1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 /* #define NFS_DEBUG_VERBOSE 1 */ 47 48 static int nfs_opendir(struct inode *, struct file *); 49 static int nfs_closedir(struct inode *, struct file *); 50 static int nfs_readdir(struct file *, struct dir_context *); 51 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 52 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 53 static void nfs_readdir_clear_array(struct page*); 54 55 const struct file_operations nfs_dir_operations = { 56 .llseek = nfs_llseek_dir, 57 .read = generic_read_dir, 58 .iterate = nfs_readdir, 59 .open = nfs_opendir, 60 .release = nfs_closedir, 61 .fsync = nfs_fsync_dir, 62 }; 63 64 const struct address_space_operations nfs_dir_aops = { 65 .freepage = nfs_readdir_clear_array, 66 }; 67 68 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 69 { 70 struct nfs_open_dir_context *ctx; 71 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 72 if (ctx != NULL) { 73 ctx->duped = 0; 74 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 75 ctx->dir_cookie = 0; 76 ctx->dup_cookie = 0; 77 ctx->cred = get_rpccred(cred); 78 return ctx; 79 } 80 return ERR_PTR(-ENOMEM); 81 } 82 83 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 84 { 85 put_rpccred(ctx->cred); 86 kfree(ctx); 87 } 88 89 /* 90 * Open file 91 */ 92 static int 93 nfs_opendir(struct inode *inode, struct file *filp) 94 { 95 int res = 0; 96 struct nfs_open_dir_context *ctx; 97 struct rpc_cred *cred; 98 99 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 100 filp->f_path.dentry->d_parent->d_name.name, 101 filp->f_path.dentry->d_name.name); 102 103 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 104 105 cred = rpc_lookup_cred(); 106 if (IS_ERR(cred)) 107 return PTR_ERR(cred); 108 ctx = alloc_nfs_open_dir_context(inode, cred); 109 if (IS_ERR(ctx)) { 110 res = PTR_ERR(ctx); 111 goto out; 112 } 113 filp->private_data = ctx; 114 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 115 /* This is a mountpoint, so d_revalidate will never 116 * have been called, so we need to refresh the 117 * inode (for close-open consistency) ourselves. 118 */ 119 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 120 } 121 out: 122 put_rpccred(cred); 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 unsigned int plus:1; 162 unsigned int eof:1; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * The caller is responsible for calling nfs_readdir_release_array(page) 167 */ 168 static 169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 170 { 171 void *ptr; 172 if (page == NULL) 173 return ERR_PTR(-EIO); 174 ptr = kmap(page); 175 if (ptr == NULL) 176 return ERR_PTR(-ENOMEM); 177 return ptr; 178 } 179 180 static 181 void nfs_readdir_release_array(struct page *page) 182 { 183 kunmap(page); 184 } 185 186 /* 187 * we are freeing strings created by nfs_add_to_readdir_array() 188 */ 189 static 190 void nfs_readdir_clear_array(struct page *page) 191 { 192 struct nfs_cache_array *array; 193 int i; 194 195 array = kmap_atomic(page); 196 for (i = 0; i < array->size; i++) 197 kfree(array->array[i].string.name); 198 kunmap_atomic(array); 199 } 200 201 /* 202 * the caller is responsible for freeing qstr.name 203 * when called by nfs_readdir_add_to_array, the strings will be freed in 204 * nfs_clear_readdir_array() 205 */ 206 static 207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 208 { 209 string->len = len; 210 string->name = kmemdup(name, len, GFP_KERNEL); 211 if (string->name == NULL) 212 return -ENOMEM; 213 /* 214 * Avoid a kmemleak false positive. The pointer to the name is stored 215 * in a page cache page which kmemleak does not scan. 216 */ 217 kmemleak_not_leak(string->name); 218 string->hash = full_name_hash(name, len); 219 return 0; 220 } 221 222 static 223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 224 { 225 struct nfs_cache_array *array = nfs_readdir_get_array(page); 226 struct nfs_cache_array_entry *cache_entry; 227 int ret; 228 229 if (IS_ERR(array)) 230 return PTR_ERR(array); 231 232 cache_entry = &array->array[array->size]; 233 234 /* Check that this entry lies within the page bounds */ 235 ret = -ENOSPC; 236 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 237 goto out; 238 239 cache_entry->cookie = entry->prev_cookie; 240 cache_entry->ino = entry->ino; 241 cache_entry->d_type = entry->d_type; 242 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 243 if (ret) 244 goto out; 245 array->last_cookie = entry->cookie; 246 array->size++; 247 if (entry->eof != 0) 248 array->eof_index = array->size; 249 out: 250 nfs_readdir_release_array(page); 251 return ret; 252 } 253 254 static 255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 256 { 257 loff_t diff = desc->ctx->pos - desc->current_index; 258 unsigned int index; 259 260 if (diff < 0) 261 goto out_eof; 262 if (diff >= array->size) { 263 if (array->eof_index >= 0) 264 goto out_eof; 265 return -EAGAIN; 266 } 267 268 index = (unsigned int)diff; 269 *desc->dir_cookie = array->array[index].cookie; 270 desc->cache_entry_index = index; 271 return 0; 272 out_eof: 273 desc->eof = 1; 274 return -EBADCOOKIE; 275 } 276 277 static 278 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 279 { 280 int i; 281 loff_t new_pos; 282 int status = -EAGAIN; 283 284 for (i = 0; i < array->size; i++) { 285 if (array->array[i].cookie == *desc->dir_cookie) { 286 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 287 struct nfs_open_dir_context *ctx = desc->file->private_data; 288 289 new_pos = desc->current_index + i; 290 if (ctx->attr_gencount != nfsi->attr_gencount 291 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 292 ctx->duped = 0; 293 ctx->attr_gencount = nfsi->attr_gencount; 294 } else if (new_pos < desc->ctx->pos) { 295 if (ctx->duped > 0 296 && ctx->dup_cookie == *desc->dir_cookie) { 297 if (printk_ratelimit()) { 298 pr_notice("NFS: directory %s/%s contains a readdir loop." 299 "Please contact your server vendor. " 300 "The file: %s has duplicate cookie %llu\n", 301 desc->file->f_dentry->d_parent->d_name.name, 302 desc->file->f_dentry->d_name.name, 303 array->array[i].string.name, 304 *desc->dir_cookie); 305 } 306 status = -ELOOP; 307 goto out; 308 } 309 ctx->dup_cookie = *desc->dir_cookie; 310 ctx->duped = -1; 311 } 312 desc->ctx->pos = new_pos; 313 desc->cache_entry_index = i; 314 return 0; 315 } 316 } 317 if (array->eof_index >= 0) { 318 status = -EBADCOOKIE; 319 if (*desc->dir_cookie == array->last_cookie) 320 desc->eof = 1; 321 } 322 out: 323 return status; 324 } 325 326 static 327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 328 { 329 struct nfs_cache_array *array; 330 int status; 331 332 array = nfs_readdir_get_array(desc->page); 333 if (IS_ERR(array)) { 334 status = PTR_ERR(array); 335 goto out; 336 } 337 338 if (*desc->dir_cookie == 0) 339 status = nfs_readdir_search_for_pos(array, desc); 340 else 341 status = nfs_readdir_search_for_cookie(array, desc); 342 343 if (status == -EAGAIN) { 344 desc->last_cookie = array->last_cookie; 345 desc->current_index += array->size; 346 desc->page_index++; 347 } 348 nfs_readdir_release_array(desc->page); 349 out: 350 return status; 351 } 352 353 /* Fill a page with xdr information before transferring to the cache page */ 354 static 355 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 356 struct nfs_entry *entry, struct file *file, struct inode *inode) 357 { 358 struct nfs_open_dir_context *ctx = file->private_data; 359 struct rpc_cred *cred = ctx->cred; 360 unsigned long timestamp, gencount; 361 int error; 362 363 again: 364 timestamp = jiffies; 365 gencount = nfs_inc_attr_generation_counter(); 366 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 367 NFS_SERVER(inode)->dtsize, desc->plus); 368 if (error < 0) { 369 /* We