1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/pagevec.h> 33 #include <linux/namei.h> 34 #include <linux/mount.h> 35 #include <linux/sched.h> 36 #include <linux/kmemleak.h> 37 #include <linux/xattr.h> 38 39 #include "delegation.h" 40 #include "iostat.h" 41 #include "internal.h" 42 #include "fscache.h" 43 44 /* #define NFS_DEBUG_VERBOSE 1 */ 45 46 static int nfs_opendir(struct inode *, struct file *); 47 static int nfs_closedir(struct inode *, struct file *); 48 static int nfs_readdir(struct file *, void *, filldir_t); 49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 50 static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *); 51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t); 52 static int nfs_rmdir(struct inode *, struct dentry *); 53 static int nfs_unlink(struct inode *, struct dentry *); 54 static int nfs_symlink(struct inode *, struct dentry *, const char *); 55 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); 57 static int nfs_rename(struct inode *, struct dentry *, 58 struct inode *, struct dentry *); 59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 60 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 61 static void nfs_readdir_clear_array(struct page*); 62 63 const struct file_operations nfs_dir_operations = { 64 .llseek = nfs_llseek_dir, 65 .read = generic_read_dir, 66 .readdir = nfs_readdir, 67 .open = nfs_opendir, 68 .release = nfs_closedir, 69 .fsync = nfs_fsync_dir, 70 }; 71 72 const struct inode_operations nfs_dir_inode_operations = { 73 .create = nfs_create, 74 .lookup = nfs_lookup, 75 .link = nfs_link, 76 .unlink = nfs_unlink, 77 .symlink = nfs_symlink, 78 .mkdir = nfs_mkdir, 79 .rmdir = nfs_rmdir, 80 .mknod = nfs_mknod, 81 .rename = nfs_rename, 82 .permission = nfs_permission, 83 .getattr = nfs_getattr, 84 .setattr = nfs_setattr, 85 }; 86 87 const struct address_space_operations nfs_dir_aops = { 88 .freepage = nfs_readdir_clear_array, 89 }; 90 91 #ifdef CONFIG_NFS_V3 92 const struct inode_operations nfs3_dir_inode_operations = { 93 .create = nfs_create, 94 .lookup = nfs_lookup, 95 .link = nfs_link, 96 .unlink = nfs_unlink, 97 .symlink = nfs_symlink, 98 .mkdir = nfs_mkdir, 99 .rmdir = nfs_rmdir, 100 .mknod = nfs_mknod, 101 .rename = nfs_rename, 102 .permission = nfs_permission, 103 .getattr = nfs_getattr, 104 .setattr = nfs_setattr, 105 .listxattr = nfs3_listxattr, 106 .getxattr = nfs3_getxattr, 107 .setxattr = nfs3_setxattr, 108 .removexattr = nfs3_removexattr, 109 }; 110 #endif /* CONFIG_NFS_V3 */ 111 112 #ifdef CONFIG_NFS_V4 113 114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, umode_t mode, struct nameidata *nd); 116 const struct inode_operations nfs4_dir_inode_operations = { 117 .create = nfs_open_create, 118 .lookup = nfs_atomic_lookup, 119 .link = nfs_link, 120 .unlink = nfs_unlink, 121 .symlink = nfs_symlink, 122 .mkdir = nfs_mkdir, 123 .rmdir = nfs_rmdir, 124 .mknod = nfs_mknod, 125 .rename = nfs_rename, 126 .permission = nfs_permission, 127 .getattr = nfs_getattr, 128 .setattr = nfs_setattr, 129 .getxattr = generic_getxattr, 130 .setxattr = generic_setxattr, 131 .listxattr = generic_listxattr, 132 .removexattr = generic_removexattr, 133 }; 134 135 #endif /* CONFIG_NFS_V4 */ 136 137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 138 { 139 struct nfs_open_dir_context *ctx; 140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 141 if (ctx != NULL) { 142 ctx->duped = 0; 143 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 144 ctx->dir_cookie = 0; 145 ctx->dup_cookie = 0; 146 ctx->cred = get_rpccred(cred); 147 return ctx; 148 } 149 return ERR_PTR(-ENOMEM); 150 } 151 152 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 153 { 154 put_rpccred(ctx->cred); 155 kfree(ctx); 156 } 157 158 /* 159 * Open file 160 */ 161 static int 162 nfs_opendir(struct inode *inode, struct file *filp) 163 { 164 int res = 0; 165 struct nfs_open_dir_context *ctx; 166 struct rpc_cred *cred; 167 168 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 169 filp->f_path.dentry->d_parent->d_name.name, 170 filp->f_path.dentry->d_name.name); 171 172 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 173 174 cred = rpc_lookup_cred(); 175 if (IS_ERR(cred)) 176 return PTR_ERR(cred); 177 ctx = alloc_nfs_open_dir_context(inode, cred); 178 if (IS_ERR(ctx)) { 179 res = PTR_ERR(ctx); 180 goto out; 181 } 182 filp->private_data = ctx; 183 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 184 /* This is a mountpoint, so d_revalidate will never 185 * have been called, so we need to refresh the 186 * inode (for close-open consistency) ourselves. 187 */ 188 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 189 } 190 out: 191 put_rpccred(cred); 192 return res; 193 } 194 195 static int 196 nfs_closedir(struct inode *inode, struct file *filp) 197 { 198 put_nfs_open_dir_context(filp->private_data); 199 return 0; 200 } 201 202 struct nfs_cache_array_entry { 203 u64 cookie; 204 u64 ino; 205 struct qstr string; 206 unsigned char d_type; 207 }; 208 209 struct nfs_cache_array { 210 int size; 211 int eof_index; 212 u64 last_cookie; 213 struct nfs_cache_array_entry array[0]; 214 }; 215 216 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 217 typedef struct { 218 struct file *file; 219 struct page *page; 220 unsigned long page_index; 221 u64 *dir_cookie; 222 u64 last_cookie; 223 loff_t current_index; 224 decode_dirent_t decode; 225 226 unsigned long timestamp; 227 unsigned long gencount; 228 unsigned int cache_entry_index; 229 unsigned int plus:1; 230 unsigned int eof:1; 231 } nfs_readdir_descriptor_t; 232 233 /* 234 * The caller is responsible for calling nfs_readdir_release_array(page) 235 */ 236 static 237 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 238 { 239 void *ptr; 240 if (page == NULL) 241 return ERR_PTR(-EIO); 242 ptr = kmap(page); 243 if (ptr == NULL) 244 return ERR_PTR(-ENOMEM); 245 return ptr; 246 } 247 248 static 249 void nfs_readdir_release_array(struct page *page) 250 { 251 kunmap(page); 252 } 253 254 /* 255 * we are freeing strings created by nfs_add_to_readdir_array() 256 */ 257 static 258 void nfs_readdir_clear_array(struct page *page) 259 { 260 struct nfs_cache_array *array; 261 int i; 262 263 array = kmap_atomic(page); 264 for (i = 0; i < array->size; i++) 265 kfree(array->array[i].string.name); 266 kunmap_atomic(array); 267 } 268 269 /* 270 * the caller is responsible for freeing qstr.name 271 * when called by nfs_readdir_add_to_array, the strings will be freed in 272 * nfs_clear_readdir_array() 273 */ 274 static 275 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 276 { 277 string->len = len; 278 string->name = kmemdup(name, len, GFP_KERNEL); 279 if (string->name == NULL) 280 return -ENOMEM; 281 /* 282 * Avoid a kmemleak false positive. The pointer to the name is stored 283 * in a page cache page which kmemleak does not scan. 284 */ 285 kmemleak_not_leak(string->name); 286 string->hash = full_name_hash(name, len); 287 return 0; 288 } 289 290 static 291 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 292 { 293 struct nfs_cache_array *array = nfs_readdir_get_array(page); 294 struct nfs_cache_array_entry *cache_entry; 295 int ret; 296 297 if (IS_ERR(array)) 298 return PTR_ERR(array); 299 300 cache_entry = &array->array[array->size]; 301 302 /* Check that this entry lies within the page bounds */ 303 ret = -ENOSPC; 304 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 305 goto out; 306 307 cache_entry->cookie = entry->prev_cookie; 308 cache_entry->ino = entry->ino; 309 cache_entry->d_type = entry->d_type; 310 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 311 if (ret) 312 goto out; 313 array->last_cookie = entry->cookie; 314 array->size++; 315 if (entry->eof != 0) 316 array->eof_index = array->size; 317 out: 318 nfs_readdir_release_array(page); 319 return ret; 320 } 321 322 static 323 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 324 { 325 loff_t diff = desc->file->f_pos - desc->current_index; 326 unsigned int index; 327 328 if (diff < 0) 329 goto out_eof; 330 if (diff >= array->size) { 331 if (array->eof_index >= 0) 332 goto out_eof; 333 