1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/smp_lock.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/sched.h> 37 38 #include "nfs4_fs.h" 39 #include "delegation.h" 40 #include "iostat.h" 41 42 /* #define NFS_DEBUG_VERBOSE 1 */ 43 44 static int nfs_opendir(struct inode *, struct file *); 45 static int nfs_readdir(struct file *, void *, filldir_t); 46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 48 static int nfs_mkdir(struct inode *, struct dentry *, int); 49 static int nfs_rmdir(struct inode *, struct dentry *); 50 static int nfs_unlink(struct inode *, struct dentry *); 51 static int nfs_symlink(struct inode *, struct dentry *, const char *); 52 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 54 static int nfs_rename(struct inode *, struct dentry *, 55 struct inode *, struct dentry *); 56 static int nfs_fsync_dir(struct file *, struct dentry *, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .readdir = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_release, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 const struct inode_operations nfs_dir_inode_operations = { 69 .create = nfs_create, 70 .lookup = nfs_lookup, 71 .link = nfs_link, 72 .unlink = nfs_unlink, 73 .symlink = nfs_symlink, 74 .mkdir = nfs_mkdir, 75 .rmdir = nfs_rmdir, 76 .mknod = nfs_mknod, 77 .rename = nfs_rename, 78 .permission = nfs_permission, 79 .getattr = nfs_getattr, 80 .setattr = nfs_setattr, 81 }; 82 83 #ifdef CONFIG_NFS_V3 84 const struct inode_operations nfs3_dir_inode_operations = { 85 .create = nfs_create, 86 .lookup = nfs_lookup, 87 .link = nfs_link, 88 .unlink = nfs_unlink, 89 .symlink = nfs_symlink, 90 .mkdir = nfs_mkdir, 91 .rmdir = nfs_rmdir, 92 .mknod = nfs_mknod, 93 .rename = nfs_rename, 94 .permission = nfs_permission, 95 .getattr = nfs_getattr, 96 .setattr = nfs_setattr, 97 .listxattr = nfs3_listxattr, 98 .getxattr = nfs3_getxattr, 99 .setxattr = nfs3_setxattr, 100 .removexattr = nfs3_removexattr, 101 }; 102 #endif /* CONFIG_NFS_V3 */ 103 104 #ifdef CONFIG_NFS_V4 105 106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 107 const struct inode_operations nfs4_dir_inode_operations = { 108 .create = nfs_create, 109 .lookup = nfs_atomic_lookup, 110 .link = nfs_link, 111 .unlink = nfs_unlink, 112 .symlink = nfs_symlink, 113 .mkdir = nfs_mkdir, 114 .rmdir = nfs_rmdir, 115 .mknod = nfs_mknod, 116 .rename = nfs_rename, 117 .permission = nfs_permission, 118 .getattr = nfs_getattr, 119 .setattr = nfs_setattr, 120 .getxattr = nfs4_getxattr, 121 .setxattr = nfs4_setxattr, 122 .listxattr = nfs4_listxattr, 123 }; 124 125 #endif /* CONFIG_NFS_V4 */ 126 127 /* 128 * Open file 129 */ 130 static int 131 nfs_opendir(struct inode *inode, struct file *filp) 132 { 133 int res; 134 135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n", 136 inode->i_sb->s_id, inode->i_ino); 137 138 lock_kernel(); 139 /* Call generic open code in order to cache credentials */ 140 res = nfs_open(inode, filp); 141 unlock_kernel(); 142 return res; 143 } 144 145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 146 typedef struct { 147 struct file *file; 148 struct page *page; 149 unsigned long page_index; 150 __be32 *ptr; 151 u64 *dir_cookie; 152 loff_t current_index; 153 struct nfs_entry *entry; 154 decode_dirent_t decode; 155 int plus; 156 int error; 157 unsigned long timestamp; 158 int timestamp_valid; 159 } nfs_readdir_descriptor_t; 160 161 /* Now we cache directories properly, by stuffing the dirent 162 * data directly in the page cache. 163 * 164 * Inode invalidation due to refresh etc. takes care of 165 * _everything_, no sloppy entry flushing logic, no extraneous 166 * copying, network direct to page cache, the way it was meant 167 * to be. 168 * 169 * NOTE: Dirent information verification is done always by the 170 * page-in of the RPC reply, nowhere else, this simplies 171 * things substantially. 172 */ 173 static 174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 175 { 176 struct file *file = desc->file; 177 struct inode *inode = file->f_path.dentry->d_inode; 178 struct rpc_cred *cred = nfs_file_cred(file); 179 unsigned long timestamp; 180 int error; 181 182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 183 __FUNCTION__, (long long)desc->entry->cookie, 184 page->index); 185 186 again: 187 timestamp = jiffies; 188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 189 NFS_SERVER(inode)->dtsize, desc->plus); 190 if (error < 0) { 191 /* We requested READDIRPLUS, but the server doesn't grok it */ 192 if (error == -ENOTSUPP && desc->plus) { 193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 195 desc->plus = 0; 196 goto again; 197 } 198 goto error; 199 } 200 desc->timestamp = timestamp; 201 desc->timestamp_valid = 1; 202 SetPageUptodate(page); 203 /* Ensure consistent page alignment of the data. 204 * Note: assumes we have exclusive access to this mapping either 205 * through inode->i_mutex or some other mechanism. 206 */ 207 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) { 208 /* Should never happen */ 209 nfs_zap_mapping(inode, inode->i_mapping); 210 } 211 unlock_page(page); 212 return 0; 213 error: 214 unlock_page(page); 215 desc->error = error; 216 return -EIO; 217 } 218 219 static inline 220 int dir_decode(nfs_readdir_descriptor_t *desc) 221 { 222 __be32 *p = desc->ptr; 223 p = desc->decode(p, desc->entry, desc->plus); 224 if (IS_ERR(p)) 225 return PTR_ERR(p); 226 desc->ptr = p; 227 if (desc->timestamp_valid) 228 desc->entry->fattr->time_start = desc->timestamp; 229 else 230 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR; 231 return 0; 232 } 233 234 static inline 235 void dir_page_release(nfs_readdir_descriptor_t *desc) 236 { 237 kunmap(desc->page); 238 page_cache_release(desc->page); 239 desc->page = NULL; 240 desc->ptr = NULL; 241 } 242 243 /* 244 * Given a pointer to a buffer that has already been filled by a call 245 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 246 * 247 * If the end of the buffer has been reached, return -EAGAIN, if not, 248 * return the offset within the buffer of the next entry to be 249 * read. 250 */ 251 static inline 252 int find_dirent(nfs_readdir_descriptor_t *desc) 253 { 254 struct nfs_entry *entry = desc->entry; 255 int loop_count = 0, 256 status; 257 258 while((status = dir_decode(desc)) == 0) { 259 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 260 __FUNCTION__, (unsigned long long)entry->cookie); 261 if (entry->prev_cookie == *desc->dir_cookie) 262 break; 263 if (loop_count++ > 200) { 264 loop_count = 0; 265 schedule(); 266 } 267 } 268 return status; 269 } 270 271 /* 272 * Given a pointer to a buffer that has already been filled by a call 273 * to readdir, find the entry at offset 'desc->file->f_pos'. 