xref: /linux/fs/nfs/dir.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->page_index = 0;
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfs_set_cache_invalid(dir,
86 					      NFS_INO_INVALID_DATA |
87 						      NFS_INO_REVAL_FORCED);
88 		list_add(&ctx->list, &nfsi->open_files);
89 		clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
90 		spin_unlock(&dir->i_lock);
91 		return ctx;
92 	}
93 	return  ERR_PTR(-ENOMEM);
94 }
95 
96 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
97 {
98 	spin_lock(&dir->i_lock);
99 	list_del(&ctx->list);
100 	spin_unlock(&dir->i_lock);
101 	kfree(ctx);
102 }
103 
104 /*
105  * Open file
106  */
107 static int
108 nfs_opendir(struct inode *inode, struct file *filp)
109 {
110 	int res = 0;
111 	struct nfs_open_dir_context *ctx;
112 
113 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114 
115 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116 
117 	ctx = alloc_nfs_open_dir_context(inode);
118 	if (IS_ERR(ctx)) {
119 		res = PTR_ERR(ctx);
120 		goto out;
121 	}
122 	filp->private_data = ctx;
123 out:
124 	return res;
125 }
126 
127 static int
128 nfs_closedir(struct inode *inode, struct file *filp)
129 {
130 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
131 	return 0;
132 }
133 
134 struct nfs_cache_array_entry {
135 	u64 cookie;
136 	u64 ino;
137 	const char *name;
138 	unsigned int name_len;
139 	unsigned char d_type;
140 };
141 
142 struct nfs_cache_array {
143 	u64 last_cookie;
144 	unsigned int size;
145 	unsigned char page_full : 1,
146 		      page_is_eof : 1,
147 		      cookies_are_ordered : 1;
148 	struct nfs_cache_array_entry array[];
149 };
150 
151 struct nfs_readdir_descriptor {
152 	struct file	*file;
153 	struct page	*page;
154 	struct dir_context *ctx;
155 	pgoff_t		page_index;
156 	u64		dir_cookie;
157 	u64		last_cookie;
158 	u64		dup_cookie;
159 	loff_t		current_index;
160 	loff_t		prev_index;
161 
162 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
163 	unsigned long	dir_verifier;
164 	unsigned long	timestamp;
165 	unsigned long	gencount;
166 	unsigned long	attr_gencount;
167 	unsigned int	cache_entry_index;
168 	signed char duped;
169 	bool plus;
170 	bool eof;
171 };
172 
173 static void nfs_readdir_array_init(struct nfs_cache_array *array)
174 {
175 	memset(array, 0, sizeof(struct nfs_cache_array));
176 }
177 
178 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
179 {
180 	struct nfs_cache_array *array;
181 
182 	array = kmap_atomic(page);
183 	nfs_readdir_array_init(array);
184 	array->last_cookie = last_cookie;
185 	array->cookies_are_ordered = 1;
186 	kunmap_atomic(array);
187 }
188 
189 /*
190  * we are freeing strings created by nfs_add_to_readdir_array()
191  */
192 static
193 void nfs_readdir_clear_array(struct page *page)
194 {
195 	struct nfs_cache_array *array;
196 	int i;
197 
198 	array = kmap_atomic(page);
199 	for (i = 0; i < array->size; i++)
200 		kfree(array->array[i].name);
201 	nfs_readdir_array_init(array);
202 	kunmap_atomic(array);
203 }
204 
205 static struct page *
206 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
207 {
208 	struct page *page = alloc_page(gfp_flags);
209 	if (page)
210 		nfs_readdir_page_init_array(page, last_cookie);
211 	return page;
212 }
213 
214 static void nfs_readdir_page_array_free(struct page *page)
215 {
216 	if (page) {
217 		nfs_readdir_clear_array(page);
218 		put_page(page);
219 	}
220 }
221 
222 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
223 {
224 	array->page_is_eof = 1;
225 	array->page_full = 1;
226 }
227 
228 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
229 {
230 	return array->page_full;
231 }
232 
233 /*
234  * the caller is responsible for freeing qstr.name
235  * when called by nfs_readdir_add_to_array, the strings will be freed in
236  * nfs_clear_readdir_array()
237  */
238 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
239 {
240 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
241 
242 	/*
243 	 * Avoid a kmemleak false positive. The pointer to the name is stored
244 	 * in a page cache page which kmemleak does not scan.
245 	 */
246 	if (ret != NULL)
247 		kmemleak_not_leak(ret);
248 	return ret;
249 }
250 
251 /*
252  * Check that the next array entry lies entirely within the page bounds
253  */
254 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
255 {
256 	struct nfs_cache_array_entry *cache_entry;
257 
258 	if (array->page_full)
259 		return -ENOSPC;
260 	cache_entry = &array->array[array->size + 1];
261 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
262 		array->page_full = 1;
263 		return -ENOSPC;
264 	}
265 	return 0;
266 }
267 
268 static
269 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
270 {
271 	struct nfs_cache_array *array;
272 	struct nfs_cache_array_entry *cache_entry;
273 	const char *name;
274 	int ret;
275 
276 	name = nfs_readdir_copy_name(entry->name, entry->len);
277 	if (!name)
278 		return -ENOMEM;
279 
280 	array = kmap_atomic(page);
281 	ret = nfs_readdir_array_can_expand(array);
282 	if (ret) {
283 		kfree(name);
284 		goto out;
285 	}
286 
287 	cache_entry = &array->array[array->size];
288 	cache_entry->cookie = entry->prev_cookie;
289 	cache_entry->ino = entry->ino;
290 	cache_entry->d_type = entry->d_type;
291 	cache_entry->name_len = entry->len;
292 	cache_entry->name = name;
293 	array->last_cookie = entry->cookie;
294 	if (array->last_cookie <= cache_entry->cookie)
295 		array->cookies_are_ordered = 0;
296 	array->size++;
297 	if (entry->eof != 0)
298 		nfs_readdir_array_set_eof(array);
299 out:
300 	kunmap_atomic(array);
301 	return ret;
302 }
303 
304 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
305 						pgoff_t index, u64 last_cookie)
306 {
307 	struct page *page;
308 
309 	page = grab_cache_page(mapping, index);
310 	if (page && !PageUptodate(page)) {
311 		nfs_readdir_page_init_array(page, last_cookie);
312 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
313 			nfs_zap_mapping(mapping->host, mapping);
314 		SetPageUptodate(page);
315 	}
316 
317 	return page;
318 }
319 
320 static u64 nfs_readdir_page_last_cookie(struct page *page)
321 {
322 	struct nfs_cache_array *array;
323 	u64 ret;
324 
325 	array = kmap_atomic(page);
326 	ret = array->last_cookie;
327 	kunmap_atomic(array);
328 	return ret;
329 }
330 
331 static bool nfs_readdir_page_needs_filling(struct page *page)
332 {
333 	struct nfs_cache_array *array;
334 	bool ret;
335 
336 	array = kmap_atomic(page);
337 	ret = !nfs_readdir_array_is_full(array);
338 	kunmap_atomic(array);
339 	return ret;
340 }
341 
342 static void nfs_readdir_page_set_eof(struct page *page)
343 {
344 	struct nfs_cache_array *array;
345 
346 	array = kmap_atomic(page);
347 	nfs_readdir_array_set_eof(array);
348 	kunmap_atomic(array);
349 }
350 
351 static void nfs_readdir_page_unlock_and_put(struct page *page)
352 {
353 	unlock_page(page);
354 	put_page(page);
355 }
356 
357 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
358 					      pgoff_t index, u64 cookie)
359 {
360 	struct page *page;
361 
362 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
363 	if (page) {
364 		if (nfs_readdir_page_last_cookie(page) == cookie)
365 			return page;
366 		nfs_readdir_page_unlock_and_put(page);
367 	}
368 	return NULL;
369 }
370 
371 static inline
372 int is_32bit_api(void)
373 {
374 #ifdef CONFIG_COMPAT
375 	return in_compat_syscall();
376 #else
377 	return (BITS_PER_LONG == 32);
378 #endif
379 }
380 
381 static
382 bool nfs_readdir_use_cookie(const struct file *filp)
383 {
384 	if ((filp->f_mode & FMODE_32BITHASH) ||
385 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
386 		return false;
387 	return true;
388 }
389 
390 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
391 				      struct nfs_readdir_descriptor *desc)
392 {
393 	loff_t diff = desc->ctx->pos - desc->current_index;
394 	unsigned int index;
395 
396 	if (diff < 0)
397 		goto out_eof;
398 	if (diff >= array->size) {
399 		if (array->page_is_eof)
400 			goto out_eof;
401 		return -EAGAIN;
402 	}
403 
404 	index = (unsigned int)diff;
405 	desc->dir_cookie = array->array[index].cookie;
406 	desc->cache_entry_index = index;
407 	return 0;
408 out_eof:
409 	desc->eof = true;
410 	return -EBADCOOKIE;
411 }
412 
413 static bool
414 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
415 {
416 	if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
417 				    NFS_INO_INVALID_DATA))
418 		return false;
419 	smp_rmb();
420 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
421 }
422 
423 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
424 					      u64 cookie)
425 {
426 	if (!array->cookies_are_ordered)
427 		return true;
428 	/* Optimisation for monotonically increasing cookies */
429 	if (cookie >= array->last_cookie)
430 		return false;
431 	if (array->size && cookie < array->array[0].cookie)
432 		return false;
433 	return true;
434 }
435 
436 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
437 					 struct nfs_readdir_descriptor *desc)
438 {
439 	int i;
440 	loff_t new_pos;
441 	int status = -EAGAIN;
442 
443 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
444 		goto check_eof;
445 
446 	for (i = 0; i < array->size; i++) {
447 		if (array->array[i].cookie == desc->dir_cookie) {
448 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
449 
450 			new_pos = desc->current_index + i;
451 			if (desc->attr_gencount != nfsi->attr_gencount ||
452 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
453 				desc->duped = 0;
454 				desc->attr_gencount = nfsi->attr_gencount;
455 			} else if (new_pos < desc->prev_index) {
456 				if (desc->duped > 0
457 				    && desc->dup_cookie == desc->dir_cookie) {
458 					if (printk_ratelimit()) {
459 						pr_notice("NFS: directory %pD2 contains a readdir loop."
