rename, 125 .permission = nfs_permission, 126 .getattr = nfs_getattr, 127 .setattr = nfs_setattr, 128 .getxattr = nfs4_getxattr, 129 .setxattr = nfs4_setxattr, 130 .listxattr = nfs4_listxattr, 131 }; 132 133 #endif /* CONFIG_NFS_V4 */ 134 135 /* 136 * Open file 137 */ 138 static int 139 nfs_opendir(struct inode *inode, struct file *filp) 140 { 141 int res; 142 143 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 144 filp->f_path.dentry->d_parent->d_name.name, 145 filp->f_path.dentry->d_name.name); 146 147 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 148 149 /* Call generic open code in order to cache credentials */ 150 res = nfs_open(inode, filp); 151 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 152 /* This is a mountpoint, so d_revalidate will never 153 * have been called, so we need to refresh the 154 * inode (for close-open consistency) ourselves. 155 */ 156 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 157 } 158 return res; 159 } 160 161 struct nfs_cache_array_entry { 162 u64 cookie; 163 u64 ino; 164 struct qstr string; 165 unsigned char d_type; 166 }; 167 168 struct nfs_cache_array { 169 unsigned int size; 170 int eof_index; 171 u64 last_cookie; 172 struct nfs_cache_array_entry array[0]; 173 }; 174 175 typedef __be32 * (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, struct nfs_server *, int); 176 typedef struct { 177 struct file *file; 178 struct page *page; 179 unsigned long page_index; 180 u64 *dir_cookie; 181 u64 last_cookie; 182 loff_t current_index; 183 decode_dirent_t decode; 184 185 unsigned long timestamp; 186 unsigned long gencount; 187 unsigned int cache_entry_index; 188 unsigned int plus:1; 189 unsigned int eof:1; 190 } nfs_readdir_descriptor_t; 191 192 /* 193 * The caller is responsible for calling nfs_readdir_release_array(page) 194 */ 195 static 196 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 197 { 198 void *ptr; 199 if (page == NULL) 200 return ERR_PTR(-EIO); 201 ptr = kmap(page); 202 if (ptr == NULL) 203 return ERR_PTR(-ENOMEM); 204 return ptr; 205 } 206 207 static 208 void nfs_readdir_release_array(struct page *page) 209 { 210 kunmap(page); 211 } 212 213 /* 214 * we are freeing strings created by nfs_add_to_readdir_array() 215 */ 216 static 217 void nfs_readdir_clear_array(struct page *page) 218 { 219 struct nfs_cache_array *array; 220 int i; 221 222 array = kmap_atomic(page, KM_USER0); 223 for (i = 0; i < array->size; i++) 224 kfree(array->array[i].string.name); 225 kunmap_atomic(array, KM_USER0); 226 } 227 228 /* 229 * the caller is responsible for freeing qstr.name 230 * when called by nfs_readdir_add_to_array, the strings will be freed in 231 * nfs_clear_readdir_array() 232 */ 233 static 234 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 235 { 236 string->len = len; 237 string->name = kmemdup(name, len, GFP_KERNEL); 238 if (string->name == NULL) 239 return -ENOMEM; 240 /* 241 * Avoid a kmemleak false positive. The pointer to the name is stored 242 * in a page cache page which kmemleak does not scan. 243 */ 244 kmemleak_not_leak(string->name); 245 string->hash = full_name_hash(name, len); 246 return 0; 247 } 248 249 static 250 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 251 { 252 struct nfs_cache_array *array = nfs_readdir_get_array(page); 253 struct nfs_cache_array_entry *cache_entry; 254 int ret; 255 256 if (IS_ERR(array)) 257 return PTR_ERR(array); 258 259 cache_entry = &array->array[array->size]; 260 261 /* Check that this entry lies within the page bounds */ 262 ret = -ENOSPC; 263 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 264 goto out; 265 266 cache_entry->cookie = entry->prev_cookie; 267 cache_entry->ino = entry->ino; 268 cache_entry->d_type = entry->d_type; 269 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 270 if (ret) 271 goto out; 272 array->last_cookie = entry->cookie; 273 array->size++; 274 if (entry->eof != 0) 275 array->eof_index = array->size; 276 out: 277 nfs_readdir_release_array(page); 278 return ret; 279 } 280 281 static 282 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 283 { 284 loff_t diff = desc->file->f_pos - desc->current_index; 285 unsigned int index; 286 287 if (diff < 0) 288 goto out_eof; 289 if (diff >= array->size) { 290 if (array->eof_index >= 0) 291 goto out_eof; 292 desc->current_index += array->size; 293 return -EAGAIN; 294 } 295 296 index = (unsigned int)diff; 297 *desc->dir_cookie = array->array[index].cookie; 298 desc->cache_entry_index = index; 299 return 0; 300 out_eof: 301 desc->eof = 1; 302 return -EBADCOOKIE; 303 } 304 305 static 306 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 307 { 308 int i; 309 int status = -EAGAIN; 310 311 for (i = 0; i < array->size; i++) { 312 if (array->array[i].cookie == *desc->dir_cookie) { 313 desc->cache_entry_index = i; 314 return 0; 315 } 316 } 317 if (array->eof_index >= 0) { 318 status = -EBADCOOKIE; 319 if (*desc->dir_cookie == array->last_cookie) 320 desc->eof = 1; 321 } 322 return status; 323 } 324 325 static 326 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 327 { 328 struct nfs_cache_array *array; 329 int status; 330 331 array = nfs_readdir_get_array(desc->page); 332 if (IS_ERR(array)) { 333 status = PTR_ERR(array); 334 goto out; 335 } 336 337 if (*desc->dir_cookie == 0) 338 status = nfs_readdir_search_for_pos(array, desc); 339 else 340 status = nfs_readdir_search_for_cookie(array, desc); 341 342 if (status == -EAGAIN) { 343 desc->last_cookie = array->last_cookie; 344 desc->page_index++; 345 } 346 nfs_readdir_release_array(desc->page); 347 out: 348 return status; 349 } 350 351 /* Fill a page with xdr information before transferring to the cache page */ 352 static 353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 354 struct nfs_entry *entry, struct file *file, struct inode *inode) 355 { 356 struct rpc_cred *cred = nfs_file_cred(file); 357 unsigned long timestamp, gencount; 358 int error; 359 360 again: 361 timestamp = jiffies; 362 gencount = nfs_inc_attr_generation_counter(); 363 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 364 NFS_SERVER(inode)->dtsize, desc->plus); 365 if (error < 0) { 366 /* We requested READDIRPLUS, but the server doesn't grok it */ 367 if (error == -ENOTSUPP && desc->plus) { 368 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 369 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 370 desc->plus = 0; 371 goto again; 372 } 373 goto error; 374 } 375 desc->timestamp = timestamp; 376 desc->gencount = gencount; 377 error: 378 return error; 379 } 380 381 /* Fill in an entry based on the xdr code stored in desc->page */ 382 static 383 int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, struct xdr_stream *stream) 384 { 385 __be32 *p = desc->decode(stream, entry, NFS_SERVER(desc->file->f_path.dentry->d_inode), desc->plus); 386 if (IS_ERR(p)) 387 return PTR_ERR(p); 388 389 entry->fattr->time_start = desc->timestamp; 390 entry->fattr->gencount = desc->gencount; 391 return 0; 392 } 393 394 static 395 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 396 { 397 if (dentry->d_inode == NULL) 398 goto different; 399 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 400 goto different; 401 return 1; 402 different: 403 return 0; 404 } 405 406 static 407 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 408 { 409 struct qstr filename = { 410 .len = entry->len, 411 .name = entry->name, 412 }; 413 struct dentry *dentry; 414 struct dentry *alias; 415 struct inode *dir = parent->d_inode; 416 struct inode *inode; 417 418 if (filename.name[0] == '.') { 419 if (filename.len == 1) 420 return; 421 if (filename.len == 2 && filename.name[1] == '.') 