1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 out: 122 put_rpccred(cred); 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * we are freeing strings created by nfs_add_to_readdir_array() 167 */ 168 static 169 void nfs_readdir_clear_array(struct page *page) 170 { 171 struct nfs_cache_array *array; 172 int i; 173 174 array = kmap_atomic(page); 175 for (i = 0; i < array->size; i++) 176 kfree(array->array[i].string.name); 177 kunmap_atomic(array); 178 } 179 180 /* 181 * the caller is responsible for freeing qstr.name 182 * when called by nfs_readdir_add_to_array, the strings will be freed in 183 * nfs_clear_readdir_array() 184 */ 185 static 186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 187 { 188 string->len = len; 189 string->name = kmemdup(name, len, GFP_KERNEL); 190 if (string->name == NULL) 191 return -ENOMEM; 192 /* 193 * Avoid a kmemleak false positive. The pointer to the name is stored 194 * in a page cache page which kmemleak does not scan. 195 */ 196 kmemleak_not_leak(string->name); 197 string->hash = full_name_hash(NULL, name, len); 198 return 0; 199 } 200 201 static 202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 203 { 204 struct nfs_cache_array *array = kmap(page); 205 struct nfs_cache_array_entry *cache_entry; 206 int ret; 207 208 cache_entry = &array->array[array->size]; 209 210 /* Check that this entry lies within the page bounds */ 211 ret = -ENOSPC; 212 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 213 goto out; 214 215 cache_entry->cookie = entry->prev_cookie; 216 cache_entry->ino = entry->ino; 217 cache_entry->d_type = entry->d_type; 218 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 219 if (ret) 220 goto out; 221 array->last_cookie = entry->cookie; 222 array->size++; 223 if (entry->eof != 0) 224 array->eof_index = array->size; 225 out: 226 kunmap(page); 227 return ret; 228 } 229 230 static 231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 232 { 233 loff_t diff = desc->ctx->pos - desc->current_index; 234 unsigned int index; 235 236 if (diff < 0) 237 goto out_eof; 238 if (diff >= array->size) { 239 if (array->eof_index >= 0) 240 goto out_eof; 241 return -EAGAIN; 242 } 243 244 index = (unsigned int)diff; 245 *desc->dir_cookie = array->array[index].cookie; 246 desc->cache_entry_index = index; 247 return 0; 248 out_eof: 249 desc->eof = true; 250 return -EBADCOOKIE; 251 } 252 253 static bool 254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 255 { 256 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 257 return false; 258 smp_rmb(); 259 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 260 } 261 262 static 263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 264 { 265 int i; 266 loff_t new_pos; 267 int status = -EAGAIN; 268 269 for (i = 0; i < array->size; i++) { 270 if (array->array[i].cookie == *desc->dir_cookie) { 271 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 272 struct nfs_open_dir_context *ctx = desc->file->private_data; 273 274 new_pos = desc->current_index + i; 275 if (ctx->attr_gencount != nfsi->attr_gencount || 276 !nfs_readdir_inode_mapping_valid(nfsi)) { 277 ctx->duped = 0; 278 ctx->attr_gencount = nfsi->attr_gencount; 279 } else if (new_pos < desc->ctx->pos) { 280 if (ctx->duped > 0 281 && ctx->dup_cookie == *desc->dir_cookie) { 282 if (printk_ratelimit()) { 283 pr_notice("NFS: directory %pD2 contains a readdir loop." 284 "Please contact your server vendor. " 285 "The file: %.*s has duplicate cookie %llu\n", 286 desc->file, array->array[i].string.len, 287 array->array[i].string.name, *desc->dir_cookie); 288 } 289 status = -ELOOP; 290 goto out; 291 } 292 ctx->dup_cookie = *desc->dir_cookie; 293 ctx->duped = -1; 294 } 295 desc->ctx->pos = new_pos; 296 desc->cache_entry_index = i; 297 return 0; 298 } 299 } 300 if (array->eof_index >= 0) { 301 status = -EBADCOOKIE; 302 if (*desc->dir_cookie == array->last_cookie) 303 desc->eof = true; 304 } 305 out: 306 return status; 307 } 308 309 static 310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 311 { 312 struct nfs_cache_array *array; 313 int status; 314 315 array = kmap(desc->page); 316 317 if (*desc->dir_cookie == 0) 318 status = nfs_readdir_search_for_pos(array, desc); 319 else 320 status = nfs_readdir_search_for_cookie(array, desc); 321 322 if (status == -EAGAIN) { 323 desc->last_cookie = array->last_cookie; 324 desc->current_index += array->size; 325 desc->page_index++; 326 } 327 kunmap(desc->page); 328 return status; 329 } 330 331 /* Fill a page with xdr information before transferring to the cache page */ 332 static 333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 334 struct nfs_entry *entry, struct file *file, struct inode *inode) 335 { 336 struct nfs_open_dir_context *ctx = file->private_data; 337 struct rpc_cred *cred = ctx->cred; 338 unsigned long timestamp, gencount; 339 int error; 340 341 again: 342 timestamp = jiffies; 343 gencount = nfs_inc_attr_generation_counter(); 344 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 345 NFS_SERVER(inode)->dtsize, desc->plus); 346 if (error < 0) { 347 /* We requested READDIRPLUS, but the server doesn't grok it */ 348 if (error == -ENOTSUPP && desc->plus) { 349 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 350 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 351 desc->plus = false; 352 goto again; 353 } 354 goto error; 355 } 356 desc->timestamp = timestamp; 357 desc->gencount = gencount; 358 error: 359 return error; 360 } 361 362 static int xdr_decode(nfs_readdir_descriptor_t *desc, 363 struct nfs_entry *entry, struct xdr_stream *xdr) 364 { 365 int error; 366 367 error = desc->decode(xdr, entry, desc->plus); 368 if (error) 369 return error; 370 entry->fattr->time_start = desc->timestamp; 371 entry->fattr->gencount = desc->gencount; 372 return 0; 373 } 374 375 /* Match file and dirent using either filehandle or fileid 376 * Note: caller is responsible for checking the fsid 377 */ 378 static 379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 380 { 381 struct inode *inode; 382 struct nfs_inode *nfsi; 383 384 if (d_really_is_negative(dentry)) 385 return 0; 386 387 inode = d_inode(dentry); 388 if (is_bad_inode(inode) || NFS_STALE(inode)) 389 return 0; 390 391 nfsi = NFS_I(inode); 392 if (entry->fattr->fileid != nfsi->fileid) 393 return 0; 394 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 395 return 0; 396 return 1; 397 } 398 399 static 400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 401 { 402 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 403 return false; 404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 405 return true; 406 if (ctx->pos == 0) 407 return true; 408 return false; 409 } 410 411 /* 412 * This function is called by the lookup and getattr code to request the 413 * use of readdirplus to accelerate any future lookups in the same 414 * directory. 415 */ 416 void nfs_advise_use_readdirplus(struct inode *dir) 417 { 418 struct nfs_inode *nfsi = NFS_I(dir); 419 420 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 421 !list_empty(&nfsi->open_files)) 422 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 423 } 424 425 /* 426 * This function is mainly for use by nfs_getattr(). 427 * 428 * If this is an 'ls -l', we want to force use of readdirplus. 429 * Do this by checking if there is an active file descriptor 430 * and calling nfs_advise_use_readdirplus, then forcing a 431 * cache flush. 432 */ 433 void nfs_force_use_readdirplus(struct inode *dir) 434 { 435 struct nfs_inode *nfsi = NFS_I(dir); 436 437 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 438 !list_empty(&nfsi->open_files)) { 439 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 440 invalidate_mapping_pages(dir->i_mapping, 0, -1); 441 } 442 } 443 444 static 445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 446 { 447 struct qstr filename = QSTR_INIT(entry->name, entry->len); 448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 449 struct dentry *dentry; 450 struct dentry *alias; 451 struct inode *dir = d_inode(parent); 452 struct inode *inode; 453 int status; 454 455 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 456 return; 457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 458 return; 459 if (filename.len == 0) 460 return; 461 /* Validate that the name doesn't contain any illegal '\0' */ 462 if (strnlen(filename.name, filename.len) != filename.len) 463 return; 464 /* ...or '/' */ 465 if (strnchr(filename.name, filename.len, '/')) 466 return; 467 if (filename.name[0] == '.') { 468 if (filename.len == 1) 469 return; 470 if (filename.len == 2 && filename.name[1] == '.') 