1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/sched.h> 37 #include <linux/kmemleak.h> 38 #include <linux/xattr.h> 39 40 #include "delegation.h" 41 #include "iostat.h" 42 #include "internal.h" 43 #include "fscache.h" 44 45 /* #define NFS_DEBUG_VERBOSE 1 */ 46 47 static int nfs_opendir(struct inode *, struct file *); 48 static int nfs_closedir(struct inode *, struct file *); 49 static int nfs_readdir(struct file *, void *, filldir_t); 50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 51 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 52 static void nfs_readdir_clear_array(struct page*); 53 54 const struct file_operations nfs_dir_operations = { 55 .llseek = nfs_llseek_dir, 56 .read = generic_read_dir, 57 .readdir = nfs_readdir, 58 .open = nfs_opendir, 59 .release = nfs_closedir, 60 .fsync = nfs_fsync_dir, 61 }; 62 63 const struct address_space_operations nfs_dir_aops = { 64 .freepage = nfs_readdir_clear_array, 65 }; 66 67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 68 { 69 struct nfs_open_dir_context *ctx; 70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 71 if (ctx != NULL) { 72 ctx->duped = 0; 73 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 74 ctx->dir_cookie = 0; 75 ctx->dup_cookie = 0; 76 ctx->cred = get_rpccred(cred); 77 return ctx; 78 } 79 return ERR_PTR(-ENOMEM); 80 } 81 82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 83 { 84 put_rpccred(ctx->cred); 85 kfree(ctx); 86 } 87 88 /* 89 * Open file 90 */ 91 static int 92 nfs_opendir(struct inode *inode, struct file *filp) 93 { 94 int res = 0; 95 struct nfs_open_dir_context *ctx; 96 struct rpc_cred *cred; 97 98 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 99 filp->f_path.dentry->d_parent->d_name.name, 100 filp->f_path.dentry->d_name.name); 101 102 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 103 104 cred = rpc_lookup_cred(); 105 if (IS_ERR(cred)) 106 return PTR_ERR(cred); 107 ctx = alloc_nfs_open_dir_context(inode, cred); 108 if (IS_ERR(ctx)) { 109 res = PTR_ERR(ctx); 110 goto out; 111 } 112 filp->private_data = ctx; 113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 114 /* This is a mountpoint, so d_revalidate will never 115 * have been called, so we need to refresh the 116 * inode (for close-open consistency) ourselves. 117 */ 118 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 119 } 120 out: 121 put_rpccred(cred); 122 return res; 123 } 124 125 static int 126 nfs_closedir(struct inode *inode, struct file *filp) 127 { 128 put_nfs_open_dir_context(filp->private_data); 129 return 0; 130 } 131 132 struct nfs_cache_array_entry { 133 u64 cookie; 134 u64 ino; 135 struct qstr string; 136 unsigned char d_type; 137 }; 138 139 struct nfs_cache_array { 140 int size; 141 int eof_index; 142 u64 last_cookie; 143 struct nfs_cache_array_entry array[0]; 144 }; 145 146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 unsigned long page_index; 151 u64 *dir_cookie; 152 u64 last_cookie; 153 loff_t current_index; 154 decode_dirent_t decode; 155 156 unsigned long timestamp; 157 unsigned long gencount; 158 unsigned int cache_entry_index; 159 unsigned int plus:1; 160 unsigned int eof:1; 161 } nfs_readdir_descriptor_t; 162 163 /* 164 * The caller is responsible for calling nfs_readdir_release_array(page) 165 */ 166 static 167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 168 { 169 void *ptr; 170 if (page == NULL) 171 return ERR_PTR(-EIO); 172 ptr = kmap(page); 173 if (ptr == NULL) 174 return ERR_PTR(-ENOMEM); 175 return ptr; 176 } 177 178 static 179 void nfs_readdir_release_array(struct page *page) 180 { 181 kunmap(page); 182 } 183 184 /* 185 * we are freeing strings created by nfs_add_to_readdir_array() 186 */ 187 static 188 void nfs_readdir_clear_array(struct page *page) 189 { 190 struct nfs_cache_array *array; 191 int i; 192 193 array = kmap_atomic(page); 194 for (i = 0; i < array->size; i++) 195 kfree(array->array[i].string.name); 196 kunmap_atomic(array); 197 } 198 199 /* 200 * the caller is responsible for freeing qstr.name 201 * when called by nfs_readdir_add_to_array, the strings will be freed in 202 * nfs_clear_readdir_array() 203 */ 204 static 205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 206 { 207 string->len = len; 208 string->name = kmemdup(name, len, GFP_KERNEL); 209 if (string->name == NULL) 210 return -ENOMEM; 211 /* 212 * Avoid a kmemleak false positive. The pointer to the name is stored 213 * in a page cache page which kmemleak does not scan. 214 */ 215 kmemleak_not_leak(string->name); 216 string->hash = full_name_hash(name, len); 217 return 0; 218 } 219 220 static 221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 222 { 223 struct nfs_cache_array *array = nfs_readdir_get_array(page); 224 struct nfs_cache_array_entry *cache_entry; 225 int ret; 226 227 if (IS_ERR(array)) 228 return PTR_ERR(array); 229 230 cache_entry = &array->array[array->size]; 231 232 /* Check that this entry lies within the page bounds */ 233 ret = -ENOSPC; 234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 235 goto out; 236 237 cache_entry->cookie = entry->prev_cookie; 238 cache_entry->ino = entry->ino; 239 cache_entry->d_type = entry->d_type; 240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 241 if (ret) 242 goto out; 243 array->last_cookie = entry->cookie; 244 array->size++; 245 if (entry->eof != 0) 246 array->eof_index = array->size; 247 out: 248 nfs_readdir_release_array(page); 249 return ret; 250 } 251 252 static 253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 254 { 255 loff_t diff = desc->file->f_pos - desc->current_index; 256 unsigned int index; 257 258 if (diff < 0) 259 goto out_eof; 260 if (diff >= array->size) { 261 if (array->eof_index >= 0) 262 goto out_eof; 263 return -EAGAIN; 264 } 265 266 index = (unsigned int)diff; 267 *desc->dir_cookie = array->array[index].cookie; 268 desc->cache_entry_index = index; 269 return 0; 270 out_eof: 271 desc->eof = 1; 272 return -EBADCOOKIE; 273 } 274 275 static 276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 277 { 278 int i; 279 loff_t new_pos; 280 int status = -EAGAIN; 281 282 for (i = 0; i < array->size; i++) { 283 if (array->array[i].cookie == *desc->dir_cookie) { 284 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 285 struct nfs_open_dir_context *ctx = desc->file->private_data; 286 287 new_pos = desc->current_index + i; 288 if (ctx->attr_gencount != nfsi->attr_gencount 289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 290 ctx->duped = 0; 291 ctx->attr_gencount = nfsi->attr_gencount; 292 } else if (new_pos < desc->file->f_pos) { 293 if (ctx->duped > 0 294 && ctx->dup_cookie == *desc->dir_cookie) { 295 if (printk_ratelimit()) { 296 pr_notice("NFS: directory %s/%s contains a readdir loop." 297 "Please contact your server vendor. " 298 "The file: %s has duplicate cookie %llu\n", 299 desc->file->f_dentry->d_parent->d_name.name, 300 desc->file->f_dentry->d_name.name, 301 array->array[i].string.name, 302 *desc->dir_cookie); 303 } 304 status = -ELOOP; 305 goto out; 306 } 307 ctx->dup_cookie = *desc->dir_cookie; 308 ctx->duped = -1; 309 } 310 desc->file->f_pos = new_pos; 311 desc->cache_entry_index = i; 312 return 0; 313 } 314 } 315 if (array->eof_index >= 0) { 316 status = -EBADCOOKIE; 317 if (*desc->dir_cookie == array->last_cookie) 318 desc->eof = 1; 319 } 320 out: 321 return status; 322 } 323 324 static 325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 326 { 327 struct nfs_cache_array *array; 328 int status; 329 330 array = nfs_readdir_get_array(desc->page); 331 if (IS_ERR(array)) { 332 status = PTR_ERR(array); 333 goto out; 334 } 335 336 if (*desc->dir_cookie == 0) 337 status = nfs_readdir_search_for_pos(array, desc); 338 else 339 status = nfs_readdir_search_for_cookie(array, desc); 340 341 if (status == -EAGAIN) { 342 desc->last_cookie = array->last_cookie; 343 desc->current_index += array->size; 344 