422 return; 423 } 424 filename.hash = full_name_hash(filename.name, filename.len); 425 426 dentry = d_lookup(parent, &filename); 427 if (dentry != NULL) { 428 if (nfs_same_file(dentry, entry)) { 429 nfs_refresh_inode(dentry->d_inode, entry->fattr); 430 goto out; 431 } else { 432 d_drop(dentry); 433 dput(dentry); 434 } 435 } 436 437 dentry = d_alloc(parent, &filename); 438 if (dentry == NULL) 439 return; 440 441 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 442 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 443 if (IS_ERR(inode)) 444 goto out; 445 446 alias = d_materialise_unique(dentry, inode); 447 if (IS_ERR(alias)) 448 goto out; 449 else if (alias) { 450 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 451 dput(alias); 452 } else 453 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 454 455 out: 456 dput(dentry); 457 } 458 459 /* Perform conversion from xdr to cache array */ 460 static 461 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 462 void *xdr_page, struct page *page, unsigned int buflen) 463 { 464 struct xdr_stream stream; 465 struct xdr_buf buf; 466 __be32 *ptr = xdr_page; 467 struct nfs_cache_array *array; 468 unsigned int count = 0; 469 int status; 470 471 buf.head->iov_base = xdr_page; 472 buf.head->iov_len = buflen; 473 buf.tail->iov_len = 0; 474 buf.page_base = 0; 475 buf.page_len = 0; 476 buf.buflen = buf.head->iov_len; 477 buf.len = buf.head->iov_len; 478 479 xdr_init_decode(&stream, &buf, ptr); 480 481 482 do { 483 status = xdr_decode(desc, entry, &stream); 484 if (status != 0) { 485 if (status == -EAGAIN) 486 status = 0; 487 break; 488 } 489 490 count++; 491 492 if (desc->plus != 0) 493 nfs_prime_dcache(desc->file->f_path.dentry, entry); 494 495 status = nfs_readdir_add_to_array(entry, page); 496 if (status != 0) 497 break; 498 } while (!entry->eof); 499 500 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 501 array = nfs_readdir_get_array(page); 502 if (!IS_ERR(array)) { 503 array->eof_index = array->size; 504 status = 0; 505 nfs_readdir_release_array(page); 506 } else 507 status = PTR_ERR(array); 508 } 509 return status; 510 } 511 512 static 513 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 514 { 515 unsigned int i; 516 for (i = 0; i < npages; i++) 517 put_page(pages[i]); 518 } 519 520 static 521 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 522 unsigned int npages) 523 { 524 vm_unmap_ram(ptr, npages); 525 nfs_readdir_free_pagearray(pages, npages); 526 } 527 528 /* 529 * nfs_readdir_large_page will allocate pages that must be freed with a call 530 * to nfs_readdir_free_large_page 531 */ 532 static 533 void *nfs_readdir_large_page(struct page **pages, unsigned int npages) 534 { 535 void *ptr; 536 unsigned int i; 537 538 for (i = 0; i < npages; i++) { 539 struct page *page = alloc_page(GFP_KERNEL); 540 if (page == NULL) 541 goto out_freepages; 542 pages[i] = page; 543 } 544 545 ptr = vm_map_ram(pages, npages, 0, PAGE_KERNEL); 546 if (!IS_ERR_OR_NULL(ptr)) 547 return ptr; 548 out_freepages: 549 nfs_readdir_free_pagearray(pages, i); 550 return NULL; 551 } 552 553 static 554 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 555 { 556 struct page *pages[NFS_MAX_READDIR_PAGES]; 557 void *pages_ptr = NULL; 558 struct nfs_entry entry; 559 struct file *file = desc->file; 560 struct nfs_cache_array *array; 561 int status = -ENOMEM; 562 unsigned int array_size = ARRAY_SIZE(pages); 563 564 entry.prev_cookie = 0; 565 entry.cookie = desc->last_cookie; 566 entry.eof = 0; 567 entry.fh = nfs_alloc_fhandle(); 568 entry.fattr = nfs_alloc_fattr(); 569 if (entry.fh == NULL || entry.fattr == NULL) 570 goto out; 571 572 array = nfs_readdir_get_array(page); 573 if (IS_ERR(array)) { 574 status = PTR_ERR(array); 575 goto out; 576 } 577 memset(array, 0, sizeof(struct nfs_cache_array)); 578 array->eof_index = -1; 579 580 pages_ptr = nfs_readdir_large_page(pages, array_size); 581 if (!pages_ptr) 582 goto out_release_array; 583 do { 584 unsigned int pglen; 585 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 586 587 if (status < 0) 588 break; 589 pglen = status; 590 status = nfs_readdir_page_filler(desc, &entry, pages_ptr, page, pglen); 591 if (status < 0) { 592 if (status == -ENOSPC) 593 status = 0; 594 break; 595 } 596 } while (array->eof_index < 0); 597 598 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 599 out_release_array: 600 nfs_readdir_release_array(page); 601 out: 602 nfs_free_fattr(entry.fattr); 603 nfs_free_fhandle(entry.fh); 604 return status; 605 } 606 607 /* 608 * Now we cache directories properly, by converting xdr information 609 * to an array that can be used for lookups later. This results in 610 * fewer cache pages, since we can store more information on each page. 611 * We only need to convert from xdr once so future lookups are much simpler 612 */ 613 static 614 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 615 { 616 struct inode *inode = desc->file->f_path.dentry->d_inode; 617 int ret; 618 619 ret = nfs_readdir_xdr_to_array(desc, page, inode); 620 if (ret < 0) 621 goto error; 622 SetPageUptodate(page); 623 624 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 625 /* Should never happen */ 626 nfs_zap_mapping(inode, inode->i_mapping); 627 } 628 unlock_page(page); 629 return 0; 630 error: 631 unlock_page(page); 632 return ret; 633 } 634 635 static 636 void cache_page_release(nfs_readdir_descriptor_t *desc) 637 { 638 if (!desc->page->mapping) 639 nfs_readdir_clear_array(desc->page); 640 page_cache_release(desc->page); 641 desc->page = NULL; 642 } 643 644 static 645 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 646 { 647 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping, 648 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 649 } 650 651 /* 652 * Returns 0 if desc->dir_cookie was found on page desc->page_index 653 */ 654 static 655 int find_cache_page(nfs_readdir_descriptor_t *desc) 656 { 657 int res; 658 659 desc->page = get_cache_page(desc); 660 if (IS_ERR(desc->page)) 661 return PTR_ERR(desc->page); 662 663 res = nfs_readdir_search_array(desc); 664 if (res != 0) 665 cache_page_release(desc); 666 return res; 667 } 668 669 /* Search for desc->dir_cookie from the beginning of the page cache */ 670 static inline 671 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 672 { 673 int res; 674 675 if (desc->page_index == 0) { 676 desc->current_index = 0; 677 desc->last_cookie = 0; 678 } 679 do { 680 res = find_cache_page(desc); 681 } while (res == -EAGAIN); 682 return res; 683 } 684 685 /* 686 * Once we've found the start of the dirent within a page: fill 'er up... 687 */ 688 static 689 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 690 filldir_t filldir) 691 { 692 struct file *file = desc->file; 693 int i = 0; 694 int res = 0; 695 struct nfs_cache_array *array = NULL; 696 697 array = nfs_readdir_get_array(desc->page); 698 if (IS_ERR(array)) { 699 res = PTR_ERR(array); 700 goto out; 701 } 702 703 for (i = desc->cache_entry_index; i < array->size; i++) { 704 struct nfs_cache_array_entry *ent; 705 706 ent = &array->array[i]; 707 if (filldir(dirent, ent->string.name, ent->string.len, 708 file->f_pos, nfs_compat_user_ino64(ent->ino), 709 ent->d_type) < 0) { 710 desc->eof = 1; 711 break; 712 } 713 file->f_pos++; 714 if (i < (array->size-1)) 715 *desc->dir_cookie = array->array[i+1].cookie; 716 else 717 *desc->dir_cookie = array->last_cookie; 718 } 719 if (array->eof_index >= 0) 720 desc->eof = 1; 721 722 nfs_readdir_release_array(desc->page); 723 out: 724 cache_page_release(desc); 725 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 726 (unsigned long long)*desc->dir_cookie, res); 727 return res; 728 } 729 730 /* 731 * If we cannot find a cookie in our cache, we suspect that this is 732 * because it points to a deleted file, so we ask the server to return 733 * whatever it thinks is the next entry. We then feed this to filldir. 