return -EAGAIN; 334 } 335 336 index = (unsigned int)diff; 337 *desc->dir_cookie = array->array[index].cookie; 338 desc->cache_entry_index = index; 339 return 0; 340 out_eof: 341 desc->eof = 1; 342 return -EBADCOOKIE; 343 } 344 345 static 346 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 347 { 348 int i; 349 loff_t new_pos; 350 int status = -EAGAIN; 351 352 for (i = 0; i < array->size; i++) { 353 if (array->array[i].cookie == *desc->dir_cookie) { 354 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode); 355 struct nfs_open_dir_context *ctx = desc->file->private_data; 356 357 new_pos = desc->current_index + i; 358 if (ctx->attr_gencount != nfsi->attr_gencount 359 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 360 ctx->duped = 0; 361 ctx->attr_gencount = nfsi->attr_gencount; 362 } else if (new_pos < desc->file->f_pos) { 363 if (ctx->duped > 0 364 && ctx->dup_cookie == *desc->dir_cookie) { 365 if (printk_ratelimit()) { 366 pr_notice("NFS: directory %s/%s contains a readdir loop." 367 "Please contact your server vendor. " 368 "The file: %s has duplicate cookie %llu\n", 369 desc->file->f_dentry->d_parent->d_name.name, 370 desc->file->f_dentry->d_name.name, 371 array->array[i].string.name, 372 *desc->dir_cookie); 373 } 374 status = -ELOOP; 375 goto out; 376 } 377 ctx->dup_cookie = *desc->dir_cookie; 378 ctx->duped = -1; 379 } 380 desc->file->f_pos = new_pos; 381 desc->cache_entry_index = i; 382 return 0; 383 } 384 } 385 if (array->eof_index >= 0) { 386 status = -EBADCOOKIE; 387 if (*desc->dir_cookie == array->last_cookie) 388 desc->eof = 1; 389 } 390 out: 391 return status; 392 } 393 394 static 395 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 396 { 397 struct nfs_cache_array *array; 398 int status; 399 400 array = nfs_readdir_get_array(desc->page); 401 if (IS_ERR(array)) { 402 status = PTR_ERR(array); 403 goto out; 404 } 405 406 if (*desc->dir_cookie == 0) 407 status = nfs_readdir_search_for_pos(array, desc); 408 else 409 status = nfs_readdir_search_for_cookie(array, desc); 410 411 if (status == -EAGAIN) { 412 desc->last_cookie = array->last_cookie; 413 desc->current_index += array->size; 414 desc->page_index++; 415 } 416 nfs_readdir_release_array(desc->page); 417 out: 418 return status; 419 } 420 421 /* Fill a page with xdr information before transferring to the cache page */ 422 static 423 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 424 struct nfs_entry *entry, struct file *file, struct inode *inode) 425 { 426 struct nfs_open_dir_context *ctx = file->private_data; 427 struct rpc_cred *cred = ctx->cred; 428 unsigned long timestamp, gencount; 429 int error; 430 431 again: 432 timestamp = jiffies; 433 gencount = nfs_inc_attr_generation_counter(); 434 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 435 NFS_SERVER(inode)->dtsize, desc->plus); 436 if (error < 0) { 437 /* We requested READDIRPLUS, but the server doesn't grok it */ 438 if (error == -ENOTSUPP && desc->plus) { 439 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 440 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 441 desc->plus = 0; 442 goto again; 443 } 444 goto error; 445 } 446 desc->timestamp = timestamp; 447 desc->gencount = gencount; 448 error: 449 return error; 450 } 451 452 static int xdr_decode(nfs_readdir_descriptor_t *desc, 453 struct nfs_entry *entry, struct xdr_stream *xdr) 454 { 455 int error; 456 457 error = desc->decode(xdr, entry, desc->plus); 458 if (error) 459 return error; 460 entry->fattr->time_start = desc->timestamp; 461 entry->fattr->gencount = desc->gencount; 462 return 0; 463 } 464 465 static 466 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 467 { 468 if (dentry->d_inode == NULL) 469 goto different; 470 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 471 goto different; 472 return 1; 473 different: 474 return 0; 475 } 476 477 static 478 bool nfs_use_readdirplus(struct inode *dir, struct file *filp) 479 { 480 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 481 return false; 482 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 483 return true; 484 if (filp->f_pos == 0) 485 return true; 486 return false; 487 } 488 489 /* 490 * This function is called by the lookup code to request the use of 491 * readdirplus to accelerate any future lookups in the same 492 * directory. 493 */ 494 static 495 void nfs_advise_use_readdirplus(struct inode *dir) 496 { 497 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 498 } 499 500 static 501 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 502 { 503 struct qstr filename = QSTR_INIT(entry->name, entry->len); 504 struct dentry *dentry; 505 struct dentry *alias; 506 struct inode *dir = parent->d_inode; 507 struct inode *inode; 508 509 if (filename.name[0] == '.') { 510 if (filename.len == 1) 511 return; 512 if (filename.len == 2 && filename.name[1] == '.') 513 return; 514 } 515 filename.hash = full_name_hash(filename.name, filename.len); 516 517 dentry = d_lookup(parent, &filename); 518 if (dentry != NULL) { 519 if (nfs_same_file(dentry, entry)) { 520 nfs_refresh_inode(dentry->d_inode, entry->fattr); 521 goto out; 522 } else { 523 d_drop(dentry); 524 dput(dentry); 525 } 526 } 527 528 dentry = d_alloc(parent, &filename); 529 if (dentry == NULL) 530 return; 531 532 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 533 if (IS_ERR(inode)) 534 goto out; 535 536 alias = d_materialise_unique(dentry, inode); 537 if (IS_ERR(alias)) 538 goto out; 539 else if (alias) { 540 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 541 dput(alias); 542 } else 543 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 544 545 out: 546 dput(dentry); 547 } 548 549 /* Perform conversion from xdr to cache array */ 550 static 551 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 552 struct page **xdr_pages, struct page *page, unsigned int buflen) 553 { 554 struct xdr_stream stream; 555 struct xdr_buf buf; 556 struct page *scratch; 557 struct nfs_cache_array *array; 558 unsigned int count = 0; 559 int status; 560 561 scratch = alloc_page(GFP_KERNEL); 562 if (scratch == NULL) 563 return -ENOMEM; 564 565 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 566 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 567 568 do { 569 status = xdr_decode(desc, entry, &stream); 570 if (status != 0) { 571 if (status == -EAGAIN) 572 status = 0; 573 break; 574 } 575 576 count++; 577 578 if (desc->plus != 0) 579 nfs_prime_dcache(desc->file->f_path.dentry, entry); 580 581 status = nfs_readdir_add_to_array(entry, page); 582 if (status != 0) 583 break; 584 } while (!entry->eof); 585 586 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 587 array = nfs_readdir_get_array(page); 588 if (!IS_ERR(array)) { 589 array->eof_index = array->size; 590 status = 0; 591 nfs_readdir_release_array(page); 592 } else 593 status = PTR_ERR(array); 594 } 595 596 put_page(scratch); 597 return status; 598 } 599 600 static 601 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 602 { 603 unsigned int i; 604 for (i = 0; i < npages; i++) 605 put_page(pages[i]); 606 } 607 608 static 609 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 610 unsigned int npages) 611 { 612 nfs_readdir_free_pagearray(pages, npages); 613 } 614 615 /* 616 * nfs_readdir_large_page will allocate pages that must be freed with a call 617 * to nfs_readdir_free_large_page 618 */ 619 static 620 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 621 { 622 unsigned int i; 623 624 for (i = 0; i < npages; i++) { 625 struct page *page = alloc_page(GFP_KERNEL); 626 if (page == NULL) 627 goto out_freepages; 628 pages[i] = page; 629 } 630 return 0; 631 632 out_freepages: 633 nfs_readdir_free_pagearray(pages, i); 634 return -ENOMEM; 635 } 636 637 static 638 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 639 { 640 struct page *pages[NFS_MAX_READDIR_PAGES]; 641 void *pages_ptr = NULL; 642 struct nfs_entry entry; 643 struct file *file = desc->file; 644 struct nfs_cache_array *array; 645 int status = -ENOMEM; 646 unsigned int array_size = ARRAY_SIZE(pages); 647 648 entry.prev_cookie = 0; 649 entry.cookie = desc->last_cookie; 650 entry.eof = 0; 651 entry.fh = nfs_alloc_fhandle(); 652 entry.fattr = nfs_alloc_fattr(); 653 entry.server = NFS_SERVER(inode); 654 if (entry.fh == NULL || entry.fattr == NULL) 655 goto out; 656 657 array = nfs_readdir_get_array(page); 658 if (IS_ERR(array)) { 659 status = PTR_ERR(array); 660 goto out; 661 } 662 memset(array, 0, sizeof(struct nfs_cache_array)); 663 array->eof_index = -1; 664 665 status = nfs_readdir_large_page(pages, array_size); 666 if (status < 0) 667 goto out_release_array; 668 do { 669 unsigned int pglen; 670 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 671 672 if (status < 0) 673 break; 674 pglen = status; 675 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 676 if (status < 0) { 677 if (status == -ENOSPC) 678 status = 0; 679 break; 680 } 681 } while (array->eof_index < 0); 682 683 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 684 out_release_array: 685 nfs_readdir_release_array(page); 686 out: 687 nfs_free_fattr(entry.fattr); 688 nfs_free_fhandle(entry.fh); 689 return status; 690 } 691 692 /* 693 * Now we cache directories properly, by converting xdr information 694 * to an array that can be used for lookups later. This results in 695 * fewer cache pages, since we can store more information on each page. 696 * We only need to convert from xdr once so future lookups are much simpler 697 */ 698 static 699 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 700 { 701 struct inode *inode = desc->file->f_path.dentry->d_inode; 702 int ret; 703 704 ret = nfs_readdir_xdr_to_array(desc, page, inode); 705 if (ret < 0) 706 goto error; 707 SetPageUptodate(page); 708 709 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 710 /* Should never happen */ 711 nfs_zap_mapping(inode, inode->i_mapping); 712 } 713 unlock_page(page); 714 return 0; 715 error: 716 unlock_page(page); 717 return ret; 718 } 719 720 static 721 void cache_page_release(nfs_readdir_descriptor_t *desc) 722 { 723 if (!desc->page->mapping) 724 nfs_readdir_clear_array(desc->page); 725 page_cache_release(desc->page); 726 desc->page = NULL; 727 } 728 729 static 730 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 731 { 732 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping, 733 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 734 } 735 736 /* 737 * Returns 0 if desc->dir_cookie was found on page desc->page_index 738 */ 739 static 740 int find_cache_page(nfs_readdir_descriptor_t *desc) 741 { 742 int res; 743 744 desc->page = get_cache_page(desc); 745 if (IS_ERR(desc->page)) 746 return PTR_ERR(desc->page); 747 748 res = nfs_readdir_search_array(desc); 749 if (res != 0) 750 cache_page_release(desc); 751 return res; 752 } 753 754 /* Search for desc->dir_cookie from the beginning of the page cache */ 755 static inline 756 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 757 { 758 int res; 759 760 if (desc->page_index == 0) { 761 desc->current_index = 0; 762 desc->last_cookie = 0; 763 } 764 do { 765 res = find_cache_page(desc); 766 } while (res == -EAGAIN); 767 return res; 768 } 769 770 /* 771 * Once we've found the start of the dirent within a page: fill 'er up... 772 */ 773 static 774 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 775 filldir_t filldir) 776 { 777 struct file *file = desc->file; 778 int i = 0; 779 int res = 0; 780 struct nfs_cache_array *array = NULL; 781 struct nfs_open_dir_context *ctx = file->private_data; 782 783 array = nfs_readdir_get_array(desc->page); 784 if (IS_ERR(array)) { 785 res = PTR_ERR(array); 786 goto out; 787 } 788 789 for (i = desc->cache_entry_index; i < array->size; i++) { 790 struct nfs_cache_array_entry *ent; 791 792 ent = &array->array[i]; 793 if (filldir(dirent, ent->string.name, ent->string.len, 794 file->f_pos, nfs_compat_user_ino64(ent->ino), 795 ent->d_type) < 0) { 796 desc->eof = 1; 797 break; 798 } 799 file->f_pos++; 800 if (i < (array->size-1)) 801 *desc->dir_cookie = array->array[i+1].cookie; 802 else 803 *desc->dir_cookie = array->last_cookie; 804 if (ctx->duped != 0) 805 ctx->duped = 1; 806 } 807 if (array->eof_index >= 0) 808 desc->eof = 1; 809 810 nfs_readdir_release_array(desc->page); 811 out: 812 cache_page_release(desc); 813 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 814 (unsigned long long)*desc->dir_cookie, res); 815 return res; 816 } 817 818 /* 819 * If we cannot find a cookie in our cache, we suspect that this is 820 * because it points to a deleted file, so we ask the server to return 821 * whatever it thinks is the next entry. We then feed this to filldir. 822 * If all goes well, we should then be able to find our way round the 823 * cache on the next call to readdir_search_pagecache(); 824 * 825 * NOTE: we cannot add the anonymous page to the pagecache because 826 * the data it contains might not be page aligned. Besides, 827 * we should already have a complete representation of the 828 * directory in the page cache by the time we get here. 829 */ 830 static inline 831 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 832 filldir_t filldir) 833 { 834 struct page *page = NULL; 835 int status; 836 struct inode *inode = desc->file->f_path.dentry->d_inode; 837 struct nfs_open_dir_context *ctx = desc->file->private_data; 838 839 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 840 (unsigned long long)*desc->dir_cookie); 841 842 page = alloc_page(GFP_HIGHUSER); 843 if (!page) { 844 status = -ENOMEM; 845 goto out; 846 } 847 848 desc->page_index = 0; 849 desc->last_cookie = *desc->dir_cookie; 850 desc->page = page; 851 ctx->duped = 0; 852 853 status = nfs_readdir_xdr_to_array(desc, page, inode); 854 if (status < 0) 855 goto out_release; 856 857 status = nfs_do_filldir(desc, dirent, filldir); 858 859 out: 860 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 861 __func__, status); 862 return status; 863 out_release: 864 cache_page_release(desc); 865 goto out; 866 } 867 868 /* The file offset position represents the dirent entry number. A 869 last cookie cache takes care of the common case of reading the 870 whole directory. 871 */ 872 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 873 { 874 struct dentry *dentry = filp->f_path.dentry; 875 struct inode *inode = dentry->d_inode; 876 nfs_readdir_descriptor_t my_desc, 877 *desc = &my_desc; 878 struct nfs_open_dir_context *dir_ctx = filp->private_data; 879 int res; 880 881 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 882 dentry->d_parent->d_name.name, dentry->d_name.name, 883 (long long)filp->f_pos); 884 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 885 886 /* 887 * filp->f_pos points to the dirent entry number. 888 * *desc->dir_cookie has the cookie for the next entry. We have 889 * to either find the entry with the appropriate number or 890 * revalidate the cookie. 891 */ 892 memset(desc, 0, sizeof(*desc)); 893 894 desc->file = filp; 895 desc->dir_cookie = &dir_ctx->dir_cookie; 896 desc->decode = NFS_PROTO(inode)->decode_dirent; 897 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0; 898 899 nfs_block_sillyrename(dentry); 900 res = nfs_revalidate_mapping(inode, filp->f_mapping); 901 if (res < 0) 902 goto out; 903 904 do { 905 res = readdir_search_pagecache(desc); 906 907 if (res == -EBADCOOKIE) { 908 res = 0; 909 /* This means either end of directory */ 910 if (*desc->dir_cookie && desc->eof == 0) { 911 /* Or that the server has 'lost' a cookie */ 912 res = uncached_readdir(desc, dirent, filldir); 913 if (res == 0) 914 continue; 915 } 916 break; 917 } 918 if (res == -ETOOSMALL && desc->plus) { 919 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 920 nfs_zap_caches(inode); 921 desc->page_index = 0; 922 desc->plus = 0; 923 desc->eof = 0; 924 continue; 925 } 926 if (res < 0) 927 break; 928 929 res = nfs_do_filldir(desc, dirent, filldir); 930 if (res < 0) 931 break; 932 } while (!desc->eof); 933 out: 934 nfs_unblock_sillyrename(dentry); 935 if (res > 0) 936 res = 0; 937 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 938 dentry->d_parent->d_name.name, dentry->d_name.name, 939 res); 940 return res; 941 } 942 943 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 944 { 945 struct dentry *dentry = filp->f_path.dentry; 946 struct inode *inode = dentry->d_inode; 947 struct nfs_open_dir_context *dir_ctx = filp->private_data; 948 949 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 950 dentry->d_parent->d_name.name, 951 dentry->d_name.name, 952 offset, origin); 953 954 mutex_lock(&inode->i_mutex); 955 switch (origin) { 956 case 1: 957 offset += filp->f_pos; 958 case 0: 959 if (offset >= 0) 960 break; 961 default: 962 offset = -EINVAL; 963 goto out; 964 } 965 if (offset != filp->f_pos) { 966 filp->f_pos = offset; 967 dir_ctx->dir_cookie = 0; 968 dir_ctx->duped = 0; 969 } 970 out: 971 mutex_unlock(&inode->i_mutex); 972 return offset; 973 } 974 975 /* 976 * All directory operations under NFS are synchronous, so fsync() 977 * is a dummy operation. 