desc->page_index++; 345 } 346 nfs_readdir_release_array(desc->page); 347 out: 348 return status; 349 } 350 351 /* Fill a page with xdr information before transferring to the cache page */ 352 static 353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 354 struct nfs_entry *entry, struct file *file, struct inode *inode) 355 { 356 struct nfs_open_dir_context *ctx = file->private_data; 357 struct rpc_cred *cred = ctx->cred; 358 unsigned long timestamp, gencount; 359 int error; 360 361 again: 362 timestamp = jiffies; 363 gencount = nfs_inc_attr_generation_counter(); 364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 365 NFS_SERVER(inode)->dtsize, desc->plus); 366 if (error < 0) { 367 /* We requested READDIRPLUS, but the server doesn't grok it */ 368 if (error == -ENOTSUPP && desc->plus) { 369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 371 desc->plus = 0; 372 goto again; 373 } 374 goto error; 375 } 376 desc->timestamp = timestamp; 377 desc->gencount = gencount; 378 error: 379 return error; 380 } 381 382 static int xdr_decode(nfs_readdir_descriptor_t *desc, 383 struct nfs_entry *entry, struct xdr_stream *xdr) 384 { 385 int error; 386 387 error = desc->decode(xdr, entry, desc->plus); 388 if (error) 389 return error; 390 entry->fattr->time_start = desc->timestamp; 391 entry->fattr->gencount = desc->gencount; 392 return 0; 393 } 394 395 static 396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 397 { 398 if (dentry->d_inode == NULL) 399 goto different; 400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 401 goto different; 402 return 1; 403 different: 404 return 0; 405 } 406 407 static 408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp) 409 { 410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 411 return false; 412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 413 return true; 414 if (filp->f_pos == 0) 415 return true; 416 return false; 417 } 418 419 /* 420 * This function is called by the lookup code to request the use of 421 * readdirplus to accelerate any future lookups in the same 422 * directory. 423 */ 424 static 425 void nfs_advise_use_readdirplus(struct inode *dir) 426 { 427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 428 } 429 430 static 431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 432 { 433 struct qstr filename = QSTR_INIT(entry->name, entry->len); 434 struct dentry *dentry; 435 struct dentry *alias; 436 struct inode *dir = parent->d_inode; 437 struct inode *inode; 438 439 if (filename.name[0] == '.') { 440 if (filename.len == 1) 441 return; 442 if (filename.len == 2 && filename.name[1] == '.') 443 return; 444 } 445 filename.hash = full_name_hash(filename.name, filename.len); 446 447 dentry = d_lookup(parent, &filename); 448 if (dentry != NULL) { 449 if (nfs_same_file(dentry, entry)) { 450 nfs_refresh_inode(dentry->d_inode, entry->fattr); 451 goto out; 452 } else { 453 if (d_invalidate(dentry) != 0) 454 goto out; 455 dput(dentry); 456 } 457 } 458 459 dentry = d_alloc(parent, &filename); 460 if (dentry == NULL) 461 return; 462 463 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 464 if (IS_ERR(inode)) 465 goto out; 466 467 alias = d_materialise_unique(dentry, inode); 468 if (IS_ERR(alias)) 469 goto out; 470 else if (alias) { 471 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 472 dput(alias); 473 } else 474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 475 476 out: 477 dput(dentry); 478 } 479 480 /* Perform conversion from xdr to cache array */ 481 static 482 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 483 struct page **xdr_pages, struct page *page, unsigned int buflen) 484 { 485 struct xdr_stream stream; 486 struct xdr_buf buf; 487 struct page *scratch; 488 struct nfs_cache_array *array; 489 unsigned int count = 0; 490 int status; 491 492 scratch = alloc_page(GFP_KERNEL); 493 if (scratch == NULL) 494 return -ENOMEM; 495 496 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 497 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 498 499 do { 500 status = xdr_decode(desc, entry, &stream); 501 if (status != 0) { 502 if (status == -EAGAIN) 503 status = 0; 504 break; 505 } 506 507 count++; 508 509 if (desc->plus != 0) 510 nfs_prime_dcache(desc->file->f_path.dentry, entry); 511 512 status = nfs_readdir_add_to_array(entry, page); 513 if (status != 0) 514 break; 515 } while (!entry->eof); 516 517 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 518 array = nfs_readdir_get_array(page); 519 if (!IS_ERR(array)) { 520 array->eof_index = array->size; 521 status = 0; 522 nfs_readdir_release_array(page); 523 } else 524 status = PTR_ERR(array); 525 } 526 527 put_page(scratch); 528 return status; 529 } 530 531 static 532 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 533 { 534 unsigned int i; 535 for (i = 0; i < npages; i++) 536 put_page(pages[i]); 537 } 538 539 static 540 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 541 unsigned int npages) 542 { 543 nfs_readdir_free_pagearray(pages, npages); 544 } 545 546 /* 547 * nfs_readdir_large_page will allocate pages that must be freed with a call 548 * to nfs_readdir_free_large_page 549 */ 550 static 551 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 552 { 553 unsigned int i; 554 555 for (i = 0; i < npages; i++) { 556 struct page *page = alloc_page(GFP_KERNEL); 557 if (page == NULL) 558 goto out_freepages; 559 pages[i] = page; 560 } 561 return 0; 562 563 out_freepages: 564 nfs_readdir_free_pagearray(pages, i); 565 return -ENOMEM; 566 } 567 568 static 569 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 570 { 571 struct page *pages[NFS_MAX_READDIR_PAGES]; 572 void *pages_ptr = NULL; 573 struct nfs_entry entry; 574 struct file *file = desc->file; 575 struct nfs_cache_array *array; 576 int status = -ENOMEM; 577 unsigned int array_size = ARRAY_SIZE(pages); 578 579 entry.prev_cookie = 0; 580 entry.cookie = desc->last_cookie; 581 entry.eof = 0; 582 entry.fh = nfs_alloc_fhandle(); 583 entry.fattr = nfs_alloc_fattr(); 584 entry.server = NFS_SERVER(inode); 585 if (entry.fh == NULL || entry.fattr == NULL) 586 goto out; 587 588 array = nfs_readdir_get_array(page); 589 if (IS_ERR(array)) { 590 status = PTR_ERR(array); 591 goto out; 592 } 593 memset(array, 0, sizeof(struct nfs_cache_array)); 594 array->eof_index = -1; 595 596 status = nfs_readdir_large_page(pages, array_size); 597 if (status < 0) 598 goto out_release_array; 599 do { 600 unsigned int pglen; 601 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 602 603 if (status < 0) 604 break; 605 pglen = status; 606 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 607 if (status < 0) { 608 if (status == -ENOSPC) 609 status = 0; 610 break; 611 } 612 } while (array->eof_index < 0); 613 614 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 615 out_release_array: 616 nfs_readdir_release_array(page); 617 out: 618 nfs_free_fattr(entry.fattr); 619 nfs_free_fhandle(entry.fh); 620 return status; 621 } 622 623 /* 624 * Now we cache directories properly, by converting xdr information 625 * to an array that can be used for lookups later. This results in 626 * fewer cache pages, since we can store more information on each page. 627 * We only need to convert from xdr once so future lookups are much simpler 628 */ 629 static 630 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 631 { 632 struct inode *inode = file_inode(desc->file); 633 int ret; 634 635 ret = nfs_readdir_xdr_to_array(desc, page, inode); 636 if (ret < 0) 637 goto error; 638 SetPageUptodate(page); 639 640 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 641 /* Should never happen */ 642 nfs_zap_mapping(inode, inode->i_mapping); 643 } 644 unlock_page(page); 645 return 0; 646 error: 647 unlock_page(page); 648 return ret; 649 } 650 651 static 652 void cache_page_release(nfs_readdir_descriptor_t *desc) 653 { 654 if (!desc->page->mapping) 655 