1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_clear_array(struct folio *); 59 static int nfs_do_create(struct inode *dir, struct dentry *dentry, 60 umode_t mode, int open_flags); 61 62 const struct file_operations nfs_dir_operations = { 63 .llseek = nfs_llseek_dir, 64 .read = generic_read_dir, 65 .iterate_shared = nfs_readdir, 66 .open = nfs_opendir, 67 .release = nfs_closedir, 68 .fsync = nfs_fsync_dir, 69 }; 70 71 const struct address_space_operations nfs_dir_aops = { 72 .free_folio = nfs_readdir_clear_array, 73 }; 74 75 #define NFS_INIT_DTSIZE PAGE_SIZE 76 77 static struct nfs_open_dir_context * 78 alloc_nfs_open_dir_context(struct inode *dir) 79 { 80 struct nfs_inode *nfsi = NFS_I(dir); 81 struct nfs_open_dir_context *ctx; 82 83 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 84 if (ctx != NULL) { 85 ctx->attr_gencount = nfsi->attr_gencount; 86 ctx->dtsize = NFS_INIT_DTSIZE; 87 spin_lock(&dir->i_lock); 88 if (list_empty(&nfsi->open_files) && 89 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 90 nfs_set_cache_invalid(dir, 91 NFS_INO_INVALID_DATA | 92 NFS_INO_REVAL_FORCED); 93 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 94 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 95 spin_unlock(&dir->i_lock); 96 return ctx; 97 } 98 return ERR_PTR(-ENOMEM); 99 } 100 101 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 102 { 103 spin_lock(&dir->i_lock); 104 list_del_rcu(&ctx->list); 105 spin_unlock(&dir->i_lock); 106 kfree_rcu(ctx, rcu_head); 107 } 108 109 /* 110 * Open file 111 */ 112 static int 113 nfs_opendir(struct inode *inode, struct file *filp) 114 { 115 int res = 0; 116 struct nfs_open_dir_context *ctx; 117 118 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 119 120 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 121 122 ctx = alloc_nfs_open_dir_context(inode); 123 if (IS_ERR(ctx)) { 124 res = PTR_ERR(ctx); 125 goto out; 126 } 127 filp->private_data = ctx; 128 out: 129 return res; 130 } 131 132 static int 133 nfs_closedir(struct inode *inode, struct file *filp) 134 { 135 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 136 return 0; 137 } 138 139 struct nfs_cache_array_entry { 140 u64 cookie; 141 u64 ino; 142 const char *name; 143 unsigned int name_len; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 u64 change_attr; 149 u64 last_cookie; 150 unsigned int size; 151 unsigned char folio_full : 1, 152 folio_is_eof : 1, 153 cookies_are_ordered : 1; 154 struct nfs_cache_array_entry array[]; 155 }; 156 157 struct nfs_readdir_descriptor { 158 struct file *file; 159 struct folio *folio; 160 struct dir_context *ctx; 161 pgoff_t folio_index; 162 pgoff_t folio_index_max; 163 u64 dir_cookie; 164 u64 last_cookie; 165 loff_t current_index; 166 167 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 168 unsigned long dir_verifier; 169 unsigned long timestamp; 170 unsigned long gencount; 171 unsigned long attr_gencount; 172 unsigned int cache_entry_index; 173 unsigned int buffer_fills; 174 unsigned int dtsize; 175 bool clear_cache; 176 bool plus; 177 bool eob; 178 bool eof; 179 }; 180 181 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 182 { 183 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 184 unsigned int maxsize = server->dtsize; 185 186 if (sz > maxsize) 187 sz = maxsize; 188 if (sz < NFS_MIN_FILE_IO_SIZE) 189 sz = NFS_MIN_FILE_IO_SIZE; 190 desc->dtsize = sz; 191 } 192 193 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 194 { 195 nfs_set_dtsize(desc, desc->dtsize >> 1); 196 } 197 198 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 199 { 200 nfs_set_dtsize(desc, desc->dtsize << 1); 201 } 202 203 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, 204 u64 change_attr) 205 { 206 struct nfs_cache_array *array; 207 208 array = kmap_local_folio(folio, 0); 209 array->change_attr = change_attr; 210 array->last_cookie = last_cookie; 211 array->size = 0; 212 array->folio_full = 0; 213 array->folio_is_eof = 0; 214 array->cookies_are_ordered = 1; 215 kunmap_local(array); 216 } 217 218 /* 219 * we are freeing strings created by nfs_add_to_readdir_array() 220 */ 221 static void nfs_readdir_clear_array(struct folio *folio) 222 { 223 struct nfs_cache_array *array; 224 unsigned int i; 225 226 array = kmap_local_folio(folio, 0); 227 for (i = 0; i < array->size; i++) 228 kfree(array->array[i].name); 229 array->size = 0; 230 kunmap_local(array); 231 } 232 233 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, 234 u64 change_attr) 235 { 236 nfs_readdir_clear_array(folio); 237 nfs_readdir_folio_init_array(folio, last_cookie, change_attr); 238 } 239 240 static struct folio * 241 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) 242 { 243 struct folio *folio = folio_alloc(gfp_flags, 0); 244 if (folio) 245 nfs_readdir_folio_init_array(folio, last_cookie, 0); 246 return folio; 247 } 248 249 static void nfs_readdir_folio_array_free(struct folio *folio) 250 { 251 if (folio) { 252 nfs_readdir_clear_array(folio); 253 folio_put(folio); 254 } 255 } 256 257 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 258 { 259 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 260 } 261 262 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 263 { 264 array->folio_is_eof = 1; 265 array->folio_full = 1; 266 } 267 268 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 269 { 270 return array->folio_full; 271 } 272 273 /* 274 * the caller is responsible for freeing qstr.name 275 * when called by nfs_readdir_add_to_array, the strings will be freed in 276 * nfs_clear_readdir_array() 277 */ 278 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 279 { 280 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 281 282 /* 283 * Avoid a kmemleak false positive. The pointer to the name is stored 284 * in a page cache page which kmemleak does not scan. 285 */ 286 if (ret != NULL) 287 kmemleak_not_leak(ret); 288 return ret; 289 } 290 291 static size_t nfs_readdir_array_maxentries(void) 292 { 293 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 294 sizeof(struct nfs_cache_array_entry); 295 } 296 297 /* 298 * Check that the next array entry lies entirely within the page bounds 299 */ 300 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 301 { 302 if (array->folio_full) 303 return -ENOSPC; 304 if (array->size == nfs_readdir_array_maxentries()) { 305 array->folio_full = 1; 306 return -ENOSPC; 307 } 308 return 0; 309 } 310 311 static int nfs_readdir_folio_array_append(struct folio *folio, 312 const struct nfs_entry *entry, 313 u64 *cookie) 314 { 315 struct nfs_cache_array *array; 316 struct nfs_cache_array_entry *cache_entry; 317 const char *name; 318 int ret = -ENOMEM; 319 320 name = nfs_readdir_copy_name(entry->name, entry->len); 321 322 array = kmap_local_folio(folio, 0); 323 if (!name) 324 goto out; 325 ret = nfs_readdir_array_can_expand(array); 326 if (ret) { 327 kfree(name); 328 goto out; 329 } 330 331 cache_entry = &array->array[array->size]; 332 cache_entry->cookie = array->last_cookie; 333 cache_entry->ino = entry->ino; 334 cache_entry->d_type = entry->d_type; 335 cache_entry->name_len = entry->len; 336 cache_entry->name = name; 337 array->last_cookie = entry->cookie; 338 if (array->last_cookie <= cache_entry->cookie) 339 array->cookies_are_ordered = 0; 340 array->size++; 341 if (entry->eof != 0) 342 nfs_readdir_array_set_eof(array); 343 out: 344 *cookie = array->last_cookie; 345 kunmap_local(array); 346 return ret; 347 } 348 349 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 350 /* 351 * Hash algorithm allowing content addressible access to sequences 352 * of directory cookies. Content is addressed by the value of the 353 * cookie index of the first readdir entry in a page. 354 * 355 * We select only the first 18 bits to avoid issues with excessive 356 * memory use for the page cache XArray. 18 bits should allow the caching 357 * of 262144 pages of sequences of readdir entries. Since each page holds 358 * 127 readdir entries for a typical 64-bit system, that works out to a 359 * cache of ~ 33 million entries per directory. 360 */ 361 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) 362 { 363 if (cookie == 0) 364 return 0; 365 return hash_64(cookie, 18); 366 } 367 368 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, 369 u64 change_attr) 370 { 371 struct nfs_cache_array *array = kmap_local_folio(folio, 0); 372 int ret = true; 373 374 if (array->change_attr != change_attr) 375 ret = false; 376 if (nfs_readdir_array_index_cookie(array) != last_cookie) 377 ret = false; 378 kunmap_local(array); 379 return ret; 380 } 381 382 static void nfs_readdir_folio_unlock_and_put(struct folio *folio) 383 { 384 folio_unlock(folio); 385 folio_put(folio); 386 } 387 388 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, 389 u64 change_attr) 390 { 391 if (folio_test_uptodate(folio)) { 392 if (nfs_readdir_folio_validate(folio, cookie, change_attr)) 393 return; 394 nfs_readdir_clear_array(folio); 395 } 396 nfs_readdir_folio_init_array(folio, cookie, change_attr); 397 folio_mark_uptodate(folio); 398 } 399 400 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, 401 u64 cookie, u64 change_attr) 402 { 403 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 404 struct folio *folio; 405 406 folio = filemap_grab_folio(mapping, index); 407 if (IS_ERR(folio)) 408 return NULL; 409 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 410 return folio; 411 } 412 413 static u64 nfs_readdir_folio_last_cookie(struct folio *folio) 414 { 415 struct nfs_cache_array *array; 416 u64 ret; 417 418 array = kmap_local_folio(folio, 0); 419 ret = array->last_cookie; 420 kunmap_local(array); 421 return ret; 422 } 423 424 static bool nfs_readdir_folio_needs_filling(struct folio *folio) 425 { 426 struct nfs_cache_array *array; 427 bool ret; 428 429 array = kmap_local_folio(folio, 0); 430 ret = !nfs_readdir_array_is_full(array); 431 kunmap_local(array); 432 return ret; 433 } 434 435 static void nfs_readdir_folio_set_eof(struct folio *folio) 436 { 437 struct nfs_cache_array *array; 438 439 array = kmap_local_folio(folio, 0); 440 nfs_readdir_array_set_eof(array); 441 kunmap_local(array); 442 } 443 444 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, 445 u64 cookie, u64 change_attr) 446 { 447 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 448 struct folio *folio; 449 450 folio = __filemap_get_folio(mapping, index, 451 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 452 mapping_gfp_mask(mapping)); 453 if (IS_ERR(folio)) 454 return NULL; 455 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 456 if (nfs_readdir_folio_last_cookie(folio) != cookie) 457 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 458 return folio; 459 } 460 461 static inline 462 int is_32bit_api(void) 463 { 464 #ifdef CONFIG_COMPAT 465 return in_compat_syscall(); 466 #else 467 return (BITS_PER_LONG == 32); 468 #endif 469 } 470 471 static 472 bool nfs_readdir_use_cookie(const struct file *filp) 473 { 474 if ((filp->f_mode & FMODE_32BITHASH) || 475 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 476 return false; 477 return true; 478 } 479 480 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 481 struct nfs_readdir_descriptor *desc) 482 { 483 if (array->folio_full) { 484 desc->last_cookie = array->last_cookie; 485 desc->current_index += array->size; 486 desc->cache_entry_index = 0; 487 desc->folio_index++; 488 } else 489 desc->last_cookie = nfs_readdir_array_index_cookie(array); 490 } 491 492 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 493 { 494 desc->current_index = 0; 495 desc->last_cookie = 0; 496 desc->folio_index = 0; 497 } 498 499 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 500 struct nfs_readdir_descriptor *desc) 501 { 502 loff_t diff = desc->ctx->pos - desc->current_index; 503 unsigned int index; 504 505 if (diff < 0) 506 goto out_eof; 507 if (diff >= array->size) { 508 if (array->folio_is_eof) 509 goto out_eof; 510 