460 								"Please contact your server vendor.  "
461 								"The file: %s has duplicate cookie %llu\n",
462 								desc->file, array->array[i].name, desc->dir_cookie);
463 					}
464 					status = -ELOOP;
465 					goto out;
466 				}
467 				desc->dup_cookie = desc->dir_cookie;
468 				desc->duped = -1;
469 			}
470 			if (nfs_readdir_use_cookie(desc->file))
471 				desc->ctx->pos = desc->dir_cookie;
472 			else
473 				desc->ctx->pos = new_pos;
474 			desc->prev_index = new_pos;
475 			desc->cache_entry_index = i;
476 			return 0;
477 		}
478 	}
479 check_eof:
480 	if (array->page_is_eof) {
481 		status = -EBADCOOKIE;
482 		if (desc->dir_cookie == array->last_cookie)
483 			desc->eof = true;
484 	}
485 out:
486 	return status;
487 }
488 
489 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
490 {
491 	struct nfs_cache_array *array;
492 	int status;
493 
494 	array = kmap_atomic(desc->page);
495 
496 	if (desc->dir_cookie == 0)
497 		status = nfs_readdir_search_for_pos(array, desc);
498 	else
499 		status = nfs_readdir_search_for_cookie(array, desc);
500 
501 	if (status == -EAGAIN) {
502 		desc->last_cookie = array->last_cookie;
503 		desc->current_index += array->size;
504 		desc->page_index++;
505 	}
506 	kunmap_atomic(array);
507 	return status;
508 }
509 
510 /* Fill a page with xdr information before transferring to the cache page */
511 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
512 				  __be32 *verf, u64 cookie,
513 				  struct page **pages, size_t bufsize,
514 				  __be32 *verf_res)
515 {
516 	struct inode *inode = file_inode(desc->file);
517 	struct nfs_readdir_arg arg = {
518 		.dentry = file_dentry(desc->file),
519 		.cred = desc->file->f_cred,
520 		.verf = verf,
521 		.cookie = cookie,
522 		.pages = pages,
523 		.page_len = bufsize,
524 		.plus = desc->plus,
525 	};
526 	struct nfs_readdir_res res = {
527 		.verf = verf_res,
528 	};
529 	unsigned long	timestamp, gencount;
530 	int		error;
531 
532  again:
533 	timestamp = jiffies;
534 	gencount = nfs_inc_attr_generation_counter();
535 	desc->dir_verifier = nfs_save_change_attribute(inode);
536 	error = NFS_PROTO(inode)->readdir(&arg, &res);
537 	if (error < 0) {
538 		/* We requested READDIRPLUS, but the server doesn't grok it */
539 		if (error == -ENOTSUPP && desc->plus) {
540 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
541 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
542 			desc->plus = arg.plus = false;
543 			goto again;
544 		}
545 		goto error;
546 	}
547 	desc->timestamp = timestamp;
548 	desc->gencount = gencount;
549 error:
550 	return error;
551 }
552 
553 static int xdr_decode(struct nfs_readdir_descriptor *desc,
554 		      struct nfs_entry *entry, struct xdr_stream *xdr)
555 {
556 	struct inode *inode = file_inode(desc->file);
557 	int error;
558 
559 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
560 	if (error)
561 		return error;
562 	entry->fattr->time_start = desc->timestamp;
563 	entry->fattr->gencount = desc->gencount;
564 	return 0;
565 }
566 
567 /* Match file and dirent using either filehandle or fileid
568  * Note: caller is responsible for checking the fsid
569  */
570 static
571 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
572 {
573 	struct inode *inode;
574 	struct nfs_inode *nfsi;
575 
576 	if (d_really_is_negative(dentry))
577 		return 0;
578 
579 	inode = d_inode(dentry);
580 	if (is_bad_inode(inode) || NFS_STALE(inode))
581 		return 0;
582 
583 	nfsi = NFS_I(inode);
584 	if (entry->fattr->fileid != nfsi->fileid)
585 		return 0;
586 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
587 		return 0;
588 	return 1;
589 }
590 
591 static
592 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
593 {
594 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
595 		return false;
596 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
597 		return true;
598 	if (ctx->pos == 0)
599 		return true;
600 	return false;
601 }
602 
603 /*
604  * This function is called by the lookup and getattr code to request the
605  * use of readdirplus to accelerate any future lookups in the same
606  * directory.
607  */
608 void nfs_advise_use_readdirplus(struct inode *dir)
609 {
610 	struct nfs_inode *nfsi = NFS_I(dir);
611 
612 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
613 	    !list_empty(&nfsi->open_files))
614 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
615 }
616 
617 /*
618  * This function is mainly for use by nfs_getattr().
619  *
620  * If this is an 'ls -l', we want to force use of readdirplus.
621  * Do this by checking if there is an active file descriptor
622  * and calling nfs_advise_use_readdirplus, then forcing a
623  * cache flush.
624  */
625 void nfs_force_use_readdirplus(struct inode *dir)
626 {
627 	struct nfs_inode *nfsi = NFS_I(dir);
628 
629 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
630 	    !list_empty(&nfsi->open_files)) {
631 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
632 		set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
633 	}
634 }
635 
636 static
637 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
638 		unsigned long dir_verifier)
639 {
640 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
641 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
642 	struct dentry *dentry;
643 	struct dentry *alias;
644 	struct inode *inode;
645 	int status;
646 
647 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
648 		return;
649 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
650 		return;
651 	if (filename.len == 0)
652 		return;
653 	/* Validate that the name doesn't contain any illegal '\0' */
654 	if (strnlen(filename.name, filename.len) != filename.len)
655 		return;
656 	/* ...or '/' */
657 	if (strnchr(filename.name, filename.len, '/'))
658 		return;
659 	if (filename.name[0] == '.') {
660 		if (filename.len == 1)
661 			return;
662 		if (filename.len == 2 && filename.name[1] == '.')
663 			return;
664 	}
665 	filename.hash = full_name_hash(parent, filename.name, filename.len);
666 
667 	dentry = d_lookup(parent, &filename);
668 again:
669 	if (!dentry) {
670 		dentry = d_alloc_parallel(parent, &filename, &wq);
671 		if (IS_ERR(dentry))
672 			return;
673 	}
674 	if (!d_in_lookup(dentry)) {
675 		/* Is there a mountpoint here? If so, just exit */
676 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
677 					&entry->fattr->fsid))
678 			goto out;
679 		if (nfs_same_file(dentry, entry)) {
680 			if (!entry->fh->size)
681 				goto out;
682 			nfs_set_verifier(dentry, dir_verifier);
683 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
684 			if (!status)
685 				nfs_setsecurity(d_inode(dentry), entry->fattr);
686 			goto out;
687 		} else {
688 			d_invalidate(dentry);
689 			dput(dentry);
690 			dentry = NULL;
691 			goto again;
692 		}
693 	}
694 	if (!entry->fh->size) {
695 		d_lookup_done(dentry);
696 		goto out;
697 	}
698 
699 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
700 	alias = d_splice_alias(inode, dentry);
701 	d_lookup_done(dentry);
702 	if (alias) {
703 		if (IS_ERR(alias))
704 			goto out;
705 		dput(dentry);
706 		dentry = alias;
707 	}
708 	nfs_set_verifier(dentry, dir_verifier);
709 out:
710 	dput(dentry);
711 }
712 
713 /* Perform conversion from xdr to cache array */
714 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
715 				   struct nfs_entry *entry,
716 				   struct page **xdr_pages,
717 				   unsigned int buflen,
718 				   struct page **arrays,
719 				   size_t narrays)
720 {
721 	struct address_space *mapping = desc->file->f_mapping;
722 	struct xdr_stream stream;
723 	struct xdr_buf buf;
724 	struct page *scratch, *new, *page = *arrays;
725 	int status;
726 
727 	scratch = alloc_page(GFP_KERNEL);
728 	if (scratch == NULL)
729 		return -ENOMEM;
730 
731 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
732 	xdr_set_scratch_page(&stream, scratch);
733 
734 	do {
735 		if (entry->fattr->label)
736 			entry->fattr->label->len = NFS4_MAXLABELLEN;
737 
738 		status = xdr_decode(desc, entry, &stream);
739 		if (status != 0)
740 			break;
741 
742 		if (desc->plus)
743 			nfs_prime_dcache(file_dentry(desc->file), entry,
744 					desc->dir_verifier);
745 
746 		status = nfs_readdir_add_to_array(entry, page);
747 		if (status != -ENOSPC)
748 			continue;
749 
750 		if (page->mapping != mapping) {
751 			if (!--narrays)
752 				break;
753 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
754 							   GFP_KERNEL);
755 			if (!new)
756 				break;
757 			arrays++;
758 			*arrays = page = new;
759 		} else {
760 			new = nfs_readdir_page_get_next(mapping,
761 							page->index + 1,
762 							entry->prev_cookie);
763 			if (!new)
764 				break;
765 			if (page != *arrays)
766 				nfs_readdir_page_unlock_and_put(page);
767 			page = new;
768 		}
769 		status = nfs_readdir_add_to_array(entry, page);
770 	} while (!status && !entry->eof);
771 
772 	switch (status) {
773 	case -EBADCOOKIE:
774 		if (entry->eof) {
775 			nfs_readdir_page_set_eof(page);
776 			status = 0;
777 		}
778 		break;
779 	case -ENOSPC:
780 	case -EAGAIN:
781 		status = 0;
782 		break;
783 	}
784 
785 	if (page != *arrays)
786 		nfs_readdir_page_unlock_and_put(page);
787 
788 	put_page(scratch);
789 	return status;
790 }
791 
792 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
793 {
794 	while (npages--)
795 		put_page(pages[npages]);
796 	kfree(pages);
797 }
798 
799 /*
800  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
801  * to nfs_readdir_free_pages()
802  */
803 static struct page **nfs_readdir_alloc_pages(size_t npages)
804 {
805 	struct page **pages;
806 	size_t i;
807 
808 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
809 	if (!pages)
810 		return NULL;
811 	for (i = 0; i < npages; i++) {
812 		struct page *page = alloc_page(GFP_KERNEL);
813 		if (page == NULL)
814 			goto out_freepages;
815 		pages[i] = page;
816 	}
817 	return pages;
818 
819 out_freepages:
820 	nfs_readdir_free_pages(pages, i);
821 	return NULL;
822 }
823 
824 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
825 				    __be32 *verf_arg, __be32 *verf_res,
826 				    struct page **arrays, size_t narrays)
827 {
828 	struct page **pages;
829 	struct page *page = *arrays;
830 	struct nfs_entry *entry;
831 	size_t array_size;
832 	struct inode *inode = file_inode(desc->file);
833 	size_t dtsize = NFS_SERVER(inode)->dtsize;
834 	int status = -ENOMEM;
835 
836 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
837 	if (!entry)
838 		return -ENOMEM;
839 	entry->cookie = nfs_readdir_page_last_cookie(page);
840 	entry->fh = nfs_alloc_fhandle();
841 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
842 	entry->server = NFS_SERVER(inode);
843 	if (entry->fh == NULL || entry->fattr == NULL)
844 		goto out;
845 
846 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
847 	pages = nfs_readdir_alloc_pages(array_size);
848 	if (!pages)
849 		goto out;
850 
851 	do {
852 		unsigned int pglen;
853 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
854 						pages, dtsize,
855 						verf_res);
856 		if (status < 0)
857 			break;
858 
859 		pglen = status;
860 		if (pglen == 0) {
861 			nfs_readdir_page_set_eof(page);
862 			break;
863 		}
864 
865 		verf_arg = verf_res;
866 
867 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
868 						 arrays, narrays);
869 	} while (!status && nfs_readdir_page_needs_filling(page));
870 
871 	nfs_readdir_free_pages(pages, array_size);
872 out:
873 	nfs_free_fattr(entry->fattr);
874 	nfs_free_fhandle(entry->fh);
875 	kfree(entry);
876 	return status;
877 }
878 
879 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
880 {
881 	put_page(desc->page);
882 	desc->page = NULL;
883 }
884 
885 static void
886 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
887 {
888 	unlock_page(desc->page);
889 	nfs_readdir_page_put(desc);
890 }
891 
892 static struct page *
893 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
894 {
895 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
896 					   desc->page_index,
897 					   desc->last_cookie);
898 }
899 
900 /*
901  * Returns 0 if desc->dir_cookie was found on page desc->page_index
902  * and locks the page to prevent removal from the page cache.