requested READDIRPLUS, but the server doesn't grok it */ 370 if (error == -ENOTSUPP && desc->plus) { 371 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 372 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 373 desc->plus = 0; 374 goto again; 375 } 376 goto error; 377 } 378 desc->timestamp = timestamp; 379 desc->gencount = gencount; 380 error: 381 return error; 382 } 383 384 static int xdr_decode(nfs_readdir_descriptor_t *desc, 385 struct nfs_entry *entry, struct xdr_stream *xdr) 386 { 387 int error; 388 389 error = desc->decode(xdr, entry, desc->plus); 390 if (error) 391 return error; 392 entry->fattr->time_start = desc->timestamp; 393 entry->fattr->gencount = desc->gencount; 394 return 0; 395 } 396 397 static 398 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 399 { 400 if (dentry->d_inode == NULL) 401 goto different; 402 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 403 goto different; 404 return 1; 405 different: 406 return 0; 407 } 408 409 static 410 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 411 { 412 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 413 return false; 414 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 415 return true; 416 if (ctx->pos == 0) 417 return true; 418 return false; 419 } 420 421 /* 422 * This function is called by the lookup code to request the use of 423 * readdirplus to accelerate any future lookups in the same 424 * directory. 425 */ 426 static 427 void nfs_advise_use_readdirplus(struct inode *dir) 428 { 429 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 430 } 431 432 static 433 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 434 { 435 struct qstr filename = QSTR_INIT(entry->name, entry->len); 436 struct dentry *dentry; 437 struct dentry *alias; 438 struct inode *dir = parent->d_inode; 439 struct inode *inode; 440 441 if (filename.name[0] == '.') { 442 if (filename.len == 1) 443 return; 444 if (filename.len == 2 && filename.name[1] == '.') 445 return; 446 } 447 filename.hash = full_name_hash(filename.name, filename.len); 448 449 dentry = d_lookup(parent, &filename); 450 if (dentry != NULL) { 451 if (nfs_same_file(dentry, entry)) { 452 nfs_refresh_inode(dentry->d_inode, entry->fattr); 453 goto out; 454 } else { 455 if (d_invalidate(dentry) != 0) 456 goto out; 457 dput(dentry); 458 } 459 } 460 461 dentry = d_alloc(parent, &filename); 462 if (dentry == NULL) 463 return; 464 465 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 466 if (IS_ERR(inode)) 467 goto out; 468 469 alias = d_materialise_unique(dentry, inode); 470 if (IS_ERR(alias)) 471 goto out; 472 else if (alias) { 473 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 474 dput(alias); 475 } else 476 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 477 478 out: 479 dput(dentry); 480 } 481 482 /* Perform conversion from xdr to cache array */ 483 static 484 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 485 struct page **xdr_pages, struct page *page, unsigned int buflen) 486 { 487 struct xdr_stream stream; 488 struct xdr_buf buf; 489 struct page *scratch; 490 struct nfs_cache_array *array; 491 unsigned int count = 0; 492 int status; 493 494 scratch = alloc_page(GFP_KERNEL); 495 if (scratch == NULL) 496 return -ENOMEM; 497 498 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 499 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 500 501 do { 502 status = xdr_decode(desc, entry, &stream); 503 if (status != 0) { 504 if (status == -EAGAIN) 505 status = 0; 506 break; 507 } 508 509 count++; 510 511 if (desc->plus != 0) 512 nfs_prime_dcache(desc->file->f_path.dentry, entry); 513 514 status = nfs_readdir_add_to_array(entry, page); 515 if (status != 0) 516 break; 517 } while (!entry->eof); 518 519 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 520 array = nfs_readdir_get_array(page); 521 if (!IS_ERR(array)) { 522 array->eof_index = array->size; 523 status = 0; 524 nfs_readdir_release_array(page); 525 } else 526 status = PTR_ERR(array); 527 } 528 529 put_page(scratch); 530 return status; 531 } 532 533 static 534 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 535 { 536 unsigned int i; 537 for (i = 0; i < npages; i++) 538 put_page(pages[i]); 539 } 540 541 static 542 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 543 unsigned int npages) 544 { 545 nfs_readdir_free_pagearray(pages, npages); 546 } 547 548 /* 549 * nfs_readdir_large_page will allocate pages that must be freed with a call 550 * to nfs_readdir_free_large_page 551 */ 552 static 553 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 554 { 555 unsigned int i; 556 557 for (i = 0; i < npages; i++) { 558 struct page *page = alloc_page(GFP_KERNEL); 559 if (page == NULL) 560 goto out_freepages; 561 pages[i] = page; 562 } 563 return 0; 564 565 out_freepages: 566 nfs_readdir_free_pagearray(pages, i); 567 return -ENOMEM; 568 } 569 570 static 571 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 572 { 573 struct page *pages[NFS_MAX_READDIR_PAGES]; 574 void *pages_ptr = NULL; 575 struct nfs_entry entry; 576 struct file *file = desc->file; 577 struct nfs_cache_array *array; 578 int status = -ENOMEM; 579 unsigned int array_size = ARRAY_SIZE(pages); 580 581 entry.prev_cookie = 0; 582 entry.cookie = desc->last_cookie; 583 entry.eof = 0; 584 entry.fh = nfs_alloc_fhandle(); 585 entry.fattr = nfs_alloc_fattr(); 586 entry.server = NFS_SERVER(inode); 587 if (entry.fh == NULL || entry.fattr == NULL) 588 goto out; 589 590 array = nfs_readdir_get_array(page); 591 if (IS_ERR(array)) { 592 status = PTR_ERR(array); 593 goto out; 594 } 595 memset(array, 0, sizeof(struct nfs_cache_array)); 596 array->eof_index = -1; 597 598 status = nfs_readdir_large_page(pages, array_size); 599 if (status < 0) 600 goto out_release_array; 601 do { 602 unsigned int pglen; 603 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 604 605 if (status < 0) 606 break; 607 pglen = status; 608 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 609 if (status < 0) { 610 if (status == -ENOSPC) 611 status = 0; 612 break; 613 } 614 } while (array->eof_index < 0); 615 616 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 617 out_release_array: 618 nfs_readdir_release_array(page); 619 out: 620 nfs_free_fattr(entry.fattr); 621 nfs_free_fhandle(entry.fh); 622 return status; 623 } 624 625 /* 626 * Now we cache directories properly, by converting xdr information 627 * to an array that can be used for lookups later. This results in 628 * fewer cache pages, since we can store more information on each page. 629 * We only need to convert from xdr once so future lookups are much simpler 630 */ 631 static 632 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 633 { 634 struct inode *inode = file_inode(desc->file); 635 int ret; 636 637 ret = nfs_readdir_xdr_to_array(desc, page, inode); 638 if (ret < 0) 639 goto error; 640 SetPageUptodate(page); 641 642 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 643 /* Should never happen */ 644 nfs_zap_mapping(inode, inode->i_mapping); 645 } 646 unlock_page(page); 647 return 0; 648 error: 649 unlock_page(page); 650 return ret; 651 } 652 653 static 654 void cache_page_release(nfs_readdir_descriptor_t *desc) 655 { 656 if (!desc->page->mapping) 657 nfs_readdir_clear_array(desc->page); 658 page_cache_release(desc->page); 659 desc->page = NULL; 660 } 661 662 static 663 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 664 { 665 return read_cache_page(file_inode(desc->file)->i_mapping, 666 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 667 } 668 669 /* 670 * Returns 0 if desc->dir_cookie was found on page desc->page_index 671 */ 672 static 673 int find_cache_page(nfs_readdir_descriptor_t *desc) 674 { 675 int res; 676 677 desc->page = get_cache_page(desc); 678 if (IS_ERR(desc->page)) 679 return PTR_ERR(desc->page); 680 681 res = nfs_readdir_search_array(desc); 682 if (res != 0) 683 cache_page_release(desc); 684 return res; 685 } 686 687 /* Search for desc->dir_cookie from the beginning of the page cache */ 688 static inline 689 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 690 { 691 int res; 692 693 if (desc->page_index == 0) { 694 desc->current_index = 0; 695 desc->last_cookie = 0; 696 } 697 do { 698 res = find_cache_page(desc); 699 } while (res == -EAGAIN); 700 return res; 701 } 702 703 /* 704 * Once we've found the start of the dirent within a page: fill 'er up... 705 */ 706 static 707 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 708 { 709 struct file *file = desc->file; 710 int i = 0; 711 int res = 0; 712 struct nfs_cache_array *array = NULL; 713 struct nfs_open_dir_context *ctx = file->private_data; 714 715 array = nfs_readdir_get_array(desc->page); 716 if (IS_ERR(array)) { 717 res = PTR_ERR(array); 718 goto out; 719 } 720 721 for (i = desc->cache_entry_index; i < array->size; i++) { 722 struct nfs_cache_array_entry *ent; 723 724 ent = &array->array[i]; 725 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 726 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 727 desc->eof = 1; 728 break; 729 } 730 desc->ctx->pos++; 731 if (i < (array->size-1)) 732 *desc->dir_cookie = array->array[i+1].cookie; 733 else 734 *desc->dir_cookie = array->last_cookie; 735 if (ctx->duped != 0) 736 ctx->duped = 1; 737 } 738 if (array->eof_index >= 0) 739 desc->eof = 1; 740 741 nfs_readdir_release_array(desc->page); 742 out: 743 cache_page_release(desc); 744 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 745 (unsigned long long)*desc->dir_cookie, res); 746 return res; 747 } 748 749 /* 750 * If we cannot find a cookie in our cache, we suspect that this is 751 * because it points to a deleted file, so we ask the server to return 752 * whatever it thinks is the next entry. We then feed this to filldir. 753 * If all goes well, we should then be able to find our way round the 754 * cache on the next call to readdir_search_pagecache(); 755 * 756 * NOTE: we cannot add the anonymous page to the pagecache because 757 * the data it contains might not be page aligned. Besides, 758 * we should already have a complete representation of the 759 * directory in the page cache by the time we get here. 760 */ 761 static inline 762 int uncached_readdir(nfs_readdir_descriptor_t *desc) 763 { 764 struct page *page = NULL; 765 int status; 766 struct inode *inode = file_inode(desc->file); 767 struct nfs_open_dir_context *ctx = desc->file->private_data; 768 769 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 770 (unsigned long long)*desc->dir_cookie); 771 772 page = alloc_page(GFP_HIGHUSER); 773 if (!page) { 774 status = -ENOMEM; 775 goto out; 776 } 777 778 desc->page_index = 0; 779 desc->last_cookie = *desc->dir_cookie; 780 desc->page = page; 781 ctx->duped = 0; 782 783 status = nfs_readdir_xdr_to_array(desc, page, inode); 784 if (status < 0) 785 goto out_release; 786 787 status = nfs_do_filldir(desc); 788 789 out: 790 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 791 __func__, status); 792 return status; 793 out_release: 794 cache_page_release(desc); 795 goto out; 796 } 797 798 /* The file offset position represents the dirent entry number. A 799 last cookie cache takes care of the common case of reading the 800 whole directory. 801 */ 802 static int nfs_readdir(struct file *file, struct dir_context *ctx) 803 { 804 struct dentry *dentry = file->f_path.dentry; 805 struct inode *inode = dentry->d_inode; 806 nfs_readdir_descriptor_t my_desc, 807 *desc = &my_desc; 808 struct nfs_open_dir_context *dir_ctx = file->private_data; 809 int res; 810 811 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 812 dentry->d_parent->d_name.name, dentry->d_name.name, 813 (long long)ctx->pos); 814 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 815 816 /* 817 * ctx->pos points to the dirent entry number. 818 * *desc->dir_cookie has the cookie for the next entry. We have 819 * to either find the entry with the appropriate number or 820 * revalidate the cookie. 821 */ 822 memset(desc, 0, sizeof(*desc)); 823 824 desc->file = file; 825 desc->ctx = ctx; 826 desc->dir_cookie = &dir_ctx->dir_cookie; 827 desc->decode = NFS_PROTO(inode)->decode_dirent; 828 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 829 830 nfs_block_sillyrename(dentry); 831 res = nfs_revalidate_mapping(inode, file->f_mapping); 832 if (res < 0) 833 goto out; 834 835 do { 836 res = readdir_search_pagecache(desc); 837 838 if (res == -EBADCOOKIE) { 839 res = 0; 840 /* This means either end of directory */ 841 if (*desc->dir_cookie && desc->eof == 0) { 842 /* Or that the server has 'lost' a cookie */ 843 res = uncached_readdir(desc); 844 if (res == 0) 845 continue; 846 } 847 break; 848 } 849 if (res == -ETOOSMALL && desc->plus) { 850 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 851 nfs_zap_caches(inode); 852 desc->page_index = 0; 853 desc->plus = 0; 854 desc->eof = 0; 855 continue; 856 } 857 if (res < 0) 858 break; 859 860 res = nfs_do_filldir(desc); 861 if (res < 0) 862 break; 863 } while (!desc->eof); 864 out: 865 nfs_unblock_sillyrename(dentry); 866 if (res > 0) 867 res = 0; 868 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 869 dentry->d_parent->d_name.name, dentry->d_name.name, 870 res); 871 return res; 872 } 873 874 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 875 { 876 struct dentry *dentry = filp->f_path.dentry; 877 struct inode *inode = dentry->d_inode; 878 struct nfs_open_dir_context *dir_ctx = filp->private_data; 879 880 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 881 dentry->d_parent->d_name.name, 882 dentry->d_name.name, 883 offset, whence); 884 885 mutex_lock(&inode->i_mutex); 886 switch (whence) { 887 case 1: 888 offset += filp->f_pos; 889 case 0: 890 if (offset >= 0) 891 break; 892 default: 893 offset = -EINVAL; 894 goto out; 895 } 896 if (offset != filp->f_pos) { 897 filp->f_pos = offset; 898 dir_ctx->dir_cookie = 0; 899 dir_ctx->duped = 0; 900 } 901 out: 902 mutex_unlock(&inode->i_mutex); 903 return offset; 904 } 905 906 /* 907 * All directory operations under NFS are synchronous, so fsync() 908 * is a dummy operation. 909 */ 910 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 911 int datasync) 912 { 913 struct dentry *dentry = filp->f_path.dentry; 914 struct inode *inode = dentry->d_inode; 915 916 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 917 dentry->d_parent->d_name.name, dentry->d_name.name, 918 datasync); 919 920 mutex_lock(&inode->i_mutex); 921 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 922 mutex_unlock(&inode->i_mutex); 923 return 0; 924 } 925 926 /** 927 * nfs_force_lookup_revalidate - Mark the directory as having changed 928 * @dir - pointer to directory inode 929 * 930 * This forces the revalidation code in nfs_lookup_revalidate() to do a 931 * full lookup on all child dentries of 'dir' whenever a change occurs 932 * on the server that might have invalidated our dcache. 933 * 934 * The caller should be holding dir->i_lock 935 */ 936 void nfs_force_lookup_revalidate(struct inode *dir) 937 { 938 NFS_I(dir)->cache_change_attribute++; 939 } 940 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 941 942 /* 943 * A check for whether or not the parent directory has changed. 944 * In the case it has, we assume that the dentries are untrustworthy 945 * and may need to be looked up again. 