nfs_readdir_seek_next_array(array, desc); 511 return -EAGAIN; 512 } 513 514 index = (unsigned int)diff; 515 desc->dir_cookie = array->array[index].cookie; 516 desc->cache_entry_index = index; 517 return 0; 518 out_eof: 519 desc->eof = true; 520 return -EBADCOOKIE; 521 } 522 523 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 524 u64 cookie) 525 { 526 if (!array->cookies_are_ordered) 527 return true; 528 /* Optimisation for monotonically increasing cookies */ 529 if (cookie >= array->last_cookie) 530 return false; 531 if (array->size && cookie < array->array[0].cookie) 532 return false; 533 return true; 534 } 535 536 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 537 struct nfs_readdir_descriptor *desc) 538 { 539 unsigned int i; 540 int status = -EAGAIN; 541 542 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 543 goto check_eof; 544 545 for (i = 0; i < array->size; i++) { 546 if (array->array[i].cookie == desc->dir_cookie) { 547 if (nfs_readdir_use_cookie(desc->file)) 548 desc->ctx->pos = desc->dir_cookie; 549 else 550 desc->ctx->pos = desc->current_index + i; 551 desc->cache_entry_index = i; 552 return 0; 553 } 554 } 555 check_eof: 556 if (array->folio_is_eof) { 557 status = -EBADCOOKIE; 558 if (desc->dir_cookie == array->last_cookie) 559 desc->eof = true; 560 } else 561 nfs_readdir_seek_next_array(array, desc); 562 return status; 563 } 564 565 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 566 { 567 struct nfs_cache_array *array; 568 int status; 569 570 array = kmap_local_folio(desc->folio, 0); 571 572 if (desc->dir_cookie == 0) 573 status = nfs_readdir_search_for_pos(array, desc); 574 else 575 status = nfs_readdir_search_for_cookie(array, desc); 576 577 kunmap_local(array); 578 return status; 579 } 580 581 /* Fill a page with xdr information before transferring to the cache page */ 582 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 583 __be32 *verf, u64 cookie, 584 struct page **pages, size_t bufsize, 585 __be32 *verf_res) 586 { 587 struct inode *inode = file_inode(desc->file); 588 struct nfs_readdir_arg arg = { 589 .dentry = file_dentry(desc->file), 590 .cred = desc->file->f_cred, 591 .verf = verf, 592 .cookie = cookie, 593 .pages = pages, 594 .page_len = bufsize, 595 .plus = desc->plus, 596 }; 597 struct nfs_readdir_res res = { 598 .verf = verf_res, 599 }; 600 unsigned long timestamp, gencount; 601 int error; 602 603 again: 604 timestamp = jiffies; 605 gencount = nfs_inc_attr_generation_counter(); 606 desc->dir_verifier = nfs_save_change_attribute(inode); 607 error = NFS_PROTO(inode)->readdir(&arg, &res); 608 if (error < 0) { 609 /* We requested READDIRPLUS, but the server doesn't grok it */ 610 if (error == -ENOTSUPP && desc->plus) { 611 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 612 desc->plus = arg.plus = false; 613 goto again; 614 } 615 goto error; 616 } 617 desc->timestamp = timestamp; 618 desc->gencount = gencount; 619 error: 620 return error; 621 } 622 623 static int xdr_decode(struct nfs_readdir_descriptor *desc, 624 struct nfs_entry *entry, struct xdr_stream *xdr) 625 { 626 struct inode *inode = file_inode(desc->file); 627 int error; 628 629 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 630 if (error) 631 return error; 632 entry->fattr->time_start = desc->timestamp; 633 entry->fattr->gencount = desc->gencount; 634 return 0; 635 } 636 637 /* Match file and dirent using either filehandle or fileid 638 * Note: caller is responsible for checking the fsid 639 */ 640 static 641 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 642 { 643 struct inode *inode; 644 struct nfs_inode *nfsi; 645 646 if (d_really_is_negative(dentry)) 647 return 0; 648 649 inode = d_inode(dentry); 650 if (is_bad_inode(inode) || NFS_STALE(inode)) 651 return 0; 652 653 nfsi = NFS_I(inode); 654 if (entry->fattr->fileid != nfsi->fileid) 655 return 0; 656 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 657 return 0; 658 return 1; 659 } 660 661 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 662 663 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 664 unsigned int cache_hits, 665 unsigned int cache_misses) 666 { 667 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 668 return false; 669 if (ctx->pos == 0 || 670 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 671 return true; 672 return false; 673 } 674 675 /* 676 * This function is called by the getattr code to request the 677 * use of readdirplus to accelerate any future lookups in the same 678 * directory. 679 */ 680 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 681 { 682 struct nfs_inode *nfsi = NFS_I(dir); 683 struct nfs_open_dir_context *ctx; 684 685 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 686 S_ISDIR(dir->i_mode)) { 687 rcu_read_lock(); 688 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 689 atomic_inc(&ctx->cache_hits); 690 rcu_read_unlock(); 691 } 692 } 693 694 /* 695 * This function is mainly for use by nfs_getattr(). 696 * 697 * If this is an 'ls -l', we want to force use of readdirplus. 698 */ 699 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 700 { 701 struct nfs_inode *nfsi = NFS_I(dir); 702 struct nfs_open_dir_context *ctx; 703 704 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 705 S_ISDIR(dir->i_mode)) { 706 rcu_read_lock(); 707 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 708 atomic_inc(&ctx->cache_misses); 709 rcu_read_unlock(); 710 } 711 } 712 713 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 714 unsigned int flags) 715 { 716 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 717 return; 718 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 719 return; 720 nfs_readdir_record_entry_cache_miss(dir); 721 } 722 723 static 724 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 725 unsigned long dir_verifier) 726 { 727 struct qstr filename = QSTR_INIT(entry->name, entry->len); 728 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 729 struct dentry *dentry; 730 struct dentry *alias; 731 struct inode *inode; 732 int status; 733 734 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 735 return; 736 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 737 return; 738 if (filename.len == 0) 739 return; 740 /* Validate that the name doesn't contain any illegal '\0' */ 741 if (strnlen(filename.name, filename.len) != filename.len) 742 return; 743 /* ...or '/' */ 744 if (strnchr(filename.name, filename.len, '/')) 745 return; 746 if (filename.name[0] == '.') { 747 if (filename.len == 1) 748 return; 749 if (filename.len == 2 && filename.name[1] == '.') 750 return; 751 } 752 filename.hash = full_name_hash(parent, filename.name, filename.len); 753 754 dentry = d_lookup(parent, &filename); 755 again: 756 if (!dentry) { 757 dentry = d_alloc_parallel(parent, &filename, &wq); 758 if (IS_ERR(dentry)) 759 return; 760 } 761 if (!d_in_lookup(dentry)) { 762 /* Is there a mountpoint here? If so, just exit */ 763 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 764 &entry->fattr->fsid)) 765 goto out; 766 if (nfs_same_file(dentry, entry)) { 767 if (!entry->fh->size) 768 goto out; 769 nfs_set_verifier(dentry, dir_verifier); 770 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 771 if (!status) 772 nfs_setsecurity(d_inode(dentry), entry->fattr); 773 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 774 dentry, 0, status); 775 goto out; 776 } else { 777 trace_nfs_readdir_lookup_revalidate_failed( 778 d_inode(parent), dentry, 0); 779 d_invalidate(dentry); 780 dput(dentry); 781 dentry = NULL; 782 goto again; 783 } 784 } 785 if (!entry->fh->size) { 786 d_lookup_done(dentry); 787 goto out; 788 } 789 790 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 791 alias = d_splice_alias(inode, dentry); 792 d_lookup_done(dentry); 793 if (alias) { 794 if (IS_ERR(alias)) 795 goto out; 796 dput(dentry); 797 dentry = alias; 798 } 799 nfs_set_verifier(dentry, dir_verifier); 800 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 801 out: 802 dput(dentry); 803 } 804 805 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 806 struct nfs_entry *entry, 807 struct xdr_stream *stream) 808 { 809 int ret; 810 811 if (entry->fattr->label) 812 entry->fattr->label->len = NFS4_MAXLABELLEN; 813 ret = xdr_decode(desc, entry, stream); 814 if (ret || !desc->plus) 815 return ret; 816 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 817 return 0; 818 } 819 820 /* Perform conversion from xdr to cache array */ 821 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, 822 struct nfs_entry *entry, 823 struct page **xdr_pages, unsigned int buflen, 824 struct folio **arrays, size_t narrays, 825 u64 change_attr) 826 { 827 struct address_space *mapping = desc->file->f_mapping; 828 struct folio *new, *folio = *arrays; 829 struct xdr_stream stream; 830 struct page *scratch; 831 struct xdr_buf buf; 832 u64 cookie; 833 int status; 834 835 scratch = alloc_page(GFP_KERNEL); 836 if (scratch == NULL) 837 return -ENOMEM; 838 839 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 840 xdr_set_scratch_page(&stream, scratch); 841 842 do { 843 status = nfs_readdir_entry_decode(desc, entry, &stream); 844 if (status != 0) 845 break; 846 847 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 848 if (status != -ENOSPC) 849 continue; 850 851 if (folio->mapping != mapping) { 852 if (!--narrays) 853 break; 854 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); 855 if (!new) 856 break; 857 arrays++; 858 *arrays = folio = new; 859 } else { 860 new = nfs_readdir_folio_get_next(mapping, cookie, 861 change_attr); 862 if (!new) 863 break; 864 if (folio != *arrays) 865 nfs_readdir_folio_unlock_and_put(folio); 866 folio = new; 867 } 868 desc->folio_index_max++; 869 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 870 } while (!status && !entry->eof); 871 872 switch (status) { 873 case -EBADCOOKIE: 874 if (!entry->eof) 875 break; 876 nfs_readdir_folio_set_eof(folio); 877 fallthrough; 878 case -EAGAIN: 879 status = 0; 880 break; 881 case -ENOSPC: 882 status = 0; 883 if (!desc->plus) 884 break; 885 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 886 ; 887 } 888 889 if (folio != *arrays) 890 nfs_readdir_folio_unlock_and_put(folio); 891 892 put_page(scratch); 893 return status; 894 } 895 896 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 897 { 898 while (npages--) 899 put_page(pages[npages]); 900 kfree(pages); 901 } 902 903 /* 904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 905 * to nfs_readdir_free_pages() 906 */ 907 static struct page **nfs_readdir_alloc_pages(size_t npages) 908 { 909 struct page **pages; 910 size_t i; 911 912 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 913 if (!pages) 914 return NULL; 915 for (i = 0; i < npages; i++) { 916 struct page *page = alloc_page(GFP_KERNEL); 917 if (page == NULL) 918 goto out_freepages; 919 pages[i] = page; 920 } 921 return pages; 922 923 out_freepages: 924 nfs_readdir_free_pages(pages, i); 925 return NULL; 926 } 927 928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 929 __be32 *verf_arg, __be32 *verf_res, 930 struct folio **arrays, size_t narrays) 931 { 932 u64 change_attr; 933 struct page **pages; 934 struct folio *folio = *arrays; 935 struct nfs_entry *entry; 936 size_t array_size; 937 struct inode *inode = file_inode(desc->file); 938 unsigned int dtsize = desc->dtsize; 939 unsigned int pglen; 940 int status = -ENOMEM; 941 942 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 943 if (!entry) 944 return -ENOMEM; 945 entry->cookie = nfs_readdir_folio_last_cookie(folio); 946 entry->fh = nfs_alloc_fhandle(); 947 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 948 entry->server = NFS_SERVER(inode); 949 if (entry->fh == NULL || entry->fattr == NULL) 950 goto out; 951 952 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 953 pages = nfs_readdir_alloc_pages(array_size); 954 if (!pages) 955 goto out; 956 957 change_attr = inode_peek_iversion_raw(inode); 958 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 959 dtsize, verf_res); 960 if (status < 0) 961 goto free_pages; 962 963 pglen = status; 964 if (pglen != 0) 965 status = nfs_readdir_folio_filler(desc, entry, pages, pglen, 966 arrays, narrays, change_attr); 967 else 968 nfs_readdir_folio_set_eof(folio); 969 desc->buffer_fills++; 970 971 free_pages: 972 nfs_readdir_free_pages(pages, array_size); 973 out: 974 nfs_free_fattr(entry->fattr); 975 nfs_free_fhandle(entry->fh); 976 kfree(entry); 977 return status; 978 } 979 980 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) 981 { 982 folio_put(desc->folio); 983 desc->folio = NULL; 984 } 985 986 static void 987 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 988 { 989 folio_unlock(desc->folio); 990 nfs_readdir_folio_put(desc); 991 } 992 993 static struct folio * 994 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) 995 { 996 struct address_space *mapping = desc->file->f_mapping; 997 u64 change_attr = inode_peek_iversion_raw(mapping->host); 998 u64 cookie = desc->last_cookie; 999 struct folio *folio; 1000 1001 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); 1002 if (!folio) 1003 return NULL; 1004 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) 1005 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 1006 return folio; 1007 } 1008 1009 /* 1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1011 * and locks the page to prevent removal from the page cache. 