903  */
904 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
905 {
906 	struct inode *inode = file_inode(desc->file);
907 	struct nfs_inode *nfsi = NFS_I(inode);
908 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
909 	int res;
910 
911 	desc->page = nfs_readdir_page_get_cached(desc);
912 	if (!desc->page)
913 		return -ENOMEM;
914 	if (nfs_readdir_page_needs_filling(desc->page)) {
915 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
916 					       &desc->page, 1);
917 		if (res < 0) {
918 			nfs_readdir_page_unlock_and_put_cached(desc);
919 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
920 				invalidate_inode_pages2(desc->file->f_mapping);
921 				desc->page_index = 0;
922 				return -EAGAIN;
923 			}
924 			return res;
925 		}
926 		/*
927 		 * Set the cookie verifier if the page cache was empty
928 		 */
929 		if (desc->page_index == 0)
930 			memcpy(nfsi->cookieverf, verf,
931 			       sizeof(nfsi->cookieverf));
932 	}
933 	res = nfs_readdir_search_array(desc);
934 	if (res == 0)
935 		return 0;
936 	nfs_readdir_page_unlock_and_put_cached(desc);
937 	return res;
938 }
939 
940 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
941 {
942 	struct address_space *mapping = desc->file->f_mapping;
943 	struct inode *dir = file_inode(desc->file);
944 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
945 	loff_t size = i_size_read(dir);
946 
947 	/*
948 	 * Default to uncached readdir if the page cache is empty, and
949 	 * we're looking for a non-zero cookie in a large directory.
950 	 */
951 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
952 }
953 
954 /* Search for desc->dir_cookie from the beginning of the page cache */
955 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
956 {
957 	int res;
958 
959 	if (nfs_readdir_dont_search_cache(desc))
960 		return -EBADCOOKIE;
961 
962 	do {
963 		if (desc->page_index == 0) {
964 			desc->current_index = 0;
965 			desc->prev_index = 0;
966 			desc->last_cookie = 0;
967 		}
968 		res = find_and_lock_cache_page(desc);
969 	} while (res == -EAGAIN);
970 	return res;
971 }
972 
973 /*
974  * Once we've found the start of the dirent within a page: fill 'er up...
975  */
976 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
977 			   const __be32 *verf)
978 {
979 	struct file	*file = desc->file;
980 	struct nfs_cache_array *array;
981 	unsigned int i = 0;
982 
983 	array = kmap(desc->page);
984 	for (i = desc->cache_entry_index; i < array->size; i++) {
985 		struct nfs_cache_array_entry *ent;
986 
987 		ent = &array->array[i];
988 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
989 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
990 			desc->eof = true;
991 			break;
992 		}
993 		memcpy(desc->verf, verf, sizeof(desc->verf));
994 		if (i < (array->size-1))
995 			desc->dir_cookie = array->array[i+1].cookie;
996 		else
997 			desc->dir_cookie = array->last_cookie;
998 		if (nfs_readdir_use_cookie(file))
999 			desc->ctx->pos = desc->dir_cookie;
1000 		else
1001 			desc->ctx->pos++;
1002 		if (desc->duped != 0)
1003 			desc->duped = 1;
1004 	}
1005 	if (array->page_is_eof)
1006 		desc->eof = true;
1007 
1008 	kunmap(desc->page);
1009 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1010 			(unsigned long long)desc->dir_cookie);
1011 }
1012 
1013 /*
1014  * If we cannot find a cookie in our cache, we suspect that this is
1015  * because it points to a deleted file, so we ask the server to return
1016  * whatever it thinks is the next entry. We then feed this to filldir.
1017  * If all goes well, we should then be able to find our way round the
1018  * cache on the next call to readdir_search_pagecache();
1019  *
1020  * NOTE: we cannot add the anonymous page to the pagecache because
1021  *	 the data it contains might not be page aligned. Besides,
1022  *	 we should already have a complete representation of the
1023  *	 directory in the page cache by the time we get here.
1024  */
1025 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1026 {
1027 	struct page	**arrays;
1028 	size_t		i, sz = 512;
1029 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1030 	int		status = -ENOMEM;
1031 
1032 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1033 			(unsigned long long)desc->dir_cookie);
1034 
1035 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1036 	if (!arrays)
1037 		goto out;
1038 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1039 	if (!arrays[0])
1040 		goto out;
1041 
1042 	desc->page_index = 0;
1043 	desc->last_cookie = desc->dir_cookie;
1044 	desc->duped = 0;
1045 
1046 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1047 
1048 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1049 		desc->page = arrays[i];
1050 		nfs_do_filldir(desc, verf);
1051 	}
1052 	desc->page = NULL;
1053 
1054 
1055 	for (i = 0; i < sz && arrays[i]; i++)
1056 		nfs_readdir_page_array_free(arrays[i]);
1057 out:
1058 	kfree(arrays);
1059 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1060 	return status;
1061 }
1062 
1063 /* The file offset position represents the dirent entry number.  A
1064    last cookie cache takes care of the common case of reading the
1065    whole directory.
1066  */
1067 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1068 {
1069 	struct dentry	*dentry = file_dentry(file);
1070 	struct inode	*inode = d_inode(dentry);
1071 	struct nfs_inode *nfsi = NFS_I(inode);
1072 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1073 	struct nfs_readdir_descriptor *desc;
1074 	pgoff_t page_index;
1075 	int res;
1076 
1077 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1078 			file, (long long)ctx->pos);
1079 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1080 
1081 	/*
1082 	 * ctx->pos points to the dirent entry number.
1083 	 * *desc->dir_cookie has the cookie for the next entry. We have
1084 	 * to either find the entry with the appropriate number or
1085 	 * revalidate the cookie.
1086 	 */
1087 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1088 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1089 		if (res < 0)
1090 			goto out;
1091 	}
1092 
1093 	res = -ENOMEM;
1094 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1095 	if (!desc)
1096 		goto out;
1097 	desc->file = file;
1098 	desc->ctx = ctx;
1099 	desc->plus = nfs_use_readdirplus(inode, ctx);
1100 
1101 	spin_lock(&file->f_lock);
1102 	desc->dir_cookie = dir_ctx->dir_cookie;
1103 	desc->dup_cookie = dir_ctx->dup_cookie;
1104 	desc->duped = dir_ctx->duped;
1105 	page_index = dir_ctx->page_index;
1106 	desc->attr_gencount = dir_ctx->attr_gencount;
1107 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1108 	spin_unlock(&file->f_lock);
1109 
1110 	if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1111 	    list_is_singular(&nfsi->open_files))
1112 		invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1113 
1114 	do {
1115 		res = readdir_search_pagecache(desc);
1116 
1117 		if (res == -EBADCOOKIE) {
1118 			res = 0;
1119 			/* This means either end of directory */
1120 			if (desc->dir_cookie && !desc->eof) {
1121 				/* Or that the server has 'lost' a cookie */
1122 				res = uncached_readdir(desc);
1123 				if (res == 0)
1124 					continue;
1125 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1126 					res = 0;
1127 			}
1128 			break;
1129 		}
1130 		if (res == -ETOOSMALL && desc->plus) {
1131 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1132 			nfs_zap_caches(inode);
1133 			desc->page_index = 0;
1134 			desc->plus = false;
1135 			desc->eof = false;
1136 			continue;
1137 		}
1138 		if (res < 0)
1139 			break;
1140 
1141 		nfs_do_filldir(desc, nfsi->cookieverf);
1142 		nfs_readdir_page_unlock_and_put_cached(desc);
1143 	} while (!desc->eof);
1144 
1145 	spin_lock(&file->f_lock);
1146 	dir_ctx->dir_cookie = desc->dir_cookie;
1147 	dir_ctx->dup_cookie = desc->dup_cookie;
1148 	dir_ctx->duped = desc->duped;
1149 	dir_ctx->attr_gencount = desc->attr_gencount;
1150 	dir_ctx->page_index = desc->page_index;
1151 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1152 	spin_unlock(&file->f_lock);
1153 
1154 	kfree(desc);
1155 
1156 out:
1157 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1158 	return res;
1159 }
1160 
1161 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1162 {
1163 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1164 
1165 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1166 			filp, offset, whence);
1167 
1168 	switch (whence) {
1169 	default:
1170 		return -EINVAL;
1171 	case SEEK_SET:
1172 		if (offset < 0)
1173 			return -EINVAL;
1174 		spin_lock(&filp->f_lock);
1175 		break;
1176 	case SEEK_CUR:
1177 		if (offset == 0)
1178 			return filp->f_pos;
1179 		spin_lock(&filp->f_lock);
1180 		offset += filp->f_pos;
1181 		if (offset < 0) {
1182 			spin_unlock(&filp->f_lock);
1183 			return -EINVAL;
1184 		}
1185 	}
1186 	if (offset != filp->f_pos) {
1187 		filp->f_pos = offset;
1188 		if (nfs_readdir_use_cookie(filp))
1189 			dir_ctx->dir_cookie = offset;
1190 		else
1191 			dir_ctx->dir_cookie = 0;
1192 		if (offset == 0)
1193 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1194 		dir_ctx->duped = 0;
1195 	}
1196 	spin_unlock(&filp->f_lock);
1197 	return offset;
1198 }
1199 
1200 /*
1201  * All directory operations under NFS are synchronous, so fsync()
1202  * is a dummy operation.
1203  */
1204 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1205 			 int datasync)
1206 {
1207 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1208 
1209 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1210 	return 0;
1211 }
1212 
1213 /**
1214  * nfs_force_lookup_revalidate - Mark the directory as having changed
1215  * @dir: pointer to directory inode
1216  *
1217  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1218  * full lookup on all child dentries of 'dir' whenever a change occurs
1219  * on the server that might have invalidated our dcache.