274 * 275 * If the end of the buffer has been reached, return -EAGAIN, if not, 276 * return the offset within the buffer of the next entry to be 277 * read. 278 */ 279 static inline 280 int find_dirent_index(nfs_readdir_descriptor_t *desc) 281 { 282 struct nfs_entry *entry = desc->entry; 283 int loop_count = 0, 284 status; 285 286 for(;;) { 287 status = dir_decode(desc); 288 if (status) 289 break; 290 291 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 292 (unsigned long long)entry->cookie, desc->current_index); 293 294 if (desc->file->f_pos == desc->current_index) { 295 *desc->dir_cookie = entry->cookie; 296 break; 297 } 298 desc->current_index++; 299 if (loop_count++ > 200) { 300 loop_count = 0; 301 schedule(); 302 } 303 } 304 return status; 305 } 306 307 /* 308 * Find the given page, and call find_dirent() or find_dirent_index in 309 * order to try to return the next entry. 310 */ 311 static inline 312 int find_dirent_page(nfs_readdir_descriptor_t *desc) 313 { 314 struct inode *inode = desc->file->f_path.dentry->d_inode; 315 struct page *page; 316 int status; 317 318 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 319 __FUNCTION__, desc->page_index, 320 (long long) *desc->dir_cookie); 321 322 /* If we find the page in the page_cache, we cannot be sure 323 * how fresh the data is, so we will ignore readdir_plus attributes. 324 */ 325 desc->timestamp_valid = 0; 326 page = read_cache_page(inode->i_mapping, desc->page_index, 327 (filler_t *)nfs_readdir_filler, desc); 328 if (IS_ERR(page)) { 329 status = PTR_ERR(page); 330 goto out; 331 } 332 333 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 334 desc->page = page; 335 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 336 if (*desc->dir_cookie != 0) 337 status = find_dirent(desc); 338 else 339 status = find_dirent_index(desc); 340 if (status < 0) 341 dir_page_release(desc); 342 out: 343 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status); 344 return status; 345 } 346 347 /* 348 * Recurse through the page cache pages, and return a 349 * filled nfs_entry structure of the next directory entry if possible. 350 * 351 * The target for the search is '*desc->dir_cookie' if non-0, 352 * 'desc->file->f_pos' otherwise 353 */ 354 static inline 355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 356 { 357 int loop_count = 0; 358 int res; 359 360 /* Always search-by-index from the beginning of the cache */ 361 if (*desc->dir_cookie == 0) { 362 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 363 (long long)desc->file->f_pos); 364 desc->page_index = 0; 365 desc->entry->cookie = desc->entry->prev_cookie = 0; 366 desc->entry->eof = 0; 367 desc->current_index = 0; 368 } else 369 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 370 (unsigned long long)*desc->dir_cookie); 371 372 for (;;) { 373 res = find_dirent_page(desc); 374 if (res != -EAGAIN) 375 break; 376 /* Align to beginning of next page */ 377 desc->page_index ++; 378 if (loop_count++ > 200) { 379 loop_count = 0; 380 schedule(); 381 } 382 } 383 384 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res); 385 return res; 386 } 387 388 static inline unsigned int dt_type(struct inode *inode) 389 { 390 return (inode->i_mode >> 12) & 15; 391 } 392 393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 394 395 /* 396 * Once we've found the start of the dirent within a page: fill 'er up... 397 */ 398 static 399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 400 filldir_t filldir) 401 { 402 struct file *file = desc->file; 403 struct nfs_entry *entry = desc->entry; 404 struct dentry *dentry = NULL; 405 u64 fileid; 406 int loop_count = 0, 407 res; 408 409 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 410 (unsigned long long)entry->cookie); 411 412 for(;;) { 413 unsigned d_type = DT_UNKNOWN; 414 /* Note: entry->prev_cookie contains the cookie for 415 * retrieving the current dirent on the server */ 416 fileid = entry->ino; 417 418 /* Get a dentry if we have one */ 419 if (dentry != NULL) 420 dput(dentry); 421 dentry = nfs_readdir_lookup(desc); 422 423 /* Use readdirplus info */ 424 if (dentry != NULL && dentry->d_inode != NULL) { 425 d_type = dt_type(dentry->d_inode); 426 fileid = NFS_FILEID(dentry->d_inode); 427 } 428 429 res = filldir(dirent, entry->name, entry->len, 430 file->f_pos, nfs_compat_user_ino64(fileid), 431 d_type); 432 if (res < 0) 433 break; 434 file->f_pos++; 435 *desc->dir_cookie = entry->cookie; 436 if (dir_decode(desc) != 0) { 437 desc->page_index ++; 438 break; 439 } 440 if (loop_count++ > 200) { 441 loop_count = 0; 442 schedule(); 443 } 444 } 445 dir_page_release(desc); 446 if (dentry != NULL) 447 dput(dentry); 448 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 449 (unsigned long long)*desc->dir_cookie, res); 450 return res; 451 } 452 453 /* 454 * If we cannot find a cookie in our cache, we suspect that this is 455 * because it points to a deleted file, so we ask the server to return 456 * whatever it thinks is the next entry. We then feed this to filldir. 457 * If all goes well, we should then be able to find our way round the 458 * cache on the next call to readdir_search_pagecache(); 459 * 460 * NOTE: we cannot add the anonymous page to the pagecache because 461 * the data it contains might not be page aligned. Besides, 462 * we should already have a complete representation of the 463 * directory in the page cache by the time we get here. 464 */ 465 static inline 466 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 467 filldir_t filldir) 468 { 469 struct file *file = desc->file; 470 struct inode *inode = file->f_path.dentry->d_inode; 471 struct rpc_cred *cred = nfs_file_cred(file); 472 struct page *page = NULL; 473 int status; 474 unsigned long timestamp; 475 476 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 477 (unsigned long long)*desc->dir_cookie); 478 479 page = alloc_page(GFP_HIGHUSER); 480 if (!page) { 481 status = -ENOMEM; 482 goto out; 483 } 484 timestamp = jiffies; 485 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie, 486 page, 487 NFS_SERVER(inode)->dtsize, 488 desc->plus); 489 desc->page = page; 490 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 491 if (desc->error >= 0) { 492 desc->timestamp = timestamp; 493 desc->timestamp_valid = 1; 494 if ((status = dir_decode(desc)) == 0) 495 desc->entry->prev_cookie = *desc->dir_cookie; 496 } else 497 status = -EIO; 498 if (status < 0) 499 goto out_release; 500 501 status = nfs_do_filldir(desc, dirent, filldir); 502 503 /* Reset read descriptor so it searches the page cache from 504 * the start upon the next call to readdir_search_pagecache() */ 505 desc->page_index = 0; 506 desc->entry->cookie = desc->entry->prev_cookie = 0; 507 desc->entry->eof = 0; 508 out: 509 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 510 __FUNCTION__, status); 511 return status; 512 out_release: 513 dir_page_release(desc); 514 goto out; 515 } 516 517 /* The file offset position represents the dirent entry number. A 518 last cookie cache takes care of the common case of reading the 519 whole directory. 