1012 */ 1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1014 { 1015 struct inode *inode = file_inode(desc->file); 1016 struct nfs_inode *nfsi = NFS_I(inode); 1017 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1018 int res; 1019 1020 desc->folio = nfs_readdir_folio_get_cached(desc); 1021 if (!desc->folio) 1022 return -ENOMEM; 1023 if (nfs_readdir_folio_needs_filling(desc->folio)) { 1024 /* Grow the dtsize if we had to go back for more pages */ 1025 if (desc->folio_index == desc->folio_index_max) 1026 nfs_grow_dtsize(desc); 1027 desc->folio_index_max = desc->folio_index; 1028 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1029 desc->last_cookie, 1030 desc->folio->index, desc->dtsize); 1031 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1032 &desc->folio, 1); 1033 if (res < 0) { 1034 nfs_readdir_folio_unlock_and_put_cached(desc); 1035 trace_nfs_readdir_cache_fill_done(inode, res); 1036 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1037 invalidate_inode_pages2(desc->file->f_mapping); 1038 nfs_readdir_rewind_search(desc); 1039 trace_nfs_readdir_invalidate_cache_range( 1040 inode, 0, MAX_LFS_FILESIZE); 1041 return -EAGAIN; 1042 } 1043 return res; 1044 } 1045 /* 1046 * Set the cookie verifier if the page cache was empty 1047 */ 1048 if (desc->last_cookie == 0 && 1049 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1050 memcpy(nfsi->cookieverf, verf, 1051 sizeof(nfsi->cookieverf)); 1052 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1053 -1); 1054 trace_nfs_readdir_invalidate_cache_range( 1055 inode, 1, MAX_LFS_FILESIZE); 1056 } 1057 desc->clear_cache = false; 1058 } 1059 res = nfs_readdir_search_array(desc); 1060 if (res == 0) 1061 return 0; 1062 nfs_readdir_folio_unlock_and_put_cached(desc); 1063 return res; 1064 } 1065 1066 /* Search for desc->dir_cookie from the beginning of the page cache */ 1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1068 { 1069 int res; 1070 1071 do { 1072 res = find_and_lock_cache_page(desc); 1073 } while (res == -EAGAIN); 1074 return res; 1075 } 1076 1077 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1078 1079 /* 1080 * Once we've found the start of the dirent within a page: fill 'er up... 1081 */ 1082 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1083 const __be32 *verf) 1084 { 1085 struct file *file = desc->file; 1086 struct nfs_cache_array *array; 1087 unsigned int i; 1088 bool first_emit = !desc->dir_cookie; 1089 1090 array = kmap_local_folio(desc->folio, 0); 1091 for (i = desc->cache_entry_index; i < array->size; i++) { 1092 struct nfs_cache_array_entry *ent; 1093 1094 /* 1095 * nfs_readdir_handle_cache_misses return force clear at 1096 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for 1097 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1 1098 * entries need be emitted here. 1099 */ 1100 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) { 1101 desc->eob = true; 1102 break; 1103 } 1104 1105 ent = &array->array[i]; 1106 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1107 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1108 desc->eob = true; 1109 break; 1110 } 1111 memcpy(desc->verf, verf, sizeof(desc->verf)); 1112 if (i == array->size - 1) { 1113 desc->dir_cookie = array->last_cookie; 1114 nfs_readdir_seek_next_array(array, desc); 1115 } else { 1116 desc->dir_cookie = array->array[i + 1].cookie; 1117 desc->last_cookie = array->array[0].cookie; 1118 } 1119 if (nfs_readdir_use_cookie(file)) 1120 desc->ctx->pos = desc->dir_cookie; 1121 else 1122 desc->ctx->pos++; 1123 } 1124 if (array->folio_is_eof) 1125 desc->eof = !desc->eob; 1126 1127 kunmap_local(array); 1128 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1129 (unsigned long long)desc->dir_cookie); 1130 } 1131 1132 /* 1133 * If we cannot find a cookie in our cache, we suspect that this is 1134 * because it points to a deleted file, so we ask the server to return 1135 * whatever it thinks is the next entry. We then feed this to filldir. 1136 * If all goes well, we should then be able to find our way round the 1137 * cache on the next call to readdir_search_pagecache(); 1138 * 1139 * NOTE: we cannot add the anonymous page to the pagecache because 1140 * the data it contains might not be page aligned. Besides, 1141 * we should already have a complete representation of the 1142 * directory in the page cache by the time we get here. 1143 */ 1144 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1145 { 1146 struct folio **arrays; 1147 size_t i, sz = 512; 1148 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1149 int status = -ENOMEM; 1150 1151 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1152 (unsigned long long)desc->dir_cookie); 1153 1154 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1155 if (!arrays) 1156 goto out; 1157 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); 1158 if (!arrays[0]) 1159 goto out; 1160 1161 desc->folio_index = 0; 1162 desc->cache_entry_index = 0; 1163 desc->last_cookie = desc->dir_cookie; 1164 desc->folio_index_max = 0; 1165 1166 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1167 -1, desc->dtsize); 1168 1169 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1170 if (status < 0) { 1171 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1172 goto out_free; 1173 } 1174 1175 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1176 desc->folio = arrays[i]; 1177 nfs_do_filldir(desc, verf); 1178 } 1179 desc->folio = NULL; 1180 1181 /* 1182 * Grow the dtsize if we have to go back for more pages, 1183 * or shrink it if we're reading too many. 1184 */ 1185 if (!desc->eof) { 1186 if (!desc->eob) 1187 nfs_grow_dtsize(desc); 1188 else if (desc->buffer_fills == 1 && 1189 i < (desc->folio_index_max >> 1)) 1190 nfs_shrink_dtsize(desc); 1191 } 1192 out_free: 1193 for (i = 0; i < sz && arrays[i]; i++) 1194 nfs_readdir_folio_array_free(arrays[i]); 1195 out: 1196 if (!nfs_readdir_use_cookie(desc->file)) 1197 nfs_readdir_rewind_search(desc); 1198 desc->folio_index_max = -1; 1199 kfree(arrays); 1200 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1201 return status; 1202 } 1203 1204 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1205 struct nfs_readdir_descriptor *desc, 1206 unsigned int cache_misses, 1207 bool force_clear) 1208 { 1209 if (desc->ctx->pos == 0 || !desc->plus) 1210 return false; 1211 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1212 return false; 1213 trace_nfs_readdir_force_readdirplus(inode); 1214 return true; 1215 } 1216 1217 /* The file offset position represents the dirent entry number. A 1218 last cookie cache takes care of the common case of reading the 1219 whole directory. 1220 */ 1221 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1222 { 1223 struct dentry *dentry = file_dentry(file); 1224 struct inode *inode = d_inode(dentry); 1225 struct nfs_inode *nfsi = NFS_I(inode); 1226 struct nfs_open_dir_context *dir_ctx = file->private_data; 1227 struct nfs_readdir_descriptor *desc; 1228 unsigned int cache_hits, cache_misses; 1229 bool force_clear; 1230 int res; 1231 1232 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1233 file, (long long)ctx->pos); 1234 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1235 1236 /* 1237 * ctx->pos points to the dirent entry number. 1238 * *desc->dir_cookie has the cookie for the next entry. We have 1239 * to either find the entry with the appropriate number or 1240 * revalidate the cookie. 1241 */ 1242 nfs_revalidate_mapping(inode, file->f_mapping); 1243 1244 res = -ENOMEM; 1245 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1246 if (!desc) 1247 goto out; 1248 desc->file = file; 1249 desc->ctx = ctx; 1250 desc->folio_index_max = -1; 1251 1252 spin_lock(&file->f_lock); 1253 desc->dir_cookie = dir_ctx->dir_cookie; 1254 desc->folio_index = dir_ctx->page_index; 1255 desc->last_cookie = dir_ctx->last_cookie; 1256 desc->attr_gencount = dir_ctx->attr_gencount; 1257 desc->eof = dir_ctx->eof; 1258 nfs_set_dtsize(desc, dir_ctx->dtsize); 1259 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1260 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1261 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1262 force_clear = dir_ctx->force_clear; 1263 spin_unlock(&file->f_lock); 1264 1265 if (desc->eof) { 1266 res = 0; 1267 goto out_free; 1268 } 1269 1270 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1271 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1272 force_clear); 1273 desc->clear_cache = force_clear; 1274 1275 do { 1276 res = readdir_search_pagecache(desc); 1277 1278 if (res == -EBADCOOKIE) { 1279 res = 0; 1280 /* This means either end of directory */ 1281 if (desc->dir_cookie && !desc->eof) { 1282 /* Or that the server has 'lost' a cookie */ 1283 res = uncached_readdir(desc); 1284 if (res == 0) 1285 continue; 1286 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1287 res = 0; 1288 } 1289 break; 1290 } 1291 if (res == -ETOOSMALL && desc->plus) { 1292 nfs_zap_caches(inode); 1293 desc->plus = false; 1294 desc->eof = false; 1295 continue; 1296 } 1297 if (res < 0) 1298 break; 1299 1300 nfs_do_filldir(desc, nfsi->cookieverf); 1301 nfs_readdir_folio_unlock_and_put_cached(desc); 1302 if (desc->folio_index == desc->folio_index_max) 1303 desc->clear_cache = force_clear; 1304 } while (!desc->eob && !desc->eof); 1305 1306 spin_lock(&file->f_lock); 1307 dir_ctx->dir_cookie = desc->dir_cookie; 1308 dir_ctx->last_cookie = desc->last_cookie; 1309 dir_ctx->attr_gencount = desc->attr_gencount; 1310 dir_ctx->page_index = desc->folio_index; 1311 dir_ctx->force_clear = force_clear; 1312 dir_ctx->eof = desc->eof; 1313 dir_ctx->dtsize = desc->dtsize; 1314 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1315 spin_unlock(&file->f_lock); 1316 out_free: 1317 kfree(desc); 1318 1319 out: 1320 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1321 return res; 1322 } 1323 1324 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1325 { 1326 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1327 1328 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1329 filp, offset, whence); 1330 1331 switch (whence) { 1332 default: 1333 return -EINVAL; 1334 case SEEK_SET: 1335 if (offset < 0) 1336 return -EINVAL; 1337 spin_lock(&filp->f_lock); 1338 break; 1339 case SEEK_CUR: 1340 if (offset == 0) 1341 return filp->f_pos; 1342 spin_lock(&filp->f_lock); 1343 offset += filp->f_pos; 1344 if (offset < 0) { 1345 spin_unlock(&filp->f_lock); 1346 return -EINVAL; 1347 } 1348 } 1349 if (offset != filp->f_pos) { 1350 filp->f_pos = offset; 1351 dir_ctx->page_index = 0; 1352 if (!nfs_readdir_use_cookie(filp)) { 1353 dir_ctx->dir_cookie = 0; 1354 dir_ctx->last_cookie = 0; 1355 } else { 1356 dir_ctx->dir_cookie = offset; 1357 dir_ctx->last_cookie = offset; 1358 } 1359 dir_ctx->eof = false; 1360 } 1361 spin_unlock(&filp->f_lock); 1362 return offset; 1363 } 1364 1365 /* 1366 * All directory operations under NFS are synchronous, so fsync() 1367 * is a dummy operation. 