471 return; 472 } 473 filename.hash = full_name_hash(parent, filename.name, filename.len); 474 475 dentry = d_lookup(parent, &filename); 476 again: 477 if (!dentry) { 478 dentry = d_alloc_parallel(parent, &filename, &wq); 479 if (IS_ERR(dentry)) 480 return; 481 } 482 if (!d_in_lookup(dentry)) { 483 /* Is there a mountpoint here? If so, just exit */ 484 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 485 &entry->fattr->fsid)) 486 goto out; 487 if (nfs_same_file(dentry, entry)) { 488 if (!entry->fh->size) 489 goto out; 490 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 491 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 492 if (!status) 493 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 494 goto out; 495 } else { 496 d_invalidate(dentry); 497 dput(dentry); 498 dentry = NULL; 499 goto again; 500 } 501 } 502 if (!entry->fh->size) { 503 d_lookup_done(dentry); 504 goto out; 505 } 506 507 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 508 alias = d_splice_alias(inode, dentry); 509 d_lookup_done(dentry); 510 if (alias) { 511 if (IS_ERR(alias)) 512 goto out; 513 dput(dentry); 514 dentry = alias; 515 } 516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 517 out: 518 dput(dentry); 519 } 520 521 /* Perform conversion from xdr to cache array */ 522 static 523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 524 struct page **xdr_pages, struct page *page, unsigned int buflen) 525 { 526 struct xdr_stream stream; 527 struct xdr_buf buf; 528 struct page *scratch; 529 struct nfs_cache_array *array; 530 unsigned int count = 0; 531 int status; 532 533 scratch = alloc_page(GFP_KERNEL); 534 if (scratch == NULL) 535 return -ENOMEM; 536 537 if (buflen == 0) 538 goto out_nopages; 539 540 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 541 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 542 543 do { 544 status = xdr_decode(desc, entry, &stream); 545 if (status != 0) { 546 if (status == -EAGAIN) 547 status = 0; 548 break; 549 } 550 551 count++; 552 553 if (desc->plus) 554 nfs_prime_dcache(file_dentry(desc->file), entry); 555 556 status = nfs_readdir_add_to_array(entry, page); 557 if (status != 0) 558 break; 559 } while (!entry->eof); 560 561 out_nopages: 562 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 563 array = kmap(page); 564 array->eof_index = array->size; 565 status = 0; 566 kunmap(page); 567 } 568 569 put_page(scratch); 570 return status; 571 } 572 573 static 574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 575 { 576 unsigned int i; 577 for (i = 0; i < npages; i++) 578 put_page(pages[i]); 579 } 580 581 /* 582 * nfs_readdir_large_page will allocate pages that must be freed with a call 583 * to nfs_readdir_free_pagearray 584 */ 585 static 586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 587 { 588 unsigned int i; 589 590 for (i = 0; i < npages; i++) { 591 struct page *page = alloc_page(GFP_KERNEL); 592 if (page == NULL) 593 goto out_freepages; 594 pages[i] = page; 595 } 596 return 0; 597 598 out_freepages: 599 nfs_readdir_free_pages(pages, i); 600 return -ENOMEM; 601 } 602 603 static 604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 605 { 606 struct page *pages[NFS_MAX_READDIR_PAGES]; 607 struct nfs_entry entry; 608 struct file *file = desc->file; 609 struct nfs_cache_array *array; 610 int status = -ENOMEM; 611 unsigned int array_size = ARRAY_SIZE(pages); 612 613 entry.prev_cookie = 0; 614 entry.cookie = desc->last_cookie; 615 entry.eof = 0; 616 entry.fh = nfs_alloc_fhandle(); 617 entry.fattr = nfs_alloc_fattr(); 618 entry.server = NFS_SERVER(inode); 619 if (entry.fh == NULL || entry.fattr == NULL) 620 goto out; 621 622 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 623 if (IS_ERR(entry.label)) { 624 status = PTR_ERR(entry.label); 625 goto out; 626 } 627 628 array = kmap(page); 629 memset(array, 0, sizeof(struct nfs_cache_array)); 630 array->eof_index = -1; 631 632 status = nfs_readdir_alloc_pages(pages, array_size); 633 if (status < 0) 634 goto out_release_array; 635 do { 636 unsigned int pglen; 637 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 638 639 if (status < 0) 640 break; 641 pglen = status; 642 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 643 if (status < 0) { 644 if (status == -ENOSPC) 645 status = 0; 646 break; 647 } 648 } while (array->eof_index < 0); 649 650 nfs_readdir_free_pages(pages, array_size); 651 out_release_array: 652 kunmap(page); 653 nfs4_label_free(entry.label); 654 out: 655 nfs_free_fattr(entry.fattr); 656 nfs_free_fhandle(entry.fh); 657 return status; 658 } 659 660 /* 661 * Now we cache directories properly, by converting xdr information 662 * to an array that can be used for lookups later. This results in 663 * fewer cache pages, since we can store more information on each page. 664 * We only need to convert from xdr once so future lookups are much simpler 665 */ 666 static 667 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 668 { 669 struct inode *inode = file_inode(desc->file); 670 int ret; 671 672 ret = nfs_readdir_xdr_to_array(desc, page, inode); 673 if (ret < 0) 674 goto error; 675 SetPageUptodate(page); 676 677 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 678 /* Should never happen */ 679 nfs_zap_mapping(inode, inode->i_mapping); 680 } 681 unlock_page(page); 682 return 0; 683 error: 684 unlock_page(page); 685 return ret; 686 } 687 688 static 689 void cache_page_release(nfs_readdir_descriptor_t *desc) 690 { 691 if (!desc->page->mapping) 692 nfs_readdir_clear_array(desc->page); 693 put_page(desc->page); 694 desc->page = NULL; 695 } 696 697 static 698 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 699 { 700 return read_cache_page(desc->file->f_mapping, 701 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 702 } 703 704 /* 705 * Returns 0 if desc->dir_cookie was found on page desc->page_index 706 */ 707 static 708 int find_cache_page(nfs_readdir_descriptor_t *desc) 709 { 710 int res; 711 712 desc->page = get_cache_page(desc); 713 if (IS_ERR(desc->page)) 714 return PTR_ERR(desc->page); 715 716 res = nfs_readdir_search_array(desc); 717 if (res != 0) 718 cache_page_release(desc); 719 return res; 720 } 721 722 /* Search for desc->dir_cookie from the beginning of the page cache */ 723 static inline 724 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 725 { 726 int res; 727 728 if (desc->page_index == 0) { 729 desc->current_index = 0; 730 desc->last_cookie = 0; 731 } 732 do { 733 res = find_cache_page(desc); 734 } while (res == -EAGAIN); 735 return res; 736 } 737 738 /* 739 * Once we've found the start of the dirent within a page: fill 'er up... 740 */ 741 static 742 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 743 { 744 struct file *file = desc->file; 745 int i = 0; 746 int res = 0; 747 struct nfs_cache_array *array = NULL; 748 struct nfs_open_dir_context *ctx = file->private_data; 749 750 array = kmap(desc->page); 751 for (i = desc->cache_entry_index; i < array->size; i++) { 752 struct nfs_cache_array_entry *ent; 753 754 ent = &array->array[i]; 755 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 756 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 757 desc->eof = true; 758 break; 759 } 760 desc->ctx->pos++; 761 if (i < (array->size-1)) 762 *desc->dir_cookie = array->array[i+1].cookie; 763 else 764 *desc->dir_cookie = array->last_cookie; 765 if (ctx->duped != 0) 766 ctx->duped = 1; 767 } 768 if (array->eof_index >= 0) 769 desc->eof = true; 770 771 kunmap(desc->page); 772 cache_page_release(desc); 773 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 774 (unsigned long long)*desc->dir_cookie, res); 775 return res; 776 } 777 778 /* 779 * If we cannot find a cookie in our cache, we suspect that this is 780 * because it points to a deleted file, so we ask the server to return 781 * whatever it thinks is the next entry. We then feed this to filldir. 782 * If all goes well, we should then be able to find our way round the 783 * cache on the next call to readdir_search_pagecache(); 784 * 785 * NOTE: we cannot add the anonymous page to the pagecache because 786 * the data it contains might not be page aligned. Besides, 787 * we should already have a complete representation of the 788 * directory in the page cache by the time we get here. 789 */ 790 static inline 791 int uncached_readdir(nfs_readdir_descriptor_t *desc) 792 { 793 struct page *page = NULL; 794 int status; 795 struct inode *inode = file_inode(desc->file); 796 struct nfs_open_dir_context *ctx = desc->file->private_data; 797 798 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 799 (unsigned long long)*desc->dir_cookie); 800 801 page = alloc_page(GFP_HIGHUSER); 802 if (!page) { 803 status = -ENOMEM; 804 goto out; 805 } 806 807 desc->page_index = 0; 808 desc->last_cookie = *desc->dir_cookie; 809 desc->page = page; 810 ctx->duped = 0; 811 812 status = nfs_readdir_xdr_to_array(desc, page, inode); 813 if (status < 0) 814 goto out_release; 815 816 status = nfs_do_filldir(desc); 817 818 out: 819 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 820 __func__, status); 821 return status; 822 out_release: 823 cache_page_release(desc); 824 goto out; 825 } 826 827 /* The file offset position represents the dirent entry number. A 828 last cookie cache takes care of the common case of reading the 829 whole directory. 