520 */ 521 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 522 { 523 struct dentry *dentry = filp->f_path.dentry; 524 struct inode *inode = dentry->d_inode; 525 nfs_readdir_descriptor_t my_desc, 526 *desc = &my_desc; 527 struct nfs_entry my_entry; 528 struct nfs_fh fh; 529 struct nfs_fattr fattr; 530 long res; 531 532 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n", 533 dentry->d_parent->d_name.name, dentry->d_name.name, 534 (long long)filp->f_pos); 535 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 536 537 lock_kernel(); 538 539 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping); 540 if (res < 0) { 541 unlock_kernel(); 542 return res; 543 } 544 545 /* 546 * filp->f_pos points to the dirent entry number. 547 * *desc->dir_cookie has the cookie for the next entry. We have 548 * to either find the entry with the appropriate number or 549 * revalidate the cookie. 550 */ 551 memset(desc, 0, sizeof(*desc)); 552 553 desc->file = filp; 554 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie; 555 desc->decode = NFS_PROTO(inode)->decode_dirent; 556 desc->plus = NFS_USE_READDIRPLUS(inode); 557 558 my_entry.cookie = my_entry.prev_cookie = 0; 559 my_entry.eof = 0; 560 my_entry.fh = &fh; 561 my_entry.fattr = &fattr; 562 nfs_fattr_init(&fattr); 563 desc->entry = &my_entry; 564 565 while(!desc->entry->eof) { 566 res = readdir_search_pagecache(desc); 567 568 if (res == -EBADCOOKIE) { 569 /* This means either end of directory */ 570 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 571 /* Or that the server has 'lost' a cookie */ 572 res = uncached_readdir(desc, dirent, filldir); 573 if (res >= 0) 574 continue; 575 } 576 res = 0; 577 break; 578 } 579 if (res == -ETOOSMALL && desc->plus) { 580 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 581 nfs_zap_caches(inode); 582 desc->plus = 0; 583 desc->entry->eof = 0; 584 continue; 585 } 586 if (res < 0) 587 break; 588 589 res = nfs_do_filldir(desc, dirent, filldir); 590 if (res < 0) { 591 res = 0; 592 break; 593 } 594 } 595 unlock_kernel(); 596 if (res > 0) 597 res = 0; 598 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n", 599 dentry->d_parent->d_name.name, dentry->d_name.name, 600 res); 601 return res; 602 } 603 604 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 605 { 606 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 607 switch (origin) { 608 case 1: 609 offset += filp->f_pos; 610 case 0: 611 if (offset >= 0) 612 break; 613 default: 614 offset = -EINVAL; 615 goto out; 616 } 617 if (offset != filp->f_pos) { 618 filp->f_pos = offset; 619 nfs_file_open_context(filp)->dir_cookie = 0; 620 } 621 out: 622 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 623 return offset; 624 } 625 626 /* 627 * All directory operations under NFS are synchronous, so fsync() 628 * is a dummy operation. 629 */ 630 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 631 { 632 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n", 633 dentry->d_parent->d_name.name, dentry->d_name.name, 634 datasync); 635 636 return 0; 637 } 638 639 /* 640 * A check for whether or not the parent directory has changed. 641 * In the case it has, we assume that the dentries are untrustworthy 642 * and may need to be looked up again. 643 */ 644 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 645 { 646 if (IS_ROOT(dentry)) 647 return 1; 648 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 649 return 0; 650 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 651 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 652 return 0; 653 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 654 return 0; 655 return 1; 656 } 657 658 /* 659 * Return the intent data that applies to this particular path component 660 * 661 * Note that the current set of intents only apply to the very last 662 * component of the path. 663 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 664 */ 665 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 666 { 667 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 668 return 0; 669 return nd->flags & mask; 670 } 671 672 /* 673 * Use intent information to check whether or not we're going to do 674 * an O_EXCL create using this path component. 675 */ 676 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 677 { 678 if (NFS_PROTO(dir)->version == 2) 679 return 0; 680 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0) 681 return 0; 682 return (nd->intent.open.flags & O_EXCL) != 0; 683 } 684 685 /* 686 * Inode and filehandle revalidation for lookups. 687 * 688 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 689 * or if the intent information indicates that we're about to open this 690 * particular file and the "nocto" mount flag is not set. 691 * 692 */ 693 static inline 694 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 695 { 696 struct nfs_server *server = NFS_SERVER(inode); 697 698 if (nd != NULL) { 699 /* VFS wants an on-the-wire revalidation */ 700 if (nd->flags & LOOKUP_REVAL) 701 goto out_force; 702 /* This is an open(2) */ 703 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 704 !(server->flags & NFS_MOUNT_NOCTO) && 705 (S_ISREG(inode->i_mode) || 706 S_ISDIR(inode->i_mode))) 707 goto out_force; 708 return 0; 709 } 710 return nfs_revalidate_inode(server, inode); 711 out_force: 712 return __nfs_revalidate_inode(server, inode); 713 } 714 715 /* 716 * We judge how long we want to trust negative 717 * dentries by looking at the parent inode mtime. 718 * 719 * If parent mtime has changed, we revalidate, else we wait for a 720 * period corresponding to the parent's attribute cache timeout value. 721 */ 722 static inline 723 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 724 struct nameidata *nd) 725 { 726 /* Don't revalidate a negative dentry if we're creating a new file */ 727 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 728 return 0; 729 return !nfs_check_verifier(dir, dentry); 730 } 731 732 /* 733 * This is called every time the dcache has a lookup hit, 734 * and we should check whether we can really trust that 735 * lookup. 736 * 737 * NOTE! The hit can be a negative hit too, don't assume 738 * we have an inode! 739 * 740 * If the parent directory is seen to have changed, we throw out the 741 * cached dentry and do a new lookup. 