1220  *
1221  * Note that we reserve bit '0' as a tag to let us know when a dentry
1222  * was revalidated while holding a delegation on its inode.
1223  *
1224  * The caller should be holding dir->i_lock
1225  */
1226 void nfs_force_lookup_revalidate(struct inode *dir)
1227 {
1228 	NFS_I(dir)->cache_change_attribute += 2;
1229 }
1230 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1231 
1232 /**
1233  * nfs_verify_change_attribute - Detects NFS remote directory changes
1234  * @dir: pointer to parent directory inode
1235  * @verf: previously saved change attribute
1236  *
1237  * Return "false" if the verifiers doesn't match the change attribute.
1238  * This would usually indicate that the directory contents have changed on
1239  * the server, and that any dentries need revalidating.
1240  */
1241 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1242 {
1243 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1244 }
1245 
1246 static void nfs_set_verifier_delegated(unsigned long *verf)
1247 {
1248 	*verf |= 1UL;
1249 }
1250 
1251 #if IS_ENABLED(CONFIG_NFS_V4)
1252 static void nfs_unset_verifier_delegated(unsigned long *verf)
1253 {
1254 	*verf &= ~1UL;
1255 }
1256 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1257 
1258 static bool nfs_test_verifier_delegated(unsigned long verf)
1259 {
1260 	return verf & 1;
1261 }
1262 
1263 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1264 {
1265 	return nfs_test_verifier_delegated(dentry->d_time);
1266 }
1267 
1268 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1269 {
1270 	struct inode *inode = d_inode(dentry);
1271 	struct inode *dir = d_inode(dentry->d_parent);
1272 
1273 	if (!nfs_verify_change_attribute(dir, verf))
1274 		return;
1275 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1276 		nfs_set_verifier_delegated(&verf);
1277 	dentry->d_time = verf;
1278 }
1279 
1280 /**
1281  * nfs_set_verifier - save a parent directory verifier in the dentry
1282  * @dentry: pointer to dentry
1283  * @verf: verifier to save
1284  *
1285  * Saves the parent directory verifier in @dentry. If the inode has
1286  * a delegation, we also tag the dentry as having been revalidated
1287  * while holding a delegation so that we know we don't have to
1288  * look it up again after a directory change.
1289  */
1290 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1291 {
1292 
1293 	spin_lock(&dentry->d_lock);
1294 	nfs_set_verifier_locked(dentry, verf);
1295 	spin_unlock(&dentry->d_lock);
1296 }
1297 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1298 
1299 #if IS_ENABLED(CONFIG_NFS_V4)
1300 /**
1301  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1302  * @inode: pointer to inode
1303  *
1304  * Iterates through the dentries in the inode alias list and clears
1305  * the tag used to indicate that the dentry has been revalidated
1306  * while holding a delegation.
1307  * This function is intended for use when the delegation is being
1308  * returned or revoked.
1309  */
1310 void nfs_clear_verifier_delegated(struct inode *inode)
1311 {
1312 	struct dentry *alias;
1313 
1314 	if (!inode)
1315 		return;
1316 	spin_lock(&inode->i_lock);
1317 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1318 		spin_lock(&alias->d_lock);
1319 		nfs_unset_verifier_delegated(&alias->d_time);
1320 		spin_unlock(&alias->d_lock);
1321 	}
1322 	spin_unlock(&inode->i_lock);
1323 }
1324 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1325 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1326 
1327 /*
1328  * A check for whether or not the parent directory has changed.
1329  * In the case it has, we assume that the dentries are untrustworthy
1330  * and may need to be looked up again.
1331  * If rcu_walk prevents us from performing a full check, return 0.
1332  */
1333 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1334 			      int rcu_walk)
1335 {
1336 	if (IS_ROOT(dentry))
1337 		return 1;
1338 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1339 		return 0;
1340 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1341 		return 0;
1342 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1343 	if (nfs_mapping_need_revalidate_inode(dir)) {
1344 		if (rcu_walk)
1345 			return 0;
1346 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1347 			return 0;
1348 	}
1349 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1350 		return 0;
1351 	return 1;
1352 }
1353 
1354 /*
1355  * Use intent information to check whether or not we're going to do
1356  * an O_EXCL create using this path component.
1357  */
1358 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1359 {
1360 	if (NFS_PROTO(dir)->version == 2)
1361 		return 0;
1362 	return flags & LOOKUP_EXCL;
1363 }
1364 
1365 /*
1366  * Inode and filehandle revalidation for lookups.
1367  *
1368  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1369  * or if the intent information indicates that we're about to open this
1370  * particular file and the "nocto" mount flag is not set.
1371  *
1372  */
1373 static
1374 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1375 {
1376 	struct nfs_server *server = NFS_SERVER(inode);
1377 	int ret;
1378 
1379 	if (IS_AUTOMOUNT(inode))
1380 		return 0;
1381 
1382 	if (flags & LOOKUP_OPEN) {
1383 		switch (inode->i_mode & S_IFMT) {
1384 		case S_IFREG:
1385 			/* A NFSv4 OPEN will revalidate later */
1386 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1387 				goto out;
1388 			fallthrough;
1389 		case S_IFDIR:
1390 			if (server->flags & NFS_MOUNT_NOCTO)
1391 				break;
1392 			/* NFS close-to-open cache consistency validation */
1393 			goto out_force;
1394 		}
1395 	}
1396 
1397 	/* VFS wants an on-the-wire revalidation */
1398 	if (flags & LOOKUP_REVAL)
1399 		goto out_force;
1400 out:
1401 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1402 out_force:
1403 	if (flags & LOOKUP_RCU)
1404 		return -ECHILD;
1405 	ret = __nfs_revalidate_inode(server, inode);
1406 	if (ret != 0)
1407 		return ret;
1408 	goto out;
1409 }
1410 
1411 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1412 {
1413 	spin_lock(&inode->i_lock);
1414 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1415 	spin_unlock(&inode->i_lock);
1416 }
1417 
1418 /*
1419  * We judge how long we want to trust negative
1420  * dentries by looking at the parent inode mtime.
1421  *
1422  * If parent mtime has changed, we revalidate, else we wait for a
1423  * period corresponding to the parent's attribute cache timeout value.
1424  *
1425  * If LOOKUP_RCU prevents us from performing a full check, return 1
1426  * suggesting a reval is needed.
1427  *
1428  * Note that when creating a new file, or looking up a rename target,
1429  * then it shouldn't be necessary to revalidate a negative dentry.
1430  */
1431 static inline
1432 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1433 		       unsigned int flags)
1434 {
1435 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1436 		return 0;
1437 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1438 		return 1;
1439 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1440 }
1441 
1442 static int
1443 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1444 			   struct inode *inode, int error)
1445 {
1446 	switch (error) {
1447 	case 1:
1448 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1449 			__func__, dentry);
1450 		return 1;
1451 	case 0:
1452 		/*
1453 		 * We can't d_drop the root of a disconnected tree:
1454 		 * its d_hash is on the s_anon list and d_drop() would hide
1455 		 * it from shrink_dcache_for_unmount(), leading to busy
1456 		 * inodes on unmount and further oopses.
1457 		 */
1458 		if (inode && IS_ROOT(dentry))
1459 			return 1;
1460 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1461 				__func__, dentry);
1462 		return 0;
1463 	}
1464 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1465 				__func__, dentry, error);
1466 	return error;
1467 }
1468 
1469 static int
1470 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1471 			       unsigned int flags)
1472 {
1473 	int ret = 1;
1474 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1475 		if (flags & LOOKUP_RCU)
1476 			return -ECHILD;
1477 		ret = 0;
1478 	}
1479 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1480 }
1481 
1482 static int
1483 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1484 				struct inode *inode)
1485 {
1486 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1487 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1488 }
1489 
1490 static int
1491 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1492 			     struct inode *inode)
1493 {
1494 	struct nfs_fh *fhandle;
1495 	struct nfs_fattr *fattr;
1496 	unsigned long dir_verifier;
1497 	int ret;
1498 
1499 	ret = -ENOMEM;
1500 	fhandle = nfs_alloc_fhandle();
1501 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1502 	if (fhandle == NULL || fattr == NULL)
1503 		goto out;
1504 
1505 	dir_verifier = nfs_save_change_attribute(dir);
1506 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1507 	if (ret < 0) {
1508 		switch (ret) {
1509 		case -ESTALE:
1510 		case -ENOENT:
1511 			ret = 0;
1512 			break;
1513 		case -ETIMEDOUT:
1514 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1515 				ret = 1;
1516 		}
1517 		goto out;
1518 	}
1519 	ret = 0;
1520 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1521 		goto out;
1522 	if (nfs_refresh_inode(inode, fattr) < 0)
1523 		goto out;
1524 
1525 	nfs_setsecurity(inode, fattr);
1526 	nfs_set_verifier(dentry, dir_verifier);
1527 
1528 	/* set a readdirplus hint that we had a cache miss */
1529 	nfs_force_use_readdirplus(dir);
1530 	ret = 1;
1531 out:
1532 	nfs_free_fattr(fattr);
1533 	nfs_free_fhandle(fhandle);
1534 
1535 	/*
1536 	 * If the lookup failed despite the dentry change attribute being
1537 	 * a match, then we should revalidate the directory cache.
1538 	 */
1539 	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1540 		nfs_mark_dir_for_revalidate(dir);
1541 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1542 }
1543 
1544 /*
1545  * This is called every time the dcache has a lookup hit,
1546  * and we should check whether we can really trust that
1547  * lookup.
1548  *
1549  * NOTE! The hit can be a negative hit too, don't assume
1550  * we have an inode!
1551  *
1552  * If the parent directory is seen to have changed, we throw out the
1553  * cached dentry and do a new lookup.