1368 */ 1369 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1370 int datasync) 1371 { 1372 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1373 1374 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1375 return 0; 1376 } 1377 1378 /** 1379 * nfs_force_lookup_revalidate - Mark the directory as having changed 1380 * @dir: pointer to directory inode 1381 * 1382 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1383 * full lookup on all child dentries of 'dir' whenever a change occurs 1384 * on the server that might have invalidated our dcache. 1385 * 1386 * Note that we reserve bit '0' as a tag to let us know when a dentry 1387 * was revalidated while holding a delegation on its inode. 1388 * 1389 * The caller should be holding dir->i_lock 1390 */ 1391 void nfs_force_lookup_revalidate(struct inode *dir) 1392 { 1393 NFS_I(dir)->cache_change_attribute += 2; 1394 } 1395 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1396 1397 /** 1398 * nfs_verify_change_attribute - Detects NFS remote directory changes 1399 * @dir: pointer to parent directory inode 1400 * @verf: previously saved change attribute 1401 * 1402 * Return "false" if the verifiers doesn't match the change attribute. 1403 * This would usually indicate that the directory contents have changed on 1404 * the server, and that any dentries need revalidating. 1405 */ 1406 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1407 { 1408 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1409 } 1410 1411 static void nfs_set_verifier_delegated(unsigned long *verf) 1412 { 1413 *verf |= 1UL; 1414 } 1415 1416 #if IS_ENABLED(CONFIG_NFS_V4) 1417 static void nfs_unset_verifier_delegated(unsigned long *verf) 1418 { 1419 *verf &= ~1UL; 1420 } 1421 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1422 1423 static bool nfs_test_verifier_delegated(unsigned long verf) 1424 { 1425 return verf & 1; 1426 } 1427 1428 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1429 { 1430 return nfs_test_verifier_delegated(dentry->d_time); 1431 } 1432 1433 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1434 { 1435 struct inode *inode = d_inode(dentry); 1436 struct inode *dir = d_inode_rcu(dentry->d_parent); 1437 1438 if (!dir || !nfs_verify_change_attribute(dir, verf)) 1439 return; 1440 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1441 nfs_set_verifier_delegated(&verf); 1442 dentry->d_time = verf; 1443 } 1444 1445 /** 1446 * nfs_set_verifier - save a parent directory verifier in the dentry 1447 * @dentry: pointer to dentry 1448 * @verf: verifier to save 1449 * 1450 * Saves the parent directory verifier in @dentry. If the inode has 1451 * a delegation, we also tag the dentry as having been revalidated 1452 * while holding a delegation so that we know we don't have to 1453 * look it up again after a directory change. 1454 */ 1455 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1456 { 1457 1458 spin_lock(&dentry->d_lock); 1459 nfs_set_verifier_locked(dentry, verf); 1460 spin_unlock(&dentry->d_lock); 1461 } 1462 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1463 1464 #if IS_ENABLED(CONFIG_NFS_V4) 1465 /** 1466 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1467 * @inode: pointer to inode 1468 * 1469 * Iterates through the dentries in the inode alias list and clears 1470 * the tag used to indicate that the dentry has been revalidated 1471 * while holding a delegation. 1472 * This function is intended for use when the delegation is being 1473 * returned or revoked. 1474 */ 1475 void nfs_clear_verifier_delegated(struct inode *inode) 1476 { 1477 struct dentry *alias; 1478 1479 if (!inode) 1480 return; 1481 spin_lock(&inode->i_lock); 1482 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1483 spin_lock(&alias->d_lock); 1484 nfs_unset_verifier_delegated(&alias->d_time); 1485 spin_unlock(&alias->d_lock); 1486 } 1487 spin_unlock(&inode->i_lock); 1488 } 1489 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1490 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1491 1492 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1493 { 1494 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1495 d_really_is_negative(dentry)) 1496 return dentry->d_time == inode_peek_iversion_raw(dir); 1497 return nfs_verify_change_attribute(dir, dentry->d_time); 1498 } 1499 1500 /* 1501 * A check for whether or not the parent directory has changed. 1502 * In the case it has, we assume that the dentries are untrustworthy 1503 * and may need to be looked up again. 1504 * If rcu_walk prevents us from performing a full check, return 0. 1505 */ 1506 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1507 int rcu_walk) 1508 { 1509 if (IS_ROOT(dentry)) 1510 return 1; 1511 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1512 return 0; 1513 if (!nfs_dentry_verify_change(dir, dentry)) 1514 return 0; 1515 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1516 if (nfs_mapping_need_revalidate_inode(dir)) { 1517 if (rcu_walk) 1518 return 0; 1519 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1520 return 0; 1521 } 1522 if (!nfs_dentry_verify_change(dir, dentry)) 1523 return 0; 1524 return 1; 1525 } 1526 1527 /* 1528 * Use intent information to check whether or not we're going to do 1529 * an O_EXCL create using this path component. 1530 */ 1531 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1532 { 1533 if (NFS_PROTO(dir)->version == 2) 1534 return 0; 1535 return flags & LOOKUP_EXCL; 1536 } 1537 1538 /* 1539 * Inode and filehandle revalidation for lookups. 1540 * 1541 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1542 * or if the intent information indicates that we're about to open this 1543 * particular file and the "nocto" mount flag is not set. 1544 * 1545 */ 1546 static 1547 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1548 { 1549 struct nfs_server *server = NFS_SERVER(inode); 1550 int ret; 1551 1552 if (IS_AUTOMOUNT(inode)) 1553 return 0; 1554 1555 if (flags & LOOKUP_OPEN) { 1556 switch (inode->i_mode & S_IFMT) { 1557 case S_IFREG: 1558 /* A NFSv4 OPEN will revalidate later */ 1559 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1560 goto out; 1561 fallthrough; 1562 case S_IFDIR: 1563 if (server->flags & NFS_MOUNT_NOCTO) 1564 break; 1565 /* NFS close-to-open cache consistency validation */ 1566 goto out_force; 1567 } 1568 } 1569 1570 /* VFS wants an on-the-wire revalidation */ 1571 if (flags & LOOKUP_REVAL) 1572 goto out_force; 1573 out: 1574 if (inode->i_nlink > 0 || 1575 (inode->i_nlink == 0 && 1576 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1577 return 0; 1578 else 1579 return -ESTALE; 1580 out_force: 1581 if (flags & LOOKUP_RCU) 1582 return -ECHILD; 1583 ret = __nfs_revalidate_inode(server, inode); 1584 if (ret != 0) 1585 return ret; 1586 goto out; 1587 } 1588 1589 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1590 { 1591 spin_lock(&inode->i_lock); 1592 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1593 spin_unlock(&inode->i_lock); 1594 } 1595 1596 /* 1597 * We judge how long we want to trust negative 1598 * dentries by looking at the parent inode mtime. 1599 * 1600 * If parent mtime has changed, we revalidate, else we wait for a 1601 * period corresponding to the parent's attribute cache timeout value. 1602 * 1603 * If LOOKUP_RCU prevents us from performing a full check, return 1 1604 * suggesting a reval is needed. 1605 * 1606 * Note that when creating a new file, or looking up a rename target, 1607 * then it shouldn't be necessary to revalidate a negative dentry. 1608 */ 1609 static inline 1610 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1611 unsigned int flags) 1612 { 1613 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1614 return 0; 1615 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1616 return 1; 1617 /* Case insensitive server? Revalidate negative dentries */ 1618 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1619 return 1; 1620 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1621 } 1622 1623 static int 1624 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1625 struct inode *inode, int error) 1626 { 1627 switch (error) { 1628 case 1: 1629 break; 1630 case 0: 1631 /* 1632 * We can't d_drop the root of a disconnected tree: 1633 * its d_hash is on the s_anon list and d_drop() would hide 1634 * it from shrink_dcache_for_unmount(), leading to busy 1635 * inodes on unmount and further oopses. 1636 */ 1637 if (inode && IS_ROOT(dentry)) 1638 error = 1; 1639 break; 1640 } 1641 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1642 return error; 1643 } 1644 1645 static int 1646 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1647 unsigned int flags) 1648 { 1649 int ret = 1; 1650 if (nfs_neg_need_reval(dir, dentry, flags)) { 1651 if (flags & LOOKUP_RCU) 1652 return -ECHILD; 1653 ret = 0; 1654 } 1655 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1656 } 1657 1658 static int 1659 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1660 struct inode *inode) 1661 { 1662 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1663 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1664 } 1665 1666 static int nfs_lookup_revalidate_dentry(struct inode *dir, 1667 struct dentry *dentry, 1668 struct inode *inode, unsigned int flags) 1669 { 1670 struct nfs_fh *fhandle; 1671 struct nfs_fattr *fattr; 1672 unsigned long dir_verifier; 1673 int ret; 1674 1675 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1676 1677 ret = -ENOMEM; 1678 fhandle = nfs_alloc_fhandle(); 1679 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1680 if (fhandle == NULL || fattr == NULL) 1681 goto out; 1682 1683 dir_verifier = nfs_save_change_attribute(dir); 1684 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1685 if (ret < 0) { 1686 switch (ret) { 1687 case -ESTALE: 1688 case -ENOENT: 1689 ret = 0; 1690 break; 1691 case -ETIMEDOUT: 1692 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1693 ret = 1; 1694 } 1695 goto out; 1696 } 1697 1698 /* Request help from readdirplus */ 1699 nfs_lookup_advise_force_readdirplus(dir, flags); 1700 1701 ret = 0; 1702 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1703 goto out; 1704 if (nfs_refresh_inode(inode, fattr) < 0) 1705 goto out; 1706 1707 nfs_setsecurity(inode, fattr); 1708 nfs_set_verifier(dentry, dir_verifier); 1709 1710 ret = 1; 1711 out: 1712 nfs_free_fattr(fattr); 1713 nfs_free_fhandle(fhandle); 1714 1715 /* 1716 * If the lookup failed despite the dentry change attribute being 1717 * a match, then we should revalidate the directory cache. 1718 */ 1719 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1720 nfs_mark_dir_for_revalidate(dir); 1721 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1722 } 1723 1724 /* 1725 * This is called every time the dcache has a lookup hit, 1726 * and we should check whether we can really trust that 1727 * lookup. 1728 * 1729 * NOTE! The hit can be a negative hit too, don't assume 1730 * we have an inode! 1731 * 1732 * If the parent directory is seen to have changed, we throw out the 1733 * cached dentry and do a new lookup. 