742 */ 743 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 744 { 745 struct inode *dir; 746 struct inode *inode; 747 struct dentry *parent; 748 int error; 749 struct nfs_fh fhandle; 750 struct nfs_fattr fattr; 751 752 parent = dget_parent(dentry); 753 lock_kernel(); 754 dir = parent->d_inode; 755 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 756 inode = dentry->d_inode; 757 758 if (!inode) { 759 if (nfs_neg_need_reval(dir, dentry, nd)) 760 goto out_bad; 761 goto out_valid; 762 } 763 764 if (is_bad_inode(inode)) { 765 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 766 __FUNCTION__, dentry->d_parent->d_name.name, 767 dentry->d_name.name); 768 goto out_bad; 769 } 770 771 /* Force a full look up iff the parent directory has changed */ 772 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 773 if (nfs_lookup_verify_inode(inode, nd)) 774 goto out_zap_parent; 775 goto out_valid; 776 } 777 778 if (NFS_STALE(inode)) 779 goto out_bad; 780 781 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 782 if (error) 783 goto out_bad; 784 if (nfs_compare_fh(NFS_FH(inode), &fhandle)) 785 goto out_bad; 786 if ((error = nfs_refresh_inode(inode, &fattr)) != 0) 787 goto out_bad; 788 789 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 790 out_valid: 791 unlock_kernel(); 792 dput(parent); 793 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 794 __FUNCTION__, dentry->d_parent->d_name.name, 795 dentry->d_name.name); 796 return 1; 797 out_zap_parent: 798 nfs_zap_caches(dir); 799 out_bad: 800 nfs_mark_for_revalidate(dir); 801 if (inode && S_ISDIR(inode->i_mode)) { 802 /* Purge readdir caches. */ 803 nfs_zap_caches(inode); 804 /* If we have submounts, don't unhash ! */ 805 if (have_submounts(dentry)) 806 goto out_valid; 807 shrink_dcache_parent(dentry); 808 } 809 d_drop(dentry); 810 unlock_kernel(); 811 dput(parent); 812 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 813 __FUNCTION__, dentry->d_parent->d_name.name, 814 dentry->d_name.name); 815 return 0; 816 } 817 818 /* 819 * This is called from dput() when d_count is going to 0. 820 */ 821 static int nfs_dentry_delete(struct dentry *dentry) 822 { 823 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 824 dentry->d_parent->d_name.name, dentry->d_name.name, 825 dentry->d_flags); 826 827 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 828 /* Unhash it, so that ->d_iput() would be called */ 829 return 1; 830 } 831 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 832 /* Unhash it, so that ancestors of killed async unlink 833 * files will be cleaned up during umount */ 834 return 1; 835 } 836 return 0; 837 838 } 839 840 /* 841 * Called when the dentry loses inode. 842 * We use it to clean up silly-renamed files. 843 */ 844 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 845 { 846 nfs_inode_return_delegation(inode); 847 if (S_ISDIR(inode->i_mode)) 848 /* drop any readdir cache as it could easily be old */ 849 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 850 851 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 852 lock_kernel(); 853 drop_nlink(inode); 854 nfs_complete_unlink(dentry, inode); 855 unlock_kernel(); 856 } 857 iput(inode); 858 } 859 860 struct dentry_operations nfs_dentry_operations = { 861 .d_revalidate = nfs_lookup_revalidate, 862 .d_delete = nfs_dentry_delete, 863 .d_iput = nfs_dentry_iput, 864 }; 865 866 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 867 { 868 struct dentry *res; 869 struct inode *inode = NULL; 870 int error; 871 struct nfs_fh fhandle; 872 struct nfs_fattr fattr; 873 874 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 875 dentry->d_parent->d_name.name, dentry->d_name.name); 876 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 877 878 res = ERR_PTR(-ENAMETOOLONG); 879 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 880 goto out; 881 882 res = ERR_PTR(-ENOMEM); 883 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 884 885 lock_kernel(); 886 887 /* 888 * If we're doing an exclusive create, optimize away the lookup 889 * but don't hash the dentry. 890 */ 891 if (nfs_is_exclusive_create(dir, nd)) { 892 d_instantiate(dentry, NULL); 893 res = NULL; 894 goto out_unlock; 895 } 896 897 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 898 if (error == -ENOENT) 899 goto no_entry; 900 if (error < 0) { 901 res = ERR_PTR(error); 902 goto out_unlock; 903 } 904 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr); 905 res = (struct dentry *)inode; 906 if (IS_ERR(res)) 907 goto out_unlock; 908 909 no_entry: 910 res = d_materialise_unique(dentry, inode); 911 if (res != NULL) { 912 if (IS_ERR(res)) 913 goto out_unlock; 914 dentry = res; 915 } 916 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 917 out_unlock: 918 unlock_kernel(); 919 out: 920 return res; 921 } 922 923 #ifdef CONFIG_NFS_V4 924 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 925 926 struct dentry_operations nfs4_dentry_operations = { 927 .d_revalidate = nfs_open_revalidate, 928 .d_delete = nfs_dentry_delete, 929 .d_iput = nfs_dentry_iput, 930 }; 931 932 /* 933 * Use intent information to determine whether we need to substitute 934 * the NFSv4-style stateful OPEN for the LOOKUP call 935 */ 936 static int is_atomic_open(struct inode *dir, struct nameidata *nd) 937 { 938 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 939 return 0; 940 /* NFS does not (yet) have a stateful open for directories */ 941 if (nd->flags & LOOKUP_DIRECTORY) 942 return 0; 943 /* Are we trying to write to a read only partition? */ 944 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 945 return 0; 946 return 1; 947 } 948 949 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 950 { 951 struct dentry *res = NULL; 952 int error; 953 954 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 955 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 956 957 /* Check that we are indeed trying to open this file */ 958 if (!is_atomic_open(dir, nd)) 959 goto no_open; 960 961 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 962 res = ERR_PTR(-ENAMETOOLONG); 963 goto out; 964 } 965 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 966 967 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 968 * the dentry. */ 969 if (nd->intent.open.flags & O_EXCL) { 970 d_instantiate(dentry, NULL); 971 goto out; 972 } 973 974 /* Open the file on the server */ 975 lock_kernel(); 976 res = nfs4_atomic_open(dir, dentry, nd); 977 unlock_kernel(); 978 if (IS_ERR(res)) { 979 error = PTR_ERR(res); 980 switch (error) { 981 /* Make a negative dentry */ 982 case -ENOENT: 983 res = NULL; 984 goto out; 985 /* This turned out not to be a regular file */ 986 case -EISDIR: 987 case -ENOTDIR: 988 goto no_open; 989 case -ELOOP: 990 if (!(nd->intent.open.flags & O_NOFOLLOW)) 991 goto no_open; 992 /* case -EINVAL: */ 993 default: 994 goto out; 995 } 996 } else if (res != NULL) 997 dentry = res; 998 out: 999 return res; 1000 no_open: 1001 return nfs_lookup(dir, dentry, nd); 1002 } 1003 1004 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1005 { 1006 struct dentry *parent = NULL; 1007 struct inode *inode = dentry->d_inode; 1008 struct inode *dir; 1009 int openflags, ret = 0; 1010 1011 parent = dget_parent(dentry); 1012 dir = parent->d_inode; 1013 if (!is_atomic_open(dir, nd)) 1014 goto no_open; 1015 /* We can't create new files in nfs_open_revalidate(), so we 1016 * optimize away revalidation of negative dentries. 