nfs_readdir_clear_array(desc->page); 656 page_cache_release(desc->page); 657 desc->page = NULL; 658 } 659 660 static 661 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 662 { 663 return read_cache_page(file_inode(desc->file)->i_mapping, 664 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 665 } 666 667 /* 668 * Returns 0 if desc->dir_cookie was found on page desc->page_index 669 */ 670 static 671 int find_cache_page(nfs_readdir_descriptor_t *desc) 672 { 673 int res; 674 675 desc->page = get_cache_page(desc); 676 if (IS_ERR(desc->page)) 677 return PTR_ERR(desc->page); 678 679 res = nfs_readdir_search_array(desc); 680 if (res != 0) 681 cache_page_release(desc); 682 return res; 683 } 684 685 /* Search for desc->dir_cookie from the beginning of the page cache */ 686 static inline 687 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 688 { 689 int res; 690 691 if (desc->page_index == 0) { 692 desc->current_index = 0; 693 desc->last_cookie = 0; 694 } 695 do { 696 res = find_cache_page(desc); 697 } while (res == -EAGAIN); 698 return res; 699 } 700 701 /* 702 * Once we've found the start of the dirent within a page: fill 'er up... 703 */ 704 static 705 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 706 filldir_t filldir) 707 { 708 struct file *file = desc->file; 709 int i = 0; 710 int res = 0; 711 struct nfs_cache_array *array = NULL; 712 struct nfs_open_dir_context *ctx = file->private_data; 713 714 array = nfs_readdir_get_array(desc->page); 715 if (IS_ERR(array)) { 716 res = PTR_ERR(array); 717 goto out; 718 } 719 720 for (i = desc->cache_entry_index; i < array->size; i++) { 721 struct nfs_cache_array_entry *ent; 722 723 ent = &array->array[i]; 724 if (filldir(dirent, ent->string.name, ent->string.len, 725 file->f_pos, nfs_compat_user_ino64(ent->ino), 726 ent->d_type) < 0) { 727 desc->eof = 1; 728 break; 729 } 730 file->f_pos++; 731 if (i < (array->size-1)) 732 *desc->dir_cookie = array->array[i+1].cookie; 733 else 734 *desc->dir_cookie = array->last_cookie; 735 if (ctx->duped != 0) 736 ctx->duped = 1; 737 } 738 if (array->eof_index >= 0) 739 desc->eof = 1; 740 741 nfs_readdir_release_array(desc->page); 742 out: 743 cache_page_release(desc); 744 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 745 (unsigned long long)*desc->dir_cookie, res); 746 return res; 747 } 748 749 /* 750 * If we cannot find a cookie in our cache, we suspect that this is 751 * because it points to a deleted file, so we ask the server to return 752 * whatever it thinks is the next entry. We then feed this to filldir. 753 * If all goes well, we should then be able to find our way round the 754 * cache on the next call to readdir_search_pagecache(); 755 * 756 * NOTE: we cannot add the anonymous page to the pagecache because 757 * the data it contains might not be page aligned. Besides, 758 * we should already have a complete representation of the 759 * directory in the page cache by the time we get here. 760 */ 761 static inline 762 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 763 filldir_t filldir) 764 { 765 struct page *page = NULL; 766 int status; 767 struct inode *inode = file_inode(desc->file); 768 struct nfs_open_dir_context *ctx = desc->file->private_data; 769 770 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 771 (unsigned long long)*desc->dir_cookie); 772 773 page = alloc_page(GFP_HIGHUSER); 774 if (!page) { 775 status = -ENOMEM; 776 goto out; 777 } 778 779 desc->page_index = 0; 780 desc->last_cookie = *desc->dir_cookie; 781 desc->page = page; 782 ctx->duped = 0; 783 784 status = nfs_readdir_xdr_to_array(desc, page, inode); 785 if (status < 0) 786 goto out_release; 787 788 status = nfs_do_filldir(desc, dirent, filldir); 789 790 out: 791 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 792 __func__, status); 793 return status; 794 out_release: 795 cache_page_release(desc); 796 goto out; 797 } 798 799 /* The file offset position represents the dirent entry number. A 800 last cookie cache takes care of the common case of reading the 801 whole directory. 802 */ 803 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 804 { 805 struct dentry *dentry = filp->f_path.dentry; 806 struct inode *inode = dentry->d_inode; 807 nfs_readdir_descriptor_t my_desc, 808 *desc = &my_desc; 809 struct nfs_open_dir_context *dir_ctx = filp->private_data; 810 int res; 811 812 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 813 dentry->d_parent->d_name.name, dentry->d_name.name, 814 (long long)filp->f_pos); 815 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 816 817 /* 818 * filp->f_pos points to the dirent entry number. 819 * *desc->dir_cookie has the cookie for the next entry. We have 820 * to either find the entry with the appropriate number or 821 * revalidate the cookie. 822 */ 823 memset(desc, 0, sizeof(*desc)); 824 825 desc->file = filp; 826 desc->dir_cookie = &dir_ctx->dir_cookie; 827 desc->decode = NFS_PROTO(inode)->decode_dirent; 828 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0; 829 830 nfs_block_sillyrename(dentry); 831 res = nfs_revalidate_mapping(inode, filp->f_mapping); 832 if (res < 0) 833 goto out; 834 835 do { 836 res = readdir_search_pagecache(desc); 837 838 if (res == -EBADCOOKIE) { 839 res = 0; 840 /* This means either end of directory */ 841 if (*desc->dir_cookie && desc->eof == 0) { 842 /* Or that the server has 'lost' a cookie */ 843 res = uncached_readdir(desc, dirent, filldir); 844 if (res == 0) 845 continue; 846 } 847 break; 848 } 849 if (res == -ETOOSMALL && desc->plus) { 850 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 851 nfs_zap_caches(inode); 852 desc->page_index = 0; 853 desc->plus = 0; 854 desc->eof = 0; 855 continue; 856 } 857 if (res < 0) 858 break; 859 860 res = nfs_do_filldir(desc, dirent, filldir); 861 if (res < 0) 862 break; 863 } while (!desc->eof); 864 out: 865 nfs_unblock_sillyrename(dentry); 866 if (res > 0) 867 res = 0; 868 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 869 dentry->d_parent->d_name.name, dentry->d_name.name, 870 res); 871 return res; 872 } 873 874 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 875 { 876 struct dentry *dentry = filp->f_path.dentry; 877 struct inode *inode = dentry->d_inode; 878 struct nfs_open_dir_context *dir_ctx = filp->private_data; 879 880 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 881 dentry->d_parent->d_name.name, 882 dentry->d_name.name, 883 offset, whence); 884 885 mutex_lock(&inode->i_mutex); 886 switch (whence) { 887 case 1: 888 offset += filp->f_pos; 889 case 0: 890 if (offset >= 0) 891 break; 892 default: 893 offset = -EINVAL; 894 goto out; 895 } 896 if (offset != filp->f_pos) { 897 filp->f_pos = offset; 898 dir_ctx->dir_cookie = 0; 899 dir_ctx->duped = 0; 900 } 901 out: 902 mutex_unlock(&inode->i_mutex); 903 return offset; 904 } 905 906 /* 907 * All directory operations under NFS are synchronous, so fsync() 908 * is a dummy operation. 909 */ 910 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 911 int datasync) 912 { 913 struct dentry *dentry = filp->f_path.dentry; 914 struct inode *inode = dentry->d_inode; 915 916 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 917 dentry->d_parent->d_name.name, dentry->d_name.name, 918 datasync); 919 920 mutex_lock(&inode->i_mutex); 921 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 922 mutex_unlock(&inode->i_mutex); 923 return 0; 924 } 925 926 /** 927 * nfs_force_lookup_revalidate - Mark the directory as having changed 928 * @dir - pointer to directory inode 929 * 930 * This forces the revalidation code in nfs_lookup_revalidate() to do a 931 * full lookup on all child dentries of 'dir' whenever a change occurs 932 * on the server that might have invalidated our dcache. 933 * 934 * The caller should be holding dir->i_lock 935 */ 936 void nfs_force_lookup_revalidate(struct inode *dir) 937 { 938 NFS_I(dir)->cache_change_attribute++; 939 } 940 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 941 942 /* 943 * A check for whether or not the parent directory has changed. 