734 * If all goes well, we should then be able to find our way round the 735 * cache on the next call to readdir_search_pagecache(); 736 * 737 * NOTE: we cannot add the anonymous page to the pagecache because 738 * the data it contains might not be page aligned. Besides, 739 * we should already have a complete representation of the 740 * directory in the page cache by the time we get here. 741 */ 742 static inline 743 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 744 filldir_t filldir) 745 { 746 struct page *page = NULL; 747 int status; 748 struct inode *inode = desc->file->f_path.dentry->d_inode; 749 750 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 751 (unsigned long long)*desc->dir_cookie); 752 753 page = alloc_page(GFP_HIGHUSER); 754 if (!page) { 755 status = -ENOMEM; 756 goto out; 757 } 758 759 desc->page_index = 0; 760 desc->last_cookie = *desc->dir_cookie; 761 desc->page = page; 762 763 status = nfs_readdir_xdr_to_array(desc, page, inode); 764 if (status < 0) 765 goto out_release; 766 767 status = nfs_do_filldir(desc, dirent, filldir); 768 769 out: 770 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 771 __func__, status); 772 return status; 773 out_release: 774 cache_page_release(desc); 775 goto out; 776 } 777 778 /* The file offset position represents the dirent entry number. A 779 last cookie cache takes care of the common case of reading the 780 whole directory. 781 */ 782 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 783 { 784 struct dentry *dentry = filp->f_path.dentry; 785 struct inode *inode = dentry->d_inode; 786 nfs_readdir_descriptor_t my_desc, 787 *desc = &my_desc; 788 int res; 789 790 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 791 dentry->d_parent->d_name.name, dentry->d_name.name, 792 (long long)filp->f_pos); 793 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 794 795 /* 796 * filp->f_pos points to the dirent entry number. 797 * *desc->dir_cookie has the cookie for the next entry. We have 798 * to either find the entry with the appropriate number or 799 * revalidate the cookie. 800 */ 801 memset(desc, 0, sizeof(*desc)); 802 803 desc->file = filp; 804 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie; 805 desc->decode = NFS_PROTO(inode)->decode_dirent; 806 desc->plus = NFS_USE_READDIRPLUS(inode); 807 808 nfs_block_sillyrename(dentry); 809 res = nfs_revalidate_mapping(inode, filp->f_mapping); 810 if (res < 0) 811 goto out; 812 813 do { 814 res = readdir_search_pagecache(desc); 815 816 if (res == -EBADCOOKIE) { 817 res = 0; 818 /* This means either end of directory */ 819 if (*desc->dir_cookie && desc->eof == 0) { 820 /* Or that the server has 'lost' a cookie */ 821 res = uncached_readdir(desc, dirent, filldir); 822 if (res == 0) 823 continue; 824 } 825 break; 826 } 827 if (res == -ETOOSMALL && desc->plus) { 828 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 829 nfs_zap_caches(inode); 830 desc->page_index = 0; 831 desc->plus = 0; 832 desc->eof = 0; 833 continue; 834 } 835 if (res < 0) 836 break; 837 838 res = nfs_do_filldir(desc, dirent, filldir); 839 if (res < 0) 840 break; 841 } while (!desc->eof); 842 out: 843 nfs_unblock_sillyrename(dentry); 844 if (res > 0) 845 res = 0; 846 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 847 dentry->d_parent->d_name.name, dentry->d_name.name, 848 res); 849 return res; 850 } 851 852 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 853 { 854 struct dentry *dentry = filp->f_path.dentry; 855 struct inode *inode = dentry->d_inode; 856 857 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 858 dentry->d_parent->d_name.name, 859 dentry->d_name.name, 860 offset, origin); 861 862 mutex_lock(&inode->i_mutex); 863 switch (origin) { 864 case 1: 865 offset += filp->f_pos; 866 case 0: 867 if (offset >= 0) 868 break; 869 default: 870 offset = -EINVAL; 871 goto out; 872 } 873 if (offset != filp->f_pos) { 874 filp->f_pos = offset; 875 nfs_file_open_context(filp)->dir_cookie = 0; 876 } 877 out: 878 mutex_unlock(&inode->i_mutex); 879 return offset; 880 } 881 882 /* 883 * All directory operations under NFS are synchronous, so fsync() 884 * is a dummy operation. 885 */ 886 static int nfs_fsync_dir(struct file *filp, int datasync) 887 { 888 struct dentry *dentry = filp->f_path.dentry; 889 890 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 891 dentry->d_parent->d_name.name, dentry->d_name.name, 892 datasync); 893 894 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 895 return 0; 896 } 897 898 /** 899 * nfs_force_lookup_revalidate - Mark the directory as having changed 900 * @dir - pointer to directory inode 901 * 902 * This forces the revalidation code in nfs_lookup_revalidate() to do a 903 * full lookup on all child dentries of 'dir' whenever a change occurs 904 * on the server that might have invalidated our dcache. 905 * 906 * The caller should be holding dir->i_lock 907 */ 908 void nfs_force_lookup_revalidate(struct inode *dir) 909 { 910 NFS_I(dir)->cache_change_attribute++; 911 } 912 913 /* 914 * A check for whether or not the parent directory has changed. 915 * In the case it has, we assume that the dentries are untrustworthy 916 * and may need to be looked up again. 917 */ 918 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 919 { 920 if (IS_ROOT(dentry)) 921 return 1; 922 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 923 return 0; 924 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 925 return 0; 926 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 927 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 928 return 0; 929 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 930 return 0; 931 return 1; 932 } 933 934 /* 935 * Return the intent data that applies to this particular path component 936 * 937 * Note that the current set of intents only apply to the very last 938 * component of the path. 939 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 940 */ 941 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 942 { 943 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 944 return 0; 945 return nd->flags & mask; 946 } 947 948 /* 949 * Use intent information to check whether or not we're going to do 950 * an O_EXCL create using this path component. 951 */ 952 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 953 { 954 if (NFS_PROTO(dir)->version == 2) 955 return 0; 956 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL); 957 } 958 959 /* 960 * Inode and filehandle revalidation for lookups. 