1017 */ 1018 if (inode == NULL) { 1019 if (!nfs_neg_need_reval(dir, dentry, nd)) 1020 ret = 1; 1021 goto out; 1022 } 1023 1024 /* NFS only supports OPEN on regular files */ 1025 if (!S_ISREG(inode->i_mode)) 1026 goto no_open; 1027 openflags = nd->intent.open.flags; 1028 /* We cannot do exclusive creation on a positive dentry */ 1029 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1030 goto no_open; 1031 /* We can't create new files, or truncate existing ones here */ 1032 openflags &= ~(O_CREAT|O_TRUNC); 1033 1034 /* 1035 * Note: we're not holding inode->i_mutex and so may be racing with 1036 * operations that change the directory. We therefore save the 1037 * change attribute *before* we do the RPC call. 1038 */ 1039 lock_kernel(); 1040 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1041 unlock_kernel(); 1042 out: 1043 dput(parent); 1044 if (!ret) 1045 d_drop(dentry); 1046 return ret; 1047 no_open: 1048 dput(parent); 1049 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ)) 1050 return 1; 1051 return nfs_lookup_revalidate(dentry, nd); 1052 } 1053 #endif /* CONFIG_NFSV4 */ 1054 1055 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1056 { 1057 struct dentry *parent = desc->file->f_path.dentry; 1058 struct inode *dir = parent->d_inode; 1059 struct nfs_entry *entry = desc->entry; 1060 struct dentry *dentry, *alias; 1061 struct qstr name = { 1062 .name = entry->name, 1063 .len = entry->len, 1064 }; 1065 struct inode *inode; 1066 unsigned long verf = nfs_save_change_attribute(dir); 1067 1068 switch (name.len) { 1069 case 2: 1070 if (name.name[0] == '.' && name.name[1] == '.') 1071 return dget_parent(parent); 1072 break; 1073 case 1: 1074 if (name.name[0] == '.') 1075 return dget(parent); 1076 } 1077 1078 spin_lock(&dir->i_lock); 1079 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) { 1080 spin_unlock(&dir->i_lock); 1081 return NULL; 1082 } 1083 spin_unlock(&dir->i_lock); 1084 1085 name.hash = full_name_hash(name.name, name.len); 1086 dentry = d_lookup(parent, &name); 1087 if (dentry != NULL) { 1088 /* Is this a positive dentry that matches the readdir info? */ 1089 if (dentry->d_inode != NULL && 1090 (NFS_FILEID(dentry->d_inode) == entry->ino || 1091 d_mountpoint(dentry))) { 1092 if (!desc->plus || entry->fh->size == 0) 1093 return dentry; 1094 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1095 entry->fh) == 0) 1096 goto out_renew; 1097 } 1098 /* No, so d_drop to allow one to be created */ 1099 d_drop(dentry); 1100 dput(dentry); 1101 } 1102 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1103 return NULL; 1104 if (name.len > NFS_SERVER(dir)->namelen) 1105 return NULL; 1106 /* Note: caller is already holding the dir->i_mutex! */ 1107 dentry = d_alloc(parent, &name); 1108 if (dentry == NULL) 1109 return NULL; 1110 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1111 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1112 if (IS_ERR(inode)) { 1113 dput(dentry); 1114 return NULL; 1115 } 1116 1117 alias = d_materialise_unique(dentry, inode); 1118 if (alias != NULL) { 1119 dput(dentry); 1120 if (IS_ERR(alias)) 1121 return NULL; 1122 dentry = alias; 1123 } 1124 1125 out_renew: 1126 nfs_set_verifier(dentry, verf); 1127 return dentry; 1128 } 1129 1130 /* 1131 * Code common to create, mkdir, and mknod. 1132 */ 1133 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1134 struct nfs_fattr *fattr) 1135 { 1136 struct dentry *parent = dget_parent(dentry); 1137 struct inode *dir = parent->d_inode; 1138 struct inode *inode; 1139 int error = -EACCES; 1140 1141 d_drop(dentry); 1142 1143 /* We may have been initialized further down */ 1144 if (dentry->d_inode) 1145 goto out; 1146 if (fhandle->size == 0) { 1147 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1148 if (error) 1149 goto out_error; 1150 } 1151 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1152 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1153 struct nfs_server *server = NFS_SB(dentry->d_sb); 1154 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1155 if (error < 0) 1156 goto out_error; 1157 } 1158 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1159 error = PTR_ERR(inode); 1160 if (IS_ERR(inode)) 1161 goto out_error; 1162 d_add(dentry, inode); 1163 out: 1164 dput(parent); 1165 return 0; 1166 out_error: 1167 nfs_mark_for_revalidate(dir); 1168 dput(parent); 1169 return error; 1170 } 1171 1172 /* 1173 * Following a failed create operation, we drop the dentry rather 1174 * than retain a negative dentry. This avoids a problem in the event 1175 * that the operation succeeded on the server, but an error in the 1176 * reply path made it appear to have failed. 1177 */ 1178 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1179 struct nameidata *nd) 1180 { 1181 struct iattr attr; 1182 int error; 1183 int open_flags = 0; 1184 1185 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1186 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1187 1188 attr.ia_mode = mode; 1189 attr.ia_valid = ATTR_MODE; 1190 1191 if ((nd->flags & LOOKUP_CREATE) != 0) 1192 open_flags = nd->intent.open.flags; 1193 1194 lock_kernel(); 1195 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1196 if (error != 0) 1197 goto out_err; 1198 unlock_kernel(); 1199 return 0; 1200 out_err: 1201 unlock_kernel(); 1202 d_drop(dentry); 1203 return error; 1204 } 1205 1206 /* 1207 * See comments for nfs_proc_create regarding failed operations. 1208 */ 1209 static int 1210 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1211 { 1212 struct iattr attr; 1213 int status; 1214 1215 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1216 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1217 1218 if (!new_valid_dev(rdev)) 1219 return -EINVAL; 1220 1221 attr.ia_mode = mode; 1222 attr.ia_valid = ATTR_MODE; 1223 1224 lock_kernel(); 1225 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1226 if (status != 0) 1227 goto out_err; 1228 unlock_kernel(); 1229 return 0; 1230 out_err: 1231 unlock_kernel(); 1232 d_drop(dentry); 1233 return status; 1234 } 1235 1236 /* 1237 * See comments for nfs_proc_create regarding failed operations. 