xref: /linux/fs/nfs/dir.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	__be32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 	unsigned long	timestamp;
158 	int		timestamp_valid;
159 } nfs_readdir_descriptor_t;
160 
161 /* Now we cache directories properly, by stuffing the dirent
162  * data directly in the page cache.
163  *
164  * Inode invalidation due to refresh etc. takes care of
165  * _everything_, no sloppy entry flushing logic, no extraneous
166  * copying, network direct to page cache, the way it was meant
167  * to be.
168  *
169  * NOTE: Dirent information verification is done always by the
170  *	 page-in of the RPC reply, nowhere else, this simplies
171  *	 things substantially.
172  */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 	struct file	*file = desc->file;
177 	struct inode	*inode = file->f_path.dentry->d_inode;
178 	struct rpc_cred	*cred = nfs_file_cred(file);
179 	unsigned long	timestamp;
180 	int		error;
181 
182 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 			__FUNCTION__, (long long)desc->entry->cookie,
184 			page->index);
185 
186  again:
187 	timestamp = jiffies;
188 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 					  NFS_SERVER(inode)->dtsize, desc->plus);
190 	if (error < 0) {
191 		/* We requested READDIRPLUS, but the server doesn't grok it */
192 		if (error == -ENOTSUPP && desc->plus) {
193 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 			desc->plus = 0;
196 			goto again;
197 		}
198 		goto error;
199 	}
200 	desc->timestamp = timestamp;
201 	desc->timestamp_valid = 1;
202 	SetPageUptodate(page);
203 	/* Ensure consistent page alignment of the data.
204 	 * Note: assumes we have exclusive access to this mapping either
205 	 *	 through inode->i_mutex or some other mechanism.
206 	 */
207 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 		/* Should never happen */
209 		nfs_zap_mapping(inode, inode->i_mapping);
210 	}
211 	unlock_page(page);
212 	return 0;
213  error:
214 	unlock_page(page);
215 	desc->error = error;
216 	return -EIO;
217 }
218 
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
221 {
222 	__be32	*p = desc->ptr;
223 	p = desc->decode(p, desc->entry, desc->plus);
224 	if (IS_ERR(p))
225 		return PTR_ERR(p);
226 	desc->ptr = p;
227 	if (desc->timestamp_valid)
228 		desc->entry->fattr->time_start = desc->timestamp;
229 	else
230 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 	return 0;
232 }
233 
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
236 {
237 	kunmap(desc->page);
238 	page_cache_release(desc->page);
239 	desc->page = NULL;
240 	desc->ptr = NULL;
241 }
242 
243 /*
244  * Given a pointer to a buffer that has already been filled by a call
245  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246  *
247  * If the end of the buffer has been reached, return -EAGAIN, if not,
248  * return the offset within the buffer of the next entry to be
249  * read.
250  */
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
253 {
254 	struct nfs_entry *entry = desc->entry;
255 	int		loop_count = 0,
256 			status;
257 
258 	while((status = dir_decode(desc)) == 0) {
259 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 				__FUNCTION__, (unsigned long long)entry->cookie);
261 		if (entry->prev_cookie == *desc->dir_cookie)
262 			break;
263 		if (loop_count++ > 200) {
264 			loop_count = 0;
265 			schedule();
266 		}
267 	}
268 	return status;
269 }
270 
271 /*
272  * Given a pointer to a buffer that has already been filled by a call
273  * to readdir, find the entry at offset 'desc->file->f_pos'.
274  *
275  * If the end of the buffer has been reached, return -EAGAIN, if not,
276  * return the offset within the buffer of the next entry to be
277  * read.
278  */
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
281 {
282 	struct nfs_entry *entry = desc->entry;
283 	int		loop_count = 0,
284 			status;
285 
286 	for(;;) {
287 		status = dir_decode(desc);
288 		if (status)
289 			break;
290 
291 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 				(unsigned long long)entry->cookie, desc->current_index);
293 
294 		if (desc->file->f_pos == desc->current_index) {
295 			*desc->dir_cookie = entry->cookie;
296 			break;
297 		}
298 		desc->current_index++;
299 		if (loop_count++ > 200) {
300 			loop_count = 0;
301 			schedule();
302 		}
303 	}
304 	return status;
305 }
306 
307 /*
308  * Find the given page, and call find_dirent() or find_dirent_index in
309  * order to try to return the next entry.
310  */
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
313 {
314 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
315 	struct page	*page;
316 	int		status;
317 
318 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 			__FUNCTION__, desc->page_index,
320 			(long long) *desc->dir_cookie);
321 
322 	/* If we find the page in the page_cache, we cannot be sure
323 	 * how fresh the data is, so we will ignore readdir_plus attributes.
324 	 */
325 	desc->timestamp_valid = 0;
326 	page = read_cache_page(inode->i_mapping, desc->page_index,
327 			       (filler_t *)nfs_readdir_filler, desc);
328 	if (IS_ERR(page)) {
329 		status = PTR_ERR(page);
330 		goto out;
331 	}
332 
333 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
334 	desc->page = page;
335 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
336 	if (*desc->dir_cookie != 0)
337 		status = find_dirent(desc);
338 	else
339 		status = find_dirent_index(desc);
340 	if (status < 0)
341 		dir_page_release(desc);
342  out:
343 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
344 	return status;
345 }
346 
347 /*
348  * Recurse through the page cache pages, and return a
349  * filled nfs_entry structure of the next directory entry if possible.
350  *
351  * The target for the search is '*desc->dir_cookie' if non-0,
352  * 'desc->file->f_pos' otherwise
353  */
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 {
357 	int		loop_count = 0;
358 	int		res;
359 
360 	/* Always search-by-index from the beginning of the cache */
361 	if (*desc->dir_cookie == 0) {
362 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 				(long long)desc->file->f_pos);
364 		desc->page_index = 0;
365 		desc->entry->cookie = desc->entry->prev_cookie = 0;
366 		desc->entry->eof = 0;
367 		desc->current_index = 0;
368 	} else
369 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 				(unsigned long long)*desc->dir_cookie);
371 
372 	for (;;) {
373 		res = find_dirent_page(desc);
374 		if (res != -EAGAIN)
375 			break;
376 		/* Align to beginning of next page */
377 		desc->page_index ++;
378 		if (loop_count++ > 200) {
379 			loop_count = 0;
380 			schedule();
381 		}
382 	}
383 
384 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
385 	return res;
386 }
387 
388 static inline unsigned int dt_type(struct inode *inode)
389 {
390 	return (inode->i_mode >> 12) & 15;
391 }
392 
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
394 
395 /*
396  * Once we've found the start of the dirent within a page: fill 'er up...