1734 */ 1735 static int 1736 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1737 unsigned int flags) 1738 { 1739 struct inode *inode; 1740 int error; 1741 1742 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1743 inode = d_inode(dentry); 1744 1745 if (!inode) 1746 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1747 1748 if (is_bad_inode(inode)) { 1749 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1750 __func__, dentry); 1751 goto out_bad; 1752 } 1753 1754 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1755 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1756 goto out_bad; 1757 1758 if (nfs_verifier_is_delegated(dentry)) 1759 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1760 1761 /* Force a full look up iff the parent directory has changed */ 1762 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1763 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1764 error = nfs_lookup_verify_inode(inode, flags); 1765 if (error) { 1766 if (error == -ESTALE) 1767 nfs_mark_dir_for_revalidate(dir); 1768 goto out_bad; 1769 } 1770 goto out_valid; 1771 } 1772 1773 if (flags & LOOKUP_RCU) 1774 return -ECHILD; 1775 1776 if (NFS_STALE(inode)) 1777 goto out_bad; 1778 1779 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 1780 out_valid: 1781 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1782 out_bad: 1783 if (flags & LOOKUP_RCU) 1784 return -ECHILD; 1785 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1786 } 1787 1788 static int 1789 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1790 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1791 { 1792 struct dentry *parent; 1793 struct inode *dir; 1794 int ret; 1795 1796 if (flags & LOOKUP_RCU) { 1797 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1798 return -ECHILD; 1799 parent = READ_ONCE(dentry->d_parent); 1800 dir = d_inode_rcu(parent); 1801 if (!dir) 1802 return -ECHILD; 1803 ret = reval(dir, dentry, flags); 1804 if (parent != READ_ONCE(dentry->d_parent)) 1805 return -ECHILD; 1806 } else { 1807 /* Wait for unlink to complete */ 1808 wait_var_event(&dentry->d_fsdata, 1809 dentry->d_fsdata != NFS_FSDATA_BLOCKED); 1810 parent = dget_parent(dentry); 1811 ret = reval(d_inode(parent), dentry, flags); 1812 dput(parent); 1813 } 1814 return ret; 1815 } 1816 1817 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1818 { 1819 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1820 } 1821 1822 /* 1823 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1824 * when we don't really care about the dentry name. This is called when a 1825 * pathwalk ends on a dentry that was not found via a normal lookup in the 1826 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1827 * 1828 * In this situation, we just want to verify that the inode itself is OK 1829 * since the dentry might have changed on the server. 1830 */ 1831 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1832 { 1833 struct inode *inode = d_inode(dentry); 1834 int error = 0; 1835 1836 /* 1837 * I believe we can only get a negative dentry here in the case of a 1838 * procfs-style symlink. Just assume it's correct for now, but we may 1839 * eventually need to do something more here. 1840 */ 1841 if (!inode) { 1842 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1843 __func__, dentry); 1844 return 1; 1845 } 1846 1847 if (is_bad_inode(inode)) { 1848 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1849 __func__, dentry); 1850 return 0; 1851 } 1852 1853 error = nfs_lookup_verify_inode(inode, flags); 1854 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1855 __func__, inode->i_ino, error ? "invalid" : "valid"); 1856 return !error; 1857 } 1858 1859 /* 1860 * This is called from dput() when d_count is going to 0. 1861 */ 1862 static int nfs_dentry_delete(const struct dentry *dentry) 1863 { 1864 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1865 dentry, dentry->d_flags); 1866 1867 /* Unhash any dentry with a stale inode */ 1868 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1869 return 1; 1870 1871 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1872 /* Unhash it, so that ->d_iput() would be called */ 1873 return 1; 1874 } 1875 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1876 /* Unhash it, so that ancestors of killed async unlink 1877 * files will be cleaned up during umount */ 1878 return 1; 1879 } 1880 return 0; 1881 1882 } 1883 1884 /* Ensure that we revalidate inode->i_nlink */ 1885 static void nfs_drop_nlink(struct inode *inode) 1886 { 1887 spin_lock(&inode->i_lock); 1888 /* drop the inode if we're reasonably sure this is the last link */ 1889 if (inode->i_nlink > 0) 1890 drop_nlink(inode); 1891 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1892 nfs_set_cache_invalid( 1893 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1894 NFS_INO_INVALID_NLINK); 1895 spin_unlock(&inode->i_lock); 1896 } 1897 1898 /* 1899 * Called when the dentry loses inode. 1900 * We use it to clean up silly-renamed files. 1901 */ 1902 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1903 { 1904 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1905 nfs_complete_unlink(dentry, inode); 1906 nfs_drop_nlink(inode); 1907 } 1908 iput(inode); 1909 } 1910 1911 static void nfs_d_release(struct dentry *dentry) 1912 { 1913 /* free cached devname value, if it survived that far */ 1914 if (unlikely(dentry->d_fsdata)) { 1915 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1916 WARN_ON(1); 1917 else 1918 kfree(dentry->d_fsdata); 1919 } 1920 } 1921 1922 const struct dentry_operations nfs_dentry_operations = { 1923 .d_revalidate = nfs_lookup_revalidate, 1924 .d_weak_revalidate = nfs_weak_revalidate, 1925 .d_delete = nfs_dentry_delete, 1926 .d_iput = nfs_dentry_iput, 1927 .d_automount = nfs_d_automount, 1928 .d_release = nfs_d_release, 1929 }; 1930 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1931 1932 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1933 { 1934 struct dentry *res; 1935 struct inode *inode = NULL; 1936 struct nfs_fh *fhandle = NULL; 1937 struct nfs_fattr *fattr = NULL; 1938 unsigned long dir_verifier; 1939 int error; 1940 1941 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1942 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1943 1944 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1945 return ERR_PTR(-ENAMETOOLONG); 1946 1947 /* 1948 * If we're doing an exclusive create, optimize away the lookup 1949 * but don't hash the dentry. 1950 */ 1951 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1952 return NULL; 1953 1954 res = ERR_PTR(-ENOMEM); 1955 fhandle = nfs_alloc_fhandle(); 1956 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1957 if (fhandle == NULL || fattr == NULL) 1958 goto out; 1959 1960 dir_verifier = nfs_save_change_attribute(dir); 1961 trace_nfs_lookup_enter(dir, dentry, flags); 1962 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1963 if (error == -ENOENT) { 1964 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1965 dir_verifier = inode_peek_iversion_raw(dir); 1966 goto no_entry; 1967 } 1968 if (error < 0) { 1969 res = ERR_PTR(error); 1970 goto out; 1971 } 1972 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1973 res = ERR_CAST(inode); 1974 if (IS_ERR(res)) 1975 goto out; 1976 1977 /* Notify readdir to use READDIRPLUS */ 1978 nfs_lookup_advise_force_readdirplus(dir, flags); 1979 1980 no_entry: 1981 res = d_splice_alias(inode, dentry); 1982 if (res != NULL) { 1983 if (IS_ERR(res)) 1984 goto out; 1985 dentry = res; 1986 } 1987 nfs_set_verifier(dentry, dir_verifier); 1988 out: 1989 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 1990 nfs_free_fattr(fattr); 1991 nfs_free_fhandle(fhandle); 1992 return res; 1993 } 1994 EXPORT_SYMBOL_GPL(nfs_lookup); 1995 1996 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 1997 { 1998 /* Case insensitive server? Revalidate dentries */ 1999 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 2000 d_prune_aliases(inode); 2001 } 2002 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 2003 2004 #if IS_ENABLED(CONFIG_NFS_V4) 2005 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 2006 2007 const struct dentry_operations nfs4_dentry_operations = { 2008 .d_revalidate = nfs4_lookup_revalidate, 2009 .d_weak_revalidate = nfs_weak_revalidate, 2010 .d_delete = nfs_dentry_delete, 2011 .d_iput = nfs_dentry_iput, 2012 .d_automount = nfs_d_automount, 2013 .d_release = nfs_d_release, 2014 }; 2015 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2016 2017 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2018 { 2019 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2020 } 2021 2022 static int do_open(struct inode *inode, struct file *filp) 2023 { 2024 nfs_fscache_open_file(inode, filp); 2025 return 0; 2026 } 2027 2028 static int nfs_finish_open(struct nfs_open_context *ctx, 2029 struct dentry *dentry, 2030 struct file *file, unsigned open_flags) 2031 { 2032 int err; 2033 2034 err = finish_open(file, dentry, do_open); 2035 if (err) 2036 goto out; 2037 if (S_ISREG(file_inode(file)->i_mode)) 2038 nfs_file_set_open_context(file, ctx); 2039 else 2040 err = -EOPENSTALE; 2041 out: 2042 return err; 2043 } 2044 2045 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2046 struct file *file, unsigned open_flags, 2047 umode_t mode) 2048 { 2049 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2050 struct nfs_open_context *ctx; 2051 struct dentry *res; 2052 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2053 struct inode *inode; 2054 unsigned int lookup_flags = 0; 2055 unsigned long dir_verifier; 2056 bool switched = false; 2057 int created = 0; 2058 int err; 2059 2060 /* Expect a negative dentry */ 2061 BUG_ON(d_inode(dentry)); 2062 2063 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2064 dir->i_sb->s_id, dir->i_ino, dentry); 2065 2066 err = nfs_check_flags(open_flags); 2067 if (err) 2068 return err; 2069 2070 /* NFS only supports OPEN on regular files */ 2071 if ((open_flags & O_DIRECTORY)) { 2072 if (!d_in_lookup(dentry)) { 2073 /* 2074 * Hashed negative dentry with O_DIRECTORY: dentry was 2075 * revalidated and is fine, no need to perform lookup 2076 * again 2077 */ 2078 return -ENOENT; 2079 } 2080 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2081 goto no_open; 2082 } 2083 2084 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2085 return -ENAMETOOLONG; 2086 2087 if (open_flags & O_CREAT) { 2088 struct nfs_server *server = NFS_SERVER(dir); 2089 2090 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2091 mode &= ~current_umask(); 2092 2093 attr.ia_valid |= ATTR_MODE; 2094 attr.ia_mode = mode; 2095 } 2096 if (open_flags & O_TRUNC) { 2097 attr.ia_valid |= ATTR_SIZE; 2098 attr.ia_size = 0; 2099 } 2100 2101 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2102 d_drop(dentry); 2103 switched = true; 2104 dentry = d_alloc_parallel(dentry->d_parent, 2105 &dentry->d_name, &wq); 2106 if (IS_ERR(dentry)) 2107 return PTR_ERR(dentry); 2108 if (unlikely(!d_in_lookup(dentry))) 2109 return finish_no_open(file, dentry); 2110 } 2111 2112 ctx = create_nfs_open_context(dentry, open_flags, file); 2113 err = PTR_ERR(ctx); 2114 if (IS_ERR(ctx)) 2115 goto out; 2116 2117 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2118 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2119 if (created) 2120 file->f_mode |= FMODE_CREATED; 2121 if (IS_ERR(inode)) { 2122 err = PTR_ERR(inode); 2123 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2124 put_nfs_open_context(ctx); 2125 d_drop(dentry); 2126 switch (err) { 2127 case -ENOENT: 2128 d_splice_alias(NULL, dentry); 2129 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2130 dir_verifier = inode_peek_iversion_raw(dir); 2131 else 2132 dir_verifier = nfs_save_change_attribute(dir); 2133 nfs_set_verifier(dentry, dir_verifier); 2134 break; 2135 case -EISDIR: 2136 case -ENOTDIR: 2137 goto no_open; 2138 case -ELOOP: 2139 if (!