1238 */ 1239 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1240 { 1241 struct iattr attr; 1242 int error; 1243 1244 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1245 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1246 1247 attr.ia_valid = ATTR_MODE; 1248 attr.ia_mode = mode | S_IFDIR; 1249 1250 lock_kernel(); 1251 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1252 if (error != 0) 1253 goto out_err; 1254 unlock_kernel(); 1255 return 0; 1256 out_err: 1257 d_drop(dentry); 1258 unlock_kernel(); 1259 return error; 1260 } 1261 1262 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1263 { 1264 int error; 1265 1266 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1267 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1268 1269 lock_kernel(); 1270 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1271 /* Ensure the VFS deletes this inode */ 1272 if (error == 0 && dentry->d_inode != NULL) 1273 clear_nlink(dentry->d_inode); 1274 unlock_kernel(); 1275 1276 return error; 1277 } 1278 1279 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1280 { 1281 static unsigned int sillycounter; 1282 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2; 1283 const int countersize = sizeof(sillycounter)*2; 1284 const int slen = sizeof(".nfs")+fileidsize+countersize-1; 1285 char silly[slen+1]; 1286 struct qstr qsilly; 1287 struct dentry *sdentry; 1288 int error = -EIO; 1289 1290 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1291 dentry->d_parent->d_name.name, dentry->d_name.name, 1292 atomic_read(&dentry->d_count)); 1293 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1294 1295 /* 1296 * We don't allow a dentry to be silly-renamed twice. 1297 */ 1298 error = -EBUSY; 1299 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1300 goto out; 1301 1302 sprintf(silly, ".nfs%*.*Lx", 1303 fileidsize, fileidsize, 1304 (unsigned long long)NFS_FILEID(dentry->d_inode)); 1305 1306 /* Return delegation in anticipation of the rename */ 1307 nfs_inode_return_delegation(dentry->d_inode); 1308 1309 sdentry = NULL; 1310 do { 1311 char *suffix = silly + slen - countersize; 1312 1313 dput(sdentry); 1314 sillycounter++; 1315 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1316 1317 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1318 dentry->d_name.name, silly); 1319 1320 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1321 /* 1322 * N.B. Better to return EBUSY here ... it could be 1323 * dangerous to delete the file while it's in use. 1324 */ 1325 if (IS_ERR(sdentry)) 1326 goto out; 1327 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1328 1329 qsilly.name = silly; 1330 qsilly.len = strlen(silly); 1331 if (dentry->d_inode) { 1332 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1333 dir, &qsilly); 1334 nfs_mark_for_revalidate(dentry->d_inode); 1335 } else 1336 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1337 dir, &qsilly); 1338 if (!error) { 1339 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1340 d_move(dentry, sdentry); 1341 error = nfs_async_unlink(dir, dentry); 1342 /* If we return 0 we don't unlink */ 1343 } 1344 dput(sdentry); 1345 out: 1346 return error; 1347 } 1348 1349 /* 1350 * Remove a file after making sure there are no pending writes, 1351 * and after checking that the file has only one user. 1352 * 1353 * We invalidate the attribute cache and free the inode prior to the operation 1354 * to avoid possible races if the server reuses the inode. 1355 */ 1356 static int nfs_safe_remove(struct dentry *dentry) 1357 { 1358 struct inode *dir = dentry->d_parent->d_inode; 1359 struct inode *inode = dentry->d_inode; 1360 int error = -EBUSY; 1361 1362 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1363 dentry->d_parent->d_name.name, dentry->d_name.name); 1364 1365 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1366 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1367 error = 0; 1368 goto out; 1369 } 1370 1371 if (inode != NULL) { 1372 nfs_inode_return_delegation(inode); 1373 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1374 /* The VFS may want to delete this inode */ 1375 if (error == 0) 1376 drop_nlink(inode); 1377 nfs_mark_for_revalidate(inode); 1378 } else 1379 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1380 out: 1381 return error; 1382 } 1383 1384 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1385 * belongs to an active ".nfs..." file and we return -EBUSY. 1386 * 1387 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1388 */ 1389 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1390 { 1391 int error; 1392 int need_rehash = 0; 1393 1394 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1395 dir->i_ino, dentry->d_name.name); 1396 1397 lock_kernel(); 1398 spin_lock(&dcache_lock); 1399 spin_lock(&dentry->d_lock); 1400 if (atomic_read(&dentry->d_count) > 1) { 1401 spin_unlock(&dentry->d_lock); 1402 spin_unlock(&dcache_lock); 1403 /* Start asynchronous writeout of the inode */ 1404 write_inode_now(dentry->d_inode, 0); 1405 error = nfs_sillyrename(dir, dentry); 1406 unlock_kernel(); 1407 return error; 1408 } 1409 if (!d_unhashed(dentry)) { 1410 __d_drop(dentry); 1411 need_rehash = 1; 1412 } 1413 spin_unlock(&dentry->d_lock); 1414 spin_unlock(&dcache_lock); 1415 error = nfs_safe_remove(dentry); 1416 if (!error) { 1417 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1418 } else if (need_rehash) 1419 d_rehash(dentry); 1420 unlock_kernel(); 1421 return error; 1422 } 1423 1424 /* 1425 * To create a symbolic link, most file systems instantiate a new inode, 1426 * add a page to it containing the path, then write it out to the disk 1427 * using prepare_write/commit_write. 1428 * 1429 * Unfortunately the NFS client can't create the in-core inode first 1430 * because it needs a file handle to create an in-core inode (see 1431 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1432 * symlink request has completed on the server. 1433 * 1434 * So instead we allocate a raw page, copy the symname into it, then do 1435 * the SYMLINK request with the page as the buffer. If it succeeds, we 1436 * now have a new file handle and can instantiate an in-core NFS inode 1437 * and move the raw page into its mapping. 1438 */ 1439 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1440 { 1441 struct pagevec lru_pvec; 1442 struct page *page; 1443 char *kaddr; 1444 struct iattr attr; 1445 unsigned int pathlen = strlen(symname); 1446 int error; 1447 1448 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1449 dir->i_ino, dentry->d_name.name, symname); 1450 1451 if (pathlen > PAGE_SIZE) 1452 return -ENAMETOOLONG; 1453 1454 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1455 attr.ia_valid = ATTR_MODE; 1456 1457 lock_kernel(); 1458 1459 page = alloc_page(GFP_HIGHUSER); 1460 if (!page) { 1461 unlock_kernel(); 1462 return -ENOMEM; 1463 } 1464 1465 kaddr = kmap_atomic(page, KM_USER0); 1466 memcpy(kaddr, symname, pathlen); 1467 if (pathlen < PAGE_SIZE) 1468 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1469 kunmap_atomic(kaddr, KM_USER0); 1470 1471 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1472 if (error != 0) { 1473 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1474 dir->i_sb->s_id, dir->i_ino, 1475 dentry->d_name.name, symname, error); 1476 d_drop(dentry); 1477 __free_page(page); 1478 unlock_kernel(); 1479 return error; 1480 } 1481 1482 /* 1483 * No big deal if we can't add this page to the page cache here. 1484 * READLINK will get the missing page from the server if needed. 