946 */ 947 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 948 { 949 if (IS_ROOT(dentry)) 950 return 1; 951 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 952 return 0; 953 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 954 return 0; 955 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 956 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 957 return 0; 958 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 959 return 0; 960 return 1; 961 } 962 963 /* 964 * Use intent information to check whether or not we're going to do 965 * an O_EXCL create using this path component. 966 */ 967 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 968 { 969 if (NFS_PROTO(dir)->version == 2) 970 return 0; 971 return flags & LOOKUP_EXCL; 972 } 973 974 /* 975 * Inode and filehandle revalidation for lookups. 976 * 977 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 978 * or if the intent information indicates that we're about to open this 979 * particular file and the "nocto" mount flag is not set. 980 * 981 */ 982 static 983 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 984 { 985 struct nfs_server *server = NFS_SERVER(inode); 986 int ret; 987 988 if (IS_AUTOMOUNT(inode)) 989 return 0; 990 /* VFS wants an on-the-wire revalidation */ 991 if (flags & LOOKUP_REVAL) 992 goto out_force; 993 /* This is an open(2) */ 994 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 995 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 996 goto out_force; 997 out: 998 return (inode->i_nlink == 0) ? -ENOENT : 0; 999 out_force: 1000 ret = __nfs_revalidate_inode(server, inode); 1001 if (ret != 0) 1002 return ret; 1003 goto out; 1004 } 1005 1006 /* 1007 * We judge how long we want to trust negative 1008 * dentries by looking at the parent inode mtime. 1009 * 1010 * If parent mtime has changed, we revalidate, else we wait for a 1011 * period corresponding to the parent's attribute cache timeout value. 1012 */ 1013 static inline 1014 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1015 unsigned int flags) 1016 { 1017 /* Don't revalidate a negative dentry if we're creating a new file */ 1018 if (flags & LOOKUP_CREATE) 1019 return 0; 1020 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1021 return 1; 1022 return !nfs_check_verifier(dir, dentry); 1023 } 1024 1025 /* 1026 * This is called every time the dcache has a lookup hit, 1027 * and we should check whether we can really trust that 1028 * lookup. 1029 * 1030 * NOTE! The hit can be a negative hit too, don't assume 1031 * we have an inode! 1032 * 1033 * If the parent directory is seen to have changed, we throw out the 1034 * cached dentry and do a new lookup. 1035 */ 1036 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1037 { 1038 struct inode *dir; 1039 struct inode *inode; 1040 struct dentry *parent; 1041 struct nfs_fh *fhandle = NULL; 1042 struct nfs_fattr *fattr = NULL; 1043 int error; 1044 1045 if (flags & LOOKUP_RCU) 1046 return -ECHILD; 1047 1048 parent = dget_parent(dentry); 1049 dir = parent->d_inode; 1050 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1051 inode = dentry->d_inode; 1052 1053 if (!inode) { 1054 if (nfs_neg_need_reval(dir, dentry, flags)) 1055 goto out_bad; 1056 goto out_valid_noent; 1057 } 1058 1059 if (is_bad_inode(inode)) { 1060 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1061 __func__, dentry->d_parent->d_name.name, 1062 dentry->d_name.name); 1063 goto out_bad; 1064 } 1065 1066 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1067 goto out_set_verifier; 1068 1069 /* Force a full look up iff the parent directory has changed */ 1070 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1071 if (nfs_lookup_verify_inode(inode, flags)) 1072 goto out_zap_parent; 1073 goto out_valid; 1074 } 1075 1076 if (NFS_STALE(inode)) 1077 goto out_bad; 1078 1079 error = -ENOMEM; 1080 fhandle = nfs_alloc_fhandle(); 1081 fattr = nfs_alloc_fattr(); 1082 if (fhandle == NULL || fattr == NULL) 1083 goto out_error; 1084 1085 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1086 if (error) 1087 goto out_bad; 1088 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1089 goto out_bad; 1090 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1091 goto out_bad; 1092 1093 nfs_free_fattr(fattr); 1094 nfs_free_fhandle(fhandle); 1095 out_set_verifier: 1096 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1097 out_valid: 1098 /* Success: notify readdir to use READDIRPLUS */ 1099 nfs_advise_use_readdirplus(dir); 1100 out_valid_noent: 1101 dput(parent); 1102 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1103 __func__, dentry->d_parent->d_name.name, 1104 dentry->d_name.name); 1105 return 1; 1106 out_zap_parent: 1107 nfs_zap_caches(dir); 1108 out_bad: 1109 nfs_free_fattr(fattr); 1110 nfs_free_fhandle(fhandle); 1111 nfs_mark_for_revalidate(dir); 1112 if (inode && S_ISDIR(inode->i_mode)) { 1113 /* Purge readdir caches. */ 1114 nfs_zap_caches(inode); 1115 /* If we have submounts, don't unhash ! */ 1116 if (have_submounts(dentry)) 1117 goto out_valid; 1118 if (dentry->d_flags & DCACHE_DISCONNECTED) 1119 goto out_valid; 1120 shrink_dcache_parent(dentry); 1121 } 1122 d_drop(dentry); 1123 dput(parent); 1124 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1125 __func__, dentry->d_parent->d_name.name, 1126 dentry->d_name.name); 1127 return 0; 1128 out_error: 1129 nfs_free_fattr(fattr); 1130 nfs_free_fhandle(fhandle); 1131 dput(parent); 1132 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1133 __func__, dentry->d_parent->d_name.name, 1134 dentry->d_name.name, error); 1135 return error; 1136 } 1137 1138 /* 1139 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1140 * when we don't really care about the dentry name. This is called when a 1141 * pathwalk ends on a dentry that was not found via a normal lookup in the 1142 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1143 * 1144 * In this situation, we just want to verify that the inode itself is OK 1145 * since the dentry might have changed on the server. 1146 */ 1147 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1148 { 1149 int error; 1150 struct inode *inode = dentry->d_inode; 1151 1152 /* 1153 * I believe we can only get a negative dentry here in the case of a 1154 * procfs-style symlink. Just assume it's correct for now, but we may 1155 * eventually need to do something more here. 1156 */ 1157 if (!inode) { 1158 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n", 1159 __func__, dentry->d_parent->d_name.name, 1160 dentry->d_name.name); 1161 return 1; 1162 } 1163 1164 if (is_bad_inode(inode)) { 1165 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1166 __func__, dentry->d_parent->d_name.name, 1167 dentry->d_name.name); 1168 return 0; 1169 } 1170 1171 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1172 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1173 __func__, inode->i_ino, error ? "invalid" : "valid"); 1174 return !error; 1175 } 1176 1177 /* 1178 * This is called from dput() when d_count is going to 0. 1179 */ 1180 static int nfs_dentry_delete(const struct dentry *dentry) 1181 { 1182 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1183 dentry->d_parent->d_name.name, dentry->d_name.name, 1184 dentry->d_flags); 1185 1186 /* Unhash any dentry with a stale inode */ 1187 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1188 return 1; 1189 1190 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1191 /* Unhash it, so that ->d_iput() would be called */ 1192 return 1; 1193 } 1194 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1195 /* Unhash it, so that ancestors of killed async unlink 1196 * files will be cleaned up during umount */ 1197 return 1; 1198 } 1199 return 0; 1200 1201 } 1202 1203 /* Ensure that we revalidate inode->i_nlink */ 1204 static void nfs_drop_nlink(struct inode *inode) 1205 { 1206 spin_lock(&inode->i_lock); 1207 /* drop the inode if we're reasonably sure this is the last link */ 1208 if (inode->i_nlink == 1) 1209 clear_nlink(inode); 1210 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1211 spin_unlock(&inode->i_lock); 1212 } 1213 1214 /* 1215 * Called when the dentry loses inode. 