397  */
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 		   filldir_t filldir)
401 {
402 	struct file	*file = desc->file;
403 	struct nfs_entry *entry = desc->entry;
404 	struct dentry	*dentry = NULL;
405 	u64		fileid;
406 	int		loop_count = 0,
407 			res;
408 
409 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 			(unsigned long long)entry->cookie);
411 
412 	for(;;) {
413 		unsigned d_type = DT_UNKNOWN;
414 		/* Note: entry->prev_cookie contains the cookie for
415 		 *	 retrieving the current dirent on the server */
416 		fileid = entry->ino;
417 
418 		/* Get a dentry if we have one */
419 		if (dentry != NULL)
420 			dput(dentry);
421 		dentry = nfs_readdir_lookup(desc);
422 
423 		/* Use readdirplus info */
424 		if (dentry != NULL && dentry->d_inode != NULL) {
425 			d_type = dt_type(dentry->d_inode);
426 			fileid = NFS_FILEID(dentry->d_inode);
427 		}
428 
429 		res = filldir(dirent, entry->name, entry->len,
430 			      file->f_pos, nfs_compat_user_ino64(fileid),
431 			      d_type);
432 		if (res < 0)
433 			break;
434 		file->f_pos++;
435 		*desc->dir_cookie = entry->cookie;
436 		if (dir_decode(desc) != 0) {
437 			desc->page_index ++;
438 			break;
439 		}
440 		if (loop_count++ > 200) {
441 			loop_count = 0;
442 			schedule();
443 		}
444 	}
445 	dir_page_release(desc);
446 	if (dentry != NULL)
447 		dput(dentry);
448 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 			(unsigned long long)*desc->dir_cookie, res);
450 	return res;
451 }
452 
453 /*
454  * If we cannot find a cookie in our cache, we suspect that this is
455  * because it points to a deleted file, so we ask the server to return
456  * whatever it thinks is the next entry. We then feed this to filldir.
457  * If all goes well, we should then be able to find our way round the
458  * cache on the next call to readdir_search_pagecache();
459  *
460  * NOTE: we cannot add the anonymous page to the pagecache because
461  *	 the data it contains might not be page aligned. Besides,
462  *	 we should already have a complete representation of the
463  *	 directory in the page cache by the time we get here.
464  */
465 static inline
466 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
467 		     filldir_t filldir)
468 {
469 	struct file	*file = desc->file;
470 	struct inode	*inode = file->f_path.dentry->d_inode;
471 	struct rpc_cred	*cred = nfs_file_cred(file);
472 	struct page	*page = NULL;
473 	int		status;
474 	unsigned long	timestamp;
475 
476 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 			(unsigned long long)*desc->dir_cookie);
478 
479 	page = alloc_page(GFP_HIGHUSER);
480 	if (!page) {
481 		status = -ENOMEM;
482 		goto out;
483 	}
484 	timestamp = jiffies;
485 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
486 						page,
487 						NFS_SERVER(inode)->dtsize,
488 						desc->plus);
489 	desc->page = page;
490 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
491 	if (desc->error >= 0) {
492 		desc->timestamp = timestamp;
493 		desc->timestamp_valid = 1;
494 		if ((status = dir_decode(desc)) == 0)
495 			desc->entry->prev_cookie = *desc->dir_cookie;
496 	} else
497 		status = -EIO;
498 	if (status < 0)
499 		goto out_release;
500 
501 	status = nfs_do_filldir(desc, dirent, filldir);
502 
503 	/* Reset read descriptor so it searches the page cache from
504 	 * the start upon the next call to readdir_search_pagecache() */
505 	desc->page_index = 0;
506 	desc->entry->cookie = desc->entry->prev_cookie = 0;
507 	desc->entry->eof = 0;
508  out:
509 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
510 			__FUNCTION__, status);
511 	return status;
512  out_release:
513 	dir_page_release(desc);
514 	goto out;
515 }
516 
517 /* The file offset position represents the dirent entry number.  A
518    last cookie cache takes care of the common case of reading the
519    whole directory.
520  */
521 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
522 {
523 	struct dentry	*dentry = filp->f_path.dentry;
524 	struct inode	*inode = dentry->d_inode;
525 	nfs_readdir_descriptor_t my_desc,
526 			*desc = &my_desc;
527 	struct nfs_entry my_entry;
528 	struct nfs_fh	 fh;
529 	struct nfs_fattr fattr;
530 	long		res;
531 
532 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
533 			dentry->d_parent->d_name.name, dentry->d_name.name,
534 			(long long)filp->f_pos);
535 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
536 
537 	lock_kernel();
538 
539 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
540 	if (res < 0) {
541 		unlock_kernel();
542 		return res;
543 	}
544 
545 	/*
546 	 * filp->f_pos points to the dirent entry number.
547 	 * *desc->dir_cookie has the cookie for the next entry. We have
548 	 * to either find the entry with the appropriate number or
549 	 * revalidate the cookie.
550 	 */
551 	memset(desc, 0, sizeof(*desc));
552 
553 	desc->file = filp;
554 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
555 	desc->decode = NFS_PROTO(inode)->decode_dirent;
556 	desc->plus = NFS_USE_READDIRPLUS(inode);
557 
558 	my_entry.cookie = my_entry.prev_cookie = 0;
559 	my_entry.eof = 0;
560 	my_entry.fh = &fh;
561 	my_entry.fattr = &fattr;
562 	nfs_fattr_init(&fattr);
563 	desc->entry = &my_entry;
564 
565 	while(!desc->entry->eof) {
566 		res = readdir_search_pagecache(desc);
567 
568 		if (res == -EBADCOOKIE) {
569 			/* This means either end of directory */
570 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
571 				/* Or that the server has 'lost' a cookie */
572 				res = uncached_readdir(desc, dirent, filldir);
573 				if (res >= 0)
574 					continue;
575 			}
576 			res = 0;
577 			break;
578 		}
579 		if (res == -ETOOSMALL && desc->plus) {
580 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
581 			nfs_zap_caches(inode);
582 			desc->plus = 0;
583 			desc->entry->eof = 0;
584 			continue;
585 		}
586 		if (res < 0)
587 			break;
588 
589 		res = nfs_do_filldir(desc, dirent, filldir);
590 		if (res < 0) {
591 			res = 0;
592 			break;
593 		}
594 	}
595 	unlock_kernel();
596 	if (res > 0)
597 		res = 0;
598 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
599 			dentry->d_parent->d_name.name, dentry->d_name.name,
600 			res);
601 	return res;
602 }
603 
604 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
605 {
606 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
607 	switch (origin) {
608 		case 1:
609 			offset += filp->f_pos;
610 		case 0:
611 			if (offset >= 0)
612 				break;
613 		default:
614 			offset = -EINVAL;
615 			goto out;
616 	}
617 	if (offset != filp->f_pos) {
618 		filp->f_pos = offset;
619 		nfs_file_open_context(filp)->dir_cookie = 0;
620 	}
621 out:
622 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
623 	return offset;
624 }
625 
626 /*
627  * All directory operations under NFS are synchronous, so fsync()
628  * is a dummy operation.