944 * In the case it has, we assume that the dentries are untrustworthy 945 * and may need to be looked up again. 946 */ 947 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 948 { 949 if (IS_ROOT(dentry)) 950 return 1; 951 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 952 return 0; 953 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 954 return 0; 955 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 956 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 957 return 0; 958 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 959 return 0; 960 return 1; 961 } 962 963 /* 964 * Use intent information to check whether or not we're going to do 965 * an O_EXCL create using this path component. 966 */ 967 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 968 { 969 if (NFS_PROTO(dir)->version == 2) 970 return 0; 971 return flags & LOOKUP_EXCL; 972 } 973 974 /* 975 * Inode and filehandle revalidation for lookups. 976 * 977 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 978 * or if the intent information indicates that we're about to open this 979 * particular file and the "nocto" mount flag is not set. 980 * 981 */ 982 static 983 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 984 { 985 struct nfs_server *server = NFS_SERVER(inode); 986 int ret; 987 988 if (IS_AUTOMOUNT(inode)) 989 return 0; 990 /* VFS wants an on-the-wire revalidation */ 991 if (flags & LOOKUP_REVAL) 992 goto out_force; 993 /* This is an open(2) */ 994 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 995 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 996 goto out_force; 997 out: 998 return (inode->i_nlink == 0) ? -ENOENT : 0; 999 out_force: 1000 ret = __nfs_revalidate_inode(server, inode); 1001 if (ret != 0) 1002 return ret; 1003 goto out; 1004 } 1005 1006 /* 1007 * We judge how long we want to trust negative 1008 * dentries by looking at the parent inode mtime. 1009 * 1010 * If parent mtime has changed, we revalidate, else we wait for a 1011 * period corresponding to the parent's attribute cache timeout value. 1012 */ 1013 static inline 1014 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1015 unsigned int flags) 1016 { 1017 /* Don't revalidate a negative dentry if we're creating a new file */ 1018 if (flags & LOOKUP_CREATE) 1019 return 0; 1020 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1021 return 1; 1022 return !nfs_check_verifier(dir, dentry); 1023 } 1024 1025 /* 1026 * This is called every time the dcache has a lookup hit, 1027 * and we should check whether we can really trust that 1028 * lookup. 1029 * 1030 * NOTE! The hit can be a negative hit too, don't assume 1031 * we have an inode! 1032 * 1033 * If the parent directory is seen to have changed, we throw out the 1034 * cached dentry and do a new lookup. 1035 */ 1036 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1037 { 1038 struct inode *dir; 1039 struct inode *inode; 1040 struct dentry *parent; 1041 struct nfs_fh *fhandle = NULL; 1042 struct nfs_fattr *fattr = NULL; 1043 int error; 1044 1045 if (flags & LOOKUP_RCU) 1046 return -ECHILD; 1047 1048 parent = dget_parent(dentry); 1049 dir = parent->d_inode; 1050 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1051 inode = dentry->d_inode; 1052 1053 if (!inode) { 1054 if (nfs_neg_need_reval(dir, dentry, flags)) 1055 goto out_bad; 1056 goto out_valid_noent; 1057 } 1058 1059 if (is_bad_inode(inode)) { 1060 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1061 __func__, dentry->d_parent->d_name.name, 1062 dentry->d_name.name); 1063 goto out_bad; 1064 } 1065 1066 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1067 goto out_set_verifier; 1068 1069 /* Force a full look up iff the parent directory has changed */ 1070 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1071 if (nfs_lookup_verify_inode(inode, flags)) 1072 goto out_zap_parent; 1073 goto out_valid; 1074 } 1075 1076 if (NFS_STALE(inode)) 1077 goto out_bad; 1078 1079 error = -ENOMEM; 1080 fhandle = nfs_alloc_fhandle(); 1081 fattr = nfs_alloc_fattr(); 1082 if (fhandle == NULL || fattr == NULL) 1083 goto out_error; 1084 1085 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1086 if (error) 1087 goto out_bad; 1088 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1089 goto out_bad; 1090 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1091 goto out_bad; 1092 1093 nfs_free_fattr(fattr); 1094 nfs_free_fhandle(fhandle); 1095 out_set_verifier: 1096 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1097 out_valid: 1098 /* Success: notify readdir to use READDIRPLUS */ 1099 nfs_advise_use_readdirplus(dir); 1100 out_valid_noent: 1101 dput(parent); 1102 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1103 __func__, dentry->d_parent->d_name.name, 1104 dentry->d_name.name); 1105 return 1; 1106 out_zap_parent: 1107 nfs_zap_caches(dir); 1108 out_bad: 1109 nfs_free_fattr(fattr); 1110 nfs_free_fhandle(fhandle); 1111 nfs_mark_for_revalidate(dir); 1112 if (inode && S_ISDIR(inode->i_mode)) { 1113 /* Purge readdir caches. */ 1114 nfs_zap_caches(inode); 1115 /* If we have submounts, don't unhash ! */ 1116 if (have_submounts(dentry)) 1117 goto out_valid; 1118 if (dentry->d_flags & DCACHE_DISCONNECTED) 1119 goto out_valid; 1120 shrink_dcache_parent(dentry); 1121 } 1122 d_drop(dentry); 1123 dput(parent); 1124 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1125 __func__, dentry->d_parent->d_name.name, 1126 dentry->d_name.name); 1127 return 0; 1128 out_error: 1129 nfs_free_fattr(fattr); 1130 nfs_free_fhandle(fhandle); 1131 dput(parent); 1132 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1133 __func__, dentry->d_parent->d_name.name, 1134 dentry->d_name.name, error); 1135 return error; 1136 } 1137 1138 /* 1139 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1140 * when we don't really care about the dentry name. This is called when a 1141 * pathwalk ends on a dentry that was not found via a normal lookup in the 1142 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1143 * 1144 * In this situation, we just want to verify that the inode itself is OK 1145 * since the dentry might have changed on the server. 1146 */ 1147 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1148 { 1149 int error; 1150 struct inode *inode = dentry->d_inode; 1151 1152 /* 1153 * I believe we can only get a negative dentry here in the case of a 1154 * procfs-style symlink. Just assume it's correct for now, but we may 1155 * eventually need to do something more here. 1156 */ 1157 if (!inode) { 1158 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n", 1159 __func__, dentry->d_parent->d_name.name, 1160 dentry->d_name.name); 1161 return 1; 1162 } 1163 1164 if (is_bad_inode(inode)) { 1165 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1166 __func__, dentry->d_parent->d_name.name, 1167 dentry->d_name.name); 1168 return 0; 1169 } 1170 1171 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1172 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1173 __func__, inode->i_ino, error ? "invalid" : "valid"); 1174 return !error; 1175 } 1176 1177 /* 1178 * This is called from dput() when d_count is going to 0. 1179 */ 1180 static int nfs_dentry_delete(const struct dentry *dentry) 1181 { 1182 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1183 dentry->d_parent->d_name.name, dentry->d_name.name, 1184 dentry->d_flags); 1185 1186 /* Unhash any dentry with a stale inode */ 1187 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1188 return 1; 1189 1190 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1191 /* Unhash it, so that ->d_iput() would be called */ 1192 return 1; 1193 } 1194 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1195 /* Unhash it, so that ancestors of killed async unlink 1196 * files will be cleaned up during umount */ 1197 return 1; 1198 } 1199 return 0; 1200 1201 } 1202 1203 /* Ensure that we revalidate inode->i_nlink */ 1204 static void nfs_drop_nlink(struct inode *inode) 1205 { 1206 spin_lock(&inode->i_lock); 1207 /* drop the inode if we're reasonably sure this is the last link */ 1208 if (inode->i_nlink == 1) 1209 clear_nlink(inode); 1210 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1211 spin_unlock(&inode->i_lock); 1212 } 1213 1214 /* 1215 * Called when the dentry loses inode. 