830 */ 831 static int nfs_readdir(struct file *file, struct dir_context *ctx) 832 { 833 struct dentry *dentry = file_dentry(file); 834 struct inode *inode = d_inode(dentry); 835 nfs_readdir_descriptor_t my_desc, 836 *desc = &my_desc; 837 struct nfs_open_dir_context *dir_ctx = file->private_data; 838 int res = 0; 839 840 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 841 file, (long long)ctx->pos); 842 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 843 844 /* 845 * ctx->pos points to the dirent entry number. 846 * *desc->dir_cookie has the cookie for the next entry. We have 847 * to either find the entry with the appropriate number or 848 * revalidate the cookie. 849 */ 850 memset(desc, 0, sizeof(*desc)); 851 852 desc->file = file; 853 desc->ctx = ctx; 854 desc->dir_cookie = &dir_ctx->dir_cookie; 855 desc->decode = NFS_PROTO(inode)->decode_dirent; 856 desc->plus = nfs_use_readdirplus(inode, ctx); 857 858 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 859 res = nfs_revalidate_mapping(inode, file->f_mapping); 860 if (res < 0) 861 goto out; 862 863 do { 864 res = readdir_search_pagecache(desc); 865 866 if (res == -EBADCOOKIE) { 867 res = 0; 868 /* This means either end of directory */ 869 if (*desc->dir_cookie && !desc->eof) { 870 /* Or that the server has 'lost' a cookie */ 871 res = uncached_readdir(desc); 872 if (res == 0) 873 continue; 874 } 875 break; 876 } 877 if (res == -ETOOSMALL && desc->plus) { 878 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 879 nfs_zap_caches(inode); 880 desc->page_index = 0; 881 desc->plus = false; 882 desc->eof = false; 883 continue; 884 } 885 if (res < 0) 886 break; 887 888 res = nfs_do_filldir(desc); 889 if (res < 0) 890 break; 891 } while (!desc->eof); 892 out: 893 if (res > 0) 894 res = 0; 895 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 896 return res; 897 } 898 899 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 900 { 901 struct inode *inode = file_inode(filp); 902 struct nfs_open_dir_context *dir_ctx = filp->private_data; 903 904 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 905 filp, offset, whence); 906 907 switch (whence) { 908 default: 909 return -EINVAL; 910 case SEEK_SET: 911 if (offset < 0) 912 return -EINVAL; 913 inode_lock(inode); 914 break; 915 case SEEK_CUR: 916 if (offset == 0) 917 return filp->f_pos; 918 inode_lock(inode); 919 offset += filp->f_pos; 920 if (offset < 0) { 921 inode_unlock(inode); 922 return -EINVAL; 923 } 924 } 925 if (offset != filp->f_pos) { 926 filp->f_pos = offset; 927 dir_ctx->dir_cookie = 0; 928 dir_ctx->duped = 0; 929 } 930 inode_unlock(inode); 931 return offset; 932 } 933 934 /* 935 * All directory operations under NFS are synchronous, so fsync() 936 * is a dummy operation. 937 */ 938 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 939 int datasync) 940 { 941 struct inode *inode = file_inode(filp); 942 943 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 944 945 inode_lock(inode); 946 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 947 inode_unlock(inode); 948 return 0; 949 } 950 951 /** 952 * nfs_force_lookup_revalidate - Mark the directory as having changed 953 * @dir - pointer to directory inode 954 * 955 * This forces the revalidation code in nfs_lookup_revalidate() to do a 956 * full lookup on all child dentries of 'dir' whenever a change occurs 957 * on the server that might have invalidated our dcache. 958 * 959 * The caller should be holding dir->i_lock 960 */ 961 void nfs_force_lookup_revalidate(struct inode *dir) 962 { 963 NFS_I(dir)->cache_change_attribute++; 964 } 965 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 966 967 /* 968 * A check for whether or not the parent directory has changed. 969 * In the case it has, we assume that the dentries are untrustworthy 970 * and may need to be looked up again. 971 * If rcu_walk prevents us from performing a full check, return 0. 972 */ 973 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 974 int rcu_walk) 975 { 976 if (IS_ROOT(dentry)) 977 return 1; 978 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 979 return 0; 980 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 981 return 0; 982 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 983 if (nfs_mapping_need_revalidate_inode(dir)) { 984 if (rcu_walk) 985 return 0; 986 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 987 return 0; 988 } 989 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 990 return 0; 991 return 1; 992 } 993 994 /* 995 * Use intent information to check whether or not we're going to do 996 * an O_EXCL create using this path component. 997 */ 998 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 999 { 1000 if (NFS_PROTO(dir)->version == 2) 1001 return 0; 1002 return flags & LOOKUP_EXCL; 1003 } 1004 1005 /* 1006 * Inode and filehandle revalidation for lookups. 1007 * 1008 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1009 * or if the intent information indicates that we're about to open this 1010 * particular file and the "nocto" mount flag is not set. 1011 * 1012 */ 1013 static 1014 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1015 { 1016 struct nfs_server *server = NFS_SERVER(inode); 1017 int ret; 1018 1019 if (IS_AUTOMOUNT(inode)) 1020 return 0; 1021 1022 if (flags & LOOKUP_OPEN) { 1023 switch (inode->i_mode & S_IFMT) { 1024 case S_IFREG: 1025 /* A NFSv4 OPEN will revalidate later */ 1026 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1027 goto out; 1028 /* Fallthrough */ 1029 case S_IFDIR: 1030 if (server->flags & NFS_MOUNT_NOCTO) 1031 break; 1032 /* NFS close-to-open cache consistency validation */ 1033 goto out_force; 1034 } 1035 } 1036 1037 /* VFS wants an on-the-wire revalidation */ 1038 if (flags & LOOKUP_REVAL) 1039 goto out_force; 1040 out: 1041 return (inode->i_nlink == 0) ? -ESTALE : 0; 1042 out_force: 1043 if (flags & LOOKUP_RCU) 1044 return -ECHILD; 1045 ret = __nfs_revalidate_inode(server, inode); 1046 if (ret != 0) 1047 return ret; 1048 goto out; 1049 } 1050 1051 /* 1052 * We judge how long we want to trust negative 1053 * dentries by looking at the parent inode mtime. 1054 * 1055 * If parent mtime has changed, we revalidate, else we wait for a 1056 * period corresponding to the parent's attribute cache timeout value. 1057 * 1058 * If LOOKUP_RCU prevents us from performing a full check, return 1 1059 * suggesting a reval is needed. 1060 * 1061 * Note that when creating a new file, or looking up a rename target, 1062 * then it shouldn't be necessary to revalidate a negative dentry. 1063 */ 1064 static inline 1065 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1066 unsigned int flags) 1067 { 1068 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1069 return 0; 1070 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1071 return 1; 1072 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1073 } 1074 1075 /* 1076 * This is called every time the dcache has a lookup hit, 1077 * and we should check whether we can really trust that 1078 * lookup. 1079 * 1080 * NOTE! The hit can be a negative hit too, don't assume 1081 * we have an inode! 1082 * 1083 * If the parent directory is seen to have changed, we throw out the 1084 * cached dentry and do a new lookup. 