629  */
630 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
631 {
632 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
633 			dentry->d_parent->d_name.name, dentry->d_name.name,
634 			datasync);
635 
636 	return 0;
637 }
638 
639 /*
640  * A check for whether or not the parent directory has changed.
641  * In the case it has, we assume that the dentries are untrustworthy
642  * and may need to be looked up again.
643  */
644 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
645 {
646 	if (IS_ROOT(dentry))
647 		return 1;
648 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
649 		return 0;
650 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
651 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
652 		return 0;
653 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
654 		return 0;
655 	return 1;
656 }
657 
658 /*
659  * Return the intent data that applies to this particular path component
660  *
661  * Note that the current set of intents only apply to the very last
662  * component of the path.
663  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
664  */
665 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
666 {
667 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
668 		return 0;
669 	return nd->flags & mask;
670 }
671 
672 /*
673  * Use intent information to check whether or not we're going to do
674  * an O_EXCL create using this path component.
675  */
676 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
677 {
678 	if (NFS_PROTO(dir)->version == 2)
679 		return 0;
680 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
681 		return 0;
682 	return (nd->intent.open.flags & O_EXCL) != 0;
683 }
684 
685 /*
686  * Inode and filehandle revalidation for lookups.
687  *
688  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
689  * or if the intent information indicates that we're about to open this
690  * particular file and the "nocto" mount flag is not set.
691  *
692  */
693 static inline
694 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
695 {
696 	struct nfs_server *server = NFS_SERVER(inode);
697 
698 	if (nd != NULL) {
699 		/* VFS wants an on-the-wire revalidation */
700 		if (nd->flags & LOOKUP_REVAL)
701 			goto out_force;
702 		/* This is an open(2) */
703 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
704 				!(server->flags & NFS_MOUNT_NOCTO) &&
705 				(S_ISREG(inode->i_mode) ||
706 				 S_ISDIR(inode->i_mode)))
707 			goto out_force;
708 		return 0;
709 	}
710 	return nfs_revalidate_inode(server, inode);
711 out_force:
712 	return __nfs_revalidate_inode(server, inode);
713 }
714 
715 /*
716  * We judge how long we want to trust negative
717  * dentries by looking at the parent inode mtime.
718  *
719  * If parent mtime has changed, we revalidate, else we wait for a
720  * period corresponding to the parent's attribute cache timeout value.
721  */
722 static inline
723 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
724 		       struct nameidata *nd)
725 {
726 	/* Don't revalidate a negative dentry if we're creating a new file */
727 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
728 		return 0;
729 	return !nfs_check_verifier(dir, dentry);
730 }
731 
732 /*
733  * This is called every time the dcache has a lookup hit,
734  * and we should check whether we can really trust that
735  * lookup.
736  *
737  * NOTE! The hit can be a negative hit too, don't assume
738  * we have an inode!
739  *
740  * If the parent directory is seen to have changed, we throw out the
741  * cached dentry and do a new lookup.
742  */
743 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
744 {
745 	struct inode *dir;
746 	struct inode *inode;
747 	struct dentry *parent;
748 	int error;
749 	struct nfs_fh fhandle;
750 	struct nfs_fattr fattr;
751 
752 	parent = dget_parent(dentry);
753 	lock_kernel();
754 	dir = parent->d_inode;
755 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
756 	inode = dentry->d_inode;
757 
758 	if (!inode) {
759 		if (nfs_neg_need_reval(dir, dentry, nd))
760 			goto out_bad;
761 		goto out_valid;
762 	}
763 
764 	if (is_bad_inode(inode)) {
765 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
766 				__FUNCTION__, dentry->d_parent->d_name.name,
767 				dentry->d_name.name);
768 		goto out_bad;
769 	}
770 
771 	/* Force a full look up iff the parent directory has changed */
772 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
773 		if (nfs_lookup_verify_inode(inode, nd))
774 			goto out_zap_parent;
775 		goto out_valid;
776 	}
777 
778 	if (NFS_STALE(inode))
779 		goto out_bad;
780 
781 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
782 	if (error)
783 		goto out_bad;
784 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
785 		goto out_bad;
786 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
787 		goto out_bad;
788 
789 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
790  out_valid:
791 	unlock_kernel();
792 	dput(parent);
793 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
794 			__FUNCTION__, dentry->d_parent->d_name.name,
795 			dentry->d_name.name);
796 	return 1;
797 out_zap_parent:
798 	nfs_zap_caches(dir);
799  out_bad:
800 	nfs_mark_for_revalidate(dir);
801 	if (inode && S_ISDIR(inode->i_mode)) {
802 		/* Purge readdir caches. */
803 		nfs_zap_caches(inode);
804 		/* If we have submounts, don't unhash ! */
805 		if (have_submounts(dentry))
806 			goto out_valid;
807 		shrink_dcache_parent(dentry);
808 	}
809 	d_drop(dentry);
810 	unlock_kernel();
811 	dput(parent);
812 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
813 			__FUNCTION__, dentry->d_parent->d_name.name,
814 			dentry->d_name.name);
815 	return 0;
816 }
817 
818 /*
819  * This is called from dput() when d_count is going to 0.
820  */
821 static int nfs_dentry_delete(struct dentry *dentry)
822 {
823 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
824 		dentry->d_parent->d_name.name, dentry->d_name.name,
825 		dentry->d_flags);
826 
827 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
828 		/* Unhash it, so that ->d_iput() would be called */
829 		return 1;
830 	}
831 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
832 		/* Unhash it, so that ancestors of killed async unlink
833 		 * files will be cleaned up during umount */
834 		return 1;
835 	}
836 	return 0;
837 
838 }
839 
840 /*
841  * Called when the dentry loses inode.
842  * We use it to clean up silly-renamed files.