961 * 962 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 963 * or if the intent information indicates that we're about to open this 964 * particular file and the "nocto" mount flag is not set. 965 * 966 */ 967 static inline 968 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 969 { 970 struct nfs_server *server = NFS_SERVER(inode); 971 972 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags)) 973 return 0; 974 if (nd != NULL) { 975 /* VFS wants an on-the-wire revalidation */ 976 if (nd->flags & LOOKUP_REVAL) 977 goto out_force; 978 /* This is an open(2) */ 979 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 980 !(server->flags & NFS_MOUNT_NOCTO) && 981 (S_ISREG(inode->i_mode) || 982 S_ISDIR(inode->i_mode))) 983 goto out_force; 984 return 0; 985 } 986 return nfs_revalidate_inode(server, inode); 987 out_force: 988 return __nfs_revalidate_inode(server, inode); 989 } 990 991 /* 992 * We judge how long we want to trust negative 993 * dentries by looking at the parent inode mtime. 994 * 995 * If parent mtime has changed, we revalidate, else we wait for a 996 * period corresponding to the parent's attribute cache timeout value. 997 */ 998 static inline 999 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1000 struct nameidata *nd) 1001 { 1002 /* Don't revalidate a negative dentry if we're creating a new file */ 1003 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 1004 return 0; 1005 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1006 return 1; 1007 return !nfs_check_verifier(dir, dentry); 1008 } 1009 1010 /* 1011 * This is called every time the dcache has a lookup hit, 1012 * and we should check whether we can really trust that 1013 * lookup. 1014 * 1015 * NOTE! The hit can be a negative hit too, don't assume 1016 * we have an inode! 1017 * 1018 * If the parent directory is seen to have changed, we throw out the 1019 * cached dentry and do a new lookup. 1020 */ 1021 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 1022 { 1023 struct inode *dir; 1024 struct inode *inode; 1025 struct dentry *parent; 1026 struct nfs_fh *fhandle = NULL; 1027 struct nfs_fattr *fattr = NULL; 1028 int error; 1029 1030 parent = dget_parent(dentry); 1031 dir = parent->d_inode; 1032 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1033 inode = dentry->d_inode; 1034 1035 if (!inode) { 1036 if (nfs_neg_need_reval(dir, dentry, nd)) 1037 goto out_bad; 1038 goto out_valid; 1039 } 1040 1041 if (is_bad_inode(inode)) { 1042 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1043 __func__, dentry->d_parent->d_name.name, 1044 dentry->d_name.name); 1045 goto out_bad; 1046 } 1047 1048 if (nfs_have_delegation(inode, FMODE_READ)) 1049 goto out_set_verifier; 1050 1051 /* Force a full look up iff the parent directory has changed */ 1052 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 1053 if (nfs_lookup_verify_inode(inode, nd)) 1054 goto out_zap_parent; 1055 goto out_valid; 1056 } 1057 1058 if (NFS_STALE(inode)) 1059 goto out_bad; 1060 1061 error = -ENOMEM; 1062 fhandle = nfs_alloc_fhandle(); 1063 fattr = nfs_alloc_fattr(); 1064 if (fhandle == NULL || fattr == NULL) 1065 goto out_error; 1066 1067 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1068 if (error) 1069 goto out_bad; 1070 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1071 goto out_bad; 1072 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1073 goto out_bad; 1074 1075 nfs_free_fattr(fattr); 1076 nfs_free_fhandle(fhandle); 1077 out_set_verifier: 1078 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1079 out_valid: 1080 dput(parent); 1081 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1082 __func__, dentry->d_parent->d_name.name, 1083 dentry->d_name.name); 1084 return 1; 1085 out_zap_parent: 1086 nfs_zap_caches(dir); 1087 out_bad: 1088 nfs_mark_for_revalidate(dir); 1089 if (inode && S_ISDIR(inode->i_mode)) { 1090 /* Purge readdir caches. */ 1091 nfs_zap_caches(inode); 1092 /* If we have submounts, don't unhash ! */ 1093 if (have_submounts(dentry)) 1094 goto out_valid; 1095 if (dentry->d_flags & DCACHE_DISCONNECTED) 1096 goto out_valid; 1097 shrink_dcache_parent(dentry); 1098 } 1099 d_drop(dentry); 1100 nfs_free_fattr(fattr); 1101 nfs_free_fhandle(fhandle); 1102 dput(parent); 1103 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1104 __func__, dentry->d_parent->d_name.name, 1105 dentry->d_name.name); 1106 return 0; 1107 out_error: 1108 nfs_free_fattr(fattr); 1109 nfs_free_fhandle(fhandle); 1110 dput(parent); 1111 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1112 __func__, dentry->d_parent->d_name.name, 1113 dentry->d_name.name, error); 1114 return error; 1115 } 1116 1117 /* 1118 * This is called from dput() when d_count is going to 0. 1119 */ 1120 static int nfs_dentry_delete(struct dentry *dentry) 1121 { 1122 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1123 dentry->d_parent->d_name.name, dentry->d_name.name, 1124 dentry->d_flags); 1125 1126 /* Unhash any dentry with a stale inode */ 1127 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1128 return 1; 1129 1130 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1131 /* Unhash it, so that ->d_iput() would be called */ 1132 return 1; 1133 } 1134 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1135 /* Unhash it, so that ancestors of killed async unlink 1136 * files will be cleaned up during umount */ 1137 return 1; 1138 } 1139 return 0; 1140 1141 } 1142 1143 static void nfs_drop_nlink(struct inode *inode) 1144 { 1145 spin_lock(&inode->i_lock); 1146 if (inode->i_nlink > 0) 1147 drop_nlink(inode); 1148 spin_unlock(&inode->i_lock); 1149 } 1150 1151 /* 1152 * Called when the dentry loses inode. 1153 * We use it to clean up silly-renamed files. 1154 */ 1155 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1156 { 1157 if (S_ISDIR(inode->i_mode)) 1158 /* drop any readdir cache as it could easily be old */ 1159 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1160 1161 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1162 drop_nlink(inode); 1163 nfs_complete_unlink(dentry, inode); 1164 } 1165 iput(inode); 1166 } 1167 1168 const struct dentry_operations nfs_dentry_operations = { 1169 .d_revalidate = nfs_lookup_revalidate, 1170 .d_delete = nfs_dentry_delete, 1171 .d_iput = nfs_dentry_iput, 1172 }; 1173 1174 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 1175 { 1176 struct dentry *res; 1177 struct dentry *parent; 1178 struct inode *inode = NULL; 1179 struct nfs_fh *fhandle = NULL; 1180 struct nfs_fattr *fattr = NULL; 1181 int error; 1182 1183 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1184 dentry->d_parent->d_name.name, dentry->d_name.name); 1185 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1186 1187 res = ERR_PTR(-ENAMETOOLONG); 1188 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1189 goto out; 1190 1191 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1192 1193 /* 1194 * If we're doing an exclusive create, optimize away the lookup 1195 * but don't hash the dentry. 