1216 * We use it to clean up silly-renamed files. 1217 */ 1218 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1219 { 1220 if (S_ISDIR(inode->i_mode)) 1221 /* drop any readdir cache as it could easily be old */ 1222 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1223 1224 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1225 nfs_complete_unlink(dentry, inode); 1226 nfs_drop_nlink(inode); 1227 } 1228 iput(inode); 1229 } 1230 1231 static void nfs_d_release(struct dentry *dentry) 1232 { 1233 /* free cached devname value, if it survived that far */ 1234 if (unlikely(dentry->d_fsdata)) { 1235 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1236 WARN_ON(1); 1237 else 1238 kfree(dentry->d_fsdata); 1239 } 1240 } 1241 1242 const struct dentry_operations nfs_dentry_operations = { 1243 .d_revalidate = nfs_lookup_revalidate, 1244 .d_weak_revalidate = nfs_weak_revalidate, 1245 .d_delete = nfs_dentry_delete, 1246 .d_iput = nfs_dentry_iput, 1247 .d_automount = nfs_d_automount, 1248 .d_release = nfs_d_release, 1249 }; 1250 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1251 1252 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1253 { 1254 struct dentry *res; 1255 struct dentry *parent; 1256 struct inode *inode = NULL; 1257 struct nfs_fh *fhandle = NULL; 1258 struct nfs_fattr *fattr = NULL; 1259 int error; 1260 1261 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1262 dentry->d_parent->d_name.name, dentry->d_name.name); 1263 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1264 1265 res = ERR_PTR(-ENAMETOOLONG); 1266 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1267 goto out; 1268 1269 /* 1270 * If we're doing an exclusive create, optimize away the lookup 1271 * but don't hash the dentry. 1272 */ 1273 if (nfs_is_exclusive_create(dir, flags)) { 1274 d_instantiate(dentry, NULL); 1275 res = NULL; 1276 goto out; 1277 } 1278 1279 res = ERR_PTR(-ENOMEM); 1280 fhandle = nfs_alloc_fhandle(); 1281 fattr = nfs_alloc_fattr(); 1282 if (fhandle == NULL || fattr == NULL) 1283 goto out; 1284 1285 parent = dentry->d_parent; 1286 /* Protect against concurrent sillydeletes */ 1287 nfs_block_sillyrename(parent); 1288 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1289 if (error == -ENOENT) 1290 goto no_entry; 1291 if (error < 0) { 1292 res = ERR_PTR(error); 1293 goto out_unblock_sillyrename; 1294 } 1295 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1296 res = ERR_CAST(inode); 1297 if (IS_ERR(res)) 1298 goto out_unblock_sillyrename; 1299 1300 /* Success: notify readdir to use READDIRPLUS */ 1301 nfs_advise_use_readdirplus(dir); 1302 1303 no_entry: 1304 res = d_materialise_unique(dentry, inode); 1305 if (res != NULL) { 1306 if (IS_ERR(res)) 1307 goto out_unblock_sillyrename; 1308 dentry = res; 1309 } 1310 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1311 out_unblock_sillyrename: 1312 nfs_unblock_sillyrename(parent); 1313 out: 1314 nfs_free_fattr(fattr); 1315 nfs_free_fhandle(fhandle); 1316 return res; 1317 } 1318 EXPORT_SYMBOL_GPL(nfs_lookup); 1319 1320 #if IS_ENABLED(CONFIG_NFS_V4) 1321 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1322 1323 const struct dentry_operations nfs4_dentry_operations = { 1324 .d_revalidate = nfs4_lookup_revalidate, 1325 .d_delete = nfs_dentry_delete, 1326 .d_iput = nfs_dentry_iput, 1327 .d_automount = nfs_d_automount, 1328 .d_release = nfs_d_release, 1329 }; 1330 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1331 1332 static fmode_t flags_to_mode(int flags) 1333 { 1334 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1335 if ((flags & O_ACCMODE) != O_WRONLY) 1336 res |= FMODE_READ; 1337 if ((flags & O_ACCMODE) != O_RDONLY) 1338 res |= FMODE_WRITE; 1339 return res; 1340 } 1341 1342 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1343 { 1344 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1345 } 1346 1347 static int do_open(struct inode *inode, struct file *filp) 1348 { 1349 nfs_fscache_set_inode_cookie(inode, filp); 1350 return 0; 1351 } 1352 1353 static int nfs_finish_open(struct nfs_open_context *ctx, 1354 struct dentry *dentry, 1355 struct file *file, unsigned open_flags, 1356 int *opened) 1357 { 1358 int err; 1359 1360 if (ctx->dentry != dentry) { 1361 dput(ctx->dentry); 1362 ctx->dentry = dget(dentry); 1363 } 1364 1365 /* If the open_intent is for execute, we have an extra check to make */ 1366 if (ctx->mode & FMODE_EXEC) { 1367 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags); 1368 if (err < 0) 1369 goto out; 1370 } 1371 1372 err = finish_open(file, dentry, do_open, opened); 1373 if (err) 1374 goto out; 1375 nfs_file_set_open_context(file, ctx); 1376 1377 out: 1378 put_nfs_open_context(ctx); 1379 return err; 1380 } 1381 1382 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1383 struct file *file, unsigned open_flags, 1384 umode_t mode, int *opened) 1385 { 1386 struct nfs_open_context *ctx; 1387 struct dentry *res; 1388 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1389 struct inode *inode; 1390 int err; 1391 1392 /* Expect a negative dentry */ 1393 BUG_ON(dentry->d_inode); 1394 1395 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n", 1396 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1397 1398 /* NFS only supports OPEN on regular files */ 1399 if ((open_flags & O_DIRECTORY)) { 1400 if (!d_unhashed(dentry)) { 1401 /* 1402 * Hashed negative dentry with O_DIRECTORY: dentry was 1403 * revalidated and is fine, no need to perform lookup 1404 * again 1405 */ 1406 return -ENOENT; 1407 } 1408 goto no_open; 1409 } 1410 1411 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1412 return -ENAMETOOLONG; 1413 1414 if (open_flags & O_CREAT) { 1415 attr.ia_valid |= ATTR_MODE; 1416 attr.ia_mode = mode & ~current_umask(); 1417 } 1418 if (open_flags & O_TRUNC) { 1419 attr.ia_valid |= ATTR_SIZE; 1420 attr.ia_size = 0; 1421 } 1422 1423 ctx = create_nfs_open_context(dentry, open_flags); 1424 err = PTR_ERR(ctx); 1425 if (IS_ERR(ctx)) 1426 goto out; 1427 1428 nfs_block_sillyrename(dentry->d_parent); 1429 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1430 d_drop(dentry); 1431 if (IS_ERR(inode)) { 1432 nfs_unblock_sillyrename(dentry->d_parent); 1433 put_nfs_open_context(ctx); 1434 err = PTR_ERR(inode); 1435 switch (err) { 1436 case -ENOENT: 1437 d_add(dentry, NULL); 1438 break; 1439 case -EISDIR: 1440 case -ENOTDIR: 1441 goto no_open; 1442 case -ELOOP: 1443 if (!(open_flags & O_NOFOLLOW)) 1444 goto no_open; 1445 break; 1446 /* case -EINVAL: */ 1447 default: 1448 break; 1449 } 1450 goto out; 1451 } 1452 res = d_add_unique(dentry, inode); 1453 if (res != NULL) 1454 dentry = res; 1455 1456 nfs_unblock_sillyrename(dentry->d_parent); 1457 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1458 1459 err = nfs_finish_open(ctx, dentry, file, open_flags, opened); 1460 1461 dput(res); 1462 out: 1463 return err; 1464 1465 no_open: 1466 res = nfs_lookup(dir, dentry, 0); 1467 err = PTR_ERR(res); 1468 if (IS_ERR(res)) 1469 goto out; 1470 1471 return finish_no_open(file, res); 1472 } 1473 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1474 1475 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1476 { 1477 struct dentry *parent = NULL; 1478 struct inode *inode; 1479 struct inode *dir; 1480 int ret = 0; 1481 1482 if (flags & LOOKUP_RCU) 1483 return -ECHILD; 1484 1485 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1486 goto no_open; 1487 if (d_mountpoint(dentry)) 1488 goto no_open; 1489 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1490 goto no_open; 1491 1492 inode = dentry->d_inode; 1493 parent = dget_parent(dentry); 1494 dir = parent->d_inode; 1495 1496 /* We can't create new files in nfs_open_revalidate(), so we 1497 * optimize away revalidation of negative dentries. 