843  */
844 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
845 {
846 	nfs_inode_return_delegation(inode);
847 	if (S_ISDIR(inode->i_mode))
848 		/* drop any readdir cache as it could easily be old */
849 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
850 
851 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
852 		lock_kernel();
853 		drop_nlink(inode);
854 		nfs_complete_unlink(dentry, inode);
855 		unlock_kernel();
856 	}
857 	iput(inode);
858 }
859 
860 struct dentry_operations nfs_dentry_operations = {
861 	.d_revalidate	= nfs_lookup_revalidate,
862 	.d_delete	= nfs_dentry_delete,
863 	.d_iput		= nfs_dentry_iput,
864 };
865 
866 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
867 {
868 	struct dentry *res;
869 	struct inode *inode = NULL;
870 	int error;
871 	struct nfs_fh fhandle;
872 	struct nfs_fattr fattr;
873 
874 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
875 		dentry->d_parent->d_name.name, dentry->d_name.name);
876 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
877 
878 	res = ERR_PTR(-ENAMETOOLONG);
879 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
880 		goto out;
881 
882 	res = ERR_PTR(-ENOMEM);
883 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
884 
885 	lock_kernel();
886 
887 	/*
888 	 * If we're doing an exclusive create, optimize away the lookup
889 	 * but don't hash the dentry.
890 	 */
891 	if (nfs_is_exclusive_create(dir, nd)) {
892 		d_instantiate(dentry, NULL);
893 		res = NULL;
894 		goto out_unlock;
895 	}
896 
897 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
898 	if (error == -ENOENT)
899 		goto no_entry;
900 	if (error < 0) {
901 		res = ERR_PTR(error);
902 		goto out_unlock;
903 	}
904 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
905 	res = (struct dentry *)inode;
906 	if (IS_ERR(res))
907 		goto out_unlock;
908 
909 no_entry:
910 	res = d_materialise_unique(dentry, inode);
911 	if (res != NULL) {
912 		if (IS_ERR(res))
913 			goto out_unlock;
914 		dentry = res;
915 	}
916 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
917 out_unlock:
918 	unlock_kernel();
919 out:
920 	return res;
921 }
922 
923 #ifdef CONFIG_NFS_V4
924 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
925 
926 struct dentry_operations nfs4_dentry_operations = {
927 	.d_revalidate	= nfs_open_revalidate,
928 	.d_delete	= nfs_dentry_delete,
929 	.d_iput		= nfs_dentry_iput,
930 };
931 
932 /*
933  * Use intent information to determine whether we need to substitute
934  * the NFSv4-style stateful OPEN for the LOOKUP call
935  */
936 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
937 {
938 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
939 		return 0;
940 	/* NFS does not (yet) have a stateful open for directories */
941 	if (nd->flags & LOOKUP_DIRECTORY)
942 		return 0;
943 	/* Are we trying to write to a read only partition? */
944 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
945 		return 0;
946 	return 1;
947 }
948 
949 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
950 {
951 	struct dentry *res = NULL;
952 	int error;
953 
954 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
955 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
956 
957 	/* Check that we are indeed trying to open this file */
958 	if (!is_atomic_open(dir, nd))
959 		goto no_open;
960 
961 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
962 		res = ERR_PTR(-ENAMETOOLONG);
963 		goto out;
964 	}
965 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
966 
967 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
968 	 * the dentry. */
969 	if (nd->intent.open.flags & O_EXCL) {
970 		d_instantiate(dentry, NULL);
971 		goto out;
972 	}
973 
974 	/* Open the file on the server */
975 	lock_kernel();
976 	res = nfs4_atomic_open(dir, dentry, nd);
977 	unlock_kernel();
978 	if (IS_ERR(res)) {
979 		error = PTR_ERR(res);
980 		switch (error) {
981 			/* Make a negative dentry */
982 			case -ENOENT:
983 				res = NULL;
984 				goto out;
985 			/* This turned out not to be a regular file */
986 			case -EISDIR:
987 			case -ENOTDIR:
988 				goto no_open;
989 			case -ELOOP:
990 				if (!(nd->intent.open.flags & O_NOFOLLOW))
991 					goto no_open;
992 			/* case -EINVAL: */
993 			default:
994 				goto out;
995 		}
996 	} else if (res != NULL)
997 		dentry = res;
998 out:
999 	return res;
1000 no_open:
1001 	return nfs_lookup(dir, dentry, nd);
1002 }
1003 
1004 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1005 {
1006 	struct dentry *parent = NULL;
1007 	struct inode *inode = dentry->d_inode;
1008 	struct inode *dir;
1009 	int openflags, ret = 0;
1010 
1011 	parent = dget_parent(dentry);
1012 	dir = parent->d_inode;
1013 	if (!is_atomic_open(dir, nd))
1014 		goto no_open;
1015 	/* We can't create new files in nfs_open_revalidate(), so we
1016 	 * optimize away revalidation of negative dentries.
1017 	 */
1018 	if (inode == NULL) {
1019 		if (!nfs_neg_need_reval(dir, dentry, nd))
1020 			ret = 1;
1021 		goto out;
1022 	}
1023 
1024 	/* NFS only supports OPEN on regular files */
1025 	if (!S_ISREG(inode->i_mode))
1026 		goto no_open;
1027 	openflags = nd->intent.open.flags;
1028 	/* We cannot do exclusive creation on a positive dentry */
1029 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1030 		goto no_open;
1031 	/* We can't create new files, or truncate existing ones here */
1032 	openflags &= ~(O_CREAT|O_TRUNC);
1033 
1034 	/*
1035 	 * Note: we're not holding inode->i_mutex and so may be racing with
1036 	 * operations that change the directory. We therefore save the
1037 	 * change attribute *before* we do the RPC call.
1038 	 */
1039 	lock_kernel();
1040 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1041 	unlock_kernel();
1042 out:
1043 	dput(parent);
1044 	if (!ret)
1045 		d_drop(dentry);
1046 	return ret;
1047 no_open:
1048 	dput(parent);
1049 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1050 		return 1;
1051 	return nfs_lookup_revalidate(dentry, nd);
1052 }
1053 #endif /* CONFIG_NFSV4 */
1054 
1055 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1056 {
1057 	struct dentry *parent = desc->file->f_path.dentry;
1058 	struct inode *dir = parent->d_inode;
1059 	struct nfs_entry *entry = desc->entry;
1060 	struct dentry *dentry, *alias;
1061 	struct qstr name = {
1062 		.name = entry->name,
1063 		.len = entry->len,
1064 	};
1065 	struct inode *inode;
1066 	unsigned long verf = nfs_save_change_attribute(dir);
1067 
1068 	switch (name.len) {
1069 		case 2:
1070 			if (name.name[0] == '.' && name.name[1] == '.')
1071 				return dget_parent(parent);
1072 			break;
1073 		case 1:
1074 			if (name.name[0] == '.')