1085 */ 1086 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1087 { 1088 struct inode *dir; 1089 struct inode *inode; 1090 struct dentry *parent; 1091 struct nfs_fh *fhandle = NULL; 1092 struct nfs_fattr *fattr = NULL; 1093 struct nfs4_label *label = NULL; 1094 int error; 1095 1096 if (flags & LOOKUP_RCU) { 1097 parent = READ_ONCE(dentry->d_parent); 1098 dir = d_inode_rcu(parent); 1099 if (!dir) 1100 return -ECHILD; 1101 } else { 1102 parent = dget_parent(dentry); 1103 dir = d_inode(parent); 1104 } 1105 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1106 inode = d_inode(dentry); 1107 1108 if (!inode) { 1109 if (nfs_neg_need_reval(dir, dentry, flags)) { 1110 if (flags & LOOKUP_RCU) 1111 return -ECHILD; 1112 goto out_bad; 1113 } 1114 goto out_valid; 1115 } 1116 1117 if (is_bad_inode(inode)) { 1118 if (flags & LOOKUP_RCU) 1119 return -ECHILD; 1120 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1121 __func__, dentry); 1122 goto out_bad; 1123 } 1124 1125 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1126 goto out_set_verifier; 1127 1128 /* Force a full look up iff the parent directory has changed */ 1129 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1130 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1131 error = nfs_lookup_verify_inode(inode, flags); 1132 if (error) { 1133 if (flags & LOOKUP_RCU) 1134 return -ECHILD; 1135 if (error == -ESTALE) 1136 goto out_zap_parent; 1137 goto out_error; 1138 } 1139 nfs_advise_use_readdirplus(dir); 1140 goto out_valid; 1141 } 1142 1143 if (flags & LOOKUP_RCU) 1144 return -ECHILD; 1145 1146 if (NFS_STALE(inode)) 1147 goto out_bad; 1148 1149 error = -ENOMEM; 1150 fhandle = nfs_alloc_fhandle(); 1151 fattr = nfs_alloc_fattr(); 1152 if (fhandle == NULL || fattr == NULL) 1153 goto out_error; 1154 1155 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1156 if (IS_ERR(label)) 1157 goto out_error; 1158 1159 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1160 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1161 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1162 if (error == -ESTALE || error == -ENOENT) 1163 goto out_bad; 1164 if (error) 1165 goto out_error; 1166 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1167 goto out_bad; 1168 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1169 goto out_bad; 1170 1171 nfs_setsecurity(inode, fattr, label); 1172 1173 nfs_free_fattr(fattr); 1174 nfs_free_fhandle(fhandle); 1175 nfs4_label_free(label); 1176 1177 /* set a readdirplus hint that we had a cache miss */ 1178 nfs_force_use_readdirplus(dir); 1179 1180 out_set_verifier: 1181 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1182 out_valid: 1183 if (flags & LOOKUP_RCU) { 1184 if (parent != READ_ONCE(dentry->d_parent)) 1185 return -ECHILD; 1186 } else 1187 dput(parent); 1188 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1189 __func__, dentry); 1190 return 1; 1191 out_zap_parent: 1192 nfs_zap_caches(dir); 1193 out_bad: 1194 WARN_ON(flags & LOOKUP_RCU); 1195 nfs_free_fattr(fattr); 1196 nfs_free_fhandle(fhandle); 1197 nfs4_label_free(label); 1198 nfs_mark_for_revalidate(dir); 1199 if (inode && S_ISDIR(inode->i_mode)) { 1200 /* Purge readdir caches. */ 1201 nfs_zap_caches(inode); 1202 /* 1203 * We can't d_drop the root of a disconnected tree: 1204 * its d_hash is on the s_anon list and d_drop() would hide 1205 * it from shrink_dcache_for_unmount(), leading to busy 1206 * inodes on unmount and further oopses. 1207 */ 1208 if (IS_ROOT(dentry)) 1209 goto out_valid; 1210 } 1211 dput(parent); 1212 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1213 __func__, dentry); 1214 return 0; 1215 out_error: 1216 WARN_ON(flags & LOOKUP_RCU); 1217 nfs_free_fattr(fattr); 1218 nfs_free_fhandle(fhandle); 1219 nfs4_label_free(label); 1220 dput(parent); 1221 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1222 __func__, dentry, error); 1223 return error; 1224 } 1225 1226 /* 1227 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1228 * when we don't really care about the dentry name. This is called when a 1229 * pathwalk ends on a dentry that was not found via a normal lookup in the 1230 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1231 * 1232 * In this situation, we just want to verify that the inode itself is OK 1233 * since the dentry might have changed on the server. 1234 */ 1235 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1236 { 1237 struct inode *inode = d_inode(dentry); 1238 int error = 0; 1239 1240 /* 1241 * I believe we can only get a negative dentry here in the case of a 1242 * procfs-style symlink. Just assume it's correct for now, but we may 1243 * eventually need to do something more here. 1244 */ 1245 if (!inode) { 1246 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1247 __func__, dentry); 1248 return 1; 1249 } 1250 1251 if (is_bad_inode(inode)) { 1252 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1253 __func__, dentry); 1254 return 0; 1255 } 1256 1257 error = nfs_lookup_verify_inode(inode, flags); 1258 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1259 __func__, inode->i_ino, error ? "invalid" : "valid"); 1260 return !error; 1261 } 1262 1263 /* 1264 * This is called from dput() when d_count is going to 0. 1265 */ 1266 static int nfs_dentry_delete(const struct dentry *dentry) 1267 { 1268 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1269 dentry, dentry->d_flags); 1270 1271 /* Unhash any dentry with a stale inode */ 1272 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1273 return 1; 1274 1275 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1276 /* Unhash it, so that ->d_iput() would be called */ 1277 return 1; 1278 } 1279 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1280 /* Unhash it, so that ancestors of killed async unlink 1281 * files will be cleaned up during umount */ 1282 return 1; 1283 } 1284 return 0; 1285 1286 } 1287 1288 /* Ensure that we revalidate inode->i_nlink */ 1289 static void nfs_drop_nlink(struct inode *inode) 1290 { 1291 spin_lock(&inode->i_lock); 1292 /* drop the inode if we're reasonably sure this is the last link */ 1293 if (inode->i_nlink > 0) 1294 drop_nlink(inode); 1295 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1296 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1297 | NFS_INO_INVALID_CTIME 1298 | NFS_INO_INVALID_OTHER 1299 | NFS_INO_REVAL_FORCED; 1300 spin_unlock(&inode->i_lock); 1301 } 1302 1303 /* 1304 * Called when the dentry loses inode. 1305 * We use it to clean up silly-renamed files. 1306 */ 1307 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1308 { 1309 if (S_ISDIR(inode->i_mode)) 1310 /* drop any readdir cache as it could easily be old */ 1311 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1312 1313 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1314 nfs_complete_unlink(dentry, inode); 1315 nfs_drop_nlink(inode); 1316 } 1317 iput(inode); 1318 } 1319 1320 static void nfs_d_release(struct dentry *dentry) 1321 { 1322 /* free cached devname value, if it survived that far */ 1323 if (unlikely(dentry->d_fsdata)) { 1324 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1325 WARN_ON(1); 1326 else 1327 kfree(dentry->d_fsdata); 1328 } 1329 } 1330 1331 const struct dentry_operations nfs_dentry_operations = { 1332 .d_revalidate = nfs_lookup_revalidate, 1333 .d_weak_revalidate = nfs_weak_revalidate, 1334 .d_delete = nfs_dentry_delete, 1335 .d_iput = nfs_dentry_iput, 1336 .d_automount = nfs_d_automount, 1337 .d_release = nfs_d_release, 1338 }; 1339 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1340 1341 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1342 { 1343 struct dentry *res; 1344 struct inode *inode = NULL; 1345 struct nfs_fh *fhandle = NULL; 1346 struct nfs_fattr *fattr = NULL; 1347 struct nfs4_label *label = NULL; 1348 int error; 1349 1350 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1351 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1352 1353 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1354 return ERR_PTR(-ENAMETOOLONG); 1355 1356 /* 1357 * If we're doing an exclusive create, optimize away the lookup 1358 * but don't hash the dentry. 