1498 */ 1499 if (inode == NULL) { 1500 if (!nfs_neg_need_reval(dir, dentry, flags)) 1501 ret = 1; 1502 goto out; 1503 } 1504 1505 /* NFS only supports OPEN on regular files */ 1506 if (!S_ISREG(inode->i_mode)) 1507 goto no_open_dput; 1508 /* We cannot do exclusive creation on a positive dentry */ 1509 if (flags & LOOKUP_EXCL) 1510 goto no_open_dput; 1511 1512 /* Let f_op->open() actually open (and revalidate) the file */ 1513 ret = 1; 1514 1515 out: 1516 dput(parent); 1517 return ret; 1518 1519 no_open_dput: 1520 dput(parent); 1521 no_open: 1522 return nfs_lookup_revalidate(dentry, flags); 1523 } 1524 1525 #endif /* CONFIG_NFSV4 */ 1526 1527 /* 1528 * Code common to create, mkdir, and mknod. 1529 */ 1530 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1531 struct nfs_fattr *fattr) 1532 { 1533 struct dentry *parent = dget_parent(dentry); 1534 struct inode *dir = parent->d_inode; 1535 struct inode *inode; 1536 int error = -EACCES; 1537 1538 d_drop(dentry); 1539 1540 /* We may have been initialized further down */ 1541 if (dentry->d_inode) 1542 goto out; 1543 if (fhandle->size == 0) { 1544 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1545 if (error) 1546 goto out_error; 1547 } 1548 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1549 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1550 struct nfs_server *server = NFS_SB(dentry->d_sb); 1551 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1552 if (error < 0) 1553 goto out_error; 1554 } 1555 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1556 error = PTR_ERR(inode); 1557 if (IS_ERR(inode)) 1558 goto out_error; 1559 d_add(dentry, inode); 1560 out: 1561 dput(parent); 1562 return 0; 1563 out_error: 1564 nfs_mark_for_revalidate(dir); 1565 dput(parent); 1566 return error; 1567 } 1568 EXPORT_SYMBOL_GPL(nfs_instantiate); 1569 1570 /* 1571 * Following a failed create operation, we drop the dentry rather 1572 * than retain a negative dentry. This avoids a problem in the event 1573 * that the operation succeeded on the server, but an error in the 1574 * reply path made it appear to have failed. 1575 */ 1576 int nfs_create(struct inode *dir, struct dentry *dentry, 1577 umode_t mode, bool excl) 1578 { 1579 struct iattr attr; 1580 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1581 int error; 1582 1583 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1584 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1585 1586 attr.ia_mode = mode; 1587 attr.ia_valid = ATTR_MODE; 1588 1589 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1590 if (error != 0) 1591 goto out_err; 1592 return 0; 1593 out_err: 1594 d_drop(dentry); 1595 return error; 1596 } 1597 EXPORT_SYMBOL_GPL(nfs_create); 1598 1599 /* 1600 * See comments for nfs_proc_create regarding failed operations. 1601 */ 1602 int 1603 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1604 { 1605 struct iattr attr; 1606 int status; 1607 1608 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1609 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1610 1611 if (!new_valid_dev(rdev)) 1612 return -EINVAL; 1613 1614 attr.ia_mode = mode; 1615 attr.ia_valid = ATTR_MODE; 1616 1617 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1618 if (status != 0) 1619 goto out_err; 1620 return 0; 1621 out_err: 1622 d_drop(dentry); 1623 return status; 1624 } 1625 EXPORT_SYMBOL_GPL(nfs_mknod); 1626 1627 /* 1628 * See comments for nfs_proc_create regarding failed operations. 1629 */ 1630 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1631 { 1632 struct iattr attr; 1633 int error; 1634 1635 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1636 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1637 1638 attr.ia_valid = ATTR_MODE; 1639 attr.ia_mode = mode | S_IFDIR; 1640 1641 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1642 if (error != 0) 1643 goto out_err; 1644 return 0; 1645 out_err: 1646 d_drop(dentry); 1647 return error; 1648 } 1649 EXPORT_SYMBOL_GPL(nfs_mkdir); 1650 1651 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1652 { 1653 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1654 d_delete(dentry); 1655 } 1656 1657 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1658 { 1659 int error; 1660 1661 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1662 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1663 1664 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1665 /* Ensure the VFS deletes this inode */ 1666 if (error == 0 && dentry->d_inode != NULL) 1667 clear_nlink(dentry->d_inode); 1668 else if (error == -ENOENT) 1669 nfs_dentry_handle_enoent(dentry); 1670 1671 return error; 1672 } 1673 EXPORT_SYMBOL_GPL(nfs_rmdir); 1674 1675 /* 1676 * Remove a file after making sure there are no pending writes, 1677 * and after checking that the file has only one user. 1678 * 1679 * We invalidate the attribute cache and free the inode prior to the operation 1680 * to avoid possible races if the server reuses the inode. 1681 */ 1682 static int nfs_safe_remove(struct dentry *dentry) 1683 { 1684 struct inode *dir = dentry->d_parent->d_inode; 1685 struct inode *inode = dentry->d_inode; 1686 int error = -EBUSY; 1687 1688 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1689 dentry->d_parent->d_name.name, dentry->d_name.name); 1690 1691 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1692 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1693 error = 0; 1694 goto out; 1695 } 1696 1697 if (inode != NULL) { 1698 NFS_PROTO(inode)->return_delegation(inode); 1699 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1700 if (error == 0) 1701 nfs_drop_nlink(inode); 1702 } else 1703 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1704 if (error == -ENOENT) 1705 nfs_dentry_handle_enoent(dentry); 1706 out: 1707 return error; 1708 } 1709 1710 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1711 * belongs to an active ".nfs..." file and we return -EBUSY. 1712 * 1713 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1714 */ 1715 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1716 { 1717 int error; 1718 int need_rehash = 0; 1719 1720 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1721 dir->i_ino, dentry->d_name.name); 1722 1723 spin_lock(&dentry->d_lock); 1724 if (dentry->d_count > 1) { 1725 spin_unlock(&dentry->d_lock); 1726 /* Start asynchronous writeout of the inode */ 1727 write_inode_now(dentry->d_inode, 0); 1728 error = nfs_sillyrename(dir, dentry); 1729 return error; 1730 } 1731 if (!d_unhashed(dentry)) { 1732 __d_drop(dentry); 1733 need_rehash = 1; 1734 } 1735 spin_unlock(&dentry->d_lock); 1736 error = nfs_safe_remove(dentry); 1737 if (!error || error == -ENOENT) { 1738 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1739 } else if (need_rehash) 1740 d_rehash(dentry); 1741 return error; 1742 } 1743 EXPORT_SYMBOL_GPL(nfs_unlink); 1744 1745 /* 1746 * To create a symbolic link, most file systems instantiate a new inode, 1747 * add a page to it containing the path, then write it out to the disk 1748 * using prepare_write/commit_write. 1749 * 1750 * Unfortunately the NFS client can't create the in-core inode first 1751 * because it needs a file handle to create an in-core inode (see 1752 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1753 * symlink request has completed on the server. 1754 * 1755 * So instead we allocate a raw page, copy the symname into it, then do 1756 * the SYMLINK request with the page as the buffer. If it succeeds, we 1757 * now have a new file handle and can instantiate an in-core NFS inode 1758 * and move the raw page into its mapping. 