xref: /linux/fs/nfs/dir.c (revision 1b7871550330c8777c45e07b84781529f27e2b3c)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 /* #define NFS_DEBUG_VERBOSE 1 */
47 
48 static int nfs_opendir(struct inode *, struct file *);
49 static int nfs_closedir(struct inode *, struct file *);
50 static int nfs_readdir(struct file *, struct dir_context *);
51 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
52 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
53 static void nfs_readdir_clear_array(struct page*);
54 
55 const struct file_operations nfs_dir_operations = {
56 	.llseek		= nfs_llseek_dir,
57 	.read		= generic_read_dir,
58 	.iterate	= nfs_readdir,
59 	.open		= nfs_opendir,
60 	.release	= nfs_closedir,
61 	.fsync		= nfs_fsync_dir,
62 };
63 
64 const struct address_space_operations nfs_dir_aops = {
65 	.freepage = nfs_readdir_clear_array,
66 };
67 
68 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
69 {
70 	struct nfs_open_dir_context *ctx;
71 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
72 	if (ctx != NULL) {
73 		ctx->duped = 0;
74 		ctx->attr_gencount = NFS_I(dir)->attr_gencount;
75 		ctx->dir_cookie = 0;
76 		ctx->dup_cookie = 0;
77 		ctx->cred = get_rpccred(cred);
78 		return ctx;
79 	}
80 	return  ERR_PTR(-ENOMEM);
81 }
82 
83 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
84 {
85 	put_rpccred(ctx->cred);
86 	kfree(ctx);
87 }
88 
89 /*
90  * Open file
91  */
92 static int
93 nfs_opendir(struct inode *inode, struct file *filp)
94 {
95 	int res = 0;
96 	struct nfs_open_dir_context *ctx;
97 	struct rpc_cred *cred;
98 
99 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
100 			filp->f_path.dentry->d_parent->d_name.name,
101 			filp->f_path.dentry->d_name.name);
102 
103 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
104 
105 	cred = rpc_lookup_cred();
106 	if (IS_ERR(cred))
107 		return PTR_ERR(cred);
108 	ctx = alloc_nfs_open_dir_context(inode, cred);
109 	if (IS_ERR(ctx)) {
110 		res = PTR_ERR(ctx);
111 		goto out;
112 	}
113 	filp->private_data = ctx;
114 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
115 		/* This is a mountpoint, so d_revalidate will never
116 		 * have been called, so we need to refresh the
117 		 * inode (for close-open consistency) ourselves.
118 		 */
119 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
120 	}
121 out:
122 	put_rpccred(cred);
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	unsigned int	plus:1;
162 	unsigned int	eof:1;
163 } nfs_readdir_descriptor_t;
164 
165 /*
166  * The caller is responsible for calling nfs_readdir_release_array(page)
167  */
168 static
169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
170 {
171 	void *ptr;
172 	if (page == NULL)
173 		return ERR_PTR(-EIO);
174 	ptr = kmap(page);
175 	if (ptr == NULL)
176 		return ERR_PTR(-ENOMEM);
177 	return ptr;
178 }
179 
180 static
181 void nfs_readdir_release_array(struct page *page)
182 {
183 	kunmap(page);
184 }
185 
186 /*
187  * we are freeing strings created by nfs_add_to_readdir_array()
188  */
189 static
190 void nfs_readdir_clear_array(struct page *page)
191 {
192 	struct nfs_cache_array *array;
193 	int i;
194 
195 	array = kmap_atomic(page);
196 	for (i = 0; i < array->size; i++)
197 		kfree(array->array[i].string.name);
198 	kunmap_atomic(array);
199 }
200 
201 /*
202  * the caller is responsible for freeing qstr.name
203  * when called by nfs_readdir_add_to_array, the strings will be freed in
204  * nfs_clear_readdir_array()
205  */
206 static
207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
208 {
209 	string->len = len;
210 	string->name = kmemdup(name, len, GFP_KERNEL);
211 	if (string->name == NULL)
212 		return -ENOMEM;
213 	/*
214 	 * Avoid a kmemleak false positive. The pointer to the name is stored
215 	 * in a page cache page which kmemleak does not scan.