978 */ 979 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 980 int datasync) 981 { 982 struct dentry *dentry = filp->f_path.dentry; 983 struct inode *inode = dentry->d_inode; 984 985 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 986 dentry->d_parent->d_name.name, dentry->d_name.name, 987 datasync); 988 989 mutex_lock(&inode->i_mutex); 990 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 991 mutex_unlock(&inode->i_mutex); 992 return 0; 993 } 994 995 /** 996 * nfs_force_lookup_revalidate - Mark the directory as having changed 997 * @dir - pointer to directory inode 998 * 999 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1000 * full lookup on all child dentries of 'dir' whenever a change occurs 1001 * on the server that might have invalidated our dcache. 1002 * 1003 * The caller should be holding dir->i_lock 1004 */ 1005 void nfs_force_lookup_revalidate(struct inode *dir) 1006 { 1007 NFS_I(dir)->cache_change_attribute++; 1008 } 1009 1010 /* 1011 * A check for whether or not the parent directory has changed. 1012 * In the case it has, we assume that the dentries are untrustworthy 1013 * and may need to be looked up again. 1014 */ 1015 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 1016 { 1017 if (IS_ROOT(dentry)) 1018 return 1; 1019 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1020 return 0; 1021 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1022 return 0; 1023 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1024 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1025 return 0; 1026 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1027 return 0; 1028 return 1; 1029 } 1030 1031 /* 1032 * Return the intent data that applies to this particular path component 1033 * 1034 * Note that the current set of intents only apply to the very last 1035 * component of the path and none of them is set before that last 1036 * component. 1037 */ 1038 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, 1039 unsigned int mask) 1040 { 1041 return nd->flags & mask; 1042 } 1043 1044 /* 1045 * Use intent information to check whether or not we're going to do 1046 * an O_EXCL create using this path component. 1047 */ 1048 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 1049 { 1050 if (NFS_PROTO(dir)->version == 2) 1051 return 0; 1052 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL); 1053 } 1054 1055 /* 1056 * Inode and filehandle revalidation for lookups. 1057 * 1058 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1059 * or if the intent information indicates that we're about to open this 1060 * particular file and the "nocto" mount flag is not set. 1061 * 1062 */ 1063 static inline 1064 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 1065 { 1066 struct nfs_server *server = NFS_SERVER(inode); 1067 1068 if (IS_AUTOMOUNT(inode)) 1069 return 0; 1070 if (nd != NULL) { 1071 /* VFS wants an on-the-wire revalidation */ 1072 if (nd->flags & LOOKUP_REVAL) 1073 goto out_force; 1074 /* This is an open(2) */ 1075 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 1076 !(server->flags & NFS_MOUNT_NOCTO) && 1077 (S_ISREG(inode->i_mode) || 1078 S_ISDIR(inode->i_mode))) 1079 goto out_force; 1080 return 0; 1081 } 1082 return nfs_revalidate_inode(server, inode); 1083 out_force: 1084 return __nfs_revalidate_inode(server, inode); 1085 } 1086 1087 /* 1088 * We judge how long we want to trust negative 1089 * dentries by looking at the parent inode mtime. 1090 * 1091 * If parent mtime has changed, we revalidate, else we wait for a 1092 * period corresponding to the parent's attribute cache timeout value. 1093 */ 1094 static inline 1095 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1096 struct nameidata *nd) 1097 { 1098 /* Don't revalidate a negative dentry if we're creating a new file */ 1099 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 1100 return 0; 1101 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1102 return 1; 1103 return !nfs_check_verifier(dir, dentry); 1104 } 1105 1106 /* 1107 * This is called every time the dcache has a lookup hit, 1108 * and we should check whether we can really trust that 1109 * lookup. 1110 * 1111 * NOTE! The hit can be a negative hit too, don't assume 1112 * we have an inode! 1113 * 1114 * If the parent directory is seen to have changed, we throw out the 1115 * cached dentry and do a new lookup. 1116 */ 1117 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd) 1118 { 1119 struct inode *dir; 1120 struct inode *inode; 1121 struct dentry *parent; 1122 struct nfs_fh *fhandle = NULL; 1123 struct nfs_fattr *fattr = NULL; 1124 int error; 1125 1126 if (nd->flags & LOOKUP_RCU) 1127 return -ECHILD; 1128 1129 parent = dget_parent(dentry); 1130 dir = parent->d_inode; 1131 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1132 inode = dentry->d_inode; 1133 1134 if (!inode) { 1135 if (nfs_neg_need_reval(dir, dentry, nd)) 1136 goto out_bad; 1137 goto out_valid_noent; 1138 } 1139 1140 if (is_bad_inode(inode)) { 1141 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1142 __func__, dentry->d_parent->d_name.name, 1143 dentry->d_name.name); 1144 goto out_bad; 1145 } 1146 1147 if (nfs_have_delegation(inode, FMODE_READ)) 1148 goto out_set_verifier; 1149 1150 /* Force a full look up iff the parent directory has changed */ 1151 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 1152 if (nfs_lookup_verify_inode(inode, nd)) 1153 goto out_zap_parent; 1154 goto out_valid; 1155 } 1156 1157 if (NFS_STALE(inode)) 1158 goto out_bad; 1159 1160 error = -ENOMEM; 1161 fhandle = nfs_alloc_fhandle(); 1162 fattr = nfs_alloc_fattr(); 1163 if (fhandle == NULL || fattr == NULL) 1164 goto out_error; 1165 1166 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1167 if (error) 1168 goto out_bad; 1169 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1170 goto out_bad; 1171 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1172 goto out_bad; 1173 1174 nfs_free_fattr(fattr); 1175 nfs_free_fhandle(fhandle); 1176 out_set_verifier: 1177 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1178 out_valid: 1179 /* Success: notify readdir to use READDIRPLUS */ 1180 nfs_advise_use_readdirplus(dir); 1181 out_valid_noent: 1182 dput(parent); 1183 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1184 __func__, dentry->d_parent->d_name.name, 1185 dentry->d_name.name); 1186 return 1; 1187 out_zap_parent: 1188 nfs_zap_caches(dir); 1189 out_bad: 1190 nfs_mark_for_revalidate(dir); 1191 if (inode && S_ISDIR(inode->i_mode)) { 1192 /* Purge readdir caches. */ 1193 nfs_zap_caches(inode); 1194 /* If we have submounts, don't unhash ! */ 1195 if (have_submounts(dentry)) 1196 goto out_valid; 1197 if (dentry->d_flags & DCACHE_DISCONNECTED) 1198 goto out_valid; 1199 shrink_dcache_parent(dentry); 1200 } 1201 d_drop(dentry); 1202 nfs_free_fattr(fattr); 1203 nfs_free_fhandle(fhandle); 1204 dput(parent); 1205 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1206 __func__, dentry->d_parent->d_name.name, 1207 dentry->d_name.name); 1208 return 0; 1209 out_error: 1210 nfs_free_fattr(fattr); 1211 nfs_free_fhandle(fhandle); 1212 dput(parent); 1213 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1214 __func__, dentry->d_parent->d_name.name, 1215 dentry->d_name.name, error); 1216 return error; 1217 } 1218 1219 /* 1220 * This is called from dput() when d_count is going to 0. 