1554  */
1555 static int
1556 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1557 			 unsigned int flags)
1558 {
1559 	struct inode *inode;
1560 	int error;
1561 
1562 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1563 	inode = d_inode(dentry);
1564 
1565 	if (!inode)
1566 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1567 
1568 	if (is_bad_inode(inode)) {
1569 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1570 				__func__, dentry);
1571 		goto out_bad;
1572 	}
1573 
1574 	if (nfs_verifier_is_delegated(dentry))
1575 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1576 
1577 	/* Force a full look up iff the parent directory has changed */
1578 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1579 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1580 		error = nfs_lookup_verify_inode(inode, flags);
1581 		if (error) {
1582 			if (error == -ESTALE)
1583 				nfs_mark_dir_for_revalidate(dir);
1584 			goto out_bad;
1585 		}
1586 		nfs_advise_use_readdirplus(dir);
1587 		goto out_valid;
1588 	}
1589 
1590 	if (flags & LOOKUP_RCU)
1591 		return -ECHILD;
1592 
1593 	if (NFS_STALE(inode))
1594 		goto out_bad;
1595 
1596 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1597 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1598 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1599 	return error;
1600 out_valid:
1601 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1602 out_bad:
1603 	if (flags & LOOKUP_RCU)
1604 		return -ECHILD;
1605 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1606 }
1607 
1608 static int
1609 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1610 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1611 {
1612 	struct dentry *parent;
1613 	struct inode *dir;
1614 	int ret;
1615 
1616 	if (flags & LOOKUP_RCU) {
1617 		parent = READ_ONCE(dentry->d_parent);
1618 		dir = d_inode_rcu(parent);
1619 		if (!dir)
1620 			return -ECHILD;
1621 		ret = reval(dir, dentry, flags);
1622 		if (parent != READ_ONCE(dentry->d_parent))
1623 			return -ECHILD;
1624 	} else {
1625 		parent = dget_parent(dentry);
1626 		ret = reval(d_inode(parent), dentry, flags);
1627 		dput(parent);
1628 	}
1629 	return ret;
1630 }
1631 
1632 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1633 {
1634 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1635 }
1636 
1637 /*
1638  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1639  * when we don't really care about the dentry name. This is called when a
1640  * pathwalk ends on a dentry that was not found via a normal lookup in the
1641  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1642  *
1643  * In this situation, we just want to verify that the inode itself is OK
1644  * since the dentry might have changed on the server.
1645  */
1646 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1647 {
1648 	struct inode *inode = d_inode(dentry);
1649 	int error = 0;
1650 
1651 	/*
1652 	 * I believe we can only get a negative dentry here in the case of a
1653 	 * procfs-style symlink. Just assume it's correct for now, but we may
1654 	 * eventually need to do something more here.
1655 	 */
1656 	if (!inode) {
1657 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1658 				__func__, dentry);
1659 		return 1;
1660 	}
1661 
1662 	if (is_bad_inode(inode)) {
1663 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1664 				__func__, dentry);
1665 		return 0;
1666 	}
1667 
1668 	error = nfs_lookup_verify_inode(inode, flags);
1669 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1670 			__func__, inode->i_ino, error ? "invalid" : "valid");
1671 	return !error;
1672 }
1673 
1674 /*
1675  * This is called from dput() when d_count is going to 0.
1676  */
1677 static int nfs_dentry_delete(const struct dentry *dentry)
1678 {
1679 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1680 		dentry, dentry->d_flags);
1681 
1682 	/* Unhash any dentry with a stale inode */
1683 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1684 		return 1;
1685 
1686 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1687 		/* Unhash it, so that ->d_iput() would be called */
1688 		return 1;
1689 	}
1690 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1691 		/* Unhash it, so that ancestors of killed async unlink
1692 		 * files will be cleaned up during umount */
1693 		return 1;
1694 	}
1695 	return 0;
1696 
1697 }
1698 
1699 /* Ensure that we revalidate inode->i_nlink */
1700 static void nfs_drop_nlink(struct inode *inode)
1701 {
1702 	spin_lock(&inode->i_lock);
1703 	/* drop the inode if we're reasonably sure this is the last link */
1704 	if (inode->i_nlink > 0)
1705 		drop_nlink(inode);
1706 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1707 	nfs_set_cache_invalid(
1708 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1709 			       NFS_INO_INVALID_NLINK);
1710 	spin_unlock(&inode->i_lock);
1711 }
1712 
1713 /*
1714  * Called when the dentry loses inode.
1715  * We use it to clean up silly-renamed files.
1716  */
1717 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1718 {
1719 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1720 		nfs_complete_unlink(dentry, inode);
1721 		nfs_drop_nlink(inode);
1722 	}
1723 	iput(inode);
1724 }
1725 
1726 static void nfs_d_release(struct dentry *dentry)
1727 {
1728 	/* free cached devname value, if it survived that far */
1729 	if (unlikely(dentry->d_fsdata)) {
1730 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1731 			WARN_ON(1);
1732 		else
1733 			kfree(dentry->d_fsdata);
1734 	}
1735 }
1736 
1737 const struct dentry_operations nfs_dentry_operations = {
1738 	.d_revalidate	= nfs_lookup_revalidate,
1739 	.d_weak_revalidate	= nfs_weak_revalidate,
1740 	.d_delete	= nfs_dentry_delete,
1741 	.d_iput		= nfs_dentry_iput,
1742 	.d_automount	= nfs_d_automount,
1743 	.d_release	= nfs_d_release,
1744 };
1745 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1746 
1747 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1748 {
1749 	struct dentry *res;
1750 	struct inode *inode = NULL;
1751 	struct nfs_fh *fhandle = NULL;
1752 	struct nfs_fattr *fattr = NULL;
1753 	unsigned long dir_verifier;
1754 	int error;
1755 
1756 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1757 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1758 
1759 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1760 		return ERR_PTR(-ENAMETOOLONG);
1761 
1762 	/*
1763 	 * If we're doing an exclusive create, optimize away the lookup
1764 	 * but don't hash the dentry.
1765 	 */
1766 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1767 		return NULL;
1768 
1769 	res = ERR_PTR(-ENOMEM);
1770 	fhandle = nfs_alloc_fhandle();
1771 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1772 	if (fhandle == NULL || fattr == NULL)
1773 		goto out;
1774 
1775 	dir_verifier = nfs_save_change_attribute(dir);
1776 	trace_nfs_lookup_enter(dir, dentry, flags);
1777 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1778 	if (error == -ENOENT)
1779 		goto no_entry;
1780 	if (error < 0) {
1781 		res = ERR_PTR(error);
1782 		goto out;
1783 	}
1784 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1785 	res = ERR_CAST(inode);
1786 	if (IS_ERR(res))
1787 		goto out;
1788 
1789 	/* Notify readdir to use READDIRPLUS */
1790 	nfs_force_use_readdirplus(dir);
1791 
1792 no_entry:
1793 	res = d_splice_alias(inode, dentry);
1794 	if (res != NULL) {
1795 		if (IS_ERR(res))
1796 			goto out;
1797 		dentry = res;
1798 	}
1799 	nfs_set_verifier(dentry, dir_verifier);
1800 out:
1801 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1802 	nfs_free_fattr(fattr);
1803 	nfs_free_fhandle(fhandle);
1804 	return res;
1805 }
1806 EXPORT_SYMBOL_GPL(nfs_lookup);
1807 
1808 #if IS_ENABLED(CONFIG_NFS_V4)
1809 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1810 
1811 const struct dentry_operations nfs4_dentry_operations = {
1812 	.d_revalidate	= nfs4_lookup_revalidate,
1813 	.d_weak_revalidate	= nfs_weak_revalidate,
1814 	.d_delete	= nfs_dentry_delete,
1815 	.d_iput		= nfs_dentry_iput,
1816 	.d_automount	= nfs_d_automount,
1817 	.d_release	= nfs_d_release,
1818 };
1819 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1820 
1821 static fmode_t flags_to_mode(int flags)
1822 {
1823 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1824 	if ((flags & O_ACCMODE) != O_WRONLY)
1825 		res |= FMODE_READ;
1826 	if ((flags & O_ACCMODE) != O_RDONLY)
1827 		res |= FMODE_WRITE;
1828 	return res;
1829 }
1830 
1831 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1832 {
1833 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1834 }
1835 
1836 static int do_open(struct inode *inode, struct file *filp)
1837 {
1838 	nfs_fscache_open_file(inode, filp);
1839 	return 0;
1840 }
1841 
1842 static int nfs_finish_open(struct nfs_open_context *ctx,
1843 			   struct dentry *dentry,
1844 			   struct file *file, unsigned open_flags)
1845 {
1846 	int err;
1847 
1848 	err = finish_open(file, dentry, do_open);
1849 	if (err)
1850 		goto out;
1851 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1852 		nfs_file_set_open_context(file, ctx);
1853 	else
1854 		err = -EOPENSTALE;
1855 out:
1856 	return err;
1857 }
1858 
1859 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1860 		    struct file *file, unsigned open_flags,
1861 		    umode_t mode)
1862 {
1863 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1864 	struct nfs_open_context *ctx;
1865 	struct dentry *res;
1866 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1867 	struct inode *inode;
1868 	unsigned int lookup_flags = 0;
1869 	bool switched = false;
1870 	int created = 0;
1871 	int err;
1872 
1873 	/* Expect a negative dentry */
1874 	BUG_ON(d_inode(dentry));
1875 
1876 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1877 			dir->i_sb->s_id, dir->i_ino, dentry);
1878 
1879 	err = nfs_check_flags(open_flags);
1880 	if (err)
1881 		return err;
1882 
1883 	/* NFS only supports OPEN on regular files */
1884 	if ((open_flags & O_DIRECTORY)) {
1885 		if (!d_in_lookup(dentry)) {
1886 			/*
1887 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1888 			 * revalidated and is fine, no need to perform lookup
1889 			 * again
1890 			 */
1891 			return -ENOENT;
1892 		}
1893 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1894 		goto no_open;
1895 	}
1896 
1897 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1898 		return -ENAMETOOLONG;
1899 
1900 	if (open_flags & O_CREAT) {
1901 		struct nfs_server *server = NFS_SERVER(dir);
1902 
1903 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1904 			mode &= ~current_umask();
1905 
1906 		attr.ia_valid |= ATTR_MODE;
1907 		attr.ia_mode = mode;
1908 	}
1909 	if (open_flags & O_TRUNC) {
1910 		attr.ia_valid |= ATTR_SIZE;
1911 		attr.ia_size = 0;
1912 	}
1913 
1914 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1915 		d_drop(dentry);
1916 		switched = true;
1917 		dentry = d_alloc_parallel(dentry->d_parent,
1918 					  &dentry->d_name, &wq);
1919 		if (IS_ERR(dentry))
1920 			return PTR_ERR(dentry);
1921 		if (unlikely(!d_in_lookup(dentry)))
1922 			return finish_no_open(file, dentry);
1923 	}
1924 
1925 	ctx = create_nfs_open_context(dentry, open_flags, file);
1926 	err = PTR_ERR(ctx);
1927 	if (IS_ERR(ctx))
1928 		goto out;
1929 
1930 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1931 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1932 	if (created)
1933 		file->f_mode |= FMODE_CREATED;
1934 	if (IS_ERR(inode)) {
1935 		err = PTR_ERR(inode);
1936 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1937 		put_nfs_open_context(ctx);
1938 		d_drop(dentry);
1939 		switch (err) {
1940 		case -ENOENT:
1941 			d_splice_alias(NULL, dentry);
1942 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1943 			break;
1944 		case -EISDIR:
1945 		case -ENOTDIR:
1946 			goto no_open;
1947 		case -ELOOP:
1948 			if (!(open_flags & O_NOFOLLOW))
1949 				goto no_open;
1950 			break;
1951 			/* case -EINVAL: */
1952 		default:
1953 			break;
1954 		}
1955 		goto out;
1956 	}
1957 
1958 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1959 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1960 	put_nfs_open_context(ctx);
1961 out:
1962 	if (unlikely(switched)) {
1963 		d_lookup_done(dentry);
1964 		dput(dentry);
1965 	}
1966 	return err;
1967 
1968 no_open:
1969 	res = nfs_lookup(dir, dentry, lookup_flags);
1970 	if (switched) {
1971 		d_lookup_done(dentry);
1972 		if (!res)
1973 			res = dentry;
1974 		else
1975 			dput(dentry);
1976 	}
1977 	if (IS_ERR(res))
1978 		return PTR_ERR(res);
1979 	return finish_no_open(file, res);
1980 }
1981 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1982 
1983 static int
1984 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1985 			  unsigned int flags)
1986 {
1987 	struct inode *inode;
1988 
1989 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1990 		goto full_reval;
1991 	if (d_mountpoint(dentry))
1992 		goto full_reval;
1993 
1994 	inode = d_inode(dentry);
1995 
1996 	/* We can't create new files in nfs_open_revalidate(), so we
1997 	 * optimize away revalidation of negative dentries.