1359 */ 1360 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1361 return NULL; 1362 1363 res = ERR_PTR(-ENOMEM); 1364 fhandle = nfs_alloc_fhandle(); 1365 fattr = nfs_alloc_fattr(); 1366 if (fhandle == NULL || fattr == NULL) 1367 goto out; 1368 1369 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1370 if (IS_ERR(label)) 1371 goto out; 1372 1373 trace_nfs_lookup_enter(dir, dentry, flags); 1374 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1375 if (error == -ENOENT) 1376 goto no_entry; 1377 if (error < 0) { 1378 res = ERR_PTR(error); 1379 goto out_label; 1380 } 1381 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1382 res = ERR_CAST(inode); 1383 if (IS_ERR(res)) 1384 goto out_label; 1385 1386 /* Notify readdir to use READDIRPLUS */ 1387 nfs_force_use_readdirplus(dir); 1388 1389 no_entry: 1390 res = d_splice_alias(inode, dentry); 1391 if (res != NULL) { 1392 if (IS_ERR(res)) 1393 goto out_label; 1394 dentry = res; 1395 } 1396 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1397 out_label: 1398 trace_nfs_lookup_exit(dir, dentry, flags, error); 1399 nfs4_label_free(label); 1400 out: 1401 nfs_free_fattr(fattr); 1402 nfs_free_fhandle(fhandle); 1403 return res; 1404 } 1405 EXPORT_SYMBOL_GPL(nfs_lookup); 1406 1407 #if IS_ENABLED(CONFIG_NFS_V4) 1408 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1409 1410 const struct dentry_operations nfs4_dentry_operations = { 1411 .d_revalidate = nfs4_lookup_revalidate, 1412 .d_weak_revalidate = nfs_weak_revalidate, 1413 .d_delete = nfs_dentry_delete, 1414 .d_iput = nfs_dentry_iput, 1415 .d_automount = nfs_d_automount, 1416 .d_release = nfs_d_release, 1417 }; 1418 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1419 1420 static fmode_t flags_to_mode(int flags) 1421 { 1422 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1423 if ((flags & O_ACCMODE) != O_WRONLY) 1424 res |= FMODE_READ; 1425 if ((flags & O_ACCMODE) != O_RDONLY) 1426 res |= FMODE_WRITE; 1427 return res; 1428 } 1429 1430 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1431 { 1432 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1433 } 1434 1435 static int do_open(struct inode *inode, struct file *filp) 1436 { 1437 nfs_fscache_open_file(inode, filp); 1438 return 0; 1439 } 1440 1441 static int nfs_finish_open(struct nfs_open_context *ctx, 1442 struct dentry *dentry, 1443 struct file *file, unsigned open_flags) 1444 { 1445 int err; 1446 1447 err = finish_open(file, dentry, do_open); 1448 if (err) 1449 goto out; 1450 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1451 nfs_file_set_open_context(file, ctx); 1452 else 1453 err = -ESTALE; 1454 out: 1455 return err; 1456 } 1457 1458 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1459 struct file *file, unsigned open_flags, 1460 umode_t mode) 1461 { 1462 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1463 struct nfs_open_context *ctx; 1464 struct dentry *res; 1465 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1466 struct inode *inode; 1467 unsigned int lookup_flags = 0; 1468 bool switched = false; 1469 int created = 0; 1470 int err; 1471 1472 /* Expect a negative dentry */ 1473 BUG_ON(d_inode(dentry)); 1474 1475 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1476 dir->i_sb->s_id, dir->i_ino, dentry); 1477 1478 err = nfs_check_flags(open_flags); 1479 if (err) 1480 return err; 1481 1482 /* NFS only supports OPEN on regular files */ 1483 if ((open_flags & O_DIRECTORY)) { 1484 if (!d_in_lookup(dentry)) { 1485 /* 1486 * Hashed negative dentry with O_DIRECTORY: dentry was 1487 * revalidated and is fine, no need to perform lookup 1488 * again 1489 */ 1490 return -ENOENT; 1491 } 1492 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1493 goto no_open; 1494 } 1495 1496 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1497 return -ENAMETOOLONG; 1498 1499 if (open_flags & O_CREAT) { 1500 struct nfs_server *server = NFS_SERVER(dir); 1501 1502 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1503 mode &= ~current_umask(); 1504 1505 attr.ia_valid |= ATTR_MODE; 1506 attr.ia_mode = mode; 1507 } 1508 if (open_flags & O_TRUNC) { 1509 attr.ia_valid |= ATTR_SIZE; 1510 attr.ia_size = 0; 1511 } 1512 1513 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1514 d_drop(dentry); 1515 switched = true; 1516 dentry = d_alloc_parallel(dentry->d_parent, 1517 &dentry->d_name, &wq); 1518 if (IS_ERR(dentry)) 1519 return PTR_ERR(dentry); 1520 if (unlikely(!d_in_lookup(dentry))) 1521 return finish_no_open(file, dentry); 1522 } 1523 1524 ctx = create_nfs_open_context(dentry, open_flags, file); 1525 err = PTR_ERR(ctx); 1526 if (IS_ERR(ctx)) 1527 goto out; 1528 1529 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1530 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1531 if (created) 1532 file->f_mode |= FMODE_CREATED; 1533 if (IS_ERR(inode)) { 1534 err = PTR_ERR(inode); 1535 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1536 put_nfs_open_context(ctx); 1537 d_drop(dentry); 1538 switch (err) { 1539 case -ENOENT: 1540 d_splice_alias(NULL, dentry); 1541 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1542 break; 1543 case -EISDIR: 1544 case -ENOTDIR: 1545 goto no_open; 1546 case -ELOOP: 1547 if (!(open_flags & O_NOFOLLOW)) 1548 goto no_open; 1549 break; 1550 /* case -EINVAL: */ 1551 default: 1552 break; 1553 } 1554 goto out; 1555 } 1556 1557 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1558 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1559 put_nfs_open_context(ctx); 1560 out: 1561 if (unlikely(switched)) { 1562 d_lookup_done(dentry); 1563 dput(dentry); 1564 } 1565 return err; 1566 1567 no_open: 1568 res = nfs_lookup(dir, dentry, lookup_flags); 1569 if (switched) { 1570 d_lookup_done(dentry); 1571 if (!res) 1572 res = dentry; 1573 else 1574 dput(dentry); 1575 } 1576 if (IS_ERR(res)) 1577 return PTR_ERR(res); 1578 return finish_no_open(file, res); 1579 } 1580 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1581 1582 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1583 { 1584 struct inode *inode; 1585 int ret = 0; 1586 1587 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1588 goto no_open; 1589 if (d_mountpoint(dentry)) 1590 goto no_open; 1591 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1592 goto no_open; 1593 1594 inode = d_inode(dentry); 1595 1596 /* We can't create new files in nfs_open_revalidate(), so we 1597 * optimize away revalidation of negative dentries. 1598 */ 1599 if (inode == NULL) { 1600 struct dentry *parent; 1601 struct inode *dir; 1602 1603 if (flags & LOOKUP_RCU) { 1604 parent = READ_ONCE(dentry->d_parent); 1605 dir = d_inode_rcu(parent); 1606 if (!dir) 1607 return -ECHILD; 1608 } else { 1609 parent = dget_parent(dentry); 1610 dir = d_inode(parent); 1611 } 1612 if (!nfs_neg_need_reval(dir, dentry, flags)) 1613 ret = 1; 1614 else if (flags & LOOKUP_RCU) 1615 ret = -ECHILD; 1616 if (!(flags & LOOKUP_RCU)) 1617 dput(parent); 1618 else if (parent != READ_ONCE(dentry->d_parent)) 1619 return -ECHILD; 1620 goto out; 1621 } 1622 1623 /* NFS only supports OPEN on regular files */ 1624 if (!S_ISREG(inode->i_mode)) 1625 goto no_open; 1626 /* We cannot do exclusive creation on a positive dentry */ 1627 if (flags & LOOKUP_EXCL) 1628 goto no_open; 1629 1630 /* Let f_op->open() actually open (and revalidate) the file */ 1631 ret = 1; 1632 1633 out: 1634 return ret; 1635 1636 no_open: 1637 return nfs_lookup_revalidate(dentry, flags); 1638 } 1639 1640 #endif /* CONFIG_NFSV4 */ 1641 1642 /* 1643 * Code common to create, mkdir, and mknod. 1644 */ 1645 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1646 struct nfs_fattr *fattr, 1647 struct nfs4_label *label) 1648 { 1649 struct dentry *parent = dget_parent(dentry); 1650 struct inode *dir = d_inode(parent); 1651 struct inode *inode; 1652 struct dentry *d; 1653 int error = -EACCES; 1654 1655 d_drop(dentry); 1656 1657 /* We may have been initialized further down */ 1658 if (d_really_is_positive(dentry)) 1659 goto out; 1660 if (fhandle->size == 0) { 1661 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1662 if (error) 1663 goto out_error; 1664 } 1665 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1666 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1667 struct nfs_server *server = NFS_SB(dentry->d_sb); 1668 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1669 fattr, NULL, NULL); 1670 if (error < 0) 1671 goto out_error; 1672 } 1673 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1674 d = d_splice_alias(inode, dentry); 1675 if (IS_ERR(d)) { 1676 error = PTR_ERR(d); 1677 goto out_error; 1678 } 1679 dput(d); 1680 out: 1681 dput(parent); 1682 return 0; 1683 out_error: 1684 nfs_mark_for_revalidate(dir); 1685 dput(parent); 1686 return error; 1687 } 1688 EXPORT_SYMBOL_GPL(nfs_instantiate); 1689 1690 /* 1691 * Following a failed create operation, we drop the dentry rather 1692 * than retain a negative dentry. This avoids a problem in the event 1693 * that the operation succeeded on the server, but an error in the 1694 * reply path made it appear to have failed. 1695 */ 1696 int nfs_create(struct inode *dir, struct dentry *dentry, 1697 umode_t mode, bool excl) 1698 { 1699 struct iattr attr; 1700 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1701 int error; 1702 1703 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1704 dir->i_sb->s_id, dir->i_ino, dentry); 1705 1706 attr.ia_mode = mode; 1707 attr.ia_valid = ATTR_MODE; 1708 1709 trace_nfs_create_enter(dir, dentry, open_flags); 1710 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1711 trace_nfs_create_exit(dir, dentry, open_flags, error); 1712 if (error != 0) 1713 goto out_err; 1714 return 0; 1715 out_err: 1716 d_drop(dentry); 1717 return error; 1718 } 1719 EXPORT_SYMBOL_GPL(nfs_create); 1720 1721 /* 1722 * See comments for nfs_proc_create regarding failed operations. 