1075 				return dget(parent);
1076 	}
1077 
1078 	spin_lock(&dir->i_lock);
1079 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1080 		spin_unlock(&dir->i_lock);
1081 		return NULL;
1082 	}
1083 	spin_unlock(&dir->i_lock);
1084 
1085 	name.hash = full_name_hash(name.name, name.len);
1086 	dentry = d_lookup(parent, &name);
1087 	if (dentry != NULL) {
1088 		/* Is this a positive dentry that matches the readdir info? */
1089 		if (dentry->d_inode != NULL &&
1090 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1091 				d_mountpoint(dentry))) {
1092 			if (!desc->plus || entry->fh->size == 0)
1093 				return dentry;
1094 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1095 						entry->fh) == 0)
1096 				goto out_renew;
1097 		}
1098 		/* No, so d_drop to allow one to be created */
1099 		d_drop(dentry);
1100 		dput(dentry);
1101 	}
1102 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1103 		return NULL;
1104 	if (name.len > NFS_SERVER(dir)->namelen)
1105 		return NULL;
1106 	/* Note: caller is already holding the dir->i_mutex! */
1107 	dentry = d_alloc(parent, &name);
1108 	if (dentry == NULL)
1109 		return NULL;
1110 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1111 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1112 	if (IS_ERR(inode)) {
1113 		dput(dentry);
1114 		return NULL;
1115 	}
1116 
1117 	alias = d_materialise_unique(dentry, inode);
1118 	if (alias != NULL) {
1119 		dput(dentry);
1120 		if (IS_ERR(alias))
1121 			return NULL;
1122 		dentry = alias;
1123 	}
1124 
1125 out_renew:
1126 	nfs_set_verifier(dentry, verf);
1127 	return dentry;
1128 }
1129 
1130 /*
1131  * Code common to create, mkdir, and mknod.
1132  */
1133 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1134 				struct nfs_fattr *fattr)
1135 {
1136 	struct dentry *parent = dget_parent(dentry);
1137 	struct inode *dir = parent->d_inode;
1138 	struct inode *inode;
1139 	int error = -EACCES;
1140 
1141 	d_drop(dentry);
1142 
1143 	/* We may have been initialized further down */
1144 	if (dentry->d_inode)
1145 		goto out;
1146 	if (fhandle->size == 0) {
1147 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1148 		if (error)
1149 			goto out_error;
1150 	}
1151 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1152 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1153 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1154 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1155 		if (error < 0)
1156 			goto out_error;
1157 	}
1158 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1159 	error = PTR_ERR(inode);
1160 	if (IS_ERR(inode))
1161 		goto out_error;
1162 	d_add(dentry, inode);
1163 out:
1164 	dput(parent);
1165 	return 0;
1166 out_error:
1167 	nfs_mark_for_revalidate(dir);
1168 	dput(parent);
1169 	return error;
1170 }
1171 
1172 /*
1173  * Following a failed create operation, we drop the dentry rather
1174  * than retain a negative dentry. This avoids a problem in the event
1175  * that the operation succeeded on the server, but an error in the
1176  * reply path made it appear to have failed.
1177  */
1178 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1179 		struct nameidata *nd)
1180 {
1181 	struct iattr attr;
1182 	int error;
1183 	int open_flags = 0;
1184 
1185 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1186 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1187 
1188 	attr.ia_mode = mode;
1189 	attr.ia_valid = ATTR_MODE;
1190 
1191 	if ((nd->flags & LOOKUP_CREATE) != 0)
1192 		open_flags = nd->intent.open.flags;
1193 
1194 	lock_kernel();
1195 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1196 	if (error != 0)
1197 		goto out_err;
1198 	unlock_kernel();
1199 	return 0;
1200 out_err:
1201 	unlock_kernel();
1202 	d_drop(dentry);
1203 	return error;
1204 }
1205 
1206 /*
1207  * See comments for nfs_proc_create regarding failed operations.
1208  */
1209 static int
1210 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1211 {
1212 	struct iattr attr;
1213 	int status;
1214 
1215 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1216 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1217 
1218 	if (!new_valid_dev(rdev))
1219 		return -EINVAL;
1220 
1221 	attr.ia_mode = mode;
1222 	attr.ia_valid = ATTR_MODE;
1223 
1224 	lock_kernel();
1225 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1226 	if (status != 0)
1227 		goto out_err;
1228 	unlock_kernel();
1229 	return 0;
1230 out_err:
1231 	unlock_kernel();
1232 	d_drop(dentry);
1233 	return status;
1234 }
1235 
1236 /*
1237  * See comments for nfs_proc_create regarding failed operations.
1238  */
1239 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1240 {
1241 	struct iattr attr;
1242 	int error;
1243 
1244 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1245 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1246 
1247 	attr.ia_valid = ATTR_MODE;
1248 	attr.ia_mode = mode | S_IFDIR;
1249 
1250 	lock_kernel();
1251 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1252 	if (error != 0)
1253 		goto out_err;
1254 	unlock_kernel();
1255 	return 0;
1256 out_err:
1257 	d_drop(dentry);
1258 	unlock_kernel();
1259 	return error;
1260 }
1261 
1262 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1263 {
1264 	int error;
1265 
1266 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1267 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1268 
1269 	lock_kernel();
1270 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1271 	/* Ensure the VFS deletes this inode */
1272 	if (error == 0 && dentry->d_inode != NULL)
1273 		clear_nlink(dentry->d_inode);
1274 	unlock_kernel();
1275 
1276 	return error;
1277 }
1278 
1279 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1280 {
1281 	static unsigned int sillycounter;
1282 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1283 	const int      countersize = sizeof(sillycounter)*2;
1284 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1285 	char           silly[slen+1];
1286 	struct qstr    qsilly;
1287 	struct dentry *sdentry;
1288 	int            error = -EIO;
1289 
1290 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1291 		dentry->d_parent->d_name.name, dentry->d_name.name,
1292 		atomic_read(&dentry->d_count));
1293 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1294 
1295 	/*
1296 	 * We don't allow a dentry to be silly-renamed twice.
1297 	 */
1298 	error = -EBUSY;
1299 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1300 		goto out;
1301 
1302 	sprintf(silly, ".nfs%*.*Lx",
1303 		fileidsize, fileidsize,
1304 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1305 
1306 	/* Return delegation in anticipation of the rename */
1307 	nfs_inode_return_delegation(dentry->d_inode);
1308 
1309 	sdentry = NULL;
1310 	do {
1311 		char *suffix = silly + slen - countersize;
1312 
1313 		dput(sdentry);
1314 		sillycounter++;
1315 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1316 
1317 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1318 				dentry->d_name.name, silly);
1319 
1320 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1321 		/*
1322 		 * N.B. Better to return EBUSY here ... it could be
1323 		 * dangerous to delete the file while it's in use.