1998 	 */
1999 	if (inode == NULL)
2000 		goto full_reval;
2001 
2002 	if (nfs_verifier_is_delegated(dentry))
2003 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2004 
2005 	/* NFS only supports OPEN on regular files */
2006 	if (!S_ISREG(inode->i_mode))
2007 		goto full_reval;
2008 
2009 	/* We cannot do exclusive creation on a positive dentry */
2010 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2011 		goto reval_dentry;
2012 
2013 	/* Check if the directory changed */
2014 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2015 		goto reval_dentry;
2016 
2017 	/* Let f_op->open() actually open (and revalidate) the file */
2018 	return 1;
2019 reval_dentry:
2020 	if (flags & LOOKUP_RCU)
2021 		return -ECHILD;
2022 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2023 
2024 full_reval:
2025 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2026 }
2027 
2028 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2029 {
2030 	return __nfs_lookup_revalidate(dentry, flags,
2031 			nfs4_do_lookup_revalidate);
2032 }
2033 
2034 #endif /* CONFIG_NFSV4 */
2035 
2036 struct dentry *
2037 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2038 				struct nfs_fattr *fattr)
2039 {
2040 	struct dentry *parent = dget_parent(dentry);
2041 	struct inode *dir = d_inode(parent);
2042 	struct inode *inode;
2043 	struct dentry *d;
2044 	int error;
2045 
2046 	d_drop(dentry);
2047 
2048 	if (fhandle->size == 0) {
2049 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2050 		if (error)
2051 			goto out_error;
2052 	}
2053 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2054 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2055 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2056 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2057 				fattr, NULL);
2058 		if (error < 0)
2059 			goto out_error;
2060 	}
2061 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2062 	d = d_splice_alias(inode, dentry);
2063 out:
2064 	dput(parent);
2065 	return d;
2066 out_error:
2067 	d = ERR_PTR(error);
2068 	goto out;
2069 }
2070 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2071 
2072 /*
2073  * Code common to create, mkdir, and mknod.
2074  */
2075 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2076 				struct nfs_fattr *fattr)
2077 {
2078 	struct dentry *d;
2079 
2080 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2081 	if (IS_ERR(d))
2082 		return PTR_ERR(d);
2083 
2084 	/* Callers don't care */
2085 	dput(d);
2086 	return 0;
2087 }
2088 EXPORT_SYMBOL_GPL(nfs_instantiate);
2089 
2090 /*
2091  * Following a failed create operation, we drop the dentry rather
2092  * than retain a negative dentry. This avoids a problem in the event
2093  * that the operation succeeded on the server, but an error in the
2094  * reply path made it appear to have failed.
2095  */
2096 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2097 	       struct dentry *dentry, umode_t mode, bool excl)
2098 {
2099 	struct iattr attr;
2100 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2101 	int error;
2102 
2103 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2104 			dir->i_sb->s_id, dir->i_ino, dentry);
2105 
2106 	attr.ia_mode = mode;
2107 	attr.ia_valid = ATTR_MODE;
2108 
2109 	trace_nfs_create_enter(dir, dentry, open_flags);
2110 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2111 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2112 	if (error != 0)
2113 		goto out_err;
2114 	return 0;
2115 out_err:
2116 	d_drop(dentry);
2117 	return error;
2118 }
2119 EXPORT_SYMBOL_GPL(nfs_create);
2120 
2121 /*
2122  * See comments for nfs_proc_create regarding failed operations.
2123  */
2124 int
2125 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2126 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2127 {
2128 	struct iattr attr;
2129 	int status;
2130 
2131 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2132 			dir->i_sb->s_id, dir->i_ino, dentry);
2133 
2134 	attr.ia_mode = mode;
2135 	attr.ia_valid = ATTR_MODE;
2136 
2137 	trace_nfs_mknod_enter(dir, dentry);
2138 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2139 	trace_nfs_mknod_exit(dir, dentry, status);
2140 	if (status != 0)
2141 		goto out_err;
2142 	return 0;
2143 out_err:
2144 	d_drop(dentry);
2145 	return status;
2146 }
2147 EXPORT_SYMBOL_GPL(nfs_mknod);
2148 
2149 /*
2150  * See comments for nfs_proc_create regarding failed operations.
2151  */
2152 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2153 	      struct dentry *dentry, umode_t mode)
2154 {
2155 	struct iattr attr;
2156 	int error;
2157 
2158 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2159 			dir->i_sb->s_id, dir->i_ino, dentry);
2160 
2161 	attr.ia_valid = ATTR_MODE;
2162 	attr.ia_mode = mode | S_IFDIR;
2163 
2164 	trace_nfs_mkdir_enter(dir, dentry);
2165 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2166 	trace_nfs_mkdir_exit(dir, dentry, error);
2167 	if (error != 0)
2168 		goto out_err;
2169 	return 0;
2170 out_err:
2171 	d_drop(dentry);
2172 	return error;
2173 }
2174 EXPORT_SYMBOL_GPL(nfs_mkdir);
2175 
2176 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2177 {
2178 	if (simple_positive(dentry))
2179 		d_delete(dentry);
2180 }
2181 
2182 static void nfs_dentry_remove_handle_error(struct inode *dir,
2183 					   struct dentry *dentry, int error)
2184 {
2185 	switch (error) {
2186 	case -ENOENT:
2187 		d_delete(dentry);
2188 		fallthrough;
2189 	case 0:
2190 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2191 	}
2192 }
2193 
2194 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2195 {
2196 	int error;
2197 
2198 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2199 			dir->i_sb->s_id, dir->i_ino, dentry);
2200 
2201 	trace_nfs_rmdir_enter(dir, dentry);
2202 	if (d_really_is_positive(dentry)) {
2203 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2204 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2205 		/* Ensure the VFS deletes this inode */
2206 		switch (error) {
2207 		case 0:
2208 			clear_nlink(d_inode(dentry));
2209 			break;
2210 		case -ENOENT:
2211 			nfs_dentry_handle_enoent(dentry);
2212 		}
2213 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2214 	} else
2215 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2216 	nfs_dentry_remove_handle_error(dir, dentry, error);
2217 	trace_nfs_rmdir_exit(dir, dentry, error);
2218 
2219 	return error;
2220 }
2221 EXPORT_SYMBOL_GPL(nfs_rmdir);
2222 
2223 /*
2224  * Remove a file after making sure there are no pending writes,
2225  * and after checking that the file has only one user.
2226  *
2227  * We invalidate the attribute cache and free the inode prior to the operation
2228  * to avoid possible races if the server reuses the inode.
2229  */
2230 static int nfs_safe_remove(struct dentry *dentry)
2231 {
2232 	struct inode *dir = d_inode(dentry->d_parent);
2233 	struct inode *inode = d_inode(dentry);
2234 	int error = -EBUSY;
2235 
2236 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2237 
2238 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2239 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2240 		error = 0;
2241 		goto out;
2242 	}
2243 
2244 	trace_nfs_remove_enter(dir, dentry);
2245 	if (inode != NULL) {
2246 		error = NFS_PROTO(dir)->remove(dir, dentry);
2247 		if (error == 0)
2248 			nfs_drop_nlink(inode);
2249 	} else
2250 		error = NFS_PROTO(dir)->remove(dir, dentry);
2251 	if (error == -ENOENT)
2252 		nfs_dentry_handle_enoent(dentry);
2253 	trace_nfs_remove_exit(dir, dentry, error);
2254 out:
2255 	return error;
2256 }
2257 
2258 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2259  *  belongs to an active ".nfs..." file and we return -EBUSY.
2260  *
2261  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2262  */
2263 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2264 {
2265 	int error;
2266 	int need_rehash = 0;
2267 
2268 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2269 		dir->i_ino, dentry);
2270 
2271 	trace_nfs_unlink_enter(dir, dentry);
2272 	spin_lock(&dentry->d_lock);
2273 	if (d_count(dentry) > 1) {
2274 		spin_unlock(&dentry->d_lock);
2275 		/* Start asynchronous writeout of the inode */
2276 		write_inode_now(d_inode(dentry), 0);
2277 		error = nfs_sillyrename(dir, dentry);
2278 		goto out;
2279 	}
2280 	if (!d_unhashed(dentry)) {
2281 		__d_drop(dentry);
2282 		need_rehash = 1;
2283 	}
2284 	spin_unlock(&dentry->d_lock);
2285 	error = nfs_safe_remove(dentry);
2286 	nfs_dentry_remove_handle_error(dir, dentry, error);
2287 	if (need_rehash)
2288 		d_rehash(dentry);
2289 out:
2290 	trace_nfs_unlink_exit(dir, dentry, error);
2291 	return error;
2292 }
2293 EXPORT_SYMBOL_GPL(nfs_unlink);
2294 
2295 /*
2296  * To create a symbolic link, most file systems instantiate a new inode,
2297  * add a page to it containing the path, then write it out to the disk
2298  * using prepare_write/commit_write.
2299  *
2300  * Unfortunately the NFS client can't create the in-core inode first
2301  * because it needs a file handle to create an in-core inode (see
2302  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2303  * symlink request has completed on the server.
2304  *
2305  * So instead we allocate a raw page, copy the symname into it, then do
2306  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2307  * now have a new file handle and can instantiate an in-core NFS inode
2308  * and move the raw page into its mapping.