(open_flags & O_NOFOLLOW)) 2140 goto no_open; 2141 break; 2142 /* case -EINVAL: */ 2143 default: 2144 break; 2145 } 2146 goto out; 2147 } 2148 file->f_mode |= FMODE_CAN_ODIRECT; 2149 2150 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2151 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2152 put_nfs_open_context(ctx); 2153 out: 2154 if (unlikely(switched)) { 2155 d_lookup_done(dentry); 2156 dput(dentry); 2157 } 2158 return err; 2159 2160 no_open: 2161 res = nfs_lookup(dir, dentry, lookup_flags); 2162 if (!res) { 2163 inode = d_inode(dentry); 2164 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2165 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2166 res = ERR_PTR(-ENOTDIR); 2167 else if (inode && S_ISREG(inode->i_mode)) 2168 res = ERR_PTR(-EOPENSTALE); 2169 } else if (!IS_ERR(res)) { 2170 inode = d_inode(res); 2171 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2172 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2173 dput(res); 2174 res = ERR_PTR(-ENOTDIR); 2175 } else if (inode && S_ISREG(inode->i_mode)) { 2176 dput(res); 2177 res = ERR_PTR(-EOPENSTALE); 2178 } 2179 } 2180 if (switched) { 2181 d_lookup_done(dentry); 2182 if (!res) 2183 res = dentry; 2184 else 2185 dput(dentry); 2186 } 2187 if (IS_ERR(res)) 2188 return PTR_ERR(res); 2189 return finish_no_open(file, res); 2190 } 2191 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2192 2193 static int 2194 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 2195 unsigned int flags) 2196 { 2197 struct inode *inode; 2198 2199 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 2200 2201 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2202 goto full_reval; 2203 if (d_mountpoint(dentry)) 2204 goto full_reval; 2205 2206 inode = d_inode(dentry); 2207 2208 /* We can't create new files in nfs_open_revalidate(), so we 2209 * optimize away revalidation of negative dentries. 2210 */ 2211 if (inode == NULL) 2212 goto full_reval; 2213 2214 if (nfs_verifier_is_delegated(dentry)) 2215 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2216 2217 /* NFS only supports OPEN on regular files */ 2218 if (!S_ISREG(inode->i_mode)) 2219 goto full_reval; 2220 2221 /* We cannot do exclusive creation on a positive dentry */ 2222 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2223 goto reval_dentry; 2224 2225 /* Check if the directory changed */ 2226 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2227 goto reval_dentry; 2228 2229 /* Let f_op->open() actually open (and revalidate) the file */ 2230 return 1; 2231 reval_dentry: 2232 if (flags & LOOKUP_RCU) 2233 return -ECHILD; 2234 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 2235 2236 full_reval: 2237 return nfs_do_lookup_revalidate(dir, dentry, flags); 2238 } 2239 2240 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2241 { 2242 return __nfs_lookup_revalidate(dentry, flags, 2243 nfs4_do_lookup_revalidate); 2244 } 2245 2246 #endif /* CONFIG_NFSV4 */ 2247 2248 int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry, 2249 struct file *file, unsigned int open_flags, 2250 umode_t mode) 2251 { 2252 2253 /* Same as look+open from lookup_open(), but with different O_TRUNC 2254 * handling. 2255 */ 2256 int error = 0; 2257 2258 if (open_flags & O_CREAT) { 2259 file->f_mode |= FMODE_CREATED; 2260 error = nfs_do_create(dir, dentry, mode, open_flags); 2261 if (error) 2262 return error; 2263 return finish_open(file, dentry, NULL); 2264 } else if (d_in_lookup(dentry)) { 2265 /* The only flags nfs_lookup considers are 2266 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and 2267 * we want those to be zero so the lookup isn't skipped. 2268 */ 2269 struct dentry *res = nfs_lookup(dir, dentry, 0); 2270 2271 d_lookup_done(dentry); 2272 if (unlikely(res)) { 2273 if (IS_ERR(res)) 2274 return PTR_ERR(res); 2275 return finish_no_open(file, res); 2276 } 2277 } 2278 return finish_no_open(file, NULL); 2279 2280 } 2281 EXPORT_SYMBOL_GPL(nfs_atomic_open_v23); 2282 2283 struct dentry * 2284 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2285 struct nfs_fattr *fattr) 2286 { 2287 struct dentry *parent = dget_parent(dentry); 2288 struct inode *dir = d_inode(parent); 2289 struct inode *inode; 2290 struct dentry *d; 2291 int error; 2292 2293 d_drop(dentry); 2294 2295 if (fhandle->size == 0) { 2296 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2297 if (error) 2298 goto out_error; 2299 } 2300 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2301 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2302 struct nfs_server *server = NFS_SB(dentry->d_sb); 2303 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2304 fattr, NULL); 2305 if (error < 0) 2306 goto out_error; 2307 } 2308 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2309 d = d_splice_alias(inode, dentry); 2310 out: 2311 dput(parent); 2312 return d; 2313 out_error: 2314 d = ERR_PTR(error); 2315 goto out; 2316 } 2317 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2318 2319 /* 2320 * Code common to create, mkdir, and mknod. 2321 */ 2322 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2323 struct nfs_fattr *fattr) 2324 { 2325 struct dentry *d; 2326 2327 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2328 if (IS_ERR(d)) 2329 return PTR_ERR(d); 2330 2331 /* Callers don't care */ 2332 dput(d); 2333 return 0; 2334 } 2335 EXPORT_SYMBOL_GPL(nfs_instantiate); 2336 2337 /* 2338 * Following a failed create operation, we drop the dentry rather 2339 * than retain a negative dentry. This avoids a problem in the event 2340 * that the operation succeeded on the server, but an error in the 2341 * reply path made it appear to have failed. 2342 */ 2343 static int nfs_do_create(struct inode *dir, struct dentry *dentry, 2344 umode_t mode, int open_flags) 2345 { 2346 struct iattr attr; 2347 int error; 2348 2349 open_flags |= O_CREAT; 2350 2351 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2352 dir->i_sb->s_id, dir->i_ino, dentry); 2353 2354 attr.ia_mode = mode; 2355 attr.ia_valid = ATTR_MODE; 2356 if (open_flags & O_TRUNC) { 2357 attr.ia_size = 0; 2358 attr.ia_valid |= ATTR_SIZE; 2359 } 2360 2361 trace_nfs_create_enter(dir, dentry, open_flags); 2362 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2363 trace_nfs_create_exit(dir, dentry, open_flags, error); 2364 if (error != 0) 2365 goto out_err; 2366 return 0; 2367 out_err: 2368 d_drop(dentry); 2369 return error; 2370 } 2371 2372 int nfs_create(struct mnt_idmap *idmap, struct inode *dir, 2373 struct dentry *dentry, umode_t mode, bool excl) 2374 { 2375 return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0); 2376 } 2377 EXPORT_SYMBOL_GPL(nfs_create); 2378 2379 /* 2380 * See comments for nfs_proc_create regarding failed operations. 2381 */ 2382 int 2383 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 2384 struct dentry *dentry, umode_t mode, dev_t rdev) 2385 { 2386 struct iattr attr; 2387 int status; 2388 2389 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2390 dir->i_sb->s_id, dir->i_ino, dentry); 2391 2392 attr.ia_mode = mode; 2393 attr.ia_valid = ATTR_MODE; 2394 2395 trace_nfs_mknod_enter(dir, dentry); 2396 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2397 trace_nfs_mknod_exit(dir, dentry, status); 2398 if (status != 0) 2399 goto out_err; 2400 return 0; 2401 out_err: 2402 d_drop(dentry); 2403 return status; 2404 } 2405 EXPORT_SYMBOL_GPL(nfs_mknod); 2406 2407 /* 2408 * See comments for nfs_proc_create regarding failed operations. 2409 */ 2410 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2411 struct dentry *dentry, umode_t mode) 2412 { 2413 struct iattr attr; 2414 int error; 2415 2416 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2417 dir->i_sb->s_id, dir->i_ino, dentry); 2418 2419 attr.ia_valid = ATTR_MODE; 2420 attr.ia_mode = mode | S_IFDIR; 2421 2422 trace_nfs_mkdir_enter(dir, dentry); 2423 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2424 trace_nfs_mkdir_exit(dir, dentry, error); 2425 if (error != 0) 2426 goto out_err; 2427 return 0; 2428 out_err: 2429 d_drop(dentry); 2430 return error; 2431 } 2432 EXPORT_SYMBOL_GPL(nfs_mkdir); 2433 2434 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2435 { 2436 if (simple_positive(dentry)) 2437 d_delete(dentry); 2438 } 2439 2440 static void nfs_dentry_remove_handle_error(struct inode *dir, 2441 struct dentry *dentry, int error) 2442 { 2443 switch (error) { 2444 case -ENOENT: 2445 if (d_really_is_positive(dentry)) 2446 d_delete(dentry); 2447 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2448 break; 2449 case 0: 2450 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2451 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2452 } 2453 } 2454 2455 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2456 { 2457 int error; 2458 2459 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2460 dir->i_sb->s_id, dir->i_ino, dentry); 2461 2462 trace_nfs_rmdir_enter(dir, dentry); 2463 if (d_really_is_positive(dentry)) { 2464 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2465 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2466 /* Ensure the VFS deletes this inode */ 2467 switch (error) { 2468 case 0: 2469 clear_nlink(d_inode(dentry)); 2470 break; 2471 case -ENOENT: 2472 nfs_dentry_handle_enoent(dentry); 2473 } 2474 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2475 } else 2476 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2477 nfs_dentry_remove_handle_error(dir, dentry, error); 2478 trace_nfs_rmdir_exit(dir, dentry, error); 2479 2480 return error; 2481 } 2482 EXPORT_SYMBOL_GPL(nfs_rmdir); 2483 2484 /* 2485 * Remove a file after making sure there are no pending writes, 2486 * and after checking that the file has only one user. 2487 * 2488 * We invalidate the attribute cache and free the inode prior to the operation 2489 * to avoid possible races if the server reuses the inode. 2490 */ 2491 static int nfs_safe_remove(struct dentry *dentry) 2492 { 2493 struct inode *dir = d_inode(dentry->d_parent); 2494 struct inode *inode = d_inode(dentry); 2495 int error = -EBUSY; 2496 2497 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2498 2499 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2500 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2501 error = 0; 2502 goto out; 2503 } 2504 2505 trace_nfs_remove_enter(dir, dentry); 2506 if (inode != NULL) { 2507 error = NFS_PROTO(dir)->remove(dir, dentry); 2508 if (error == 0) 2509 nfs_drop_nlink(inode); 2510 } else 2511 error = NFS_PROTO(dir)->remove(dir, dentry); 2512 if (error == -ENOENT) 2513 nfs_dentry_handle_enoent(dentry); 2514 trace_nfs_remove_exit(dir, dentry, error); 2515 out: 2516 return error; 2517 } 2518 2519 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2520 * belongs to an active ".nfs..." file and we return -EBUSY. 2521 * 2522 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2523 */ 2524 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2525 { 2526 int error; 2527 2528 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2529 dir->i_ino, dentry); 2530 2531 trace_nfs_unlink_enter(dir, dentry); 2532 spin_lock(&dentry->d_lock); 2533 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2534 &NFS_I(d_inode(dentry))->flags)) { 2535 spin_unlock(&dentry->d_lock); 2536 /* Start asynchronous writeout of the inode */ 2537 write_inode_now(d_inode(dentry), 0); 2538 error = nfs_sillyrename(dir, dentry); 2539 goto out; 2540 } 2541 /* We must prevent any concurrent open until the unlink 2542 * completes. ->d_revalidate will wait for ->d_fsdata 2543 * to clear. We set it here to ensure no lookup succeeds until 2544 * the unlink is complete on the server. 2545 */ 2546 error = -ETXTBSY; 2547 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2548 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2549 spin_unlock(&dentry->d_lock); 2550 goto out; 2551 } 2552 /* old devname */ 2553 kfree(dentry->d_fsdata); 2554 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 2555 2556 spin_unlock(&dentry->d_lock); 2557 error = nfs_safe_remove(dentry); 2558 nfs_dentry_remove_handle_error(dir, dentry, error); 2559 dentry->d_fsdata = NULL; 2560 wake_up_var(&dentry->d_fsdata); 2561 out: 2562 trace_nfs_unlink_exit(dir, dentry, error); 2563 return error; 2564 } 2565 EXPORT_SYMBOL_GPL(nfs_unlink); 2566 2567 /* 2568 * To create a symbolic link, most file systems instantiate a new inode, 2569 * add a page to it containing the path, then write it out to the disk 2570 * using prepare_write/commit_write. 