1723 */ 1724 int 1725 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1726 { 1727 struct iattr attr; 1728 int status; 1729 1730 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1731 dir->i_sb->s_id, dir->i_ino, dentry); 1732 1733 attr.ia_mode = mode; 1734 attr.ia_valid = ATTR_MODE; 1735 1736 trace_nfs_mknod_enter(dir, dentry); 1737 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1738 trace_nfs_mknod_exit(dir, dentry, status); 1739 if (status != 0) 1740 goto out_err; 1741 return 0; 1742 out_err: 1743 d_drop(dentry); 1744 return status; 1745 } 1746 EXPORT_SYMBOL_GPL(nfs_mknod); 1747 1748 /* 1749 * See comments for nfs_proc_create regarding failed operations. 1750 */ 1751 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1752 { 1753 struct iattr attr; 1754 int error; 1755 1756 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1757 dir->i_sb->s_id, dir->i_ino, dentry); 1758 1759 attr.ia_valid = ATTR_MODE; 1760 attr.ia_mode = mode | S_IFDIR; 1761 1762 trace_nfs_mkdir_enter(dir, dentry); 1763 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1764 trace_nfs_mkdir_exit(dir, dentry, error); 1765 if (error != 0) 1766 goto out_err; 1767 return 0; 1768 out_err: 1769 d_drop(dentry); 1770 return error; 1771 } 1772 EXPORT_SYMBOL_GPL(nfs_mkdir); 1773 1774 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1775 { 1776 if (simple_positive(dentry)) 1777 d_delete(dentry); 1778 } 1779 1780 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1781 { 1782 int error; 1783 1784 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1785 dir->i_sb->s_id, dir->i_ino, dentry); 1786 1787 trace_nfs_rmdir_enter(dir, dentry); 1788 if (d_really_is_positive(dentry)) { 1789 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1790 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1791 /* Ensure the VFS deletes this inode */ 1792 switch (error) { 1793 case 0: 1794 clear_nlink(d_inode(dentry)); 1795 break; 1796 case -ENOENT: 1797 nfs_dentry_handle_enoent(dentry); 1798 } 1799 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1800 } else 1801 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1802 trace_nfs_rmdir_exit(dir, dentry, error); 1803 1804 return error; 1805 } 1806 EXPORT_SYMBOL_GPL(nfs_rmdir); 1807 1808 /* 1809 * Remove a file after making sure there are no pending writes, 1810 * and after checking that the file has only one user. 1811 * 1812 * We invalidate the attribute cache and free the inode prior to the operation 1813 * to avoid possible races if the server reuses the inode. 1814 */ 1815 static int nfs_safe_remove(struct dentry *dentry) 1816 { 1817 struct inode *dir = d_inode(dentry->d_parent); 1818 struct inode *inode = d_inode(dentry); 1819 int error = -EBUSY; 1820 1821 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1822 1823 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1824 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1825 error = 0; 1826 goto out; 1827 } 1828 1829 trace_nfs_remove_enter(dir, dentry); 1830 if (inode != NULL) { 1831 error = NFS_PROTO(dir)->remove(dir, dentry); 1832 if (error == 0) 1833 nfs_drop_nlink(inode); 1834 } else 1835 error = NFS_PROTO(dir)->remove(dir, dentry); 1836 if (error == -ENOENT) 1837 nfs_dentry_handle_enoent(dentry); 1838 trace_nfs_remove_exit(dir, dentry, error); 1839 out: 1840 return error; 1841 } 1842 1843 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1844 * belongs to an active ".nfs..." file and we return -EBUSY. 1845 * 1846 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1847 */ 1848 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1849 { 1850 int error; 1851 int need_rehash = 0; 1852 1853 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1854 dir->i_ino, dentry); 1855 1856 trace_nfs_unlink_enter(dir, dentry); 1857 spin_lock(&dentry->d_lock); 1858 if (d_count(dentry) > 1) { 1859 spin_unlock(&dentry->d_lock); 1860 /* Start asynchronous writeout of the inode */ 1861 write_inode_now(d_inode(dentry), 0); 1862 error = nfs_sillyrename(dir, dentry); 1863 goto out; 1864 } 1865 if (!d_unhashed(dentry)) { 1866 __d_drop(dentry); 1867 need_rehash = 1; 1868 } 1869 spin_unlock(&dentry->d_lock); 1870 error = nfs_safe_remove(dentry); 1871 if (!error || error == -ENOENT) { 1872 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1873 } else if (need_rehash) 1874 d_rehash(dentry); 1875 out: 1876 trace_nfs_unlink_exit(dir, dentry, error); 1877 return error; 1878 } 1879 EXPORT_SYMBOL_GPL(nfs_unlink); 1880 1881 /* 1882 * To create a symbolic link, most file systems instantiate a new inode, 1883 * add a page to it containing the path, then write it out to the disk 1884 * using prepare_write/commit_write. 1885 * 1886 * Unfortunately the NFS client can't create the in-core inode first 1887 * because it needs a file handle to create an in-core inode (see 1888 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1889 * symlink request has completed on the server. 1890 * 1891 * So instead we allocate a raw page, copy the symname into it, then do 1892 * the SYMLINK request with the page as the buffer. If it succeeds, we 1893 * now have a new file handle and can instantiate an in-core NFS inode 1894 * and move the raw page into its mapping. 1895 */ 1896 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1897 { 1898 struct page *page; 1899 char *kaddr; 1900 struct iattr attr; 1901 unsigned int pathlen = strlen(symname); 1902 int error; 1903 1904 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1905 dir->i_ino, dentry, symname); 1906 1907 if (pathlen > PAGE_SIZE) 1908 return -ENAMETOOLONG; 1909 1910 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1911 attr.ia_valid = ATTR_MODE; 1912 1913 page = alloc_page(GFP_USER); 1914 if (!page) 1915 return -ENOMEM; 1916 1917 kaddr = page_address(page); 1918 memcpy(kaddr, symname, pathlen); 1919 if (pathlen < PAGE_SIZE) 1920 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1921 1922 trace_nfs_symlink_enter(dir, dentry); 1923 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1924 trace_nfs_symlink_exit(dir, dentry, error); 1925 if (error != 0) { 1926 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1927 dir->i_sb->s_id, dir->i_ino, 1928 dentry, symname, error); 1929 d_drop(dentry); 1930 __free_page(page); 1931 return error; 1932 } 1933 1934 /* 1935 * No big deal if we can't add this page to the page cache here. 1936 * READLINK will get the missing page from the server if needed. 1937 */ 1938 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1939 GFP_KERNEL)) { 1940 SetPageUptodate(page); 1941 unlock_page(page); 1942 /* 1943 * add_to_page_cache_lru() grabs an extra page refcount. 1944 * Drop it here to avoid leaking this page later. 1945 */ 1946 put_page(page); 1947 } else 1948 __free_page(page); 1949 1950 return 0; 1951 } 1952 EXPORT_SYMBOL_GPL(nfs_symlink); 1953 1954 int 1955 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1956 { 1957 struct inode *inode = d_inode(old_dentry); 1958 int error; 1959 1960 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1961 old_dentry, dentry); 1962 1963 trace_nfs_link_enter(inode, dir, dentry); 1964 d_drop(dentry); 1965 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1966 if (error == 0) { 1967 ihold(inode); 1968 d_add(dentry, inode); 1969 } 1970 trace_nfs_link_exit(inode, dir, dentry, error); 1971 return error; 1972 } 1973 EXPORT_SYMBOL_GPL(nfs_link); 1974 1975 /* 1976 * RENAME 1977 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1978 * different file handle for the same inode after a rename (e.g. when 1979 * moving to a different directory). A fail-safe method to do so would 1980 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1981 * rename the old file using the sillyrename stuff. This way, the original 1982 * file in old_dir will go away when the last process iput()s the inode. 1983 * 1984 * FIXED. 1985 * 1986 * It actually works quite well. One needs to have the possibility for 1987 * at least one ".nfs..." file in each directory the file ever gets 1988 * moved or linked to which happens automagically with the new 1989 * implementation that only depends on the dcache stuff instead of 1990 * using the inode layer 1991 * 1992 * Unfortunately, things are a little more complicated than indicated 1993 * above. For a cross-directory move, we want to make sure we can get 1994 * rid of the old inode after the operation. This means there must be 1995 * no pending writes (if it's a file), and the use count must be 1. 1996 * If these conditions are met, we can drop the dentries before doing 1997 * the rename. 