2309  */
2310 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2311 		struct dentry *dentry, const char *symname)
2312 {
2313 	struct page *page;
2314 	char *kaddr;
2315 	struct iattr attr;
2316 	unsigned int pathlen = strlen(symname);
2317 	int error;
2318 
2319 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2320 		dir->i_ino, dentry, symname);
2321 
2322 	if (pathlen > PAGE_SIZE)
2323 		return -ENAMETOOLONG;
2324 
2325 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2326 	attr.ia_valid = ATTR_MODE;
2327 
2328 	page = alloc_page(GFP_USER);
2329 	if (!page)
2330 		return -ENOMEM;
2331 
2332 	kaddr = page_address(page);
2333 	memcpy(kaddr, symname, pathlen);
2334 	if (pathlen < PAGE_SIZE)
2335 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2336 
2337 	trace_nfs_symlink_enter(dir, dentry);
2338 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2339 	trace_nfs_symlink_exit(dir, dentry, error);
2340 	if (error != 0) {
2341 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2342 			dir->i_sb->s_id, dir->i_ino,
2343 			dentry, symname, error);
2344 		d_drop(dentry);
2345 		__free_page(page);
2346 		return error;
2347 	}
2348 
2349 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2350 
2351 	/*
2352 	 * No big deal if we can't add this page to the page cache here.
2353 	 * READLINK will get the missing page from the server if needed.
2354 	 */
2355 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2356 							GFP_KERNEL)) {
2357 		SetPageUptodate(page);
2358 		unlock_page(page);
2359 		/*
2360 		 * add_to_page_cache_lru() grabs an extra page refcount.
2361 		 * Drop it here to avoid leaking this page later.
2362 		 */
2363 		put_page(page);
2364 	} else
2365 		__free_page(page);
2366 
2367 	return 0;
2368 }
2369 EXPORT_SYMBOL_GPL(nfs_symlink);
2370 
2371 int
2372 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2373 {
2374 	struct inode *inode = d_inode(old_dentry);
2375 	int error;
2376 
2377 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2378 		old_dentry, dentry);
2379 
2380 	trace_nfs_link_enter(inode, dir, dentry);
2381 	d_drop(dentry);
2382 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2383 	if (error == 0) {
2384 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2385 		ihold(inode);
2386 		d_add(dentry, inode);
2387 	}
2388 	trace_nfs_link_exit(inode, dir, dentry, error);
2389 	return error;
2390 }
2391 EXPORT_SYMBOL_GPL(nfs_link);
2392 
2393 /*
2394  * RENAME
2395  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2396  * different file handle for the same inode after a rename (e.g. when
2397  * moving to a different directory). A fail-safe method to do so would
2398  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2399  * rename the old file using the sillyrename stuff. This way, the original
2400  * file in old_dir will go away when the last process iput()s the inode.
2401  *
2402  * FIXED.
2403  *
2404  * It actually works quite well. One needs to have the possibility for
2405  * at least one ".nfs..." file in each directory the file ever gets
2406  * moved or linked to which happens automagically with the new
2407  * implementation that only depends on the dcache stuff instead of
2408  * using the inode layer
2409  *
2410  * Unfortunately, things are a little more complicated than indicated
2411  * above. For a cross-directory move, we want to make sure we can get
2412  * rid of the old inode after the operation.  This means there must be
2413  * no pending writes (if it's a file), and the use count must be 1.
2414  * If these conditions are met, we can drop the dentries before doing
2415  * the rename.
2416  */
2417 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2418 	       struct dentry *old_dentry, struct inode *new_dir,
2419 	       struct dentry *new_dentry, unsigned int flags)
2420 {
2421 	struct inode *old_inode = d_inode(old_dentry);
2422 	struct inode *new_inode = d_inode(new_dentry);
2423 	struct dentry *dentry = NULL, *rehash = NULL;
2424 	struct rpc_task *task;
2425 	int error = -EBUSY;
2426 
2427 	if (flags)
2428 		return -EINVAL;
2429 
2430 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2431 		 old_dentry, new_dentry,
2432 		 d_count(new_dentry));
2433 
2434 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2435 	/*
2436 	 * For non-directories, check whether the target is busy and if so,
2437 	 * make a copy of the dentry and then do a silly-rename. If the
2438 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2439 	 * the new target.
2440 	 */
2441 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2442 		/*
2443 		 * To prevent any new references to the target during the
2444 		 * rename, we unhash the dentry in advance.
2445 		 */
2446 		if (!d_unhashed(new_dentry)) {
2447 			d_drop(new_dentry);
2448 			rehash = new_dentry;
2449 		}
2450 
2451 		if (d_count(new_dentry) > 2) {
2452 			int err;
2453 
2454 			/* copy the target dentry's name */
2455 			dentry = d_alloc(new_dentry->d_parent,
2456 					 &new_dentry->d_name);
2457 			if (!dentry)
2458 				goto out;
2459 
2460 			/* silly-rename the existing target ... */
2461 			err = nfs_sillyrename(new_dir, new_dentry);
2462 			if (err)
2463 				goto out;
2464 
2465 			new_dentry = dentry;
2466 			rehash = NULL;
2467 			new_inode = NULL;
2468 		}
2469 	}
2470 
2471 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2472 	if (IS_ERR(task)) {
2473 		error = PTR_ERR(task);
2474 		goto out;
2475 	}
2476 
2477 	error = rpc_wait_for_completion_task(task);
2478 	if (error != 0) {
2479 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2480 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2481 		smp_wmb();
2482 	} else
2483 		error = task->tk_status;
2484 	rpc_put_task(task);
2485 	/* Ensure the inode attributes are revalidated */
2486 	if (error == 0) {
2487 		spin_lock(&old_inode->i_lock);
2488 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2489 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2490 							 NFS_INO_INVALID_CTIME |
2491 							 NFS_INO_REVAL_FORCED);
2492 		spin_unlock(&old_inode->i_lock);
2493 	}
2494 out:
2495 	if (rehash)
2496 		d_rehash(rehash);
2497 	trace_nfs_rename_exit(old_dir, old_dentry,
2498 			new_dir, new_dentry, error);
2499 	if (!error) {
2500 		if (new_inode != NULL)
2501 			nfs_drop_nlink(new_inode);
2502 		/*
2503 		 * The d_move() should be here instead of in an async RPC completion
2504 		 * handler because we need the proper locks to move the dentry.  If
2505 		 * we're interrupted by a signal, the async RPC completion handler
2506 		 * should mark the directories for revalidation.
2507 		 */
2508 		d_move(old_dentry, new_dentry);
2509 		nfs_set_verifier(old_dentry,
2510 					nfs_save_change_attribute(new_dir));
2511 	} else if (error == -ENOENT)
2512 		nfs_dentry_handle_enoent(old_dentry);
2513 
2514 	/* new dentry created? */
2515 	if (dentry)
2516 		dput(dentry);
2517 	return error;
2518 }
2519 EXPORT_SYMBOL_GPL(nfs_rename);
2520 
2521 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2522 static LIST_HEAD(nfs_access_lru_list);
2523 static atomic_long_t nfs_access_nr_entries;
2524 
2525 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2526 module_param(nfs_access_max_cachesize, ulong, 0644);
2527 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2528 
2529 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2530 {
2531 	put_cred(entry->cred);
2532 	kfree_rcu(entry, rcu_head);
2533 	smp_mb__before_atomic();
2534 	atomic_long_dec(&nfs_access_nr_entries);
2535 	smp_mb__after_atomic();
2536 }
2537 
2538 static void nfs_access_free_list(struct list_head *head)
2539 {
2540 	struct nfs_access_entry *cache;
2541 
2542 	while (!list_empty(head)) {
2543 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2544 		list_del(&cache->lru);
2545 		nfs_access_free_entry(cache);
2546 	}
2547 }
2548 
2549 static unsigned long
2550 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2551 {
2552 	LIST_HEAD(head);
2553 	struct nfs_inode *nfsi, *next;
2554 	struct nfs_access_entry *cache;
2555 	long freed = 0;
2556 
2557 	spin_lock(&nfs_access_lru_lock);
2558 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2559 		struct inode *inode;
2560 
2561 		if (nr_to_scan-- == 0)
2562 			break;
2563 		inode = &nfsi->vfs_inode;
2564 		spin_lock(&inode->i_lock);
2565 		if (list_empty(&nfsi->access_cache_entry_lru))
2566 			goto remove_lru_entry;
2567 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2568 				struct nfs_access_entry, lru);
2569 		list_move(&cache->lru, &head);
2570 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2571 		freed++;
2572 		if (!list_empty(&nfsi->access_cache_entry_lru))
2573 			list_move_tail(&nfsi->access_cache_inode_lru,
2574 					&nfs_access_lru_list);
2575 		else {
2576 remove_lru_entry:
2577 			list_del_init(&nfsi->access_cache_inode_lru);
2578 			smp_mb__before_atomic();
2579 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2580 			smp_mb__after_atomic();
2581 		}
2582 		spin_unlock(&inode->i_lock);
2583 	}
2584 	spin_unlock(&nfs_access_lru_lock);
2585 	nfs_access_free_list(&head);
2586 	return freed;
2587 }
2588 
2589 unsigned long
2590 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2591 {
2592 	int nr_to_scan = sc->nr_to_scan;
2593 	gfp_t gfp_mask = sc->gfp_mask;
2594 
2595 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2596 		return SHRINK_STOP;
2597 	return nfs_do_access_cache_scan(nr_to_scan);
2598 }
2599 
2600 
2601 unsigned long
2602 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2603 {
2604 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2605 }
2606 
2607 static void
2608 nfs_access_cache_enforce_limit(void)
2609 {
2610 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2611 	unsigned long diff;
2612 	unsigned int nr_to_scan;
2613 
2614 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2615 		return;
2616 	nr_to_scan = 100;
2617 	diff = nr_entries - nfs_access_max_cachesize;
2618 	if (diff < nr_to_scan)
2619 		nr_to_scan = diff;
2620 	nfs_do_access_cache_scan(nr_to_scan);
2621 }
2622 
2623 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2624 {
2625 	struct rb_root *root_node = &nfsi->access_cache;
2626 	struct rb_node *n;
2627 	struct nfs_access_entry *entry;
2628 
2629 	/* Unhook entries from the cache */
2630 	while ((n = rb_first(root_node)) != NULL) {
2631 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2632 		rb_erase(n, root_node);
2633 		list_move(&entry->lru, head);
2634 	}
2635 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2636 }
2637 
2638 void nfs_access_zap_cache(struct inode *inode)
2639 {
2640 	LIST_HEAD(head);
2641 
2642 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2643 		return;
2644 	/* Remove from global LRU init */
2645 	spin_lock(&nfs_access_lru_lock);
2646 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2647 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2648 
2649 	spin_lock(&inode->i_lock);
2650 	__nfs_access_zap_cache(NFS_I(inode), &head);
2651 	spin_unlock(&inode->i_lock);
2652 	spin_unlock(&nfs_access_lru_lock);
2653 	nfs_access_free_list(&head);
2654 }
2655 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2656 
2657 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2658 {
2659 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2660 
2661 	while (n != NULL) {
2662 		struct nfs_access_entry *entry =
2663 			rb_entry(n, struct nfs_access_entry, rb_node);
2664 		int cmp = cred_fscmp(cred, entry->cred);
2665 
2666 		if (cmp < 0)
2667 			n = n->rb_left;
2668 		else if (cmp > 0)
2669 			n = n->rb_right;
2670 		else
2671 			return entry;
2672 	}
2673 	return NULL;
2674 }
2675 
2676 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2677 {
2678 	struct nfs_inode *nfsi = NFS_I(inode);
2679 	struct nfs_access_entry *cache;
2680 	bool retry = true;
2681 	int err;
2682 
2683 	spin_lock(&inode->i_lock);
2684 	for(;;) {
2685 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2686 			goto out_zap;
2687 		cache = nfs_access_search_rbtree(inode, cred);
2688 		err = -ENOENT;
2689 		if (cache == NULL)
2690 			goto out;
2691 		/* Found an entry, is our attribute cache valid? */
2692 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2693 			break;
2694 		if (!retry)
2695 			break;
2696 		err = -ECHILD;
2697 		if (!may_block)
2698 			goto out;
2699 		spin_unlock(&inode->i_lock);
2700 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2701 		if (err)
2702 			return err;
2703 		spin_lock(&inode->i_lock);
2704 		retry = false;
2705 	}
2706 	res->cred = cache->cred;
2707 	res->mask = cache->mask;
2708 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2709 	err = 0;
2710 out:
2711 	spin_unlock(&inode->i_lock);
2712 	return err;
2713 out_zap:
2714 	spin_unlock(&inode->i_lock);
2715 	nfs_access_zap_cache(inode);
2716 	return -ENOENT;
2717 }
2718 
2719 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2720 {
2721 	/* Only check the most recently returned cache entry,
2722 	 * but do it without locking.