1216 * We use it to clean up silly-renamed files. 1217 */ 1218 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1219 { 1220 if (S_ISDIR(inode->i_mode)) 1221 /* drop any readdir cache as it could easily be old */ 1222 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1223 1224 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1225 nfs_complete_unlink(dentry, inode); 1226 nfs_drop_nlink(inode); 1227 } 1228 iput(inode); 1229 } 1230 1231 static void nfs_d_release(struct dentry *dentry) 1232 { 1233 /* free cached devname value, if it survived that far */ 1234 if (unlikely(dentry->d_fsdata)) { 1235 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1236 WARN_ON(1); 1237 else 1238 kfree(dentry->d_fsdata); 1239 } 1240 } 1241 1242 const struct dentry_operations nfs_dentry_operations = { 1243 .d_revalidate = nfs_lookup_revalidate, 1244 .d_weak_revalidate = nfs_weak_revalidate, 1245 .d_delete = nfs_dentry_delete, 1246 .d_iput = nfs_dentry_iput, 1247 .d_automount = nfs_d_automount, 1248 .d_release = nfs_d_release, 1249 }; 1250 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1251 1252 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1253 { 1254 struct dentry *res; 1255 struct dentry *parent; 1256 struct inode *inode = NULL; 1257 struct nfs_fh *fhandle = NULL; 1258 struct nfs_fattr *fattr = NULL; 1259 int error; 1260 1261 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1262 dentry->d_parent->d_name.name, dentry->d_name.name); 1263 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1264 1265 res = ERR_PTR(-ENAMETOOLONG); 1266 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1267 goto out; 1268 1269 /* 1270 * If we're doing an exclusive create, optimize away the lookup 1271 * but don't hash the dentry. 1272 */ 1273 if (nfs_is_exclusive_create(dir, flags)) { 1274 d_instantiate(dentry, NULL); 1275 res = NULL; 1276 goto out; 1277 } 1278 1279 res = ERR_PTR(-ENOMEM); 1280 fhandle = nfs_alloc_fhandle(); 1281 fattr = nfs_alloc_fattr(); 1282 if (fhandle == NULL || fattr == NULL) 1283 goto out; 1284 1285 parent = dentry->d_parent; 1286 /* Protect against concurrent sillydeletes */ 1287 nfs_block_sillyrename(parent); 1288 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1289 if (error == -ENOENT) 1290 goto no_entry; 1291 if (error < 0) { 1292 res = ERR_PTR(error); 1293 goto out_unblock_sillyrename; 1294 } 1295 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1296 res = ERR_CAST(inode); 1297 if (IS_ERR(res)) 1298 goto out_unblock_sillyrename; 1299 1300 /* Success: notify readdir to use READDIRPLUS */ 1301 nfs_advise_use_readdirplus(dir); 1302 1303 no_entry: 1304 res = d_materialise_unique(dentry, inode); 1305 if (res != NULL) { 1306 if (IS_ERR(res)) 1307 goto out_unblock_sillyrename; 1308 dentry = res; 1309 } 1310 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1311 out_unblock_sillyrename: 1312 nfs_unblock_sillyrename(parent); 1313 out: 1314 nfs_free_fattr(fattr); 1315 nfs_free_fhandle(fhandle); 1316 return res; 1317 } 1318 EXPORT_SYMBOL_GPL(nfs_lookup); 1319 1320 #if IS_ENABLED(CONFIG_NFS_V4) 1321 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1322 1323 const struct dentry_operations nfs4_dentry_operations = { 1324 .d_revalidate = nfs4_lookup_revalidate, 1325 .d_delete = nfs_dentry_delete, 1326 .d_iput = nfs_dentry_iput, 1327 .d_automount = nfs_d_automount, 1328 .d_release = nfs_d_release, 1329 }; 1330 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1331 1332 static fmode_t flags_to_mode(int flags) 1333 { 1334 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1335 if ((flags & O_ACCMODE) != O_WRONLY) 1336 res |= FMODE_READ; 1337 if ((flags & O_ACCMODE) != O_RDONLY) 1338 res |= FMODE_WRITE; 1339 return res; 1340 } 1341 1342 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1343 { 1344 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1345 } 1346 1347 static int do_open(struct inode *inode, struct file *filp) 1348 { 1349 nfs_fscache_set_inode_cookie(inode, filp); 1350 return 0; 1351 } 1352 1353 static int nfs_finish_open(struct nfs_open_context *ctx, 1354 struct dentry *dentry, 1355 struct file *file, unsigned open_flags, 1356 int *opened) 1357 { 1358 int err; 1359 1360 if (ctx->dentry != dentry) { 1361 dput(ctx->dentry); 1362 ctx->dentry = dget(dentry); 1363 } 1364 1365 /* If the open_intent is for execute, we have an extra check to make */ 1366 if (ctx->mode & FMODE_EXEC) { 1367 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags); 1368 if (err < 0) 1369 goto out; 1370 } 1371 1372 err = finish_open(file, dentry, do_open, opened); 1373 if (err) 1374 goto out; 1375 nfs_file_set_open_context(file, ctx); 1376 1377 out: 1378 put_nfs_open_context(ctx); 1379 return err; 1380 } 1381 1382 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1383 struct file *file, unsigned open_flags, 1384 umode_t mode, int *opened) 1385 { 1386 struct nfs_open_context *ctx; 1387 struct dentry *res; 1388 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1389 struct inode *inode; 1390 int err; 1391 1392 /* Expect a negative dentry */ 1393 BUG_ON(dentry->d_inode); 1394 1395 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n", 1396 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1397 1398 /* NFS only supports OPEN on regular files */ 1399 if ((open_flags & O_DIRECTORY)) { 1400 if (!d_unhashed(dentry)) { 1401 /* 1402 * Hashed negative dentry with O_DIRECTORY: dentry was 1403 * revalidated and is fine, no need to perform lookup 1404 * again 1405 */ 1406 return -ENOENT; 1407 } 1408 goto no_open; 1409 } 1410 1411 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1412 return -ENAMETOOLONG; 1413 1414 if (open_flags & O_CREAT) { 1415 attr.ia_valid |= ATTR_MODE; 1416 attr.ia_mode = mode & ~current_umask(); 1417 } 1418 if (open_flags & O_TRUNC) { 1419 attr.ia_valid |= ATTR_SIZE; 1420 attr.ia_size = 0; 1421 } 1422 1423 ctx = create_nfs_open_context(dentry, open_flags); 1424 err = PTR_ERR(ctx); 1425 if (IS_ERR(ctx)) 1426 goto out; 1427 1428 nfs_block_sillyrename(dentry->d_parent); 1429 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1430 d_drop(dentry); 1431 if (IS_ERR(inode)) { 1432 nfs_unblock_sillyrename(dentry->d_parent); 1433 put_nfs_open_context(ctx); 1434 err = PTR_ERR(inode); 1435 switch (err) { 1436 case -ENOENT: 1437 d_add(dentry, NULL); 1438 break; 1439 case -EISDIR: 1440 case -ENOTDIR: 1441 goto no_open; 1442 case -ELOOP: 1443 if (!(open_flags & O_NOFOLLOW)) 1444 goto no_open; 1445 break; 1446 /* case -EINVAL: */ 1447 default: 1448 break; 1449 } 1450 goto out; 1451 } 1452 res = d_add_unique(dentry, inode); 1453 if (res != NULL) 1454 dentry = res; 1455 1456 nfs_unblock_sillyrename(dentry->d_parent); 1457 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1458 1459 err = nfs_finish_open(ctx, dentry, file, open_flags, opened); 1460 1461 dput(res); 1462 out: 1463 return err; 1464 1465 no_open: 1466 res = nfs_lookup(dir, dentry, 0); 1467 err = PTR_ERR(res); 1468 if (IS_ERR(res)) 1469 goto out; 1470 1471 return finish_no_open(file, res); 1472 } 1473 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1474 1475 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1476 { 1477 struct dentry *parent = NULL; 1478 struct inode *inode; 1479 struct inode *dir; 1480 int ret = 0; 1481 1482 if (flags & LOOKUP_RCU) 1483 return -ECHILD; 1484 1485 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1486 goto no_open; 1487 if (d_mountpoint(dentry)) 1488 goto no_open; 1489 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1490 goto no_open; 1491 1492 inode = dentry->d_inode; 1493 parent = dget_parent(dentry); 1494 dir = parent->d_inode; 1495 1496 /* We can't create new files in nfs_open_revalidate(), so we 1497 * optimize away revalidation of negative dentries. 