1998 */ 1999 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2000 struct inode *new_dir, struct dentry *new_dentry, 2001 unsigned int flags) 2002 { 2003 struct inode *old_inode = d_inode(old_dentry); 2004 struct inode *new_inode = d_inode(new_dentry); 2005 struct dentry *dentry = NULL, *rehash = NULL; 2006 struct rpc_task *task; 2007 int error = -EBUSY; 2008 2009 if (flags) 2010 return -EINVAL; 2011 2012 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2013 old_dentry, new_dentry, 2014 d_count(new_dentry)); 2015 2016 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2017 /* 2018 * For non-directories, check whether the target is busy and if so, 2019 * make a copy of the dentry and then do a silly-rename. If the 2020 * silly-rename succeeds, the copied dentry is hashed and becomes 2021 * the new target. 2022 */ 2023 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2024 /* 2025 * To prevent any new references to the target during the 2026 * rename, we unhash the dentry in advance. 2027 */ 2028 if (!d_unhashed(new_dentry)) { 2029 d_drop(new_dentry); 2030 rehash = new_dentry; 2031 } 2032 2033 if (d_count(new_dentry) > 2) { 2034 int err; 2035 2036 /* copy the target dentry's name */ 2037 dentry = d_alloc(new_dentry->d_parent, 2038 &new_dentry->d_name); 2039 if (!dentry) 2040 goto out; 2041 2042 /* silly-rename the existing target ... */ 2043 err = nfs_sillyrename(new_dir, new_dentry); 2044 if (err) 2045 goto out; 2046 2047 new_dentry = dentry; 2048 rehash = NULL; 2049 new_inode = NULL; 2050 } 2051 } 2052 2053 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2054 if (IS_ERR(task)) { 2055 error = PTR_ERR(task); 2056 goto out; 2057 } 2058 2059 error = rpc_wait_for_completion_task(task); 2060 if (error != 0) { 2061 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2062 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2063 smp_wmb(); 2064 } else 2065 error = task->tk_status; 2066 rpc_put_task(task); 2067 /* Ensure the inode attributes are revalidated */ 2068 if (error == 0) { 2069 spin_lock(&old_inode->i_lock); 2070 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2071 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2072 | NFS_INO_INVALID_CTIME 2073 | NFS_INO_REVAL_FORCED; 2074 spin_unlock(&old_inode->i_lock); 2075 } 2076 out: 2077 if (rehash) 2078 d_rehash(rehash); 2079 trace_nfs_rename_exit(old_dir, old_dentry, 2080 new_dir, new_dentry, error); 2081 if (!error) { 2082 if (new_inode != NULL) 2083 nfs_drop_nlink(new_inode); 2084 /* 2085 * The d_move() should be here instead of in an async RPC completion 2086 * handler because we need the proper locks to move the dentry. If 2087 * we're interrupted by a signal, the async RPC completion handler 2088 * should mark the directories for revalidation. 2089 */ 2090 d_move(old_dentry, new_dentry); 2091 nfs_set_verifier(old_dentry, 2092 nfs_save_change_attribute(new_dir)); 2093 } else if (error == -ENOENT) 2094 nfs_dentry_handle_enoent(old_dentry); 2095 2096 /* new dentry created? */ 2097 if (dentry) 2098 dput(dentry); 2099 return error; 2100 } 2101 EXPORT_SYMBOL_GPL(nfs_rename); 2102 2103 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2104 static LIST_HEAD(nfs_access_lru_list); 2105 static atomic_long_t nfs_access_nr_entries; 2106 2107 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2108 module_param(nfs_access_max_cachesize, ulong, 0644); 2109 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2110 2111 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2112 { 2113 put_rpccred(entry->cred); 2114 kfree_rcu(entry, rcu_head); 2115 smp_mb__before_atomic(); 2116 atomic_long_dec(&nfs_access_nr_entries); 2117 smp_mb__after_atomic(); 2118 } 2119 2120 static void nfs_access_free_list(struct list_head *head) 2121 { 2122 struct nfs_access_entry *cache; 2123 2124 while (!list_empty(head)) { 2125 cache = list_entry(head->next, struct nfs_access_entry, lru); 2126 list_del(&cache->lru); 2127 nfs_access_free_entry(cache); 2128 } 2129 } 2130 2131 static unsigned long 2132 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2133 { 2134 LIST_HEAD(head); 2135 struct nfs_inode *nfsi, *next; 2136 struct nfs_access_entry *cache; 2137 long freed = 0; 2138 2139 spin_lock(&nfs_access_lru_lock); 2140 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2141 struct inode *inode; 2142 2143 if (nr_to_scan-- == 0) 2144 break; 2145 inode = &nfsi->vfs_inode; 2146 spin_lock(&inode->i_lock); 2147 if (list_empty(&nfsi->access_cache_entry_lru)) 2148 goto remove_lru_entry; 2149 cache = list_entry(nfsi->access_cache_entry_lru.next, 2150 struct nfs_access_entry, lru); 2151 list_move(&cache->lru, &head); 2152 rb_erase(&cache->rb_node, &nfsi->access_cache); 2153 freed++; 2154 if (!list_empty(&nfsi->access_cache_entry_lru)) 2155 list_move_tail(&nfsi->access_cache_inode_lru, 2156 &nfs_access_lru_list); 2157 else { 2158 remove_lru_entry: 2159 list_del_init(&nfsi->access_cache_inode_lru); 2160 smp_mb__before_atomic(); 2161 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2162 smp_mb__after_atomic(); 2163 } 2164 spin_unlock(&inode->i_lock); 2165 } 2166 spin_unlock(&nfs_access_lru_lock); 2167 nfs_access_free_list(&head); 2168 return freed; 2169 } 2170 2171 unsigned long 2172 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2173 { 2174 int nr_to_scan = sc->nr_to_scan; 2175 gfp_t gfp_mask = sc->gfp_mask; 2176 2177 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2178 return SHRINK_STOP; 2179 return nfs_do_access_cache_scan(nr_to_scan); 2180 } 2181 2182 2183 unsigned long 2184 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2185 { 2186 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2187 } 2188 2189 static void 2190 nfs_access_cache_enforce_limit(void) 2191 { 2192 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2193 unsigned long diff; 2194 unsigned int nr_to_scan; 2195 2196 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2197 return; 2198 nr_to_scan = 100; 2199 diff = nr_entries - nfs_access_max_cachesize; 2200 if (diff < nr_to_scan) 2201 nr_to_scan = diff; 2202 nfs_do_access_cache_scan(nr_to_scan); 2203 } 2204 2205 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2206 { 2207 struct rb_root *root_node = &nfsi->access_cache; 2208 struct rb_node *n; 2209 struct nfs_access_entry *entry; 2210 2211 /* Unhook entries from the cache */ 2212 while ((n = rb_first(root_node)) != NULL) { 2213 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2214 rb_erase(n, root_node); 2215 list_move(&entry->lru, head); 2216 } 2217 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2218 } 2219 2220 void nfs_access_zap_cache(struct inode *inode) 2221 { 2222 LIST_HEAD(head); 2223 2224 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2225 return; 2226 /* Remove from global LRU init */ 2227 spin_lock(&nfs_access_lru_lock); 2228 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2229 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2230 2231 spin_lock(&inode->i_lock); 2232 __nfs_access_zap_cache(NFS_I(inode), &head); 2233 spin_unlock(&inode->i_lock); 2234 spin_unlock(&nfs_access_lru_lock); 2235 nfs_access_free_list(&head); 2236 } 2237 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2238 2239 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2240 { 2241 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2242 struct nfs_access_entry *entry; 2243 2244 while (n != NULL) { 2245 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2246 2247 if (cred < entry->cred) 2248 n = n->rb_left; 2249 else if (cred > entry->cred) 2250 n = n->rb_right; 2251 else 2252 return entry; 2253 } 2254 return NULL; 2255 } 2256 2257 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block) 2258 { 2259 struct nfs_inode *nfsi = NFS_I(inode); 2260 struct nfs_access_entry *cache; 2261 bool retry = true; 2262 int err; 2263 2264 spin_lock(&inode->i_lock); 2265 for(;;) { 2266 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2267 goto out_zap; 2268 cache = nfs_access_search_rbtree(inode, cred); 2269 err = -ENOENT; 2270 if (cache == NULL) 2271 goto out; 2272 /* Found an entry, is our attribute cache valid? */ 2273 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2274 break; 2275 err = -ECHILD; 2276 if (!may_block) 2277 goto out; 2278 if (!retry) 2279 goto out_zap; 2280 spin_unlock(&inode->i_lock); 2281 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2282 if (err) 2283 return err; 2284 spin_lock(&inode->i_lock); 2285 retry = false; 2286 } 2287 res->cred = cache->cred; 2288 res->mask = cache->mask; 2289 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2290 err = 0; 2291 out: 2292 spin_unlock(&inode->i_lock); 2293 return err; 2294 out_zap: 2295 spin_unlock(&inode->i_lock); 2296 nfs_access_zap_cache(inode); 2297 return -ENOENT; 2298 } 2299 2300 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2301 { 2302 /* Only check the most recently returned cache entry, 2303 * but do it without locking. 