1196 */ 1197 if (nfs_is_exclusive_create(dir, nd)) { 1198 d_instantiate(dentry, NULL); 1199 res = NULL; 1200 goto out; 1201 } 1202 1203 res = ERR_PTR(-ENOMEM); 1204 fhandle = nfs_alloc_fhandle(); 1205 fattr = nfs_alloc_fattr(); 1206 if (fhandle == NULL || fattr == NULL) 1207 goto out; 1208 1209 parent = dentry->d_parent; 1210 /* Protect against concurrent sillydeletes */ 1211 nfs_block_sillyrename(parent); 1212 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1213 if (error == -ENOENT) 1214 goto no_entry; 1215 if (error < 0) { 1216 res = ERR_PTR(error); 1217 goto out_unblock_sillyrename; 1218 } 1219 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1220 res = (struct dentry *)inode; 1221 if (IS_ERR(res)) 1222 goto out_unblock_sillyrename; 1223 1224 no_entry: 1225 res = d_materialise_unique(dentry, inode); 1226 if (res != NULL) { 1227 if (IS_ERR(res)) 1228 goto out_unblock_sillyrename; 1229 dentry = res; 1230 } 1231 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1232 out_unblock_sillyrename: 1233 nfs_unblock_sillyrename(parent); 1234 out: 1235 nfs_free_fattr(fattr); 1236 nfs_free_fhandle(fhandle); 1237 return res; 1238 } 1239 1240 #ifdef CONFIG_NFS_V4 1241 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 1242 1243 const struct dentry_operations nfs4_dentry_operations = { 1244 .d_revalidate = nfs_open_revalidate, 1245 .d_delete = nfs_dentry_delete, 1246 .d_iput = nfs_dentry_iput, 1247 }; 1248 1249 /* 1250 * Use intent information to determine whether we need to substitute 1251 * the NFSv4-style stateful OPEN for the LOOKUP call 1252 */ 1253 static int is_atomic_open(struct nameidata *nd) 1254 { 1255 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 1256 return 0; 1257 /* NFS does not (yet) have a stateful open for directories */ 1258 if (nd->flags & LOOKUP_DIRECTORY) 1259 return 0; 1260 /* Are we trying to write to a read only partition? */ 1261 if (__mnt_is_readonly(nd->path.mnt) && 1262 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 1263 return 0; 1264 return 1; 1265 } 1266 1267 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd) 1268 { 1269 struct path path = { 1270 .mnt = nd->path.mnt, 1271 .dentry = dentry, 1272 }; 1273 struct nfs_open_context *ctx; 1274 struct rpc_cred *cred; 1275 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC); 1276 1277 cred = rpc_lookup_cred(); 1278 if (IS_ERR(cred)) 1279 return ERR_CAST(cred); 1280 ctx = alloc_nfs_open_context(&path, cred, fmode); 1281 put_rpccred(cred); 1282 if (ctx == NULL) 1283 return ERR_PTR(-ENOMEM); 1284 return ctx; 1285 } 1286 1287 static int do_open(struct inode *inode, struct file *filp) 1288 { 1289 nfs_fscache_set_inode_cookie(inode, filp); 1290 return 0; 1291 } 1292 1293 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx) 1294 { 1295 struct file *filp; 1296 int ret = 0; 1297 1298 /* If the open_intent is for execute, we have an extra check to make */ 1299 if (ctx->mode & FMODE_EXEC) { 1300 ret = nfs_may_open(ctx->path.dentry->d_inode, 1301 ctx->cred, 1302 nd->intent.open.flags); 1303 if (ret < 0) 1304 goto out; 1305 } 1306 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open); 1307 if (IS_ERR(filp)) 1308 ret = PTR_ERR(filp); 1309 else 1310 nfs_file_set_open_context(filp, ctx); 1311 out: 1312 put_nfs_open_context(ctx); 1313 return ret; 1314 } 1315 1316 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1317 { 1318 struct nfs_open_context *ctx; 1319 struct iattr attr; 1320 struct dentry *res = NULL; 1321 struct inode *inode; 1322 int open_flags; 1323 int err; 1324 1325 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 1326 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1327 1328 /* Check that we are indeed trying to open this file */ 1329 if (!is_atomic_open(nd)) 1330 goto no_open; 1331 1332 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1333 res = ERR_PTR(-ENAMETOOLONG); 1334 goto out; 1335 } 1336 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1337 1338 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 1339 * the dentry. */ 1340 if (nd->flags & LOOKUP_EXCL) { 1341 d_instantiate(dentry, NULL); 1342 goto out; 1343 } 1344 1345 ctx = nameidata_to_nfs_open_context(dentry, nd); 1346 res = ERR_CAST(ctx); 1347 if (IS_ERR(ctx)) 1348 goto out; 1349 1350 open_flags = nd->intent.open.flags; 1351 if (nd->flags & LOOKUP_CREATE) { 1352 attr.ia_mode = nd->intent.open.create_mode; 1353 attr.ia_valid = ATTR_MODE; 1354 if (!IS_POSIXACL(dir)) 1355 attr.ia_mode &= ~current_umask(); 1356 } else { 1357 open_flags &= ~(O_EXCL | O_CREAT); 1358 attr.ia_valid = 0; 1359 } 1360 1361 /* Open the file on the server */ 1362 nfs_block_sillyrename(dentry->d_parent); 1363 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1364 if (IS_ERR(inode)) { 1365 nfs_unblock_sillyrename(dentry->d_parent); 1366 put_nfs_open_context(ctx); 1367 switch (PTR_ERR(inode)) { 1368 /* Make a negative dentry */ 1369 case -ENOENT: 1370 d_add(dentry, NULL); 1371 res = NULL; 1372 goto out; 1373 /* This turned out not to be a regular file */ 1374 case -ENOTDIR: 1375 goto no_open; 1376 case -ELOOP: 1377 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1378 goto no_open; 1379 /* case -EISDIR: */ 1380 /* case -EINVAL: */ 1381 default: 1382 res = ERR_CAST(inode); 1383 goto out; 1384 } 1385 } 1386 res = d_add_unique(dentry, inode); 1387 nfs_unblock_sillyrename(dentry->d_parent); 1388 if (res != NULL) { 1389 dput(ctx->path.dentry); 1390 ctx->path.dentry = dget(res); 1391 dentry = res; 1392 } 1393 err = nfs_intent_set_file(nd, ctx); 1394 if (err < 0) { 1395 if (res != NULL) 1396 dput(res); 1397 return ERR_PTR(err); 1398 } 1399 out: 1400 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1401 return res; 1402 no_open: 1403 return nfs_lookup(dir, dentry, nd); 1404 } 1405 1406 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1407 { 1408 struct dentry *parent = NULL; 1409 struct inode *inode = dentry->d_inode; 1410 struct inode *dir; 1411 struct nfs_open_context *ctx; 1412 int openflags, ret = 0; 1413 1414 if (!is_atomic_open(nd) || d_mountpoint(dentry)) 1415 goto no_open; 1416 1417 parent = dget_parent(dentry); 1418 dir = parent->d_inode; 1419 1420 /* We can't create new files in nfs_open_revalidate(), so we 1421 * optimize away revalidation of negative dentries. 1422 */ 1423 if (inode == NULL) { 1424 if (!nfs_neg_need_reval(dir, dentry, nd)) 1425 ret = 1; 1426 goto out; 1427 } 1428 1429 /* NFS only supports OPEN on regular files */ 1430 if (!S_ISREG(inode->i_mode)) 1431 goto no_open_dput; 1432 openflags = nd->intent.open.flags; 1433 /* We cannot do exclusive creation on a positive dentry */ 1434 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1435 goto no_open_dput; 1436 /* We can't create new files, or truncate existing ones here */ 1437 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC); 1438 1439 ctx = nameidata_to_nfs_open_context(dentry, nd); 1440 ret = PTR_ERR(ctx); 1441 if (IS_ERR(ctx)) 1442 goto out; 1443 /* 1444 * Note: we're not holding inode->i_mutex and so may be racing with 1445 * operations that change the directory. We therefore save the 1446 * change attribute *before* we do the RPC call. 1447 */ 1448 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL); 1449 if (IS_ERR(inode)) { 1450 ret = PTR_ERR(inode); 1451 switch (ret) { 1452 case -EPERM: 1453 case -EACCES: 1454 case -EDQUOT: 1455 case -ENOSPC: 1456 case -EROFS: 1457 goto out_put_ctx; 1458 default: 1459 goto out_drop; 1460 } 1461 } 1462 iput(inode); 1463 if (inode != dentry->d_inode) 1464 goto out_drop; 1465 1466 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1467 ret = nfs_intent_set_file(nd, ctx); 1468 if (ret >= 0) 1469 ret = 1; 1470 out: 1471 dput(parent); 1472 return ret; 1473 out_drop: 1474 d_drop(dentry); 1475 ret = 0; 1476 out_put_ctx: 1477 put_nfs_open_context(ctx); 1478 goto out; 1479 1480 no_open_dput: 1481 dput(parent); 1482 no_open: 1483 return nfs_lookup_revalidate(dentry, nd); 1484 } 1485 1486 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, 1487 struct nameidata *nd) 1488 { 1489 struct nfs_open_context *ctx = NULL; 1490 struct iattr attr; 1491 int error; 1492 int open_flags = 0; 1493 1494 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1495 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1496 1497 attr.ia_mode = mode; 1498 attr.ia_valid = ATTR_MODE; 1499 1500 if ((nd->flags & LOOKUP_CREATE) != 0) { 1501 open_flags = nd->intent.open.flags; 1502 1503 ctx = nameidata_to_nfs_open_context(dentry, nd); 1504 error = PTR_ERR(ctx); 1505 if (IS_ERR(ctx)) 1506 goto out_err_drop; 1507 } 1508 1509 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx); 1510 if (error != 0) 1511 goto out_put_ctx; 1512 if (ctx != NULL) { 1513 error = nfs_intent_set_file(nd, ctx); 1514 if (error < 0) 1515 goto out_err; 1516 } 1517 return 0; 1518 out_put_ctx: 1519 if (ctx != NULL) 1520 put_nfs_open_context(ctx); 1521 out_err_drop: 1522 d_drop(dentry); 1523 out_err: 1524 return error; 1525 } 1526 1527 #endif /* CONFIG_NFSV4 */ 1528 1529 /* 1530 * Code common to create, mkdir, and mknod. 