1485 */ 1486 pagevec_init(&lru_pvec, 0); 1487 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1488 GFP_KERNEL)) { 1489 pagevec_add(&lru_pvec, page); 1490 pagevec_lru_add(&lru_pvec); 1491 SetPageUptodate(page); 1492 unlock_page(page); 1493 } else 1494 __free_page(page); 1495 1496 unlock_kernel(); 1497 return 0; 1498 } 1499 1500 static int 1501 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1502 { 1503 struct inode *inode = old_dentry->d_inode; 1504 int error; 1505 1506 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1507 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1508 dentry->d_parent->d_name.name, dentry->d_name.name); 1509 1510 lock_kernel(); 1511 d_drop(dentry); 1512 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1513 if (error == 0) { 1514 atomic_inc(&inode->i_count); 1515 d_add(dentry, inode); 1516 } 1517 unlock_kernel(); 1518 return error; 1519 } 1520 1521 /* 1522 * RENAME 1523 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1524 * different file handle for the same inode after a rename (e.g. when 1525 * moving to a different directory). A fail-safe method to do so would 1526 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1527 * rename the old file using the sillyrename stuff. This way, the original 1528 * file in old_dir will go away when the last process iput()s the inode. 1529 * 1530 * FIXED. 1531 * 1532 * It actually works quite well. One needs to have the possibility for 1533 * at least one ".nfs..." file in each directory the file ever gets 1534 * moved or linked to which happens automagically with the new 1535 * implementation that only depends on the dcache stuff instead of 1536 * using the inode layer 1537 * 1538 * Unfortunately, things are a little more complicated than indicated 1539 * above. For a cross-directory move, we want to make sure we can get 1540 * rid of the old inode after the operation. This means there must be 1541 * no pending writes (if it's a file), and the use count must be 1. 1542 * If these conditions are met, we can drop the dentries before doing 1543 * the rename. 1544 */ 1545 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1546 struct inode *new_dir, struct dentry *new_dentry) 1547 { 1548 struct inode *old_inode = old_dentry->d_inode; 1549 struct inode *new_inode = new_dentry->d_inode; 1550 struct dentry *dentry = NULL, *rehash = NULL; 1551 int error = -EBUSY; 1552 1553 /* 1554 * To prevent any new references to the target during the rename, 1555 * we unhash the dentry and free the inode in advance. 1556 */ 1557 lock_kernel(); 1558 if (!d_unhashed(new_dentry)) { 1559 d_drop(new_dentry); 1560 rehash = new_dentry; 1561 } 1562 1563 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1564 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1565 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1566 atomic_read(&new_dentry->d_count)); 1567 1568 /* 1569 * First check whether the target is busy ... we can't 1570 * safely do _any_ rename if the target is in use. 1571 * 1572 * For files, make a copy of the dentry and then do a 1573 * silly-rename. If the silly-rename succeeds, the 1574 * copied dentry is hashed and becomes the new target. 1575 */ 1576 if (!new_inode) 1577 goto go_ahead; 1578 if (S_ISDIR(new_inode->i_mode)) { 1579 error = -EISDIR; 1580 if (!S_ISDIR(old_inode->i_mode)) 1581 goto out; 1582 } else if (atomic_read(&new_dentry->d_count) > 2) { 1583 int err; 1584 /* copy the target dentry's name */ 1585 dentry = d_alloc(new_dentry->d_parent, 1586 &new_dentry->d_name); 1587 if (!dentry) 1588 goto out; 1589 1590 /* silly-rename the existing target ... */ 1591 err = nfs_sillyrename(new_dir, new_dentry); 1592 if (!err) { 1593 new_dentry = rehash = dentry; 1594 new_inode = NULL; 1595 /* instantiate the replacement target */ 1596 d_instantiate(new_dentry, NULL); 1597 } else if (atomic_read(&new_dentry->d_count) > 1) 1598 /* dentry still busy? */ 1599 goto out; 1600 } else 1601 drop_nlink(new_inode); 1602 1603 go_ahead: 1604 /* 1605 * ... prune child dentries and writebacks if needed. 1606 */ 1607 if (atomic_read(&old_dentry->d_count) > 1) { 1608 if (S_ISREG(old_inode->i_mode)) 1609 nfs_wb_all(old_inode); 1610 shrink_dcache_parent(old_dentry); 1611 } 1612 nfs_inode_return_delegation(old_inode); 1613 1614 if (new_inode != NULL) { 1615 nfs_inode_return_delegation(new_inode); 1616 d_delete(new_dentry); 1617 } 1618 1619 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1620 new_dir, &new_dentry->d_name); 1621 nfs_mark_for_revalidate(old_inode); 1622 out: 1623 if (rehash) 1624 d_rehash(rehash); 1625 if (!error) { 1626 d_move(old_dentry, new_dentry); 1627 nfs_set_verifier(new_dentry, 1628 nfs_save_change_attribute(new_dir)); 1629 } 1630 1631 /* new dentry created? */ 1632 if (dentry) 1633 dput(dentry); 1634 unlock_kernel(); 1635 return error; 1636 } 1637 1638 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1639 static LIST_HEAD(nfs_access_lru_list); 1640 static atomic_long_t nfs_access_nr_entries; 1641 1642 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1643 { 1644 put_rpccred(entry->cred); 1645 kfree(entry); 1646 smp_mb__before_atomic_dec(); 1647 atomic_long_dec(&nfs_access_nr_entries); 1648 smp_mb__after_atomic_dec(); 1649 } 1650 1651 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1652 { 1653 LIST_HEAD(head); 1654 struct nfs_inode *nfsi; 1655 struct nfs_access_entry *cache; 1656 1657 restart: 1658 spin_lock(&nfs_access_lru_lock); 1659 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1660 struct inode *inode; 1661 1662 if (nr_to_scan-- == 0) 1663 break; 1664 inode = igrab(&nfsi->vfs_inode); 1665 if (inode == NULL) 1666 continue; 1667 spin_lock(&inode->i_lock); 1668 if (list_empty(&nfsi->access_cache_entry_lru)) 1669 goto remove_lru_entry; 1670 cache = list_entry(nfsi->access_cache_entry_lru.next, 1671 struct nfs_access_entry, lru); 1672 list_move(&cache->lru, &head); 1673 rb_erase(&cache->rb_node, &nfsi->access_cache); 1674 if (!list_empty(&nfsi->access_cache_entry_lru)) 1675 list_move_tail(&nfsi->access_cache_inode_lru, 1676 &nfs_access_lru_list); 1677 else { 1678 remove_lru_entry: 1679 list_del_init(&nfsi->access_cache_inode_lru); 1680 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1681 } 1682 spin_unlock(&inode->i_lock); 1683 spin_unlock(&nfs_access_lru_lock); 1684 iput(inode); 1685 goto restart; 1686 } 1687 spin_unlock(&nfs_access_lru_lock); 1688 while (!list_empty(&head)) { 1689 cache = list_entry(head.next, struct nfs_access_entry, lru); 1690 list_del(&cache->lru); 1691 nfs_access_free_entry(cache); 1692 } 1693 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1694 } 1695 1696 static void __nfs_access_zap_cache(struct inode *inode) 1697 { 1698 struct nfs_inode *nfsi = NFS_I(inode); 1699 struct rb_root *root_node = &nfsi->access_cache; 1700 struct rb_node *n, *dispose = NULL; 1701 struct