2571 * 2572 * Unfortunately the NFS client can't create the in-core inode first 2573 * because it needs a file handle to create an in-core inode (see 2574 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2575 * symlink request has completed on the server. 2576 * 2577 * So instead we allocate a raw page, copy the symname into it, then do 2578 * the SYMLINK request with the page as the buffer. If it succeeds, we 2579 * now have a new file handle and can instantiate an in-core NFS inode 2580 * and move the raw page into its mapping. 2581 */ 2582 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 2583 struct dentry *dentry, const char *symname) 2584 { 2585 struct folio *folio; 2586 char *kaddr; 2587 struct iattr attr; 2588 unsigned int pathlen = strlen(symname); 2589 int error; 2590 2591 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2592 dir->i_ino, dentry, symname); 2593 2594 if (pathlen > PAGE_SIZE) 2595 return -ENAMETOOLONG; 2596 2597 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2598 attr.ia_valid = ATTR_MODE; 2599 2600 folio = folio_alloc(GFP_USER, 0); 2601 if (!folio) 2602 return -ENOMEM; 2603 2604 kaddr = folio_address(folio); 2605 memcpy(kaddr, symname, pathlen); 2606 if (pathlen < PAGE_SIZE) 2607 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2608 2609 trace_nfs_symlink_enter(dir, dentry); 2610 error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr); 2611 trace_nfs_symlink_exit(dir, dentry, error); 2612 if (error != 0) { 2613 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2614 dir->i_sb->s_id, dir->i_ino, 2615 dentry, symname, error); 2616 d_drop(dentry); 2617 folio_put(folio); 2618 return error; 2619 } 2620 2621 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2622 2623 /* 2624 * No big deal if we can't add this page to the page cache here. 2625 * READLINK will get the missing page from the server if needed. 2626 */ 2627 if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0, 2628 GFP_KERNEL) == 0) { 2629 folio_mark_uptodate(folio); 2630 folio_unlock(folio); 2631 } 2632 2633 folio_put(folio); 2634 return 0; 2635 } 2636 EXPORT_SYMBOL_GPL(nfs_symlink); 2637 2638 int 2639 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2640 { 2641 struct inode *inode = d_inode(old_dentry); 2642 int error; 2643 2644 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2645 old_dentry, dentry); 2646 2647 trace_nfs_link_enter(inode, dir, dentry); 2648 d_drop(dentry); 2649 if (S_ISREG(inode->i_mode)) 2650 nfs_sync_inode(inode); 2651 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2652 if (error == 0) { 2653 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2654 ihold(inode); 2655 d_add(dentry, inode); 2656 } 2657 trace_nfs_link_exit(inode, dir, dentry, error); 2658 return error; 2659 } 2660 EXPORT_SYMBOL_GPL(nfs_link); 2661 2662 static void 2663 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2664 { 2665 struct dentry *new_dentry = data->new_dentry; 2666 2667 new_dentry->d_fsdata = NULL; 2668 wake_up_var(&new_dentry->d_fsdata); 2669 } 2670 2671 /* 2672 * RENAME 2673 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2674 * different file handle for the same inode after a rename (e.g. when 2675 * moving to a different directory). A fail-safe method to do so would 2676 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2677 * rename the old file using the sillyrename stuff. This way, the original 2678 * file in old_dir will go away when the last process iput()s the inode. 2679 * 2680 * FIXED. 2681 * 2682 * It actually works quite well. One needs to have the possibility for 2683 * at least one ".nfs..." file in each directory the file ever gets 2684 * moved or linked to which happens automagically with the new 2685 * implementation that only depends on the dcache stuff instead of 2686 * using the inode layer 2687 * 2688 * Unfortunately, things are a little more complicated than indicated 2689 * above. For a cross-directory move, we want to make sure we can get 2690 * rid of the old inode after the operation. This means there must be 2691 * no pending writes (if it's a file), and the use count must be 1. 2692 * If these conditions are met, we can drop the dentries before doing 2693 * the rename. 2694 */ 2695 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, 2696 struct dentry *old_dentry, struct inode *new_dir, 2697 struct dentry *new_dentry, unsigned int flags) 2698 { 2699 struct inode *old_inode = d_inode(old_dentry); 2700 struct inode *new_inode = d_inode(new_dentry); 2701 struct dentry *dentry = NULL; 2702 struct rpc_task *task; 2703 bool must_unblock = false; 2704 int error = -EBUSY; 2705 2706 if (flags) 2707 return -EINVAL; 2708 2709 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2710 old_dentry, new_dentry, 2711 d_count(new_dentry)); 2712 2713 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2714 /* 2715 * For non-directories, check whether the target is busy and if so, 2716 * make a copy of the dentry and then do a silly-rename. If the 2717 * silly-rename succeeds, the copied dentry is hashed and becomes 2718 * the new target. 2719 */ 2720 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2721 /* We must prevent any concurrent open until the unlink 2722 * completes. ->d_revalidate will wait for ->d_fsdata 2723 * to clear. We set it here to ensure no lookup succeeds until 2724 * the unlink is complete on the server. 2725 */ 2726 error = -ETXTBSY; 2727 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2728 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2729 goto out; 2730 if (new_dentry->d_fsdata) { 2731 /* old devname */ 2732 kfree(new_dentry->d_fsdata); 2733 new_dentry->d_fsdata = NULL; 2734 } 2735 2736 spin_lock(&new_dentry->d_lock); 2737 if (d_count(new_dentry) > 2) { 2738 int err; 2739 2740 spin_unlock(&new_dentry->d_lock); 2741 2742 /* copy the target dentry's name */ 2743 dentry = d_alloc(new_dentry->d_parent, 2744 &new_dentry->d_name); 2745 if (!dentry) 2746 goto out; 2747 2748 /* silly-rename the existing target ... */ 2749 err = nfs_sillyrename(new_dir, new_dentry); 2750 if (err) 2751 goto out; 2752 2753 new_dentry = dentry; 2754 new_inode = NULL; 2755 } else { 2756 new_dentry->d_fsdata = NFS_FSDATA_BLOCKED; 2757 must_unblock = true; 2758 spin_unlock(&new_dentry->d_lock); 2759 } 2760 2761 } 2762 2763 if (S_ISREG(old_inode->i_mode)) 2764 nfs_sync_inode(old_inode); 2765 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2766 must_unblock ? nfs_unblock_rename : NULL); 2767 if (IS_ERR(task)) { 2768 error = PTR_ERR(task); 2769 goto out; 2770 } 2771 2772 error = rpc_wait_for_completion_task(task); 2773 if (error != 0) { 2774 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2775 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2776 smp_wmb(); 2777 } else 2778 error = task->tk_status; 2779 rpc_put_task(task); 2780 /* Ensure the inode attributes are revalidated */ 2781 if (error == 0) { 2782 spin_lock(&old_inode->i_lock); 2783 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2784 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2785 NFS_INO_INVALID_CTIME | 2786 NFS_INO_REVAL_FORCED); 2787 spin_unlock(&old_inode->i_lock); 2788 } 2789 out: 2790 trace_nfs_rename_exit(old_dir, old_dentry, 2791 new_dir, new_dentry, error); 2792 if (!error) { 2793 if (new_inode != NULL) 2794 nfs_drop_nlink(new_inode); 2795 /* 2796 * The d_move() should be here instead of in an async RPC completion 2797 * handler because we need the proper locks to move the dentry. If 2798 * we're interrupted by a signal, the async RPC completion handler 2799 * should mark the directories for revalidation. 2800 */ 2801 d_move(old_dentry, new_dentry); 2802 nfs_set_verifier(old_dentry, 2803 nfs_save_change_attribute(new_dir)); 2804 } else if (error == -ENOENT) 2805 nfs_dentry_handle_enoent(old_dentry); 2806 2807 /* new dentry created? */ 2808 if (dentry) 2809 dput(dentry); 2810 return error; 2811 } 2812 EXPORT_SYMBOL_GPL(nfs_rename); 2813 2814 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2815 static LIST_HEAD(nfs_access_lru_list); 2816 static atomic_long_t nfs_access_nr_entries; 2817 2818 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2819 module_param(nfs_access_max_cachesize, ulong, 0644); 2820 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2821 2822 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2823 { 2824 put_group_info(entry->group_info); 2825 kfree_rcu(entry, rcu_head); 2826 smp_mb__before_atomic(); 2827 atomic_long_dec(&nfs_access_nr_entries); 2828 smp_mb__after_atomic(); 2829 } 2830 2831 static void nfs_access_free_list(struct list_head *head) 2832 { 2833 struct nfs_access_entry *cache; 2834 2835 while (!list_empty(head)) { 2836 cache = list_entry(head->next, struct nfs_access_entry, lru); 2837 list_del(&cache->lru); 2838 nfs_access_free_entry(cache); 2839 } 2840 } 2841 2842 static unsigned long 2843 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2844 { 2845 LIST_HEAD(head); 2846 struct nfs_inode *nfsi, *next; 2847 struct nfs_access_entry *cache; 2848 long freed = 0; 2849 2850 spin_lock(&nfs_access_lru_lock); 2851 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2852 struct inode *inode; 2853 2854 if (nr_to_scan-- == 0) 2855 break; 2856 inode = &nfsi->vfs_inode; 2857 spin_lock(&inode->i_lock); 2858 if (list_empty(&nfsi->access_cache_entry_lru)) 2859 goto remove_lru_entry; 2860 cache = list_entry(nfsi->access_cache_entry_lru.next, 2861 struct nfs_access_entry, lru); 2862 list_move(&cache->lru, &head); 2863 rb_erase(&cache->rb_node, &nfsi->access_cache); 2864 freed++; 2865 if (!list_empty(&nfsi->access_cache_entry_lru)) 2866 list_move_tail(&nfsi->access_cache_inode_lru, 2867 &nfs_access_lru_list); 2868 else { 2869 remove_lru_entry: 2870 list_del_init(&nfsi->access_cache_inode_lru); 2871 smp_mb__before_atomic(); 2872 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2873 smp_mb__after_atomic(); 2874 } 2875 spin_unlock(&inode->i_lock); 2876 } 2877 spin_unlock(&nfs_access_lru_lock); 2878 nfs_access_free_list(&head); 2879 return freed; 2880 } 2881 2882 unsigned long 2883 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2884 { 2885 int nr_to_scan = sc->nr_to_scan; 2886 gfp_t gfp_mask = sc->gfp_mask; 2887 2888 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2889 return SHRINK_STOP; 2890 return nfs_do_access_cache_scan(nr_to_scan); 2891 } 2892 2893 2894 unsigned long 2895 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2896 { 2897 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2898 } 2899 2900 static void 2901 nfs_access_cache_enforce_limit(void) 2902 { 2903 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2904 unsigned long diff; 2905 unsigned int nr_to_scan; 2906 2907 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2908 return; 2909 nr_to_scan = 100; 2910 diff = nr_entries - nfs_access_max_cachesize; 2911 if (diff < nr_to_scan) 2912 nr_to_scan = diff; 2913 nfs_do_access_cache_scan(nr_to_scan); 2914 } 2915 2916 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2917 { 2918 struct rb_root *root_node = &nfsi->access_cache; 2919 struct rb_node *n; 2920 struct nfs_access_entry *entry; 2921 2922 /* Unhook entries from the cache */ 2923 while ((n = rb_first(root_node)) != NULL) { 2924 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2925 rb_erase(n, root_node); 2926 list_move(&entry->lru, head); 2927 } 2928 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2929 } 2930 2931 void nfs_access_zap_cache(struct inode *inode) 2932 { 2933 LIST_HEAD(head); 2934 2935 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2936 return; 2937 /* Remove from global LRU init */ 2938 spin_lock(&nfs_access_lru_lock); 2939 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2940 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2941 2942 spin_lock(&inode->i_lock); 2943 __nfs_access_zap_cache(NFS_I(inode), &head); 2944 spin_unlock(&inode->i_lock); 2945 spin_unlock(&nfs_access_lru_lock); 2946 nfs_access_free_list(&head); 2947 } 2948 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2949 2950 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2951 { 2952 struct group_info *ga, *gb; 2953 int g; 2954 2955 if (uid_lt(a->fsuid, b->fsuid)) 2956 return -1; 2957 if (uid_gt(a->fsuid, b->fsuid)) 2958 return 1; 2959 2960 if (gid_lt(a->fsgid, b->fsgid)) 2961 return -1; 2962 if (gid_gt(a->fsgid, b->fsgid)) 2963 return 1; 2964 2965 ga = a->group_info; 2966 gb = b->group_info; 2967 if (ga == gb) 2968 return 0; 2969 if (ga == NULL) 2970 return -1; 2971 if (gb == NULL) 2972 return 1; 2973 if (ga->ngroups < gb->ngroups) 2974 return -1; 2975 if (ga->ngroups > gb->ngroups) 2976 return 1; 2977 2978 for (g = 0; g < ga->ngroups; g++) { 2979 if (gid_lt(ga->gid[g], gb->gid[g])) 2980 return -1; 2981 if (gid_gt(ga->gid[g], gb->gid[g])) 2982 return 1; 2983 } 2984 return 0; 2985 } 2986 2987 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2988 { 2989 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2990 2991 while (n != NULL) { 2992 struct nfs_access_entry *entry = 2993 rb_entry(n, struct nfs_access_entry, rb_node); 2994 int cmp = access_cmp(cred, entry); 2995 2996 if (cmp < 0) 2997 n = n->rb_left; 2998 else if (cmp > 0) 2999 n = n->rb_right; 3000 else 3001 return entry; 3002 } 3003 return NULL; 3004 } 3005 3006 static u64 nfs_access_login_time(const struct task_struct *task, 3007 const struct cred *cred) 3008 { 3009 const struct task_struct *parent; 3010 const struct cred *pcred; 3011 u64 ret; 3012 3013 rcu_read_lock(); 3014 for (;;) { 3015 parent = rcu_dereference(task->real_parent); 3016 pcred = __task_cred(parent); 3017 if (parent == task || cred_fscmp(pcred, cred) != 0) 3018 break; 3019 task = parent; 3020 } 3021 ret = task->start_time; 3022 rcu_read_unlock(); 3023 return ret; 3024 } 3025 3026 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 3027 { 3028 struct nfs_inode *nfsi = NFS_I(inode); 3029 u64 login_time = nfs_access_login_time(current, cred); 3030 struct nfs_access_entry *cache; 3031 bool retry = true; 3032 int err; 3033 3034 spin_lock(&inode->i_lock); 3035 for(;;) { 3036 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3037 goto out_zap; 3038 cache = nfs_access_search_rbtree(inode, cred); 3039 err = -ENOENT; 3040 if (cache == NULL) 3041 goto out; 3042 /* Found an entry, is our attribute cache valid? */ 3043 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3044 break; 3045 if (!retry) 3046 break; 3047 err = -ECHILD; 3048 if (!may_block) 3049 goto out; 3050 spin_unlock(&inode->i_lock); 3051 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3052 if (err) 3053 return err; 3054 spin_lock(&inode->i_lock); 3055 retry = false; 3056 } 3057 err = -ENOENT; 3058 if ((s64)(login_time - cache->timestamp) > 0) 3059 goto out; 3060 *mask = cache->mask; 3061 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3062 err = 0; 3063 out: 3064 spin_unlock(&inode->i_lock); 3065 return err; 3066 out_zap: 3067 spin_unlock(&inode->i_lock); 3068 nfs_access_zap_cache(inode); 3069 return -ENOENT; 3070 } 3071 3072 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3073 { 3074 /* Only check the most recently returned cache entry, 3075 * but do it without locking. 3076 */ 3077 struct nfs_inode *nfsi = NFS_I(inode); 3078 u64 login_time = nfs_access_login_time(current, cred); 3079 struct nfs_access_entry *cache; 3080 int err = -ECHILD; 3081 struct list_head *lh; 3082 3083 rcu_read_lock(); 3084 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3085 goto out; 3086 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3087 cache = list_entry(lh, struct nfs_access_entry, lru); 3088 if (lh == &nfsi->access_cache_entry_lru || 3089 access_cmp(cred, cache) != 0) 3090 cache = NULL; 3091 if (cache == NULL) 3092 goto out; 3093 if ((s64)(login_time - cache->timestamp) > 0) 3094 goto out; 3095 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3096 goto out; 3097 *mask = cache->mask; 3098 err = 0; 3099 out: 3100 rcu_read_unlock(); 3101 return err; 3102 } 3103 3104 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3105 u32 *mask, bool may_block) 3106 { 3107 int status; 3108 3109 status = nfs_access_get_cached_rcu(inode, cred, mask); 3110 if (status != 0) 3111 status = nfs_access_get_cached_locked(inode, cred, mask, 3112 may_block); 3113 3114 return status; 3115 } 3116 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3117 3118 static void nfs_access_add_rbtree(struct inode *inode, 3119 struct nfs_access_entry *set, 3120 const struct cred *cred) 3121 { 3122 struct nfs_inode *nfsi = NFS_I(inode); 3123 struct rb_root *root_node = &nfsi->access_cache; 3124 struct rb_node **p = &root_node->rb_node; 3125 struct rb_node *parent = NULL; 3126 struct nfs_access_entry *entry; 3127 int cmp; 3128 3129 spin_lock(&inode->i_lock); 3130 while (*p != NULL) { 3131 parent = *p; 3132 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3133 cmp = access_cmp(cred, entry); 3134 3135 if (cmp < 0) 3136 p = &parent->rb_left; 3137 else if (cmp > 0) 3138 p = &parent->rb_right; 3139 else 3140 goto found; 3141 } 3142 rb_link_node(&set->rb_node, parent, p); 3143 rb_insert_color(&set->rb_node, root_node); 3144 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3145 spin_unlock(&inode->i_lock); 3146 return; 3147 found: 3148 rb_replace_node(parent, &set->rb_node, root_node); 3149 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3150 list_del(&entry->lru); 3151 spin_unlock(&inode->i_lock); 3152 nfs_access_free_entry(entry); 3153 } 3154 3155 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3156 const struct cred *cred) 3157 { 3158 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3159 if (cache == NULL) 3160 return; 3161 RB_CLEAR_NODE(&cache->rb_node); 3162 cache->fsuid = cred->fsuid; 3163 cache->fsgid = cred->fsgid; 3164 cache->group_info = get_group_info(cred->group_info); 3165 cache->mask = set->mask; 3166 cache->timestamp = ktime_get_ns(); 3167 3168 /* The above field assignments must be visible 3169 * before this item appears on the lru. We cannot easily 3170 * use rcu_assign_pointer, so just force the memory barrier. 3171 */ 3172 smp_wmb(); 3173 nfs_access_add_rbtree(inode, cache, cred); 3174 3175 /* Update accounting */ 3176 smp_mb__before_atomic(); 3177 atomic_long_inc(&nfs_access_nr_entries); 3178 smp_mb__after_atomic(); 3179 3180 /* Add inode to global LRU list */ 3181 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3182 spin_lock(&nfs_access_lru_lock); 3183 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3184 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3185 &nfs_access_lru_list); 3186 spin_unlock(&nfs_access_lru_lock); 3187 } 3188 nfs_access_cache_enforce_limit(); 3189 } 3190 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3191 3192 #define NFS_MAY_READ (NFS_ACCESS_READ) 3193 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3194 NFS_ACCESS_EXTEND | \ 3195 NFS_ACCESS_DELETE) 3196 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3197 NFS_ACCESS_EXTEND) 3198 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3199 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3200 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3201 static int 3202 nfs_access_calc_mask(u32 access_result, umode_t umode) 3203 { 3204 int mask = 0; 3205 3206 if (access_result & NFS_MAY_READ) 3207 mask |= MAY_READ; 3208 if (S_ISDIR(umode)) { 3209 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3210 mask |= MAY_WRITE; 3211 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3212 mask |= MAY_EXEC; 3213 } else if (S_ISREG(umode)) { 3214 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3215 mask |= MAY_WRITE; 3216 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3217 mask |= MAY_EXEC; 3218 } else if (access_result & NFS_MAY_WRITE) 3219 mask |= MAY_WRITE; 3220 return mask; 3221 } 3222 3223 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3224 { 3225 entry->mask = access_result; 3226 } 3227 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3228 3229 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3230 { 3231 struct nfs_access_entry cache; 3232 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3233 int cache_mask = -1; 3234 int status; 3235 3236 trace_nfs_access_enter(inode); 3237 3238 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3239 if (status == 0) 3240 goto out_cached; 3241 3242 status = -ECHILD; 3243 if (!may_block) 3244 goto out; 3245 3246 /* 3247 * Determine which access bits we want to ask for... 3248 */ 3249 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3250 nfs_access_xattr_mask(NFS_SERVER(inode)); 3251 if (S_ISDIR(inode->i_mode)) 3252 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3253 else 3254 cache.mask |= NFS_ACCESS_EXECUTE; 3255 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3256 if (status != 0) { 3257 if (status == -ESTALE) { 3258 if (!S_ISDIR(inode->i_mode)) 3259 nfs_set_inode_stale(inode); 3260 else 3261 nfs_zap_caches(inode); 3262 } 3263 goto out; 3264 } 3265 nfs_access_add_cache(inode, &cache, cred); 3266 out_cached: 3267 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3268 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3269 status = -EACCES; 3270 out: 3271 trace_nfs_access_exit(inode, mask, cache_mask, status); 3272 return status; 3273 } 3274 3275 static int nfs_open_permission_mask(int openflags) 3276 { 3277 int mask = 0; 3278 3279 if (openflags & __FMODE_EXEC) { 3280 /* ONLY check exec rights */ 3281 mask = MAY_EXEC; 3282 } else { 3283 if ((openflags & O_ACCMODE) != O_WRONLY) 3284 mask |= MAY_READ; 3285 if ((openflags & O_ACCMODE) != O_RDONLY) 3286 mask |= MAY_WRITE; 3287 } 3288 3289 return mask; 3290 } 3291 3292 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3293 { 3294 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3295 } 3296 EXPORT_SYMBOL_GPL(nfs_may_open); 3297 3298 static int nfs_execute_ok(struct inode *inode, int mask) 3299 { 3300 struct nfs_server *server = NFS_SERVER(inode); 3301 int ret = 0; 3302 3303 if (S_ISDIR(inode->i_mode)) 3304 return 0; 3305 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3306 if (mask & MAY_NOT_BLOCK) 3307 return -ECHILD; 3308 ret = __nfs_revalidate_inode(server, inode); 3309 } 3310 if (ret == 0 && !execute_ok(inode)) 3311 ret = -EACCES; 3312 return ret; 3313 } 3314 3315 int nfs_permission(struct mnt_idmap *idmap, 3316 struct inode *inode, 3317 int mask) 3318 { 3319 const struct cred *cred = current_cred(); 3320 int res = 0; 3321 3322 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3323 3324 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3325 goto out; 3326 /* Is this sys_access() ? */ 3327 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3328 goto force_lookup; 3329 3330 switch (inode->i_mode & S_IFMT) { 3331 case S_IFLNK: 3332 goto out; 3333 case S_IFREG: 3334 if ((mask & MAY_OPEN) && 3335 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3336 return 0; 3337 break; 3338 case S_IFDIR: 3339 /* 3340 * Optimize away all write operations, since the server 3341 * will check permissions when we perform the op. 3342 */ 3343 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3344 goto out; 3345 } 3346 3347 force_lookup: 3348 if (!NFS_PROTO(inode)->access) 3349 goto out_notsup; 3350 3351 res = nfs_do_access(inode, cred, mask); 3352 out: 3353 if (!res && (mask & MAY_EXEC)) 3354 res = nfs_execute_ok(inode, mask); 3355 3356 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3357 inode->i_sb->s_id, inode->i_ino, mask, res); 3358 return res; 3359 out_notsup: 3360 if (mask & MAY_NOT_BLOCK) 3361 return -ECHILD; 3362 3363 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3364 NFS_INO_INVALID_OTHER); 3365 if (res == 0) 3366 res = generic_permission(&nop_mnt_idmap, inode, mask); 3367 goto out; 3368 } 3369 EXPORT_SYMBOL_GPL(nfs_permission); 3370