1531 */ 1532 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1533 struct nfs_fattr *fattr) 1534 { 1535 struct dentry *parent = dget_parent(dentry); 1536 struct inode *dir = parent->d_inode; 1537 struct inode *inode; 1538 int error = -EACCES; 1539 1540 d_drop(dentry); 1541 1542 /* We may have been initialized further down */ 1543 if (dentry->d_inode) 1544 goto out; 1545 if (fhandle->size == 0) { 1546 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1547 if (error) 1548 goto out_error; 1549 } 1550 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1551 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1552 struct nfs_server *server = NFS_SB(dentry->d_sb); 1553 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1554 if (error < 0) 1555 goto out_error; 1556 } 1557 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1558 error = PTR_ERR(inode); 1559 if (IS_ERR(inode)) 1560 goto out_error; 1561 d_add(dentry, inode); 1562 out: 1563 dput(parent); 1564 return 0; 1565 out_error: 1566 nfs_mark_for_revalidate(dir); 1567 dput(parent); 1568 return error; 1569 } 1570 1571 /* 1572 * Following a failed create operation, we drop the dentry rather 1573 * than retain a negative dentry. This avoids a problem in the event 1574 * that the operation succeeded on the server, but an error in the 1575 * reply path made it appear to have failed. 1576 */ 1577 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1578 struct nameidata *nd) 1579 { 1580 struct iattr attr; 1581 int error; 1582 1583 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1584 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1585 1586 attr.ia_mode = mode; 1587 attr.ia_valid = ATTR_MODE; 1588 1589 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL); 1590 if (error != 0) 1591 goto out_err; 1592 return 0; 1593 out_err: 1594 d_drop(dentry); 1595 return error; 1596 } 1597 1598 /* 1599 * See comments for nfs_proc_create regarding failed operations. 1600 */ 1601 static int 1602 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1603 { 1604 struct iattr attr; 1605 int status; 1606 1607 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1608 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1609 1610 if (!new_valid_dev(rdev)) 1611 return -EINVAL; 1612 1613 attr.ia_mode = mode; 1614 attr.ia_valid = ATTR_MODE; 1615 1616 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1617 if (status != 0) 1618 goto out_err; 1619 return 0; 1620 out_err: 1621 d_drop(dentry); 1622 return status; 1623 } 1624 1625 /* 1626 * See comments for nfs_proc_create regarding failed operations. 1627 */ 1628 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1629 { 1630 struct iattr attr; 1631 int error; 1632 1633 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1634 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1635 1636 attr.ia_valid = ATTR_MODE; 1637 attr.ia_mode = mode | S_IFDIR; 1638 1639 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1640 if (error != 0) 1641 goto out_err; 1642 return 0; 1643 out_err: 1644 d_drop(dentry); 1645 return error; 1646 } 1647 1648 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1649 { 1650 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1651 d_delete(dentry); 1652 } 1653 1654 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1655 { 1656 int error; 1657 1658 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1659 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1660 1661 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1662 /* Ensure the VFS deletes this inode */ 1663 if (error == 0 && dentry->d_inode != NULL) 1664 clear_nlink(dentry->d_inode); 1665 else if (error == -ENOENT) 1666 nfs_dentry_handle_enoent(dentry); 1667 1668 return error; 1669 } 1670 1671 /* 1672 * Remove a file after making sure there are no pending writes, 1673 * and after checking that the file has only one user. 1674 * 1675 * We invalidate the attribute cache and free the inode prior to the operation 1676 * to avoid possible races if the server reuses the inode. 1677 */ 1678 static int nfs_safe_remove(struct dentry *dentry) 1679 { 1680 struct inode *dir = dentry->d_parent->d_inode; 1681 struct inode *inode = dentry->d_inode; 1682 int error = -EBUSY; 1683 1684 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1685 dentry->d_parent->d_name.name, dentry->d_name.name); 1686 1687 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1688 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1689 error = 0; 1690 goto out; 1691 } 1692 1693 if (inode != NULL) { 1694 nfs_inode_return_delegation(inode); 1695 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1696 /* The VFS may want to delete this inode */ 1697 if (error == 0) 1698 nfs_drop_nlink(inode); 1699 nfs_mark_for_revalidate(inode); 1700 } else 1701 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1702 if (error == -ENOENT) 1703 nfs_dentry_handle_enoent(dentry); 1704 out: 1705 return error; 1706 } 1707 1708 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1709 * belongs to an active ".nfs..." file and we return -EBUSY. 1710 * 1711 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1712 */ 1713 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1714 { 1715 int error; 1716 int need_rehash = 0; 1717 1718 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1719 dir->i_ino, dentry->d_name.name); 1720 1721 spin_lock(&dcache_lock); 1722 spin_lock(&dentry->d_lock); 1723 if (atomic_read(&dentry->d_count) > 1) { 1724 spin_unlock(&dentry->d_lock); 1725 spin_unlock(&dcache_lock); 1726 /* Start asynchronous writeout of the inode */ 1727 write_inode_now(dentry->d_inode, 0); 1728 error = nfs_sillyrename(dir, dentry); 1729 return error; 1730 } 1731 if (!d_unhashed(dentry)) { 1732 __d_drop(dentry); 1733 need_rehash = 1; 1734 } 1735 spin_unlock(&dentry->d_lock); 1736 spin_unlock(&dcache_lock); 1737 error = nfs_safe_remove(dentry); 1738 if (!error || error == -ENOENT) { 1739 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1740 } else if (need_rehash) 1741 d_rehash(dentry); 1742 return error; 1743 } 1744 1745 /* 1746 * To create a symbolic link, most file systems instantiate a new inode, 1747 * add a page to it containing the path, then write it out to the disk 1748 * using prepare_write/commit_write. 1749 * 1750 * Unfortunately the NFS client can't create the in-core inode first 1751 * because it needs a file handle to create an in-core inode (see 1752 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1753 * symlink request has completed on the server. 