1324 		 */
1325 		if (IS_ERR(sdentry))
1326 			goto out;
1327 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1328 
1329 	qsilly.name = silly;
1330 	qsilly.len  = strlen(silly);
1331 	if (dentry->d_inode) {
1332 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1333 				dir, &qsilly);
1334 		nfs_mark_for_revalidate(dentry->d_inode);
1335 	} else
1336 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1337 				dir, &qsilly);
1338 	if (!error) {
1339 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1340 		d_move(dentry, sdentry);
1341 		error = nfs_async_unlink(dir, dentry);
1342  		/* If we return 0 we don't unlink */
1343 	}
1344 	dput(sdentry);
1345 out:
1346 	return error;
1347 }
1348 
1349 /*
1350  * Remove a file after making sure there are no pending writes,
1351  * and after checking that the file has only one user.
1352  *
1353  * We invalidate the attribute cache and free the inode prior to the operation
1354  * to avoid possible races if the server reuses the inode.
1355  */
1356 static int nfs_safe_remove(struct dentry *dentry)
1357 {
1358 	struct inode *dir = dentry->d_parent->d_inode;
1359 	struct inode *inode = dentry->d_inode;
1360 	int error = -EBUSY;
1361 
1362 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1363 		dentry->d_parent->d_name.name, dentry->d_name.name);
1364 
1365 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1366 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1367 		error = 0;
1368 		goto out;
1369 	}
1370 
1371 	if (inode != NULL) {
1372 		nfs_inode_return_delegation(inode);
1373 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1374 		/* The VFS may want to delete this inode */
1375 		if (error == 0)
1376 			drop_nlink(inode);
1377 		nfs_mark_for_revalidate(inode);
1378 	} else
1379 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1380 out:
1381 	return error;
1382 }
1383 
1384 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1385  *  belongs to an active ".nfs..." file and we return -EBUSY.
1386  *
1387  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1388  */
1389 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1390 {
1391 	int error;
1392 	int need_rehash = 0;
1393 
1394 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1395 		dir->i_ino, dentry->d_name.name);
1396 
1397 	lock_kernel();
1398 	spin_lock(&dcache_lock);
1399 	spin_lock(&dentry->d_lock);
1400 	if (atomic_read(&dentry->d_count) > 1) {
1401 		spin_unlock(&dentry->d_lock);
1402 		spin_unlock(&dcache_lock);
1403 		/* Start asynchronous writeout of the inode */
1404 		write_inode_now(dentry->d_inode, 0);
1405 		error = nfs_sillyrename(dir, dentry);
1406 		unlock_kernel();
1407 		return error;
1408 	}
1409 	if (!d_unhashed(dentry)) {
1410 		__d_drop(dentry);
1411 		need_rehash = 1;
1412 	}
1413 	spin_unlock(&dentry->d_lock);
1414 	spin_unlock(&dcache_lock);
1415 	error = nfs_safe_remove(dentry);
1416 	if (!error) {
1417 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1418 	} else if (need_rehash)
1419 		d_rehash(dentry);
1420 	unlock_kernel();
1421 	return error;
1422 }
1423 
1424 /*
1425  * To create a symbolic link, most file systems instantiate a new inode,
1426  * add a page to it containing the path, then write it out to the disk
1427  * using prepare_write/commit_write.
1428  *
1429  * Unfortunately the NFS client can't create the in-core inode first
1430  * because it needs a file handle to create an in-core inode (see
1431  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1432  * symlink request has completed on the server.
1433  *
1434  * So instead we allocate a raw page, copy the symname into it, then do
1435  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1436  * now have a new file handle and can instantiate an in-core NFS inode
1437  * and move the raw page into its mapping.
1438  */
1439 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1440 {
1441 	struct pagevec lru_pvec;
1442 	struct page *page;
1443 	char *kaddr;
1444 	struct iattr attr;
1445 	unsigned int pathlen = strlen(symname);
1446 	int error;
1447 
1448 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1449 		dir->i_ino, dentry->d_name.name, symname);
1450 
1451 	if (pathlen > PAGE_SIZE)
1452 		return -ENAMETOOLONG;
1453 
1454 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1455 	attr.ia_valid = ATTR_MODE;
1456 
1457 	lock_kernel();
1458 
1459 	page = alloc_page(GFP_HIGHUSER);
1460 	if (!page) {
1461 		unlock_kernel();
1462 		return -ENOMEM;
1463 	}
1464 
1465 	kaddr = kmap_atomic(page, KM_USER0);
1466 	memcpy(kaddr, symname, pathlen);
1467 	if (pathlen < PAGE_SIZE)
1468 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1469 	kunmap_atomic(kaddr, KM_USER0);
1470 
1471 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1472 	if (error != 0) {
1473 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1474 			dir->i_sb->s_id, dir->i_ino,
1475 			dentry->d_name.name, symname, error);
1476 		d_drop(dentry);
1477 		__free_page(page);
1478 		unlock_kernel();
1479 		return error;
1480 	}
1481 
1482 	/*
1483 	 * No big deal if we can't add this page to the page cache here.
1484 	 * READLINK will get the missing page from the server if needed.
1485 	 */
1486 	pagevec_init(&lru_pvec, 0);
1487 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1488 							GFP_KERNEL)) {
1489 		pagevec_add(&lru_pvec, page);
1490 		pagevec_lru_add(&lru_pvec);
1491 		SetPageUptodate(page);
1492 		unlock_page(page);
1493 	} else
1494 		__free_page(page);
1495 
1496 	unlock_kernel();
1497 	return 0;
1498 }
1499 
1500 static int
1501 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1502 {
1503 	struct inode *inode = old_dentry->d_inode;
1504 	int error;
1505 
1506 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1507 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1508 		dentry->d_parent->d_name.name, dentry->d_name.name);
1509 
1510 	lock_kernel();
1511 	d_drop(dentry);
1512 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1513 	if (error == 0) {
1514 		atomic_inc(&inode->i_count);
1515 		d_add(dentry, inode);
1516 	}
1517 	unlock_kernel();
1518 	return error;
1519 }
1520 
1521 /*
1522  * RENAME
1523  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1524  * different file handle for the same inode after a rename (e.g. when
1525  * moving to a different directory). A fail-safe method to do so would
1526  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1527  * rename the old file using the sillyrename stuff. This way, the original
1528  * file in old_dir will go away when the last process iput()s the inode.
1529  *
1530  * FIXED.
1531  *
1532  * It actually works quite well. One needs to have the possibility for
1533  * at least one ".nfs..." file in each directory the file ever gets
1534  * moved or linked to which happens automagically with the new
1535  * implementation that only depends on the dcache stuff instead of
1536  * using the inode layer
1537  *
1538  * Unfortunately, things are a little more complicated than indicated
1539  * above. For a cross-directory move, we want to make sure we can get
1540  * rid of the old inode after the operation.  This means there must be
1541  * no pending writes (if it's a file), and the use count must be 1.