nfs_access_entry *entry; 1702 1703 /* Unhook entries from the cache */ 1704 while ((n = rb_first(root_node)) != NULL) { 1705 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1706 rb_erase(n, root_node); 1707 list_del(&entry->lru); 1708 n->rb_left = dispose; 1709 dispose = n; 1710 } 1711 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1712 spin_unlock(&inode->i_lock); 1713 1714 /* Now kill them all! */ 1715 while (dispose != NULL) { 1716 n = dispose; 1717 dispose = n->rb_left; 1718 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1719 } 1720 } 1721 1722 void nfs_access_zap_cache(struct inode *inode) 1723 { 1724 /* Remove from global LRU init */ 1725 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1726 spin_lock(&nfs_access_lru_lock); 1727 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1728 spin_unlock(&nfs_access_lru_lock); 1729 } 1730 1731 spin_lock(&inode->i_lock); 1732 /* This will release the spinlock */ 1733 __nfs_access_zap_cache(inode); 1734 } 1735 1736 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1737 { 1738 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1739 struct nfs_access_entry *entry; 1740 1741 while (n != NULL) { 1742 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1743 1744 if (cred < entry->cred) 1745 n = n->rb_left; 1746 else if (cred > entry->cred) 1747 n = n->rb_right; 1748 else 1749 return entry; 1750 } 1751 return NULL; 1752 } 1753 1754 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1755 { 1756 struct nfs_inode *nfsi = NFS_I(inode); 1757 struct nfs_access_entry *cache; 1758 int err = -ENOENT; 1759 1760 spin_lock(&inode->i_lock); 1761 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1762 goto out_zap; 1763 cache = nfs_access_search_rbtree(inode, cred); 1764 if (cache == NULL) 1765 goto out; 1766 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 1767 goto out_stale; 1768 res->jiffies = cache->jiffies; 1769 res->cred = cache->cred; 1770 res->mask = cache->mask; 1771 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1772 err = 0; 1773 out: 1774 spin_unlock(&inode->i_lock); 1775 return err; 1776 out_stale: 1777 rb_erase(&cache->rb_node, &nfsi->access_cache); 1778 list_del(&cache->lru); 1779 spin_unlock(&inode->i_lock); 1780 nfs_access_free_entry(cache); 1781 return -ENOENT; 1782 out_zap: 1783 /* This will release the spinlock */ 1784 __nfs_access_zap_cache(inode); 1785 return -ENOENT; 1786 } 1787 1788 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1789 { 1790 struct nfs_inode *nfsi = NFS_I(inode); 1791 struct rb_root *root_node = &nfsi->access_cache; 1792 struct rb_node **p = &root_node->rb_node; 1793 struct rb_node *parent = NULL; 1794 struct nfs_access_entry *entry; 1795 1796 spin_lock(&inode->i_lock); 1797 while (*p != NULL) { 1798 parent = *p; 1799 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1800 1801 if (set->cred < entry->cred) 1802 p = &parent->rb_left; 1803 else if (set->cred > entry->cred) 1804 p = &parent->rb_right; 1805 else 1806 goto found; 1807 } 1808 rb_link_node(&set->rb_node, parent, p); 1809 rb_insert_color(&set->rb_node, root_node); 1810 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1811 spin_unlock(&inode->i_lock); 1812 return; 1813 found: 1814 rb_replace_node(parent, &set->rb_node, root_node); 1815 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1816 list_del(&entry->lru); 1817 spin_unlock(&inode->i_lock); 1818 nfs_access_free_entry(entry); 1819 } 1820 1821 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1822 { 1823 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1824 if (cache == NULL) 1825 return; 1826 RB_CLEAR_NODE(&cache->rb_node); 1827 cache->jiffies = set->jiffies; 1828 cache->cred = get_rpccred(set->cred); 1829 cache->mask = set->mask; 1830 1831 nfs_access_add_rbtree(inode, cache); 1832 1833 /* Update accounting */ 1834 smp_mb__before_atomic_inc(); 1835 atomic_long_inc(&nfs_access_nr_entries); 1836 smp_mb__after_atomic_inc(); 1837 1838 /* Add inode to global LRU list */ 1839 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1840 spin_lock(&nfs_access_lru_lock); 1841 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1842 spin_unlock(&nfs_access_lru_lock); 1843 } 1844 } 1845 1846 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1847 { 1848 struct nfs_access_entry cache; 1849 int status; 1850 1851 status = nfs_access_get_cached(inode, cred, &cache); 1852 if (status == 0) 1853 goto out; 1854 1855 /* Be clever: ask server to check for all possible rights */ 1856 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1857 cache.cred = cred; 1858 cache.jiffies = jiffies; 1859 status = NFS_PROTO(inode)->access(inode, &cache); 1860 if (status != 0) 1861 return status; 1862 nfs_access_add_cache(inode, &cache); 1863 out: 1864 if ((cache.mask & mask) == mask) 1865 return 0; 1866 return -EACCES; 1867 } 1868 1869 static int nfs_open_permission_mask(int openflags) 1870 { 1871 int mask = 0; 1872 1873 if (openflags & FMODE_READ) 1874 mask |= MAY_READ; 1875 if (openflags & FMODE_WRITE) 1876 mask |= MAY_WRITE; 1877 if (openflags & FMODE_EXEC) 1878 mask |= MAY_EXEC; 1879 return mask; 1880 } 1881 1882 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 1883 { 1884 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 1885 } 1886 1887 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd) 1888 { 1889 struct rpc_cred *cred; 1890 int res = 0; 1891 1892 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1893 1894 if (mask == 0) 1895 goto out; 1896 /* Is this sys_access() ? */ 1897 if (nd != NULL && (nd->flags & LOOKUP_ACCESS)) 1898 goto force_lookup; 1899 1900 switch (inode->i_mode & S_IFMT) { 1901 case S_IFLNK: 1902 goto out; 1903 case S_IFREG: 1904 /* NFSv4 has atomic_open... */ 1905 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1906 && nd != NULL 1907 && (nd->flags & LOOKUP_OPEN)) 1908 goto out; 1909 break; 1910 case S_IFDIR: 1911 /* 1912 * Optimize away all write operations, since the server 1913 * will check permissions when we perform the op. 1914 */ 1915 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1916 goto out; 1917 } 1918 1919 force_lookup: 1920 lock_kernel(); 1921 1922 if (!NFS_PROTO(inode)->access) 1923 goto out_notsup; 1924 1925 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0); 1926 if (!IS_ERR(cred)) { 1927 res = nfs_do_access(inode, cred, mask); 1928 put_rpccred(cred); 1929 } else 1930 res = PTR_ERR(cred); 1931 unlock_kernel(); 1932 out: 1933 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1934 inode->i_sb->s_id, inode->i_ino, mask, res); 1935 return res; 1936 out_notsup: 1937 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1938 if (res == 0) 1939 res = generic_permission(inode, mask, NULL); 1940 unlock_kernel(); 1941 goto out; 1942 } 1943 1944 /* 1945 * Local variables: 1946 * version-control: t 1947 * kept-new-versions: 5 1948 * End: 1949 */ 1950