1221 */ 1222 static int nfs_dentry_delete(const struct dentry *dentry) 1223 { 1224 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1225 dentry->d_parent->d_name.name, dentry->d_name.name, 1226 dentry->d_flags); 1227 1228 /* Unhash any dentry with a stale inode */ 1229 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1230 return 1; 1231 1232 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1233 /* Unhash it, so that ->d_iput() would be called */ 1234 return 1; 1235 } 1236 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1237 /* Unhash it, so that ancestors of killed async unlink 1238 * files will be cleaned up during umount */ 1239 return 1; 1240 } 1241 return 0; 1242 1243 } 1244 1245 static void nfs_drop_nlink(struct inode *inode) 1246 { 1247 spin_lock(&inode->i_lock); 1248 if (inode->i_nlink > 0) 1249 drop_nlink(inode); 1250 spin_unlock(&inode->i_lock); 1251 } 1252 1253 /* 1254 * Called when the dentry loses inode. 1255 * We use it to clean up silly-renamed files. 1256 */ 1257 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1258 { 1259 if (S_ISDIR(inode->i_mode)) 1260 /* drop any readdir cache as it could easily be old */ 1261 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1262 1263 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1264 drop_nlink(inode); 1265 nfs_complete_unlink(dentry, inode); 1266 } 1267 iput(inode); 1268 } 1269 1270 static void nfs_d_release(struct dentry *dentry) 1271 { 1272 /* free cached devname value, if it survived that far */ 1273 if (unlikely(dentry->d_fsdata)) { 1274 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1275 WARN_ON(1); 1276 else 1277 kfree(dentry->d_fsdata); 1278 } 1279 } 1280 1281 const struct dentry_operations nfs_dentry_operations = { 1282 .d_revalidate = nfs_lookup_revalidate, 1283 .d_delete = nfs_dentry_delete, 1284 .d_iput = nfs_dentry_iput, 1285 .d_automount = nfs_d_automount, 1286 .d_release = nfs_d_release, 1287 }; 1288 1289 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 1290 { 1291 struct dentry *res; 1292 struct dentry *parent; 1293 struct inode *inode = NULL; 1294 struct nfs_fh *fhandle = NULL; 1295 struct nfs_fattr *fattr = NULL; 1296 int error; 1297 1298 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1299 dentry->d_parent->d_name.name, dentry->d_name.name); 1300 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1301 1302 res = ERR_PTR(-ENAMETOOLONG); 1303 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1304 goto out; 1305 1306 /* 1307 * If we're doing an exclusive create, optimize away the lookup 1308 * but don't hash the dentry. 1309 */ 1310 if (nfs_is_exclusive_create(dir, nd)) { 1311 d_instantiate(dentry, NULL); 1312 res = NULL; 1313 goto out; 1314 } 1315 1316 res = ERR_PTR(-ENOMEM); 1317 fhandle = nfs_alloc_fhandle(); 1318 fattr = nfs_alloc_fattr(); 1319 if (fhandle == NULL || fattr == NULL) 1320 goto out; 1321 1322 parent = dentry->d_parent; 1323 /* Protect against concurrent sillydeletes */ 1324 nfs_block_sillyrename(parent); 1325 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1326 if (error == -ENOENT) 1327 goto no_entry; 1328 if (error < 0) { 1329 res = ERR_PTR(error); 1330 goto out_unblock_sillyrename; 1331 } 1332 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1333 res = ERR_CAST(inode); 1334 if (IS_ERR(res)) 1335 goto out_unblock_sillyrename; 1336 1337 /* Success: notify readdir to use READDIRPLUS */ 1338 nfs_advise_use_readdirplus(dir); 1339 1340 no_entry: 1341 res = d_materialise_unique(dentry, inode); 1342 if (res != NULL) { 1343 if (IS_ERR(res)) 1344 goto out_unblock_sillyrename; 1345 dentry = res; 1346 } 1347 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1348 out_unblock_sillyrename: 1349 nfs_unblock_sillyrename(parent); 1350 out: 1351 nfs_free_fattr(fattr); 1352 nfs_free_fhandle(fhandle); 1353 return res; 1354 } 1355 1356 #ifdef CONFIG_NFS_V4 1357 static int nfs4_lookup_revalidate(struct dentry *, struct nameidata *); 1358 1359 const struct dentry_operations nfs4_dentry_operations = { 1360 .d_revalidate = nfs4_lookup_revalidate, 1361 .d_delete = nfs_dentry_delete, 1362 .d_iput = nfs_dentry_iput, 1363 .d_automount = nfs_d_automount, 1364 .d_release = nfs_d_release, 1365 }; 1366 1367 /* 1368 * Use intent information to determine whether we need to substitute 1369 * the NFSv4-style stateful OPEN for the LOOKUP call 1370 */ 1371 static int is_atomic_open(struct nameidata *nd) 1372 { 1373 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 1374 return 0; 1375 /* NFS does not (yet) have a stateful open for directories */ 1376 if (nd->flags & LOOKUP_DIRECTORY) 1377 return 0; 1378 /* Are we trying to write to a read only partition? */ 1379 if (__mnt_is_readonly(nd->path.mnt) && 1380 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE))) 1381 return 0; 1382 return 1; 1383 } 1384 1385 static fmode_t flags_to_mode(int flags) 1386 { 1387 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1388 if ((flags & O_ACCMODE) != O_WRONLY) 1389 res |= FMODE_READ; 1390 if ((flags & O_ACCMODE) != O_RDONLY) 1391 res |= FMODE_WRITE; 1392 return res; 1393 } 1394 1395 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1396 { 1397 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1398 } 1399 1400 static int do_open(struct inode *inode, struct file *filp) 1401 { 1402 nfs_fscache_set_inode_cookie(inode, filp); 1403 return 0; 1404 } 1405 1406 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx) 1407 { 1408 struct file *filp; 1409 int ret = 0; 1410 1411 /* If the open_intent is for execute, we have an extra check to make */ 1412 if (ctx->mode & FMODE_EXEC) { 1413 ret = nfs_may_open(ctx->dentry->d_inode, 1414 ctx->cred, 1415 nd->intent.open.flags); 1416 if (ret < 0) 1417 goto out; 1418 } 1419 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open); 1420 if (IS_ERR(filp)) 1421 ret = PTR_ERR(filp); 1422 else 1423 nfs_file_set_open_context(filp, ctx); 1424 out: 1425 put_nfs_open_context(ctx); 1426 return ret; 1427 } 1428 1429 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1430 { 1431 struct nfs_open_context *ctx; 1432 struct iattr attr; 1433 struct dentry *res = NULL; 1434 struct inode *inode; 1435 int open_flags; 1436 int err; 1437 1438 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 1439 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1440 1441 /* Check that we are indeed trying to open this file */ 1442 if (!is_atomic_open(nd)) 1443 goto no_open; 1444 1445 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1446 res = ERR_PTR(-ENAMETOOLONG); 1447 goto out; 1448 } 1449 1450 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 1451 * the dentry. */ 1452 if (nd->flags & LOOKUP_EXCL) { 1453 d_instantiate(dentry, NULL); 1454 goto out; 1455 } 1456 1457 open_flags = nd->intent.open.flags; 1458 attr.ia_valid = ATTR_OPEN; 1459 1460 ctx = create_nfs_open_context(dentry, open_flags); 1461 res = ERR_CAST(ctx); 1462 if (IS_ERR(ctx)) 1463 goto out; 1464 1465 if (nd->flags & LOOKUP_CREATE) { 1466 attr.ia_mode = nd->intent.open.create_mode; 1467 attr.ia_valid |= ATTR_MODE; 1468 attr.ia_mode &= ~current_umask(); 1469 } else 1470 open_flags &= ~(O_EXCL | O_CREAT); 1471 1472 if (open_flags & O_TRUNC) { 1473 attr.ia_valid |= ATTR_SIZE; 1474 attr.ia_size = 0; 1475 } 1476 1477 /* Open the file on the server */ 1478 nfs_block_sillyrename(dentry->d_parent); 1479 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1480 if (IS_ERR(inode)) { 1481 nfs_unblock_sillyrename(dentry->d_parent); 1482 put_nfs_open_context(ctx); 1483 switch (PTR_ERR(inode)) { 1484 /* Make a negative dentry */ 1485 case -ENOENT: 1486 d_add(dentry, NULL); 1487 res = NULL; 1488 goto out; 1489 /* This turned out not to be a regular file */ 1490 case -EISDIR: 1491 case -ENOTDIR: 1492 goto no_open; 1493 case -ELOOP: 1494 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1495 goto no_open; 1496 /* case -EINVAL: */ 1497 default: 1498 res = ERR_CAST(inode); 1499 goto out; 1500 } 1501 } 1502 res = d_add_unique(dentry, inode); 1503 nfs_unblock_sillyrename(dentry->d_parent); 1504 if (res != NULL) { 1505 dput(ctx->dentry); 1506 ctx->dentry = dget(res); 1507 dentry = res; 1508 } 1509 err = nfs_intent_set_file(nd, ctx); 1510 if (err < 0) { 1511 if (res != NULL) 1512 dput(res); 1513 return ERR_PTR(err); 1514 } 1515 out: 1516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1517 return res; 1518 no_open: 1519 return nfs_lookup(dir, dentry, nd); 1520 } 1521 1522 static int nfs4_lookup_revalidate(struct dentry *dentry, struct nameidata *nd) 1523 { 1524 struct dentry *parent = NULL; 1525 struct inode *inode; 1526 struct inode *dir; 1527 int openflags, ret = 0; 1528 1529 if (nd->flags & LOOKUP_RCU) 1530 return -ECHILD; 1531 1532 inode = dentry->d_inode; 1533 if (!is_atomic_open(nd) || d_mountpoint(dentry)) 1534 goto no_open; 1535 1536 parent = dget_parent(dentry); 1537 dir = parent->d_inode; 1538 1539 /* We can't create new files in nfs_open_revalidate(), so we 1540 * optimize away revalidation of negative dentries. 