1542  * If these conditions are met, we can drop the dentries before doing
1543  * the rename.
1544  */
1545 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1546 		      struct inode *new_dir, struct dentry *new_dentry)
1547 {
1548 	struct inode *old_inode = old_dentry->d_inode;
1549 	struct inode *new_inode = new_dentry->d_inode;
1550 	struct dentry *dentry = NULL, *rehash = NULL;
1551 	int error = -EBUSY;
1552 
1553 	/*
1554 	 * To prevent any new references to the target during the rename,
1555 	 * we unhash the dentry and free the inode in advance.
1556 	 */
1557 	lock_kernel();
1558 	if (!d_unhashed(new_dentry)) {
1559 		d_drop(new_dentry);
1560 		rehash = new_dentry;
1561 	}
1562 
1563 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1564 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1565 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1566 		 atomic_read(&new_dentry->d_count));
1567 
1568 	/*
1569 	 * First check whether the target is busy ... we can't
1570 	 * safely do _any_ rename if the target is in use.
1571 	 *
1572 	 * For files, make a copy of the dentry and then do a
1573 	 * silly-rename. If the silly-rename succeeds, the
1574 	 * copied dentry is hashed and becomes the new target.
1575 	 */
1576 	if (!new_inode)
1577 		goto go_ahead;
1578 	if (S_ISDIR(new_inode->i_mode)) {
1579 		error = -EISDIR;
1580 		if (!S_ISDIR(old_inode->i_mode))
1581 			goto out;
1582 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1583 		int err;
1584 		/* copy the target dentry's name */
1585 		dentry = d_alloc(new_dentry->d_parent,
1586 				 &new_dentry->d_name);
1587 		if (!dentry)
1588 			goto out;
1589 
1590 		/* silly-rename the existing target ... */
1591 		err = nfs_sillyrename(new_dir, new_dentry);
1592 		if (!err) {
1593 			new_dentry = rehash = dentry;
1594 			new_inode = NULL;
1595 			/* instantiate the replacement target */
1596 			d_instantiate(new_dentry, NULL);
1597 		} else if (atomic_read(&new_dentry->d_count) > 1)
1598 			/* dentry still busy? */
1599 			goto out;
1600 	} else
1601 		drop_nlink(new_inode);
1602 
1603 go_ahead:
1604 	/*
1605 	 * ... prune child dentries and writebacks if needed.
1606 	 */
1607 	if (atomic_read(&old_dentry->d_count) > 1) {
1608 		if (S_ISREG(old_inode->i_mode))
1609 			nfs_wb_all(old_inode);
1610 		shrink_dcache_parent(old_dentry);
1611 	}
1612 	nfs_inode_return_delegation(old_inode);
1613 
1614 	if (new_inode != NULL) {
1615 		nfs_inode_return_delegation(new_inode);
1616 		d_delete(new_dentry);
1617 	}
1618 
1619 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1620 					   new_dir, &new_dentry->d_name);
1621 	nfs_mark_for_revalidate(old_inode);
1622 out:
1623 	if (rehash)
1624 		d_rehash(rehash);
1625 	if (!error) {
1626 		d_move(old_dentry, new_dentry);
1627 		nfs_set_verifier(new_dentry,
1628 					nfs_save_change_attribute(new_dir));
1629 	}
1630 
1631 	/* new dentry created? */
1632 	if (dentry)
1633 		dput(dentry);
1634 	unlock_kernel();
1635 	return error;
1636 }
1637 
1638 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1639 static LIST_HEAD(nfs_access_lru_list);
1640 static atomic_long_t nfs_access_nr_entries;
1641 
1642 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1643 {
1644 	put_rpccred(entry->cred);
1645 	kfree(entry);
1646 	smp_mb__before_atomic_dec();
1647 	atomic_long_dec(&nfs_access_nr_entries);
1648 	smp_mb__after_atomic_dec();
1649 }
1650 
1651 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1652 {
1653 	LIST_HEAD(head);
1654 	struct nfs_inode *nfsi;
1655 	struct nfs_access_entry *cache;
1656 
1657 restart:
1658 	spin_lock(&nfs_access_lru_lock);
1659 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1660 		struct inode *inode;
1661 
1662 		if (nr_to_scan-- == 0)
1663 			break;
1664 		inode = igrab(&nfsi->vfs_inode);
1665 		if (inode == NULL)
1666 			continue;
1667 		spin_lock(&inode->i_lock);
1668 		if (list_empty(&nfsi->access_cache_entry_lru))
1669 			goto remove_lru_entry;
1670 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1671 				struct nfs_access_entry, lru);
1672 		list_move(&cache->lru, &head);
1673 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1674 		if (!list_empty(&nfsi->access_cache_entry_lru))
1675 			list_move_tail(&nfsi->access_cache_inode_lru,
1676 					&nfs_access_lru_list);
1677 		else {
1678 remove_lru_entry:
1679 			list_del_init(&nfsi->access_cache_inode_lru);
1680 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1681 		}
1682 		spin_unlock(&inode->i_lock);
1683 		spin_unlock(&nfs_access_lru_lock);
1684 		iput(inode);
1685 		goto restart;
1686 	}
1687 	spin_unlock(&nfs_access_lru_lock);
1688 	while (!list_empty(&head)) {
1689 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1690 		list_del(&cache->lru);
1691 		nfs_access_free_entry(cache);
1692 	}
1693 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1694 }
1695 
1696 static void __nfs_access_zap_cache(struct inode *inode)
1697 {
1698 	struct nfs_inode *nfsi = NFS_I(inode);
1699 	struct rb_root *root_node = &nfsi->access_cache;
1700 	struct rb_node *n, *dispose = NULL;
1701 	struct nfs_access_entry *entry;
1702 
1703 	/* Unhook entries from the cache */
1704 	while ((n = rb_first(root_node)) != NULL) {
1705 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1706 		rb_erase(n, root_node);
1707 		list_del(&entry->lru);
1708 		n->rb_left = dispose;
1709 		dispose = n;
1710 	}
1711 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1712 	spin_unlock(&inode->i_lock);
1713 
1714 	/* Now kill them all! */
1715 	while (dispose != NULL) {
1716 		n = dispose;
1717 		dispose = n->rb_left;
1718 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1719 	}
1720 }
1721 
1722 void nfs_access_zap_cache(struct inode *inode)
1723 {
1724 	/* Remove from global LRU init */
1725 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1726 		spin_lock(&nfs_access_lru_lock);
1727 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1728 		spin_unlock(&nfs_access_lru_lock);
1729 	}
1730 
1731 	spin_lock(&inode->i_lock);
1732 	/* This will release the spinlock */
1733 	__nfs_access_zap_cache(inode);
1734 }