1754 * 1755 * So instead we allocate a raw page, copy the symname into it, then do 1756 * the SYMLINK request with the page as the buffer. If it succeeds, we 1757 * now have a new file handle and can instantiate an in-core NFS inode 1758 * and move the raw page into its mapping. 1759 */ 1760 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1761 { 1762 struct pagevec lru_pvec; 1763 struct page *page; 1764 char *kaddr; 1765 struct iattr attr; 1766 unsigned int pathlen = strlen(symname); 1767 int error; 1768 1769 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1770 dir->i_ino, dentry->d_name.name, symname); 1771 1772 if (pathlen > PAGE_SIZE) 1773 return -ENAMETOOLONG; 1774 1775 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1776 attr.ia_valid = ATTR_MODE; 1777 1778 page = alloc_page(GFP_HIGHUSER); 1779 if (!page) 1780 return -ENOMEM; 1781 1782 kaddr = kmap_atomic(page, KM_USER0); 1783 memcpy(kaddr, symname, pathlen); 1784 if (pathlen < PAGE_SIZE) 1785 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1786 kunmap_atomic(kaddr, KM_USER0); 1787 1788 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1789 if (error != 0) { 1790 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1791 dir->i_sb->s_id, dir->i_ino, 1792 dentry->d_name.name, symname, error); 1793 d_drop(dentry); 1794 __free_page(page); 1795 return error; 1796 } 1797 1798 /* 1799 * No big deal if we can't add this page to the page cache here. 1800 * READLINK will get the missing page from the server if needed. 1801 */ 1802 pagevec_init(&lru_pvec, 0); 1803 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1804 GFP_KERNEL)) { 1805 pagevec_add(&lru_pvec, page); 1806 pagevec_lru_add_file(&lru_pvec); 1807 SetPageUptodate(page); 1808 unlock_page(page); 1809 } else 1810 __free_page(page); 1811 1812 return 0; 1813 } 1814 1815 static int 1816 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1817 { 1818 struct inode *inode = old_dentry->d_inode; 1819 int error; 1820 1821 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1822 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1823 dentry->d_parent->d_name.name, dentry->d_name.name); 1824 1825 nfs_inode_return_delegation(inode); 1826 1827 d_drop(dentry); 1828 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1829 if (error == 0) { 1830 ihold(inode); 1831 d_add(dentry, inode); 1832 } 1833 return error; 1834 } 1835 1836 /* 1837 * RENAME 1838 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1839 * different file handle for the same inode after a rename (e.g. when 1840 * moving to a different directory). A fail-safe method to do so would 1841 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1842 * rename the old file using the sillyrename stuff. This way, the original 1843 * file in old_dir will go away when the last process iput()s the inode. 1844 * 1845 * FIXED. 1846 * 1847 * It actually works quite well. One needs to have the possibility for 1848 * at least one ".nfs..." file in each directory the file ever gets 1849 * moved or linked to which happens automagically with the new 1850 * implementation that only depends on the dcache stuff instead of 1851 * using the inode layer 1852 * 1853 * Unfortunately, things are a little more complicated than indicated 1854 * above. For a cross-directory move, we want to make sure we can get 1855 * rid of the old inode after the operation. This means there must be 1856 * no pending writes (if it's a file), and the use count must be 1. 1857 * If these conditions are met, we can drop the dentries before doing 1858 * the rename. 1859 */ 1860 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1861 struct inode *new_dir, struct dentry *new_dentry) 1862 { 1863 struct inode *old_inode = old_dentry->d_inode; 1864 struct inode *new_inode = new_dentry->d_inode; 1865 struct dentry *dentry = NULL, *rehash = NULL; 1866 int error = -EBUSY; 1867 1868 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1869 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1870 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1871 atomic_read(&new_dentry->d_count)); 1872 1873 /* 1874 * For non-directories, check whether the target is busy and if so, 1875 * make a copy of the dentry and then do a silly-rename. If the 1876 * silly-rename succeeds, the copied dentry is hashed and becomes 1877 * the new target. 1878 */ 1879 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1880 /* 1881 * To prevent any new references to the target during the 1882 * rename, we unhash the dentry in advance. 1883 */ 1884 if (!d_unhashed(new_dentry)) { 1885 d_drop(new_dentry); 1886 rehash = new_dentry; 1887 } 1888 1889 if (atomic_read(&new_dentry->d_count) > 2) { 1890 int err; 1891 1892 /* copy the target dentry's name */ 1893 dentry = d_alloc(new_dentry->d_parent, 1894 &new_dentry->d_name); 1895 if (!dentry) 1896 goto out; 1897 1898 /* silly-rename the existing target ... */ 1899 err = nfs_sillyrename(new_dir, new_dentry); 1900 if (err) 1901 goto out; 1902 1903 new_dentry = dentry; 1904 rehash = NULL; 1905 new_inode = NULL; 1906 } 1907 } 1908 1909 nfs_inode_return_delegation(old_inode); 1910 if (new_inode != NULL) 1911 nfs_inode_return_delegation(new_inode); 1912 1913 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1914 new_dir, &new_dentry->d_name); 1915 nfs_mark_for_revalidate(old_inode); 1916 out: 1917 if (rehash) 1918 d_rehash(rehash); 1919 if (!error) { 1920 if (new_inode != NULL) 1921 nfs_drop_nlink(new_inode); 1922 d_move(old_dentry, new_dentry); 1923 nfs_set_verifier(new_dentry, 1924 nfs_save_change_attribute(new_dir)); 1925 } else if (error == -ENOENT) 1926 nfs_dentry_handle_enoent(old_dentry); 1927 1928 /* new dentry created? */ 1929 if (dentry) 1930 dput(dentry); 1931 return error; 1932 } 1933 1934 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1935 static LIST_HEAD(nfs_access_lru_list); 1936 static atomic_long_t nfs_access_nr_entries; 1937 1938 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1939 { 1940 put_rpccred(entry->cred); 1941 kfree(entry); 1942 smp_mb__before_atomic_dec(); 1943 atomic_long_dec(&nfs_access_nr_entries); 1944 smp_mb__after_atomic_dec(); 1945 } 1946 1947 static void nfs_access_free_list(struct list_head *head) 1948 { 1949 struct nfs_access_entry *cache; 1950 1951 while (!list_empty(head)) { 1952 cache = list_entry(head->next, struct nfs_access_entry, lru); 1953 list_del(&cache->lru); 1954 nfs_access_free_entry(cache); 1955 } 1956 } 1957 1958 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) 1959 { 1960 LIST_HEAD(head); 1961 struct nfs_inode *nfsi, *next; 1962 struct nfs_access_entry *cache; 1963 1964 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 1965 return (nr_to_scan == 0) ? 