2723 	 */
2724 	struct nfs_inode *nfsi = NFS_I(inode);
2725 	struct nfs_access_entry *cache;
2726 	int err = -ECHILD;
2727 	struct list_head *lh;
2728 
2729 	rcu_read_lock();
2730 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2731 		goto out;
2732 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2733 	cache = list_entry(lh, struct nfs_access_entry, lru);
2734 	if (lh == &nfsi->access_cache_entry_lru ||
2735 	    cred_fscmp(cred, cache->cred) != 0)
2736 		cache = NULL;
2737 	if (cache == NULL)
2738 		goto out;
2739 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2740 		goto out;
2741 	res->cred = cache->cred;
2742 	res->mask = cache->mask;
2743 	err = 0;
2744 out:
2745 	rcu_read_unlock();
2746 	return err;
2747 }
2748 
2749 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2750 nfs_access_entry *res, bool may_block)
2751 {
2752 	int status;
2753 
2754 	status = nfs_access_get_cached_rcu(inode, cred, res);
2755 	if (status != 0)
2756 		status = nfs_access_get_cached_locked(inode, cred, res,
2757 		    may_block);
2758 
2759 	return status;
2760 }
2761 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2762 
2763 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2764 {
2765 	struct nfs_inode *nfsi = NFS_I(inode);
2766 	struct rb_root *root_node = &nfsi->access_cache;
2767 	struct rb_node **p = &root_node->rb_node;
2768 	struct rb_node *parent = NULL;
2769 	struct nfs_access_entry *entry;
2770 	int cmp;
2771 
2772 	spin_lock(&inode->i_lock);
2773 	while (*p != NULL) {
2774 		parent = *p;
2775 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2776 		cmp = cred_fscmp(set->cred, entry->cred);
2777 
2778 		if (cmp < 0)
2779 			p = &parent->rb_left;
2780 		else if (cmp > 0)
2781 			p = &parent->rb_right;
2782 		else
2783 			goto found;
2784 	}
2785 	rb_link_node(&set->rb_node, parent, p);
2786 	rb_insert_color(&set->rb_node, root_node);
2787 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2788 	spin_unlock(&inode->i_lock);
2789 	return;
2790 found:
2791 	rb_replace_node(parent, &set->rb_node, root_node);
2792 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2793 	list_del(&entry->lru);
2794 	spin_unlock(&inode->i_lock);
2795 	nfs_access_free_entry(entry);
2796 }
2797 
2798 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2799 {
2800 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2801 	if (cache == NULL)
2802 		return;
2803 	RB_CLEAR_NODE(&cache->rb_node);
2804 	cache->cred = get_cred(set->cred);
2805 	cache->mask = set->mask;
2806 
2807 	/* The above field assignments must be visible
2808 	 * before this item appears on the lru.  We cannot easily
2809 	 * use rcu_assign_pointer, so just force the memory barrier.
2810 	 */
2811 	smp_wmb();
2812 	nfs_access_add_rbtree(inode, cache);
2813 
2814 	/* Update accounting */
2815 	smp_mb__before_atomic();
2816 	atomic_long_inc(&nfs_access_nr_entries);
2817 	smp_mb__after_atomic();
2818 
2819 	/* Add inode to global LRU list */
2820 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2821 		spin_lock(&nfs_access_lru_lock);
2822 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2823 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2824 					&nfs_access_lru_list);
2825 		spin_unlock(&nfs_access_lru_lock);
2826 	}
2827 	nfs_access_cache_enforce_limit();
2828 }
2829 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2830 
2831 #define NFS_MAY_READ (NFS_ACCESS_READ)
2832 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2833 		NFS_ACCESS_EXTEND | \
2834 		NFS_ACCESS_DELETE)
2835 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2836 		NFS_ACCESS_EXTEND)
2837 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2838 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2839 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2840 static int
2841 nfs_access_calc_mask(u32 access_result, umode_t umode)
2842 {
2843 	int mask = 0;
2844 
2845 	if (access_result & NFS_MAY_READ)
2846 		mask |= MAY_READ;
2847 	if (S_ISDIR(umode)) {
2848 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2849 			mask |= MAY_WRITE;
2850 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2851 			mask |= MAY_EXEC;
2852 	} else if (S_ISREG(umode)) {
2853 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2854 			mask |= MAY_WRITE;
2855 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2856 			mask |= MAY_EXEC;
2857 	} else if (access_result & NFS_MAY_WRITE)
2858 			mask |= MAY_WRITE;
2859 	return mask;
2860 }
2861 
2862 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2863 {
2864 	entry->mask = access_result;
2865 }
2866 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2867 
2868 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2869 {
2870 	struct nfs_access_entry cache;
2871 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2872 	int cache_mask = -1;
2873 	int status;
2874 
2875 	trace_nfs_access_enter(inode);
2876 
2877 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2878 	if (status == 0)
2879 		goto out_cached;
2880 
2881 	status = -ECHILD;
2882 	if (!may_block)
2883 		goto out;
2884 
2885 	/*
2886 	 * Determine which access bits we want to ask for...
2887 	 */
2888 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2889 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2890 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2891 		    NFS_ACCESS_XALIST;
2892 	}
2893 	if (S_ISDIR(inode->i_mode))
2894 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2895 	else
2896 		cache.mask |= NFS_ACCESS_EXECUTE;
2897 	cache.cred = cred;
2898 	status = NFS_PROTO(inode)->access(inode, &cache);
2899 	if (status != 0) {
2900 		if (status == -ESTALE) {
2901 			if (!S_ISDIR(inode->i_mode))
2902 				nfs_set_inode_stale(inode);
2903 			else
2904 				nfs_zap_caches(inode);
2905 		}
2906 		goto out;
2907 	}
2908 	nfs_access_add_cache(inode, &cache);
2909 out_cached:
2910 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2911 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2912 		status = -EACCES;
2913 out:
2914 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2915 	return status;
2916 }
2917 
2918 static int nfs_open_permission_mask(int openflags)
2919 {
2920 	int mask = 0;
2921 
2922 	if (openflags & __FMODE_EXEC) {
2923 		/* ONLY check exec rights */
2924 		mask = MAY_EXEC;
2925 	} else {
2926 		if ((openflags & O_ACCMODE) != O_WRONLY)
2927 			mask |= MAY_READ;
2928 		if ((openflags & O_ACCMODE) != O_RDONLY)
2929 			mask |= MAY_WRITE;
2930 	}
2931 
2932 	return mask;
2933 }
2934 
2935 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2936 {
2937 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2938 }
2939 EXPORT_SYMBOL_GPL(nfs_may_open);
2940 
2941 static int nfs_execute_ok(struct inode *inode, int mask)
2942 {
2943 	struct nfs_server *server = NFS_SERVER(inode);
2944 	int ret = 0;
2945 
2946 	if (S_ISDIR(inode->i_mode))
2947 		return 0;
2948 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2949 		if (mask & MAY_NOT_BLOCK)
2950 			return -ECHILD;
2951 		ret = __nfs_revalidate_inode(server, inode);
2952 	}
2953 	if (ret == 0 && !execute_ok(inode))
2954 		ret = -EACCES;
2955 	return ret;
2956 }
2957 
2958 int nfs_permission(struct user_namespace *mnt_userns,
2959 		   struct inode *inode,
2960 		   int mask)
2961 {
2962 	const struct cred *cred = current_cred();
2963 	int res = 0;
2964 
2965 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2966 
2967 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2968 		goto out;
2969 	/* Is this sys_access() ? */
2970 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2971 		goto force_lookup;
2972 
2973 	switch (inode->i_mode & S_IFMT) {
2974 		case S_IFLNK:
2975 			goto out;
2976 		case S_IFREG:
2977 			if ((mask & MAY_OPEN) &&
2978 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2979 				return 0;
2980 			break;
2981 		case S_IFDIR:
2982 			/*
2983 			 * Optimize away all write operations, since the server
2984 			 * will check permissions when we perform the op.
2985 			 */
2986 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2987 				goto out;
2988 	}
2989 
2990 force_lookup:
2991 	if (!NFS_PROTO(inode)->access)
2992 		goto out_notsup;
2993 
2994 	res = nfs_do_access(inode, cred, mask);
2995 out:
2996 	if (!res && (mask & MAY_EXEC))
2997 		res = nfs_execute_ok(inode, mask);
2998 
2999 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3000 		inode->i_sb->s_id, inode->i_ino, mask, res);
3001 	return res;
3002 out_notsup:
3003 	if (mask & MAY_NOT_BLOCK)
3004 		return -ECHILD;
3005 
3006 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3007 						  NFS_INO_INVALID_OTHER);
3008 	if (res == 0)
3009 		res = generic_permission(&init_user_ns, inode, mask);
3010 	goto out;
3011 }
3012 EXPORT_SYMBOL_GPL(nfs_permission);
3013