1541 */ 1542 if (inode == NULL) { 1543 if (!nfs_neg_need_reval(dir, dentry, nd)) 1544 ret = 1; 1545 goto out; 1546 } 1547 1548 /* NFS only supports OPEN on regular files */ 1549 if (!S_ISREG(inode->i_mode)) 1550 goto no_open_dput; 1551 openflags = nd->intent.open.flags; 1552 /* We cannot do exclusive creation on a positive dentry */ 1553 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1554 goto no_open_dput; 1555 1556 /* Let f_op->open() actually open (and revalidate) the file */ 1557 ret = 1; 1558 1559 out: 1560 dput(parent); 1561 return ret; 1562 1563 no_open_dput: 1564 dput(parent); 1565 no_open: 1566 return nfs_lookup_revalidate(dentry, nd); 1567 } 1568 1569 static int nfs_open_create(struct inode *dir, struct dentry *dentry, 1570 umode_t mode, struct nameidata *nd) 1571 { 1572 struct nfs_open_context *ctx = NULL; 1573 struct iattr attr; 1574 int error; 1575 int open_flags = O_CREAT|O_EXCL; 1576 1577 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1578 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1579 1580 attr.ia_mode = mode; 1581 attr.ia_valid = ATTR_MODE; 1582 1583 if (nd) 1584 open_flags = nd->intent.open.flags; 1585 1586 ctx = create_nfs_open_context(dentry, open_flags); 1587 error = PTR_ERR(ctx); 1588 if (IS_ERR(ctx)) 1589 goto out_err_drop; 1590 1591 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx); 1592 if (error != 0) 1593 goto out_put_ctx; 1594 if (nd) { 1595 error = nfs_intent_set_file(nd, ctx); 1596 if (error < 0) 1597 goto out_err; 1598 } else { 1599 put_nfs_open_context(ctx); 1600 } 1601 return 0; 1602 out_put_ctx: 1603 put_nfs_open_context(ctx); 1604 out_err_drop: 1605 d_drop(dentry); 1606 out_err: 1607 return error; 1608 } 1609 1610 #endif /* CONFIG_NFSV4 */ 1611 1612 /* 1613 * Code common to create, mkdir, and mknod. 1614 */ 1615 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1616 struct nfs_fattr *fattr) 1617 { 1618 struct dentry *parent = dget_parent(dentry); 1619 struct inode *dir = parent->d_inode; 1620 struct inode *inode; 1621 int error = -EACCES; 1622 1623 d_drop(dentry); 1624 1625 /* We may have been initialized further down */ 1626 if (dentry->d_inode) 1627 goto out; 1628 if (fhandle->size == 0) { 1629 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1630 if (error) 1631 goto out_error; 1632 } 1633 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1634 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1635 struct nfs_server *server = NFS_SB(dentry->d_sb); 1636 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1637 if (error < 0) 1638 goto out_error; 1639 } 1640 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1641 error = PTR_ERR(inode); 1642 if (IS_ERR(inode)) 1643 goto out_error; 1644 d_add(dentry, inode); 1645 out: 1646 dput(parent); 1647 return 0; 1648 out_error: 1649 nfs_mark_for_revalidate(dir); 1650 dput(parent); 1651 return error; 1652 } 1653 1654 /* 1655 * Following a failed create operation, we drop the dentry rather 1656 * than retain a negative dentry. This avoids a problem in the event 1657 * that the operation succeeded on the server, but an error in the 1658 * reply path made it appear to have failed. 1659 */ 1660 static int nfs_create(struct inode *dir, struct dentry *dentry, 1661 umode_t mode, struct nameidata *nd) 1662 { 1663 struct iattr attr; 1664 int error; 1665 int open_flags = O_CREAT|O_EXCL; 1666 1667 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1668 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1669 1670 attr.ia_mode = mode; 1671 attr.ia_valid = ATTR_MODE; 1672 1673 if (nd) 1674 open_flags = nd->intent.open.flags; 1675 1676 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL); 1677 if (error != 0) 1678 goto out_err; 1679 return 0; 1680 out_err: 1681 d_drop(dentry); 1682 return error; 1683 } 1684 1685 /* 1686 * See comments for nfs_proc_create regarding failed operations. 1687 */ 1688 static int 1689 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1690 { 1691 struct iattr attr; 1692 int status; 1693 1694 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1695 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1696 1697 if (!new_valid_dev(rdev)) 1698 return -EINVAL; 1699 1700 attr.ia_mode = mode; 1701 attr.ia_valid = ATTR_MODE; 1702 1703 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1704 if (status != 0) 1705 goto out_err; 1706 return 0; 1707 out_err: 1708 d_drop(dentry); 1709 return status; 1710 } 1711 1712 /* 1713 * See comments for nfs_proc_create regarding failed operations. 1714 */ 1715 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1716 { 1717 struct iattr attr; 1718 int error; 1719 1720 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1721 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1722 1723 attr.ia_valid = ATTR_MODE; 1724 attr.ia_mode = mode | S_IFDIR; 1725 1726 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1727 if (error != 0) 1728 goto out_err; 1729 return 0; 1730 out_err: 1731 d_drop(dentry); 1732 return error; 1733 } 1734 1735 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1736 { 1737 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1738 d_delete(dentry); 1739 } 1740 1741 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1742 { 1743 int error; 1744 1745 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1746 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1747 1748 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1749 /* Ensure the VFS deletes this inode */ 1750 if (error == 0 && dentry->d_inode != NULL) 1751 clear_nlink(dentry->d_inode); 1752 else if (error == -ENOENT) 1753 nfs_dentry_handle_enoent(dentry); 1754 1755 return error; 1756 } 1757 1758 /* 1759 * Remove a file after making sure there are no pending writes, 1760 * and after checking that the file has only one user. 1761 * 1762 * We invalidate the attribute cache and free the inode prior to the operation 1763 * to avoid possible races if the server reuses the inode. 1764 */ 1765 static int nfs_safe_remove(struct dentry *dentry) 1766 { 1767 struct inode *dir = dentry->d_parent->d_inode; 1768 struct inode *inode = dentry->d_inode; 1769 int error = -EBUSY; 1770 1771 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1772 dentry->d_parent->d_name.name, dentry->d_name.name); 1773 1774 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1775 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1776 error = 0; 1777 goto out; 1778 } 1779 1780 if (inode != NULL) { 1781 nfs_inode_return_delegation(inode); 1782 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1783 /* The VFS may want to delete this inode */ 1784 if (error == 0) 1785 nfs_drop_nlink(inode); 1786 nfs_mark_for_revalidate(inode); 1787 } else 1788 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1789 if (error == -ENOENT) 1790 nfs_dentry_handle_enoent(dentry); 1791 out: 1792 return error; 1793 } 1794 1795 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1796 * belongs to an active ".nfs..." file and we return -EBUSY. 