1759 */ 1760 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1761 { 1762 struct pagevec lru_pvec; 1763 struct page *page; 1764 char *kaddr; 1765 struct iattr attr; 1766 unsigned int pathlen = strlen(symname); 1767 int error; 1768 1769 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1770 dir->i_ino, dentry->d_name.name, symname); 1771 1772 if (pathlen > PAGE_SIZE) 1773 return -ENAMETOOLONG; 1774 1775 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1776 attr.ia_valid = ATTR_MODE; 1777 1778 page = alloc_page(GFP_HIGHUSER); 1779 if (!page) 1780 return -ENOMEM; 1781 1782 kaddr = kmap_atomic(page); 1783 memcpy(kaddr, symname, pathlen); 1784 if (pathlen < PAGE_SIZE) 1785 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1786 kunmap_atomic(kaddr); 1787 1788 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1789 if (error != 0) { 1790 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1791 dir->i_sb->s_id, dir->i_ino, 1792 dentry->d_name.name, symname, error); 1793 d_drop(dentry); 1794 __free_page(page); 1795 return error; 1796 } 1797 1798 /* 1799 * No big deal if we can't add this page to the page cache here. 1800 * READLINK will get the missing page from the server if needed. 1801 */ 1802 pagevec_init(&lru_pvec, 0); 1803 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1804 GFP_KERNEL)) { 1805 pagevec_add(&lru_pvec, page); 1806 pagevec_lru_add_file(&lru_pvec); 1807 SetPageUptodate(page); 1808 unlock_page(page); 1809 } else 1810 __free_page(page); 1811 1812 return 0; 1813 } 1814 EXPORT_SYMBOL_GPL(nfs_symlink); 1815 1816 int 1817 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1818 { 1819 struct inode *inode = old_dentry->d_inode; 1820 int error; 1821 1822 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1823 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1824 dentry->d_parent->d_name.name, dentry->d_name.name); 1825 1826 NFS_PROTO(inode)->return_delegation(inode); 1827 1828 d_drop(dentry); 1829 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1830 if (error == 0) { 1831 ihold(inode); 1832 d_add(dentry, inode); 1833 } 1834 return error; 1835 } 1836 EXPORT_SYMBOL_GPL(nfs_link); 1837 1838 /* 1839 * RENAME 1840 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1841 * different file handle for the same inode after a rename (e.g. when 1842 * moving to a different directory). A fail-safe method to do so would 1843 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1844 * rename the old file using the sillyrename stuff. This way, the original 1845 * file in old_dir will go away when the last process iput()s the inode. 1846 * 1847 * FIXED. 1848 * 1849 * It actually works quite well. One needs to have the possibility for 1850 * at least one ".nfs..." file in each directory the file ever gets 1851 * moved or linked to which happens automagically with the new 1852 * implementation that only depends on the dcache stuff instead of 1853 * using the inode layer 1854 * 1855 * Unfortunately, things are a little more complicated than indicated 1856 * above. For a cross-directory move, we want to make sure we can get 1857 * rid of the old inode after the operation. This means there must be 1858 * no pending writes (if it's a file), and the use count must be 1. 1859 * If these conditions are met, we can drop the dentries before doing 1860 * the rename. 1861 */ 1862 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1863 struct inode *new_dir, struct dentry *new_dentry) 1864 { 1865 struct inode *old_inode = old_dentry->d_inode; 1866 struct inode *new_inode = new_dentry->d_inode; 1867 struct dentry *dentry = NULL, *rehash = NULL; 1868 int error = -EBUSY; 1869 1870 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1871 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1872 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1873 new_dentry->d_count); 1874 1875 /* 1876 * For non-directories, check whether the target is busy and if so, 1877 * make a copy of the dentry and then do a silly-rename. If the 1878 * silly-rename succeeds, the copied dentry is hashed and becomes 1879 * the new target. 1880 */ 1881 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1882 /* 1883 * To prevent any new references to the target during the 1884 * rename, we unhash the dentry in advance. 1885 */ 1886 if (!d_unhashed(new_dentry)) { 1887 d_drop(new_dentry); 1888 rehash = new_dentry; 1889 } 1890 1891 if (new_dentry->d_count > 2) { 1892 int err; 1893 1894 /* copy the target dentry's name */ 1895 dentry = d_alloc(new_dentry->d_parent, 1896 &new_dentry->d_name); 1897 if (!dentry) 1898 goto out; 1899 1900 /* silly-rename the existing target ... */ 1901 err = nfs_sillyrename(new_dir, new_dentry); 1902 if (err) 1903 goto out; 1904 1905 new_dentry = dentry; 1906 rehash = NULL; 1907 new_inode = NULL; 1908 } 1909 } 1910 1911 NFS_PROTO(old_inode)->return_delegation(old_inode); 1912 if (new_inode != NULL) 1913 NFS_PROTO(new_inode)->return_delegation(new_inode); 1914 1915 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1916 new_dir, &new_dentry->d_name); 1917 nfs_mark_for_revalidate(old_inode); 1918 out: 1919 if (rehash) 1920 d_rehash(rehash); 1921 if (!error) { 1922 if (new_inode != NULL) 1923 nfs_drop_nlink(new_inode); 1924 d_move(old_dentry, new_dentry); 1925 nfs_set_verifier(new_dentry, 1926 nfs_save_change_attribute(new_dir)); 1927 } else if (error == -ENOENT) 1928 nfs_dentry_handle_enoent(old_dentry); 1929 1930 /* new dentry created? */ 1931 if (dentry) 1932 dput(dentry); 1933 return error; 1934 } 1935 EXPORT_SYMBOL_GPL(nfs_rename); 1936 1937 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1938 static LIST_HEAD(nfs_access_lru_list); 1939 static atomic_long_t nfs_access_nr_entries; 1940 1941 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1942 { 1943 put_rpccred(entry->cred); 1944 kfree(entry); 1945 smp_mb__before_atomic_dec(); 1946 atomic_long_dec(&nfs_access_nr_entries); 1947 smp_mb__after_atomic_dec(); 1948 } 1949 1950 static void nfs_access_free_list(struct list_head *head) 1951 { 1952 struct nfs_access_entry *cache; 1953 1954 while (!list_empty(head)) { 1955 cache = list_entry(head->next, struct nfs_access_entry, lru); 1956 list_del(&cache->lru); 1957 nfs_access_free_entry(cache); 1958 } 1959 } 1960 1961 int nfs_access_cache_shrinker(struct shrinker *shrink, 1962 struct shrink_control *sc) 1963 { 1964 LIST_HEAD(head); 1965 struct nfs_inode *nfsi, *next; 1966 struct nfs_access_entry *cache; 1967 int nr_to_scan = sc->nr_to_scan; 1968 gfp_t gfp_mask = sc->gfp_mask; 1969 1970 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 1971 return (nr_to_scan == 0) ? 