1498 */ 1499 if (inode == NULL) { 1500 if (!nfs_neg_need_reval(dir, dentry, flags)) 1501 ret = 1; 1502 goto out; 1503 } 1504 1505 /* NFS only supports OPEN on regular files */ 1506 if (!S_ISREG(inode->i_mode)) 1507 goto no_open_dput; 1508 /* We cannot do exclusive creation on a positive dentry */ 1509 if (flags & LOOKUP_EXCL) 1510 goto no_open_dput; 1511 1512 /* Let f_op->open() actually open (and revalidate) the file */ 1513 ret = 1; 1514 1515 out: 1516 dput(parent); 1517 return ret; 1518 1519 no_open_dput: 1520 dput(parent); 1521 no_open: 1522 return nfs_lookup_revalidate(dentry, flags); 1523 } 1524 1525 #endif /* CONFIG_NFSV4 */ 1526 1527 /* 1528 * Code common to create, mkdir, and mknod. 1529 */ 1530 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1531 struct nfs_fattr *fattr) 1532 { 1533 struct dentry *parent = dget_parent(dentry); 1534 struct inode *dir = parent->d_inode; 1535 struct inode *inode; 1536 int error = -EACCES; 1537 1538 d_drop(dentry); 1539 1540 /* We may have been initialized further down */ 1541 if (dentry->d_inode) 1542 goto out; 1543 if (fhandle->size == 0) { 1544 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1545 if (error) 1546 goto out_error; 1547 } 1548 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1549 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1550 struct nfs_server *server = NFS_SB(dentry->d_sb); 1551 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1552 if (error < 0) 1553 goto out_error; 1554 } 1555 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1556 error = PTR_ERR(inode); 1557 if (IS_ERR(inode)) 1558 goto out_error; 1559 d_add(dentry, inode); 1560 out: 1561 dput(parent); 1562 return 0; 1563 out_error: 1564 nfs_mark_for_revalidate(dir); 1565 dput(parent); 1566 return error; 1567 } 1568 EXPORT_SYMBOL_GPL(nfs_instantiate); 1569 1570 /* 1571 * Following a failed create operation, we drop the dentry rather 1572 * than retain a negative dentry. This avoids a problem in the event 1573 * that the operation succeeded on the server, but an error in the 1574 * reply path made it appear to have failed. 1575 */ 1576 int nfs_create(struct inode *dir, struct dentry *dentry, 1577 umode_t mode, bool excl) 1578 { 1579 struct iattr attr; 1580 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1581 int error; 1582 1583 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1584 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1585 1586 attr.ia_mode = mode; 1587 attr.ia_valid = ATTR_MODE; 1588 1589 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1590 if (error != 0) 1591 goto out_err; 1592 return 0; 1593 out_err: 1594 d_drop(dentry); 1595 return error; 1596 } 1597 EXPORT_SYMBOL_GPL(nfs_create); 1598 1599 /* 1600 * See comments for nfs_proc_create regarding failed operations. 1601 */ 1602 int 1603 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1604 { 1605 struct iattr attr; 1606 int status; 1607 1608 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1609 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1610 1611 if (!new_valid_dev(rdev)) 1612 return -EINVAL; 1613 1614 attr.ia_mode = mode; 1615 attr.ia_valid = ATTR_MODE; 1616 1617 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1618 if (status != 0) 1619 goto out_err; 1620 return 0; 1621 out_err: 1622 d_drop(dentry); 1623 return status; 1624 } 1625 EXPORT_SYMBOL_GPL(nfs_mknod); 1626 1627 /* 1628 * See comments for nfs_proc_create regarding failed operations. 1629 */ 1630 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1631 { 1632 struct iattr attr; 1633 int error; 1634 1635 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1636 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1637 1638 attr.ia_valid = ATTR_MODE; 1639 attr.ia_mode = mode | S_IFDIR; 1640 1641 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1642 if (error != 0) 1643 goto out_err; 1644 return 0; 1645 out_err: 1646 d_drop(dentry); 1647 return error; 1648 } 1649 EXPORT_SYMBOL_GPL(nfs_mkdir); 1650 1651 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1652 { 1653 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1654 d_delete(dentry); 1655 } 1656 1657 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1658 { 1659 int error; 1660 1661 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1662 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1663 1664 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1665 /* Ensure the VFS deletes this inode */ 1666 if (error == 0 && dentry->d_inode != NULL) 1667 clear_nlink(dentry->d_inode); 1668 else if (error == -ENOENT) 1669 nfs_dentry_handle_enoent(dentry); 1670 1671 return error; 1672 } 1673 EXPORT_SYMBOL_GPL(nfs_rmdir); 1674 1675 /* 1676 * Remove a file after making sure there are no pending writes, 1677 * and after checking that the file has only one user. 1678 * 1679 * We invalidate the attribute cache and free the inode prior to the operation 1680 * to avoid possible races if the server reuses the inode. 1681 */ 1682 static int nfs_safe_remove(struct dentry *dentry) 1683 { 1684 struct inode *dir = dentry->d_parent->d_inode; 1685 struct inode *inode = dentry->d_inode; 1686 int error = -EBUSY; 1687 1688 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1689 dentry->d_parent->d_name.name, dentry->d_name.name); 1690 1691 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1692 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1693 error = 0; 1694 goto out; 1695 } 1696 1697 if (inode != NULL) { 1698 NFS_PROTO(inode)->return_delegation(inode); 1699 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1700 if (error == 0) 1701 nfs_drop_nlink(inode); 1702 } else 1703 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1704 if (error == -ENOENT) 1705 nfs_dentry_handle_enoent(dentry); 1706 out: 1707 return error; 1708 } 1709 1710 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1711 * belongs to an active ".nfs..." file and we return -EBUSY. 1712 * 1713 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1714 */ 1715 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1716 { 1717 int error; 1718 int need_rehash = 0; 1719 1720 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1721 dir->i_ino, dentry->d_name.name); 1722 1723 spin_lock(&dentry->d_lock); 1724 if (dentry->d_count > 1) { 1725 spin_unlock(&dentry->d_lock); 1726 /* Start asynchronous writeout of the inode */ 1727 write_inode_now(dentry->d_inode, 0); 1728 error = nfs_sillyrename(dir, dentry); 1729 return error; 1730 } 1731 if (!d_unhashed(dentry)) { 1732 __d_drop(dentry); 1733 need_rehash = 1; 1734 } 1735 spin_unlock(&dentry->d_lock); 1736 error = nfs_safe_remove(dentry); 1737 if (!error || error == -ENOENT) { 1738 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1739 } else if (need_rehash) 1740 d_rehash(dentry); 1741 return error; 1742 } 1743 EXPORT_SYMBOL_GPL(nfs_unlink); 1744 1745 /* 1746 * To create a symbolic link, most file systems instantiate a new inode, 1747 * add a page to it containing the path, then write it out to the disk 1748 * using prepare_write/commit_write. 1749 * 1750 * Unfortunately the NFS client can't create the in-core inode first 1751 * because it needs a file handle to create an in-core inode (see 1752 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1753 * symlink request has completed on the server. 1754 * 1755 * So instead we allocate a raw page, copy the symname into it, then do 1756 * the SYMLINK request with the page as the buffer. If it succeeds, we 1757 * now have a new file handle and can instantiate an in-core NFS inode 1758 * and move the raw page into its mapping. 