0 : -1; 1966 1967 spin_lock(&nfs_access_lru_lock); 1968 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 1969 struct inode *inode; 1970 1971 if (nr_to_scan-- == 0) 1972 break; 1973 inode = &nfsi->vfs_inode; 1974 spin_lock(&inode->i_lock); 1975 if (list_empty(&nfsi->access_cache_entry_lru)) 1976 goto remove_lru_entry; 1977 cache = list_entry(nfsi->access_cache_entry_lru.next, 1978 struct nfs_access_entry, lru); 1979 list_move(&cache->lru, &head); 1980 rb_erase(&cache->rb_node, &nfsi->access_cache); 1981 if (!list_empty(&nfsi->access_cache_entry_lru)) 1982 list_move_tail(&nfsi->access_cache_inode_lru, 1983 &nfs_access_lru_list); 1984 else { 1985 remove_lru_entry: 1986 list_del_init(&nfsi->access_cache_inode_lru); 1987 smp_mb__before_clear_bit(); 1988 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1989 smp_mb__after_clear_bit(); 1990 } 1991 spin_unlock(&inode->i_lock); 1992 } 1993 spin_unlock(&nfs_access_lru_lock); 1994 nfs_access_free_list(&head); 1995 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1996 } 1997 1998 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 1999 { 2000 struct rb_root *root_node = &nfsi->access_cache; 2001 struct rb_node *n; 2002 struct nfs_access_entry *entry; 2003 2004 /* Unhook entries from the cache */ 2005 while ((n = rb_first(root_node)) != NULL) { 2006 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2007 rb_erase(n, root_node); 2008 list_move(&entry->lru, head); 2009 } 2010 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2011 } 2012 2013 void nfs_access_zap_cache(struct inode *inode) 2014 { 2015 LIST_HEAD(head); 2016 2017 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2018 return; 2019 /* Remove from global LRU init */ 2020 spin_lock(&nfs_access_lru_lock); 2021 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2022 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2023 2024 spin_lock(&inode->i_lock); 2025 __nfs_access_zap_cache(NFS_I(inode), &head); 2026 spin_unlock(&inode->i_lock); 2027 spin_unlock(&nfs_access_lru_lock); 2028 nfs_access_free_list(&head); 2029 } 2030 2031 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2032 { 2033 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2034 struct nfs_access_entry *entry; 2035 2036 while (n != NULL) { 2037 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2038 2039 if (cred < entry->cred) 2040 n = n->rb_left; 2041 else if (cred > entry->cred) 2042 n = n->rb_right; 2043 else 2044 return entry; 2045 } 2046 return NULL; 2047 } 2048 2049 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2050 { 2051 struct nfs_inode *nfsi = NFS_I(inode); 2052 struct nfs_access_entry *cache; 2053 int err = -ENOENT; 2054 2055 spin_lock(&inode->i_lock); 2056 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2057 goto out_zap; 2058 cache = nfs_access_search_rbtree(inode, cred); 2059 if (cache == NULL) 2060 goto out; 2061 if (!nfs_have_delegated_attributes(inode) && 2062 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2063 goto out_stale; 2064 res->jiffies = cache->jiffies; 2065 res->cred = cache->cred; 2066 res->mask = cache->mask; 2067 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2068 err = 0; 2069 out: 2070 spin_unlock(&inode->i_lock); 2071 return err; 2072 out_stale: 2073 rb_erase(&cache->rb_node, &nfsi->access_cache); 2074 list_del(&cache->lru); 2075 spin_unlock(&inode->i_lock); 2076 nfs_access_free_entry(cache); 2077 return -ENOENT; 2078 out_zap: 2079 spin_unlock(&inode->i_lock); 2080 nfs_access_zap_cache(inode); 2081 return -ENOENT; 2082 } 2083 2084 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2085 { 2086 struct nfs_inode *nfsi = NFS_I(inode); 2087 struct rb_root *root_node = &nfsi->access_cache; 2088 struct rb_node **p = &root_node->rb_node; 2089 struct rb_node *parent = NULL; 2090 struct nfs_access_entry *entry; 2091 2092 spin_lock(&inode->i_lock); 2093 while (*p != NULL) { 2094 parent = *p; 2095 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2096 2097 if (set->cred < entry->cred) 2098 p = &parent->rb_left; 2099 else if (set->cred > entry->cred) 2100 p = &parent->rb_right; 2101 else 2102 goto found; 2103 } 2104 rb_link_node(&set->rb_node, parent, p); 2105 rb_insert_color(&set->rb_node, root_node); 2106 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2107 spin_unlock(&inode->i_lock); 2108 return; 2109 found: 2110 rb_replace_node(parent, &set->rb_node, root_node); 2111 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2112 list_del(&entry->lru); 2113 spin_unlock(&inode->i_lock); 2114 nfs_access_free_entry(entry); 2115 } 2116 2117 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2118 { 2119 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2120 if (cache == NULL) 2121 return; 2122 RB_CLEAR_NODE(&cache->rb_node); 2123 cache->jiffies = set->jiffies; 2124 cache->cred = get_rpccred(set->cred); 2125 cache->mask = set->mask; 2126 2127 nfs_access_add_rbtree(inode, cache); 2128 2129 /* Update accounting */ 2130 smp_mb__before_atomic_inc(); 2131 atomic_long_inc(&nfs_access_nr_entries); 2132 smp_mb__after_atomic_inc(); 2133 2134 /* Add inode to global LRU list */ 2135 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2136 spin_lock(&nfs_access_lru_lock); 2137 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2138 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2139 &nfs_access_lru_list); 2140 spin_unlock(&nfs_access_lru_lock); 2141 } 2142 } 2143 2144 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2145 { 2146 struct nfs_access_entry cache; 2147 int status; 2148 2149 status = nfs_access_get_cached(inode, cred, &cache); 2150 if (status == 0) 2151 goto out; 2152 2153 /* Be clever: ask server to check for all possible rights */ 2154 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2155 cache.cred = cred; 2156 cache.jiffies = jiffies; 2157 status = NFS_PROTO(inode)->access(inode, &cache); 2158 if (status != 0) { 2159 if (status == -ESTALE) { 2160 nfs_zap_caches(inode); 2161 if (!S_ISDIR(inode->i_mode)) 2162 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2163 } 2164 return status; 2165 } 2166 nfs_access_add_cache(inode, &cache); 2167 out: 2168 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2169 return 0; 2170 return -EACCES; 2171 } 2172 2173 static int nfs_open_permission_mask(int openflags) 2174 { 2175 int mask = 0; 2176 2177 if (openflags & FMODE_READ) 2178 mask |= MAY_READ; 2179 if (openflags & FMODE_WRITE) 2180 mask |= MAY_WRITE; 2181 if (openflags & FMODE_EXEC) 2182 mask |= MAY_EXEC; 2183 return mask; 2184 } 2185 2186 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2187 { 2188 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2189 } 2190 2191 int nfs_permission(struct inode *inode, int mask) 2192 { 2193 struct rpc_cred *cred; 2194 int res = 0; 2195 2196 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2197 2198 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2199 goto out; 2200 /* Is this sys_access() ? */ 2201 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2202 goto force_lookup; 2203 2204 switch (inode->i_mode & S_IFMT) { 2205 case S_IFLNK: 2206 goto out; 2207 case S_IFREG: 2208 /* NFSv4 has atomic_open... */ 2209 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2210 && (mask & MAY_OPEN) 2211 && !(mask & MAY_EXEC)) 2212 goto out; 2213 break; 2214 case S_IFDIR: 2215 /* 2216 * Optimize away all write operations, since the server 2217 * will check permissions when we perform the op. 2218 */ 2219 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2220 goto out; 2221 } 2222 2223 force_lookup: 2224 if (!NFS_PROTO(inode)->access) 2225 goto out_notsup; 2226 2227 cred = rpc_lookup_cred(); 2228 if (!IS_ERR(cred)) { 2229 res = nfs_do_access(inode, cred, mask); 2230 put_rpccred(cred); 2231 } else 2232 res = PTR_ERR(cred); 2233 out: 2234 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2235 res = -EACCES; 2236 2237 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2238 inode->i_sb->s_id, inode->i_ino, mask, res); 2239 return res; 2240 out_notsup: 2241 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2242 if (res == 0) 2243 res = generic_permission(inode, mask, NULL); 2244 goto out; 2245 } 2246 2247 /* 2248 * Local variables: 2249 * version-control: t 2250 * kept-new-versions: 5 2251 * End: 2252 */ 2253