0 : -1; 1972 1973 spin_lock(&nfs_access_lru_lock); 1974 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 1975 struct inode *inode; 1976 1977 if (nr_to_scan-- == 0) 1978 break; 1979 inode = &nfsi->vfs_inode; 1980 spin_lock(&inode->i_lock); 1981 if (list_empty(&nfsi->access_cache_entry_lru)) 1982 goto remove_lru_entry; 1983 cache = list_entry(nfsi->access_cache_entry_lru.next, 1984 struct nfs_access_entry, lru); 1985 list_move(&cache->lru, &head); 1986 rb_erase(&cache->rb_node, &nfsi->access_cache); 1987 if (!list_empty(&nfsi->access_cache_entry_lru)) 1988 list_move_tail(&nfsi->access_cache_inode_lru, 1989 &nfs_access_lru_list); 1990 else { 1991 remove_lru_entry: 1992 list_del_init(&nfsi->access_cache_inode_lru); 1993 smp_mb__before_clear_bit(); 1994 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1995 smp_mb__after_clear_bit(); 1996 } 1997 spin_unlock(&inode->i_lock); 1998 } 1999 spin_unlock(&nfs_access_lru_lock); 2000 nfs_access_free_list(&head); 2001 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 2002 } 2003 2004 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2005 { 2006 struct rb_root *root_node = &nfsi->access_cache; 2007 struct rb_node *n; 2008 struct nfs_access_entry *entry; 2009 2010 /* Unhook entries from the cache */ 2011 while ((n = rb_first(root_node)) != NULL) { 2012 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2013 rb_erase(n, root_node); 2014 list_move(&entry->lru, head); 2015 } 2016 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2017 } 2018 2019 void nfs_access_zap_cache(struct inode *inode) 2020 { 2021 LIST_HEAD(head); 2022 2023 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2024 return; 2025 /* Remove from global LRU init */ 2026 spin_lock(&nfs_access_lru_lock); 2027 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2028 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2029 2030 spin_lock(&inode->i_lock); 2031 __nfs_access_zap_cache(NFS_I(inode), &head); 2032 spin_unlock(&inode->i_lock); 2033 spin_unlock(&nfs_access_lru_lock); 2034 nfs_access_free_list(&head); 2035 } 2036 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2037 2038 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2039 { 2040 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2041 struct nfs_access_entry *entry; 2042 2043 while (n != NULL) { 2044 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2045 2046 if (cred < entry->cred) 2047 n = n->rb_left; 2048 else if (cred > entry->cred) 2049 n = n->rb_right; 2050 else 2051 return entry; 2052 } 2053 return NULL; 2054 } 2055 2056 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2057 { 2058 struct nfs_inode *nfsi = NFS_I(inode); 2059 struct nfs_access_entry *cache; 2060 int err = -ENOENT; 2061 2062 spin_lock(&inode->i_lock); 2063 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2064 goto out_zap; 2065 cache = nfs_access_search_rbtree(inode, cred); 2066 if (cache == NULL) 2067 goto out; 2068 if (!nfs_have_delegated_attributes(inode) && 2069 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2070 goto out_stale; 2071 res->jiffies = cache->jiffies; 2072 res->cred = cache->cred; 2073 res->mask = cache->mask; 2074 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2075 err = 0; 2076 out: 2077 spin_unlock(&inode->i_lock); 2078 return err; 2079 out_stale: 2080 rb_erase(&cache->rb_node, &nfsi->access_cache); 2081 list_del(&cache->lru); 2082 spin_unlock(&inode->i_lock); 2083 nfs_access_free_entry(cache); 2084 return -ENOENT; 2085 out_zap: 2086 spin_unlock(&inode->i_lock); 2087 nfs_access_zap_cache(inode); 2088 return -ENOENT; 2089 } 2090 2091 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2092 { 2093 struct nfs_inode *nfsi = NFS_I(inode); 2094 struct rb_root *root_node = &nfsi->access_cache; 2095 struct rb_node **p = &root_node->rb_node; 2096 struct rb_node *parent = NULL; 2097 struct nfs_access_entry *entry; 2098 2099 spin_lock(&inode->i_lock); 2100 while (*p != NULL) { 2101 parent = *p; 2102 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2103 2104 if (set->cred < entry->cred) 2105 p = &parent->rb_left; 2106 else if (set->cred > entry->cred) 2107 p = &parent->rb_right; 2108 else 2109 goto found; 2110 } 2111 rb_link_node(&set->rb_node, parent, p); 2112 rb_insert_color(&set->rb_node, root_node); 2113 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2114 spin_unlock(&inode->i_lock); 2115 return; 2116 found: 2117 rb_replace_node(parent, &set->rb_node, root_node); 2118 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2119 list_del(&entry->lru); 2120 spin_unlock(&inode->i_lock); 2121 nfs_access_free_entry(entry); 2122 } 2123 2124 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2125 { 2126 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2127 if (cache == NULL) 2128 return; 2129 RB_CLEAR_NODE(&cache->rb_node); 2130 cache->jiffies = set->jiffies; 2131 cache->cred = get_rpccred(set->cred); 2132 cache->mask = set->mask; 2133 2134 nfs_access_add_rbtree(inode, cache); 2135 2136 /* Update accounting */ 2137 smp_mb__before_atomic_inc(); 2138 atomic_long_inc(&nfs_access_nr_entries); 2139 smp_mb__after_atomic_inc(); 2140 2141 /* Add inode to global LRU list */ 2142 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2143 spin_lock(&nfs_access_lru_lock); 2144 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2145 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2146 &nfs_access_lru_list); 2147 spin_unlock(&nfs_access_lru_lock); 2148 } 2149 } 2150 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2151 2152 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2153 { 2154 entry->mask = 0; 2155 if (access_result & NFS4_ACCESS_READ) 2156 entry->mask |= MAY_READ; 2157 if (access_result & 2158 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2159 entry->mask |= MAY_WRITE; 2160 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2161 entry->mask |= MAY_EXEC; 2162 } 2163 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2164 2165 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2166 { 2167 struct nfs_access_entry cache; 2168 int status; 2169 2170 status = nfs_access_get_cached(inode, cred, &cache); 2171 if (status == 0) 2172 goto out; 2173 2174 /* Be clever: ask server to check for all possible rights */ 2175 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2176 cache.cred = cred; 2177 cache.jiffies = jiffies; 2178 status = NFS_PROTO(inode)->access(inode, &cache); 2179 if (status != 0) { 2180 if (status == -ESTALE) { 2181 nfs_zap_caches(inode); 2182 if (!S_ISDIR(inode->i_mode)) 2183 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2184 } 2185 return status; 2186 } 2187 nfs_access_add_cache(inode, &cache); 2188 out: 2189 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2190 return 0; 2191 return -EACCES; 2192 } 2193 2194 static int nfs_open_permission_mask(int openflags) 2195 { 2196 int mask = 0; 2197 2198 if (openflags & __FMODE_EXEC) { 2199 /* ONLY check exec rights */ 2200 mask = MAY_EXEC; 2201 } else { 2202 if ((openflags & O_ACCMODE) != O_WRONLY) 2203 mask |= MAY_READ; 2204 if ((openflags & O_ACCMODE) != O_RDONLY) 2205 mask |= MAY_WRITE; 2206 } 2207 2208 return mask; 2209 } 2210 2211 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2212 { 2213 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2214 } 2215 EXPORT_SYMBOL_GPL(nfs_may_open); 2216 2217 int nfs_permission(struct inode *inode, int mask) 2218 { 2219 struct rpc_cred *cred; 2220 int res = 0; 2221 2222 if (mask & MAY_NOT_BLOCK) 2223 return -ECHILD; 2224 2225 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2226 2227 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2228 goto out; 2229 /* Is this sys_access() ? */ 2230 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2231 goto force_lookup; 2232 2233 switch (inode->i_mode & S_IFMT) { 2234 case S_IFLNK: 2235 goto out; 2236 case S_IFREG: 2237 /* NFSv4 has atomic_open... */ 2238 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2239 && (mask & MAY_OPEN) 2240 && !(mask & MAY_EXEC)) 2241 goto out; 2242 break; 2243 case S_IFDIR: 2244 /* 2245 * Optimize away all write operations, since the server 2246 * will check permissions when we perform the op. 2247 */ 2248 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2249 goto out; 2250 } 2251 2252 force_lookup: 2253 if (!NFS_PROTO(inode)->access) 2254 goto out_notsup; 2255 2256 cred = rpc_lookup_cred(); 2257 if (!IS_ERR(cred)) { 2258 res = nfs_do_access(inode, cred, mask); 2259 put_rpccred(cred); 2260 } else 2261 res = PTR_ERR(cred); 2262 out: 2263 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2264 res = -EACCES; 2265 2266 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2267 inode->i_sb->s_id, inode->i_ino, mask, res); 2268 return res; 2269 out_notsup: 2270 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2271 if (res == 0) 2272 res = generic_permission(inode, mask); 2273 goto out; 2274 } 2275 EXPORT_SYMBOL_GPL(nfs_permission); 2276 2277 /* 2278 * Local variables: 2279 * version-control: t 2280 * kept-new-versions: 5 2281 * End: 2282 */ 2283