1759 */ 1760 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1761 { 1762 struct page *page; 1763 char *kaddr; 1764 struct iattr attr; 1765 unsigned int pathlen = strlen(symname); 1766 int error; 1767 1768 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1769 dir->i_ino, dentry->d_name.name, symname); 1770 1771 if (pathlen > PAGE_SIZE) 1772 return -ENAMETOOLONG; 1773 1774 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1775 attr.ia_valid = ATTR_MODE; 1776 1777 page = alloc_page(GFP_HIGHUSER); 1778 if (!page) 1779 return -ENOMEM; 1780 1781 kaddr = kmap_atomic(page); 1782 memcpy(kaddr, symname, pathlen); 1783 if (pathlen < PAGE_SIZE) 1784 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1785 kunmap_atomic(kaddr); 1786 1787 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1788 if (error != 0) { 1789 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1790 dir->i_sb->s_id, dir->i_ino, 1791 dentry->d_name.name, symname, error); 1792 d_drop(dentry); 1793 __free_page(page); 1794 return error; 1795 } 1796 1797 /* 1798 * No big deal if we can't add this page to the page cache here. 1799 * READLINK will get the missing page from the server if needed. 1800 */ 1801 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0, 1802 GFP_KERNEL)) { 1803 SetPageUptodate(page); 1804 unlock_page(page); 1805 } else 1806 __free_page(page); 1807 1808 return 0; 1809 } 1810 EXPORT_SYMBOL_GPL(nfs_symlink); 1811 1812 int 1813 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1814 { 1815 struct inode *inode = old_dentry->d_inode; 1816 int error; 1817 1818 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1819 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1820 dentry->d_parent->d_name.name, dentry->d_name.name); 1821 1822 NFS_PROTO(inode)->return_delegation(inode); 1823 1824 d_drop(dentry); 1825 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1826 if (error == 0) { 1827 ihold(inode); 1828 d_add(dentry, inode); 1829 } 1830 return error; 1831 } 1832 EXPORT_SYMBOL_GPL(nfs_link); 1833 1834 /* 1835 * RENAME 1836 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1837 * different file handle for the same inode after a rename (e.g. when 1838 * moving to a different directory). A fail-safe method to do so would 1839 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1840 * rename the old file using the sillyrename stuff. This way, the original 1841 * file in old_dir will go away when the last process iput()s the inode. 1842 * 1843 * FIXED. 1844 * 1845 * It actually works quite well. One needs to have the possibility for 1846 * at least one ".nfs..." file in each directory the file ever gets 1847 * moved or linked to which happens automagically with the new 1848 * implementation that only depends on the dcache stuff instead of 1849 * using the inode layer 1850 * 1851 * Unfortunately, things are a little more complicated than indicated 1852 * above. For a cross-directory move, we want to make sure we can get 1853 * rid of the old inode after the operation. This means there must be 1854 * no pending writes (if it's a file), and the use count must be 1. 1855 * If these conditions are met, we can drop the dentries before doing 1856 * the rename. 1857 */ 1858 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1859 struct inode *new_dir, struct dentry *new_dentry) 1860 { 1861 struct inode *old_inode = old_dentry->d_inode; 1862 struct inode *new_inode = new_dentry->d_inode; 1863 struct dentry *dentry = NULL, *rehash = NULL; 1864 int error = -EBUSY; 1865 1866 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1867 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1868 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1869 new_dentry->d_count); 1870 1871 /* 1872 * For non-directories, check whether the target is busy and if so, 1873 * make a copy of the dentry and then do a silly-rename. If the 1874 * silly-rename succeeds, the copied dentry is hashed and becomes 1875 * the new target. 1876 */ 1877 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1878 /* 1879 * To prevent any new references to the target during the 1880 * rename, we unhash the dentry in advance. 1881 */ 1882 if (!d_unhashed(new_dentry)) { 1883 d_drop(new_dentry); 1884 rehash = new_dentry; 1885 } 1886 1887 if (new_dentry->d_count > 2) { 1888 int err; 1889 1890 /* copy the target dentry's name */ 1891 dentry = d_alloc(new_dentry->d_parent, 1892 &new_dentry->d_name); 1893 if (!dentry) 1894 goto out; 1895 1896 /* silly-rename the existing target ... */ 1897 err = nfs_sillyrename(new_dir, new_dentry); 1898 if (err) 1899 goto out; 1900 1901 new_dentry = dentry; 1902 rehash = NULL; 1903 new_inode = NULL; 1904 } 1905 } 1906 1907 NFS_PROTO(old_inode)->return_delegation(old_inode); 1908 if (new_inode != NULL) 1909 NFS_PROTO(new_inode)->return_delegation(new_inode); 1910 1911 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1912 new_dir, &new_dentry->d_name); 1913 nfs_mark_for_revalidate(old_inode); 1914 out: 1915 if (rehash) 1916 d_rehash(rehash); 1917 if (!error) { 1918 if (new_inode != NULL) 1919 nfs_drop_nlink(new_inode); 1920 d_move(old_dentry, new_dentry); 1921 nfs_set_verifier(new_dentry, 1922 nfs_save_change_attribute(new_dir)); 1923 } else if (error == -ENOENT) 1924 nfs_dentry_handle_enoent(old_dentry); 1925 1926 /* new dentry created? */ 1927 if (dentry) 1928 dput(dentry); 1929 return error; 1930 } 1931 EXPORT_SYMBOL_GPL(nfs_rename); 1932 1933 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1934 static LIST_HEAD(nfs_access_lru_list); 1935 static atomic_long_t nfs_access_nr_entries; 1936 1937 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1938 { 1939 put_rpccred(entry->cred); 1940 kfree(entry); 1941 smp_mb__before_atomic_dec(); 1942 atomic_long_dec(&nfs_access_nr_entries); 1943 smp_mb__after_atomic_dec(); 1944 } 1945 1946 static void nfs_access_free_list(struct list_head *head) 1947 { 1948 struct nfs_access_entry *cache; 1949 1950 while (!list_empty(head)) { 1951 cache = list_entry(head->next, struct nfs_access_entry, lru); 1952 list_del(&cache->lru); 1953 nfs_access_free_entry(cache); 1954 } 1955 } 1956 1957 int nfs_access_cache_shrinker(struct shrinker *shrink, 1958 struct shrink_control *sc) 1959 { 1960 LIST_HEAD(head); 1961 struct nfs_inode *nfsi, *next; 1962 struct nfs_access_entry *cache; 1963 int nr_to_scan = sc->nr_to_scan; 1964 gfp_t gfp_mask = sc->gfp_mask; 1965 1966 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 1967 return (nr_to_scan == 0) ? 0 : -1; 1968 1969 spin_lock(&nfs_access_lru_lock); 1970 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 1971 struct inode *inode; 1972 1973 if (nr_to_scan-- == 0) 1974 break; 1975 inode = &nfsi->vfs_inode; 1976 spin_lock(&inode->i_lock); 1977 if (list_empty(&nfsi->access_cache_entry_lru)) 1978 goto remove_lru_entry; 1979 cache = list_entry(nfsi->access_cache_entry_lru.next, 1980 struct nfs_access_entry, lru); 1981 list_move(&cache->lru, &head); 1982 rb_erase(&cache->rb_node, &nfsi->access_cache); 1983 if (!list_empty(&nfsi->access_cache_entry_lru)) 1984 list_move_tail(&nfsi->access_cache_inode_lru, 1985 &nfs_access_lru_list); 1986 else { 1987 remove_lru_entry: 1988 list_del_init(&nfsi->access_cache_inode_lru); 1989 smp_mb__before_clear_bit(); 1990 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1991 smp_mb__after_clear_bit(); 1992 } 1993 spin_unlock(&inode->i_lock); 1994 } 1995 spin_unlock(&nfs_access_lru_lock); 1996 nfs_access_free_list(&head); 1997 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1998 } 1999 2000 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2001 { 2002 struct rb_root *root_node = &nfsi->access_cache; 2003 struct rb_node *n; 2004 struct nfs_access_entry *entry; 2005 2006 /* Unhook entries from the cache */ 2007 while ((n = rb_first(root_node)) != NULL) { 2008 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2009 rb_erase(n, root_node); 2010 list_move(&entry->lru, head); 2011 } 2012 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2013 } 2014 2015 void nfs_access_zap_cache(struct inode *inode) 2016 { 2017 LIST_HEAD(head); 2018 2019 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2020 return; 2021 /* Remove from global LRU init */ 2022 spin_lock(&nfs_access_lru_lock); 2023 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2024 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2025 2026 spin_lock(&inode->i_lock); 2027 __nfs_access_zap_cache(NFS_I(inode), &head); 2028 spin_unlock(&inode->i_lock); 2029 spin_unlock(&nfs_access_lru_lock); 2030 nfs_access_free_list(&head); 2031 } 2032 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2033 2034 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2035 { 2036 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2037 struct nfs_access_entry *entry; 2038 2039 while (n != NULL) { 2040 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2041 2042 if (cred < entry->cred) 2043 n = n->rb_left; 2044 else if (cred > entry->cred) 2045 n = n->rb_right; 2046 else 2047 return entry; 2048 } 2049 return NULL; 2050 } 2051 2052 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2053 { 2054 struct nfs_inode *nfsi = NFS_I(inode); 2055 struct nfs_access_entry *cache; 2056 int err = -ENOENT; 2057 2058 spin_lock(&inode->i_lock); 2059 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2060 goto out_zap; 2061 cache = nfs_access_search_rbtree(inode, cred); 2062 if (cache == NULL) 2063 goto out; 2064 if (!nfs_have_delegated_attributes(inode) && 2065 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2066 goto out_stale; 2067 res->jiffies = cache->jiffies; 2068 res->cred = cache->cred; 2069 res->mask = cache->mask; 2070 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2071 err = 0; 2072 out: 2073 spin_unlock(&inode->i_lock); 2074 return err; 2075 out_stale: 2076 rb_erase(&cache->rb_node, &nfsi->access_cache); 2077 list_del(&cache->lru); 2078 spin_unlock(&inode->i_lock); 2079 nfs_access_free_entry(cache); 2080 return -ENOENT; 2081 out_zap: 2082 spin_unlock(&inode->i_lock); 2083 nfs_access_zap_cache(inode); 2084 return -ENOENT; 2085 } 2086 2087 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2088 { 2089 struct nfs_inode *nfsi = NFS_I(inode); 2090 struct rb_root *root_node = &nfsi->access_cache; 2091 struct rb_node **p = &root_node->rb_node; 2092 struct rb_node *parent = NULL; 2093 struct nfs_access_entry *entry; 2094 2095 spin_lock(&inode->i_lock); 2096 while (*p != NULL) { 2097 parent = *p; 2098 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2099 2100 if (set->cred < entry->cred) 2101 p = &parent->rb_left; 2102 else if (set->cred > entry->cred) 2103 p = &parent->rb_right; 2104 else 2105 goto found; 2106 } 2107 rb_link_node(&set->rb_node, parent, p); 2108 rb_insert_color(&set->rb_node, root_node); 2109 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2110 spin_unlock(&inode->i_lock); 2111 return; 2112 found: 2113 rb_replace_node(parent, &set->rb_node, root_node); 2114 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2115 list_del(&entry->lru); 2116 spin_unlock(&inode->i_lock); 2117 nfs_access_free_entry(entry); 2118 } 2119 2120 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2121 { 2122 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2123 if (cache == NULL) 2124 return; 2125 RB_CLEAR_NODE(&cache->rb_node); 2126 cache->jiffies = set->jiffies; 2127 cache->cred = get_rpccred(set->cred); 2128 cache->mask = set->mask; 2129 2130 nfs_access_add_rbtree(inode, cache); 2131 2132 /* Update accounting */ 2133 smp_mb__before_atomic_inc(); 2134 atomic_long_inc(&nfs_access_nr_entries); 2135 smp_mb__after_atomic_inc(); 2136 2137 /* Add inode to global LRU list */ 2138 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2139 spin_lock(&nfs_access_lru_lock); 2140 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2141 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2142 &nfs_access_lru_list); 2143 spin_unlock(&nfs_access_lru_lock); 2144 } 2145 } 2146 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2147 2148 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2149 { 2150 entry->mask = 0; 2151 if (access_result & NFS4_ACCESS_READ) 2152 entry->mask |= MAY_READ; 2153 if (access_result & 2154 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2155 entry->mask |= MAY_WRITE; 2156 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2157 entry->mask |= MAY_EXEC; 2158 } 2159 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2160 2161 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2162 { 2163 struct nfs_access_entry cache; 2164 int status; 2165 2166 status = nfs_access_get_cached(inode, cred, &cache); 2167 if (status == 0) 2168 goto out; 2169 2170 /* Be clever: ask server to check for all possible rights */ 2171 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2172 cache.cred = cred; 2173 cache.jiffies = jiffies; 2174 status = NFS_PROTO(inode)->access(inode, &cache); 2175 if (status != 0) { 2176 if (status == -ESTALE) { 2177 nfs_zap_caches(inode); 2178 if (!S_ISDIR(inode->i_mode)) 2179 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2180 } 2181 return status; 2182 } 2183 nfs_access_add_cache(inode, &cache); 2184 out: 2185 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2186 return 0; 2187 return -EACCES; 2188 } 2189 2190 static int nfs_open_permission_mask(int openflags) 2191 { 2192 int mask = 0; 2193 2194 if (openflags & __FMODE_EXEC) { 2195 /* ONLY check exec rights */ 2196 mask = MAY_EXEC; 2197 } else { 2198 if ((openflags & O_ACCMODE) != O_WRONLY) 2199 mask |= MAY_READ; 2200 if ((openflags & O_ACCMODE) != O_RDONLY) 2201 mask |= MAY_WRITE; 2202 } 2203 2204 return mask; 2205 } 2206 2207 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2208 { 2209 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2210 } 2211 EXPORT_SYMBOL_GPL(nfs_may_open); 2212 2213 int nfs_permission(struct inode *inode, int mask) 2214 { 2215 struct rpc_cred *cred; 2216 int res = 0; 2217 2218 if (mask & MAY_NOT_BLOCK) 2219 return -ECHILD; 2220 2221 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2222 2223 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2224 goto out; 2225 /* Is this sys_access() ? */ 2226 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2227 goto force_lookup; 2228 2229 switch (inode->i_mode & S_IFMT) { 2230 case S_IFLNK: 2231 goto out; 2232 case S_IFREG: 2233 /* NFSv4 has atomic_open... */ 2234 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2235 && (mask & MAY_OPEN) 2236 && !(mask & MAY_EXEC)) 2237 goto out; 2238 break; 2239 case S_IFDIR: 2240 /* 2241 * Optimize away all write operations, since the server 2242 * will check permissions when we perform the op. 2243 */ 2244 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2245 goto out; 2246 } 2247 2248 force_lookup: 2249 if (!NFS_PROTO(inode)->access) 2250 goto out_notsup; 2251 2252 cred = rpc_lookup_cred(); 2253 if (!IS_ERR(cred)) { 2254 res = nfs_do_access(inode, cred, mask); 2255 put_rpccred(cred); 2256 } else 2257 res = PTR_ERR(cred); 2258 out: 2259 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2260 res = -EACCES; 2261 2262 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2263 inode->i_sb->s_id, inode->i_ino, mask, res); 2264 return res; 2265 out_notsup: 2266 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2267 if (res == 0) 2268 res = generic_permission(inode, mask); 2269 goto out; 2270 } 2271 EXPORT_SYMBOL_GPL(nfs_permission); 2272 2273 /* 2274 * Local variables: 2275 * version-control: t 2276 * kept-new-versions: 5 2277 * End: 2278 */ 2279