1797 * 1798 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1799 */ 1800 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1801 { 1802 int error; 1803 int need_rehash = 0; 1804 1805 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1806 dir->i_ino, dentry->d_name.name); 1807 1808 spin_lock(&dentry->d_lock); 1809 if (dentry->d_count > 1) { 1810 spin_unlock(&dentry->d_lock); 1811 /* Start asynchronous writeout of the inode */ 1812 write_inode_now(dentry->d_inode, 0); 1813 error = nfs_sillyrename(dir, dentry); 1814 return error; 1815 } 1816 if (!d_unhashed(dentry)) { 1817 __d_drop(dentry); 1818 need_rehash = 1; 1819 } 1820 spin_unlock(&dentry->d_lock); 1821 error = nfs_safe_remove(dentry); 1822 if (!error || error == -ENOENT) { 1823 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1824 } else if (need_rehash) 1825 d_rehash(dentry); 1826 return error; 1827 } 1828 1829 /* 1830 * To create a symbolic link, most file systems instantiate a new inode, 1831 * add a page to it containing the path, then write it out to the disk 1832 * using prepare_write/commit_write. 1833 * 1834 * Unfortunately the NFS client can't create the in-core inode first 1835 * because it needs a file handle to create an in-core inode (see 1836 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1837 * symlink request has completed on the server. 1838 * 1839 * So instead we allocate a raw page, copy the symname into it, then do 1840 * the SYMLINK request with the page as the buffer. If it succeeds, we 1841 * now have a new file handle and can instantiate an in-core NFS inode 1842 * and move the raw page into its mapping. 1843 */ 1844 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1845 { 1846 struct pagevec lru_pvec; 1847 struct page *page; 1848 char *kaddr; 1849 struct iattr attr; 1850 unsigned int pathlen = strlen(symname); 1851 int error; 1852 1853 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1854 dir->i_ino, dentry->d_name.name, symname); 1855 1856 if (pathlen > PAGE_SIZE) 1857 return -ENAMETOOLONG; 1858 1859 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1860 attr.ia_valid = ATTR_MODE; 1861 1862 page = alloc_page(GFP_HIGHUSER); 1863 if (!page) 1864 return -ENOMEM; 1865 1866 kaddr = kmap_atomic(page); 1867 memcpy(kaddr, symname, pathlen); 1868 if (pathlen < PAGE_SIZE) 1869 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1870 kunmap_atomic(kaddr); 1871 1872 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1873 if (error != 0) { 1874 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1875 dir->i_sb->s_id, dir->i_ino, 1876 dentry->d_name.name, symname, error); 1877 d_drop(dentry); 1878 __free_page(page); 1879 return error; 1880 } 1881 1882 /* 1883 * No big deal if we can't add this page to the page cache here. 1884 * READLINK will get the missing page from the server if needed. 1885 */ 1886 pagevec_init(&lru_pvec, 0); 1887 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1888 GFP_KERNEL)) { 1889 pagevec_add(&lru_pvec, page); 1890 pagevec_lru_add_file(&lru_pvec); 1891 SetPageUptodate(page); 1892 unlock_page(page); 1893 } else 1894 __free_page(page); 1895 1896 return 0; 1897 } 1898 1899 static int 1900 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1901 { 1902 struct inode *inode = old_dentry->d_inode; 1903 int error; 1904 1905 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1906 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1907 dentry->d_parent->d_name.name, dentry->d_name.name); 1908 1909 nfs_inode_return_delegation(inode); 1910 1911 d_drop(dentry); 1912 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1913 if (error == 0) { 1914 ihold(inode); 1915 d_add(dentry, inode); 1916 } 1917 return error; 1918 } 1919 1920 /* 1921 * RENAME 1922 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1923 * different file handle for the same inode after a rename (e.g. when 1924 * moving to a different directory). A fail-safe method to do so would 1925 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1926 * rename the old file using the sillyrename stuff. This way, the original 1927 * file in old_dir will go away when the last process iput()s the inode. 1928 * 1929 * FIXED. 1930 * 1931 * It actually works quite well. One needs to have the possibility for 1932 * at least one ".nfs..." file in each directory the file ever gets 1933 * moved or linked to which happens automagically with the new 1934 * implementation that only depends on the dcache stuff instead of 1935 * using the inode layer 1936 * 1937 * Unfortunately, things are a little more complicated than indicated 1938 * above. For a cross-directory move, we want to make sure we can get 1939 * rid of the old inode after the operation. This means there must be 1940 * no pending writes (if it's a file), and the use count must be 1. 1941 * If these conditions are met, we can drop the dentries before doing 1942 * the rename. 1943 */ 1944 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1945 struct inode *new_dir, struct dentry *new_dentry) 1946 { 1947 struct inode *old_inode = old_dentry->d_inode; 1948 struct inode *new_inode = new_dentry->d_inode; 1949 struct dentry *dentry = NULL, *rehash = NULL; 1950 int error = -EBUSY; 1951 1952 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1953 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1954 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1955 new_dentry->d_count); 1956 1957 /* 1958 * For non-directories, check whether the target is busy and if so, 1959 * make a copy of the dentry and then do a silly-rename. If the 1960 * silly-rename succeeds, the copied dentry is hashed and becomes 1961 * the new target. 1962 */ 1963 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1964 /* 1965 * To prevent any new references to the target during the 1966 * rename, we unhash the dentry in advance. 1967 */ 1968 if (!d_unhashed(new_dentry)) { 1969 d_drop(new_dentry); 1970 rehash = new_dentry; 1971 } 1972 1973 if (new_dentry->d_count > 2) { 1974 int err; 1975 1976 /* copy the target dentry's name */ 1977 dentry = d_alloc(new_dentry->d_parent, 1978 &new_dentry->d_name); 1979 if (!dentry) 1980 goto out; 1981 1982 /* silly-rename the existing target ... */ 1983 err = nfs_sillyrename(new_dir, new_dentry); 1984 if (err) 1985 goto out; 1986 1987 new_dentry = dentry; 1988 rehash = NULL; 1989 new_inode = NULL; 1990 } 1991 } 1992 1993 nfs_inode_return_delegation(old_inode); 1994 if (new_inode != NULL) 1995 nfs_inode_return_delegation(new_inode); 1996 1997 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1998 new_dir, &new_dentry->d_name); 1999 nfs_mark_for_revalidate(old_inode); 2000 out: 2001 if (rehash) 2002 d_rehash(rehash); 2003 if (!error) { 2004 if (new_inode != NULL) 2005 nfs_drop_nlink(new_inode); 2006 d_move(old_dentry, new_dentry); 2007 nfs_set_verifier(new_dentry, 2008 nfs_save_change_attribute(new_dir)); 2009 } else if (error == -ENOENT) 2010 nfs_dentry_handle_enoent(old_dentry); 2011 2012 /* new dentry created? */ 2013 if (dentry) 2014 dput(dentry); 2015 return error; 2016 } 2017 2018 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2019 static LIST_HEAD(nfs_access_lru_list); 2020 static atomic_long_t nfs_access_nr_entries; 2021 2022 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2023 { 2024 put_rpccred(entry->cred); 2025 kfree(entry); 2026 smp_mb__before_atomic_dec(); 2027 atomic_long_dec(&nfs_access_nr_entries); 2028 smp_mb__after_atomic_dec(); 2029 } 2030 2031 static void nfs_access_free_list(struct list_head *head) 2032 { 2033 struct nfs_access_entry *cache; 2034 2035 while (!list_empty(head)) { 2036 cache = list_entry(head->next, struct nfs_access_entry, lru); 2037 list_del(&cache->lru); 2038 nfs_access_free_entry(cache); 2039 } 2040 } 2041 2042 int nfs_access_cache_shrinker(struct shrinker *shrink, 2043 struct shrink_control *sc) 2044 { 2045 LIST_HEAD(head); 2046 struct nfs_inode *nfsi, *next; 2047 struct nfs_access_entry *cache; 2048 int nr_to_scan = sc->nr_to_scan; 2049 gfp_t gfp_mask = sc->gfp_mask; 2050 2051 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2052 return (nr_to_scan == 0) ? 