1735 
1736 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1737 {
1738 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1739 	struct nfs_access_entry *entry;
1740 
1741 	while (n != NULL) {
1742 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1743 
1744 		if (cred < entry->cred)
1745 			n = n->rb_left;
1746 		else if (cred > entry->cred)
1747 			n = n->rb_right;
1748 		else
1749 			return entry;
1750 	}
1751 	return NULL;
1752 }
1753 
1754 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1755 {
1756 	struct nfs_inode *nfsi = NFS_I(inode);
1757 	struct nfs_access_entry *cache;
1758 	int err = -ENOENT;
1759 
1760 	spin_lock(&inode->i_lock);
1761 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1762 		goto out_zap;
1763 	cache = nfs_access_search_rbtree(inode, cred);
1764 	if (cache == NULL)
1765 		goto out;
1766 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1767 		goto out_stale;
1768 	res->jiffies = cache->jiffies;
1769 	res->cred = cache->cred;
1770 	res->mask = cache->mask;
1771 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1772 	err = 0;
1773 out:
1774 	spin_unlock(&inode->i_lock);
1775 	return err;
1776 out_stale:
1777 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1778 	list_del(&cache->lru);
1779 	spin_unlock(&inode->i_lock);
1780 	nfs_access_free_entry(cache);
1781 	return -ENOENT;
1782 out_zap:
1783 	/* This will release the spinlock */
1784 	__nfs_access_zap_cache(inode);
1785 	return -ENOENT;
1786 }
1787 
1788 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1789 {
1790 	struct nfs_inode *nfsi = NFS_I(inode);
1791 	struct rb_root *root_node = &nfsi->access_cache;
1792 	struct rb_node **p = &root_node->rb_node;
1793 	struct rb_node *parent = NULL;
1794 	struct nfs_access_entry *entry;
1795 
1796 	spin_lock(&inode->i_lock);
1797 	while (*p != NULL) {
1798 		parent = *p;
1799 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1800 
1801 		if (set->cred < entry->cred)
1802 			p = &parent->rb_left;
1803 		else if (set->cred > entry->cred)
1804 			p = &parent->rb_right;
1805 		else
1806 			goto found;
1807 	}
1808 	rb_link_node(&set->rb_node, parent, p);
1809 	rb_insert_color(&set->rb_node, root_node);
1810 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1811 	spin_unlock(&inode->i_lock);
1812 	return;
1813 found:
1814 	rb_replace_node(parent, &set->rb_node, root_node);
1815 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1816 	list_del(&entry->lru);
1817 	spin_unlock(&inode->i_lock);
1818 	nfs_access_free_entry(entry);
1819 }
1820 
1821 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1822 {
1823 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1824 	if (cache == NULL)
1825 		return;
1826 	RB_CLEAR_NODE(&cache->rb_node);
1827 	cache->jiffies = set->jiffies;
1828 	cache->cred = get_rpccred(set->cred);
1829 	cache->mask = set->mask;
1830 
1831 	nfs_access_add_rbtree(inode, cache);
1832 
1833 	/* Update accounting */
1834 	smp_mb__before_atomic_inc();
1835 	atomic_long_inc(&nfs_access_nr_entries);
1836 	smp_mb__after_atomic_inc();
1837 
1838 	/* Add inode to global LRU list */
1839 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1840 		spin_lock(&nfs_access_lru_lock);
1841 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1842 		spin_unlock(&nfs_access_lru_lock);
1843 	}
1844 }
1845 
1846 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1847 {
1848 	struct nfs_access_entry cache;
1849 	int status;
1850 
1851 	status = nfs_access_get_cached(inode, cred, &cache);
1852 	if (status == 0)
1853 		goto out;
1854 
1855 	/* Be clever: ask server to check for all possible rights */
1856 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1857 	cache.cred = cred;
1858 	cache.jiffies = jiffies;
1859 	status = NFS_PROTO(inode)->access(inode, &cache);
1860 	if (status != 0)
1861 		return status;
1862 	nfs_access_add_cache(inode, &cache);
1863 out:
1864 	if ((cache.mask & mask) == mask)
1865 		return 0;
1866 	return -EACCES;
1867 }
1868 
1869 static int nfs_open_permission_mask(int openflags)
1870 {
1871 	int mask = 0;
1872 
1873 	if (openflags & FMODE_READ)
1874 		mask |= MAY_READ;
1875 	if (openflags & FMODE_WRITE)
1876 		mask |= MAY_WRITE;
1877 	if (openflags & FMODE_EXEC)
1878 		mask |= MAY_EXEC;
1879 	return mask;
1880 }
1881 
1882 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1883 {
1884 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1885 }
1886 
1887 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1888 {
1889 	struct rpc_cred *cred;
1890 	int res = 0;
1891 
1892 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1893 
1894 	if (mask == 0)
1895 		goto out;
1896 	/* Is this sys_access() ? */
1897 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1898 		goto force_lookup;
1899 
1900 	switch (inode->i_mode & S_IFMT) {
1901 		case S_IFLNK:
1902 			goto out;
1903 		case S_IFREG:
1904 			/* NFSv4 has atomic_open... */
1905 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1906 					&& nd != NULL
1907 					&& (nd->flags & LOOKUP_OPEN))
1908 				goto out;
1909 			break;
1910 		case S_IFDIR:
1911 			/*
1912 			 * Optimize away all write operations, since the server
1913 			 * will check permissions when we perform the op.
1914 			 */
1915 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1916 				goto out;
1917 	}
1918 
1919 force_lookup:
1920 	lock_kernel();
1921 
1922 	if (!NFS_PROTO(inode)->access)
1923 		goto out_notsup;
1924 
1925 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1926 	if (!IS_ERR(cred)) {
1927 		res = nfs_do_access(inode, cred, mask);
1928 		put_rpccred(cred);
1929 	} else
1930 		res = PTR_ERR(cred);
1931 	unlock_kernel();
1932 out:
1933 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1934 		inode->i_sb->s_id, inode->i_ino, mask, res);
1935 	return res;
1936 out_notsup:
1937 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1938 	if (res == 0)
1939 		res = generic_permission(inode, mask, NULL);
1940 	unlock_kernel();
1941 	goto out;
1942 }
1943 
1944 /*
1945  * Local variables:
1946  *  version-control: t
1947  *  kept-new-versions: 5
1948  * End:
1949  */
1950