2304 */ 2305 struct nfs_inode *nfsi = NFS_I(inode); 2306 struct nfs_access_entry *cache; 2307 int err = -ECHILD; 2308 struct list_head *lh; 2309 2310 rcu_read_lock(); 2311 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2312 goto out; 2313 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2314 cache = list_entry(lh, struct nfs_access_entry, lru); 2315 if (lh == &nfsi->access_cache_entry_lru || 2316 cred != cache->cred) 2317 cache = NULL; 2318 if (cache == NULL) 2319 goto out; 2320 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2321 goto out; 2322 res->cred = cache->cred; 2323 res->mask = cache->mask; 2324 err = 0; 2325 out: 2326 rcu_read_unlock(); 2327 return err; 2328 } 2329 2330 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2331 { 2332 struct nfs_inode *nfsi = NFS_I(inode); 2333 struct rb_root *root_node = &nfsi->access_cache; 2334 struct rb_node **p = &root_node->rb_node; 2335 struct rb_node *parent = NULL; 2336 struct nfs_access_entry *entry; 2337 2338 spin_lock(&inode->i_lock); 2339 while (*p != NULL) { 2340 parent = *p; 2341 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2342 2343 if (set->cred < entry->cred) 2344 p = &parent->rb_left; 2345 else if (set->cred > entry->cred) 2346 p = &parent->rb_right; 2347 else 2348 goto found; 2349 } 2350 rb_link_node(&set->rb_node, parent, p); 2351 rb_insert_color(&set->rb_node, root_node); 2352 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2353 spin_unlock(&inode->i_lock); 2354 return; 2355 found: 2356 rb_replace_node(parent, &set->rb_node, root_node); 2357 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2358 list_del(&entry->lru); 2359 spin_unlock(&inode->i_lock); 2360 nfs_access_free_entry(entry); 2361 } 2362 2363 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2364 { 2365 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2366 if (cache == NULL) 2367 return; 2368 RB_CLEAR_NODE(&cache->rb_node); 2369 cache->cred = get_rpccred(set->cred); 2370 cache->mask = set->mask; 2371 2372 /* The above field assignments must be visible 2373 * before this item appears on the lru. We cannot easily 2374 * use rcu_assign_pointer, so just force the memory barrier. 2375 */ 2376 smp_wmb(); 2377 nfs_access_add_rbtree(inode, cache); 2378 2379 /* Update accounting */ 2380 smp_mb__before_atomic(); 2381 atomic_long_inc(&nfs_access_nr_entries); 2382 smp_mb__after_atomic(); 2383 2384 /* Add inode to global LRU list */ 2385 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2386 spin_lock(&nfs_access_lru_lock); 2387 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2388 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2389 &nfs_access_lru_list); 2390 spin_unlock(&nfs_access_lru_lock); 2391 } 2392 nfs_access_cache_enforce_limit(); 2393 } 2394 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2395 2396 #define NFS_MAY_READ (NFS_ACCESS_READ) 2397 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2398 NFS_ACCESS_EXTEND | \ 2399 NFS_ACCESS_DELETE) 2400 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2401 NFS_ACCESS_EXTEND) 2402 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2403 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2404 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2405 static int 2406 nfs_access_calc_mask(u32 access_result, umode_t umode) 2407 { 2408 int mask = 0; 2409 2410 if (access_result & NFS_MAY_READ) 2411 mask |= MAY_READ; 2412 if (S_ISDIR(umode)) { 2413 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2414 mask |= MAY_WRITE; 2415 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2416 mask |= MAY_EXEC; 2417 } else if (S_ISREG(umode)) { 2418 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2419 mask |= MAY_WRITE; 2420 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2421 mask |= MAY_EXEC; 2422 } else if (access_result & NFS_MAY_WRITE) 2423 mask |= MAY_WRITE; 2424 return mask; 2425 } 2426 2427 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2428 { 2429 entry->mask = access_result; 2430 } 2431 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2432 2433 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2434 { 2435 struct nfs_access_entry cache; 2436 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2437 int cache_mask; 2438 int status; 2439 2440 trace_nfs_access_enter(inode); 2441 2442 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2443 if (status != 0) 2444 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2445 if (status == 0) 2446 goto out_cached; 2447 2448 status = -ECHILD; 2449 if (!may_block) 2450 goto out; 2451 2452 /* 2453 * Determine which access bits we want to ask for... 2454 */ 2455 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2456 if (S_ISDIR(inode->i_mode)) 2457 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2458 else 2459 cache.mask |= NFS_ACCESS_EXECUTE; 2460 cache.cred = cred; 2461 status = NFS_PROTO(inode)->access(inode, &cache); 2462 if (status != 0) { 2463 if (status == -ESTALE) { 2464 nfs_zap_caches(inode); 2465 if (!S_ISDIR(inode->i_mode)) 2466 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2467 } 2468 goto out; 2469 } 2470 nfs_access_add_cache(inode, &cache); 2471 out_cached: 2472 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2473 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2474 status = -EACCES; 2475 out: 2476 trace_nfs_access_exit(inode, status); 2477 return status; 2478 } 2479 2480 static int nfs_open_permission_mask(int openflags) 2481 { 2482 int mask = 0; 2483 2484 if (openflags & __FMODE_EXEC) { 2485 /* ONLY check exec rights */ 2486 mask = MAY_EXEC; 2487 } else { 2488 if ((openflags & O_ACCMODE) != O_WRONLY) 2489 mask |= MAY_READ; 2490 if ((openflags & O_ACCMODE) != O_RDONLY) 2491 mask |= MAY_WRITE; 2492 } 2493 2494 return mask; 2495 } 2496 2497 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2498 { 2499 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2500 } 2501 EXPORT_SYMBOL_GPL(nfs_may_open); 2502 2503 static int nfs_execute_ok(struct inode *inode, int mask) 2504 { 2505 struct nfs_server *server = NFS_SERVER(inode); 2506 int ret = 0; 2507 2508 if (S_ISDIR(inode->i_mode)) 2509 return 0; 2510 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2511 if (mask & MAY_NOT_BLOCK) 2512 return -ECHILD; 2513 ret = __nfs_revalidate_inode(server, inode); 2514 } 2515 if (ret == 0 && !execute_ok(inode)) 2516 ret = -EACCES; 2517 return ret; 2518 } 2519 2520 int nfs_permission(struct inode *inode, int mask) 2521 { 2522 struct rpc_cred *cred; 2523 int res = 0; 2524 2525 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2526 2527 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2528 goto out; 2529 /* Is this sys_access() ? */ 2530 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2531 goto force_lookup; 2532 2533 switch (inode->i_mode & S_IFMT) { 2534 case S_IFLNK: 2535 goto out; 2536 case S_IFREG: 2537 if ((mask & MAY_OPEN) && 2538 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2539 return 0; 2540 break; 2541 case S_IFDIR: 2542 /* 2543 * Optimize away all write operations, since the server 2544 * will check permissions when we perform the op. 2545 */ 2546 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2547 goto out; 2548 } 2549 2550 force_lookup: 2551 if (!NFS_PROTO(inode)->access) 2552 goto out_notsup; 2553 2554 /* Always try fast lookups first */ 2555 rcu_read_lock(); 2556 cred = rpc_lookup_cred_nonblock(); 2557 if (!IS_ERR(cred)) 2558 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2559 else 2560 res = PTR_ERR(cred); 2561 rcu_read_unlock(); 2562 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2563 /* Fast lookup failed, try the slow way */ 2564 cred = rpc_lookup_cred(); 2565 if (!IS_ERR(cred)) { 2566 res = nfs_do_access(inode, cred, mask); 2567 put_rpccred(cred); 2568 } else 2569 res = PTR_ERR(cred); 2570 } 2571 out: 2572 if (!res && (mask & MAY_EXEC)) 2573 res = nfs_execute_ok(inode, mask); 2574 2575 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2576 inode->i_sb->s_id, inode->i_ino, mask, res); 2577 return res; 2578 out_notsup: 2579 if (mask & MAY_NOT_BLOCK) 2580 return -ECHILD; 2581 2582 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2583 if (res == 0) 2584 res = generic_permission(inode, mask); 2585 goto out; 2586 } 2587 EXPORT_SYMBOL_GPL(nfs_permission); 2588 2589 /* 2590 * Local variables: 2591 * version-control: t 2592 * kept-new-versions: 5 2593 * End: 2594 */ 2595