0 : -1; 2053 2054 spin_lock(&nfs_access_lru_lock); 2055 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2056 struct inode *inode; 2057 2058 if (nr_to_scan-- == 0) 2059 break; 2060 inode = &nfsi->vfs_inode; 2061 spin_lock(&inode->i_lock); 2062 if (list_empty(&nfsi->access_cache_entry_lru)) 2063 goto remove_lru_entry; 2064 cache = list_entry(nfsi->access_cache_entry_lru.next, 2065 struct nfs_access_entry, lru); 2066 list_move(&cache->lru, &head); 2067 rb_erase(&cache->rb_node, &nfsi->access_cache); 2068 if (!list_empty(&nfsi->access_cache_entry_lru)) 2069 list_move_tail(&nfsi->access_cache_inode_lru, 2070 &nfs_access_lru_list); 2071 else { 2072 remove_lru_entry: 2073 list_del_init(&nfsi->access_cache_inode_lru); 2074 smp_mb__before_clear_bit(); 2075 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2076 smp_mb__after_clear_bit(); 2077 } 2078 spin_unlock(&inode->i_lock); 2079 } 2080 spin_unlock(&nfs_access_lru_lock); 2081 nfs_access_free_list(&head); 2082 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 2083 } 2084 2085 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2086 { 2087 struct rb_root *root_node = &nfsi->access_cache; 2088 struct rb_node *n; 2089 struct nfs_access_entry *entry; 2090 2091 /* Unhook entries from the cache */ 2092 while ((n = rb_first(root_node)) != NULL) { 2093 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2094 rb_erase(n, root_node); 2095 list_move(&entry->lru, head); 2096 } 2097 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2098 } 2099 2100 void nfs_access_zap_cache(struct inode *inode) 2101 { 2102 LIST_HEAD(head); 2103 2104 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2105 return; 2106 /* Remove from global LRU init */ 2107 spin_lock(&nfs_access_lru_lock); 2108 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2109 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2110 2111 spin_lock(&inode->i_lock); 2112 __nfs_access_zap_cache(NFS_I(inode), &head); 2113 spin_unlock(&inode->i_lock); 2114 spin_unlock(&nfs_access_lru_lock); 2115 nfs_access_free_list(&head); 2116 } 2117 2118 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2119 { 2120 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2121 struct nfs_access_entry *entry; 2122 2123 while (n != NULL) { 2124 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2125 2126 if (cred < entry->cred) 2127 n = n->rb_left; 2128 else if (cred > entry->cred) 2129 n = n->rb_right; 2130 else 2131 return entry; 2132 } 2133 return NULL; 2134 } 2135 2136 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2137 { 2138 struct nfs_inode *nfsi = NFS_I(inode); 2139 struct nfs_access_entry *cache; 2140 int err = -ENOENT; 2141 2142 spin_lock(&inode->i_lock); 2143 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2144 goto out_zap; 2145 cache = nfs_access_search_rbtree(inode, cred); 2146 if (cache == NULL) 2147 goto out; 2148 if (!nfs_have_delegated_attributes(inode) && 2149 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2150 goto out_stale; 2151 res->jiffies = cache->jiffies; 2152 res->cred = cache->cred; 2153 res->mask = cache->mask; 2154 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2155 err = 0; 2156 out: 2157 spin_unlock(&inode->i_lock); 2158 return err; 2159 out_stale: 2160 rb_erase(&cache->rb_node, &nfsi->access_cache); 2161 list_del(&cache->lru); 2162 spin_unlock(&inode->i_lock); 2163 nfs_access_free_entry(cache); 2164 return -ENOENT; 2165 out_zap: 2166 spin_unlock(&inode->i_lock); 2167 nfs_access_zap_cache(inode); 2168 return -ENOENT; 2169 } 2170 2171 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2172 { 2173 struct nfs_inode *nfsi = NFS_I(inode); 2174 struct rb_root *root_node = &nfsi->access_cache; 2175 struct rb_node **p = &root_node->rb_node; 2176 struct rb_node *parent = NULL; 2177 struct nfs_access_entry *entry; 2178 2179 spin_lock(&inode->i_lock); 2180 while (*p != NULL) { 2181 parent = *p; 2182 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2183 2184 if (set->cred < entry->cred) 2185 p = &parent->rb_left; 2186 else if (set->cred > entry->cred) 2187 p = &parent->rb_right; 2188 else 2189 goto found; 2190 } 2191 rb_link_node(&set->rb_node, parent, p); 2192 rb_insert_color(&set->rb_node, root_node); 2193 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2194 spin_unlock(&inode->i_lock); 2195 return; 2196 found: 2197 rb_replace_node(parent, &set->rb_node, root_node); 2198 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2199 list_del(&entry->lru); 2200 spin_unlock(&inode->i_lock); 2201 nfs_access_free_entry(entry); 2202 } 2203 2204 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2205 { 2206 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2207 if (cache == NULL) 2208 return; 2209 RB_CLEAR_NODE(&cache->rb_node); 2210 cache->jiffies = set->jiffies; 2211 cache->cred = get_rpccred(set->cred); 2212 cache->mask = set->mask; 2213 2214 nfs_access_add_rbtree(inode, cache); 2215 2216 /* Update accounting */ 2217 smp_mb__before_atomic_inc(); 2218 atomic_long_inc(&nfs_access_nr_entries); 2219 smp_mb__after_atomic_inc(); 2220 2221 /* Add inode to global LRU list */ 2222 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2223 spin_lock(&nfs_access_lru_lock); 2224 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2225 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2226 &nfs_access_lru_list); 2227 spin_unlock(&nfs_access_lru_lock); 2228 } 2229 } 2230 2231 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2232 { 2233 struct nfs_access_entry cache; 2234 int status; 2235 2236 status = nfs_access_get_cached(inode, cred, &cache); 2237 if (status == 0) 2238 goto out; 2239 2240 /* Be clever: ask server to check for all possible rights */ 2241 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2242 cache.cred = cred; 2243 cache.jiffies = jiffies; 2244 status = NFS_PROTO(inode)->access(inode, &cache); 2245 if (status != 0) { 2246 if (status == -ESTALE) { 2247 nfs_zap_caches(inode); 2248 if (!S_ISDIR(inode->i_mode)) 2249 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2250 } 2251 return status; 2252 } 2253 nfs_access_add_cache(inode, &cache); 2254 out: 2255 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2256 return 0; 2257 return -EACCES; 2258 } 2259 2260 static int nfs_open_permission_mask(int openflags) 2261 { 2262 int mask = 0; 2263 2264 if ((openflags & O_ACCMODE) != O_WRONLY) 2265 mask |= MAY_READ; 2266 if ((openflags & O_ACCMODE) != O_RDONLY) 2267 mask |= MAY_WRITE; 2268 if (openflags & __FMODE_EXEC) 2269 mask |= MAY_EXEC; 2270 return mask; 2271 } 2272 2273 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2274 { 2275 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2276 } 2277 2278 int nfs_permission(struct inode *inode, int mask) 2279 { 2280 struct rpc_cred *cred; 2281 int res = 0; 2282 2283 if (mask & MAY_NOT_BLOCK) 2284 return -ECHILD; 2285 2286 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2287 2288 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2289 goto out; 2290 /* Is this sys_access() ? */ 2291 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2292 goto force_lookup; 2293 2294 switch (inode->i_mode & S_IFMT) { 2295 case S_IFLNK: 2296 goto out; 2297 case S_IFREG: 2298 /* NFSv4 has atomic_open... */ 2299 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2300 && (mask & MAY_OPEN) 2301 && !(mask & MAY_EXEC)) 2302 goto out; 2303 break; 2304 case S_IFDIR: 2305 /* 2306 * Optimize away all write operations, since the server 2307 * will check permissions when we perform the op. 2308 */ 2309 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2310 goto out; 2311 } 2312 2313 force_lookup: 2314 if (!NFS_PROTO(inode)->access) 2315 goto out_notsup; 2316 2317 cred = rpc_lookup_cred(); 2318 if (!IS_ERR(cred)) { 2319 res = nfs_do_access(inode, cred, mask); 2320 put_rpccred(cred); 2321 } else 2322 res = PTR_ERR(cred); 2323 out: 2324 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2325 res = -EACCES; 2326 2327 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2328 inode->i_sb->s_id, inode->i_ino, mask, res); 2329 return res; 2330 out_notsup: 2331 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2332 if (res == 0) 2333 res = generic_permission(inode, mask); 2334 goto out; 2335 } 2336 2337 /* 2338 * Local variables: 2339 * version-control: t 2340 * kept-new-versions: 5 2341 * End: 2342 */ 2343