216 	 */
217 	kmemleak_not_leak(string->name);
218 	string->hash = full_name_hash(name, len);
219 	return 0;
220 }
221 
222 static
223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
224 {
225 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
226 	struct nfs_cache_array_entry *cache_entry;
227 	int ret;
228 
229 	if (IS_ERR(array))
230 		return PTR_ERR(array);
231 
232 	cache_entry = &array->array[array->size];
233 
234 	/* Check that this entry lies within the page bounds */
235 	ret = -ENOSPC;
236 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
237 		goto out;
238 
239 	cache_entry->cookie = entry->prev_cookie;
240 	cache_entry->ino = entry->ino;
241 	cache_entry->d_type = entry->d_type;
242 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
243 	if (ret)
244 		goto out;
245 	array->last_cookie = entry->cookie;
246 	array->size++;
247 	if (entry->eof != 0)
248 		array->eof_index = array->size;
249 out:
250 	nfs_readdir_release_array(page);
251 	return ret;
252 }
253 
254 static
255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
256 {
257 	loff_t diff = desc->ctx->pos - desc->current_index;
258 	unsigned int index;
259 
260 	if (diff < 0)
261 		goto out_eof;
262 	if (diff >= array->size) {
263 		if (array->eof_index >= 0)
264 			goto out_eof;
265 		return -EAGAIN;
266 	}
267 
268 	index = (unsigned int)diff;
269 	*desc->dir_cookie = array->array[index].cookie;
270 	desc->cache_entry_index = index;
271 	return 0;
272 out_eof:
273 	desc->eof = 1;
274 	return -EBADCOOKIE;
275 }
276 
277 static
278 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
279 {
280 	int i;
281 	loff_t new_pos;
282 	int status = -EAGAIN;
283 
284 	for (i = 0; i < array->size; i++) {
285 		if (array->array[i].cookie == *desc->dir_cookie) {
286 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
287 			struct nfs_open_dir_context *ctx = desc->file->private_data;
288 
289 			new_pos = desc->current_index + i;
290 			if (ctx->attr_gencount != nfsi->attr_gencount
291 			    || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
292 				ctx->duped = 0;
293 				ctx->attr_gencount = nfsi->attr_gencount;
294 			} else if (new_pos < desc->ctx->pos) {
295 				if (ctx->duped > 0
296 				    && ctx->dup_cookie == *desc->dir_cookie) {
297 					if (printk_ratelimit()) {
298 						pr_notice("NFS: directory %s/%s contains a readdir loop."
299 								"Please contact your server vendor.  "
300 								"The file: %s has duplicate cookie %llu\n",
301 								desc->file->f_dentry->d_parent->d_name.name,
302 								desc->file->f_dentry->d_name.name,
303 								array->array[i].string.name,
304 								*desc->dir_cookie);
305 					}
306 					status = -ELOOP;
307 					goto out;
308 				}
309 				ctx->dup_cookie = *desc->dir_cookie;
310 				ctx->duped = -1;
311 			}
312 			desc->ctx->pos = new_pos;
313 			desc->cache_entry_index = i;
314 			return 0;
315 		}
316 	}
317 	if (array->eof_index >= 0) {
318 		status = -EBADCOOKIE;
319 		if (*desc->dir_cookie == array->last_cookie)
320 			desc->eof = 1;
321 	}
322 out:
323 	return status;
324 }
325 
326 static
327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
328 {
329 	struct nfs_cache_array *array;
330 	int status;
331 
332 	array = nfs_readdir_get_array(desc->page);
333 	if (IS_ERR(array)) {
334 		status = PTR_ERR(array);
335 		goto out;
336 	}
337 
338 	if (*desc->dir_cookie == 0)
339 		status = nfs_readdir_search_for_pos(array, desc);
340 	else
341 		status = nfs_readdir_search_for_cookie(array, desc);
342 
343 	if (status == -EAGAIN) {
344 		desc->last_cookie = array->last_cookie;
345 		desc->current_index += array->size;
346 		desc->page_index++;
347 	}
348 	nfs_readdir_release_array(desc->page);
349 out:
350 	return status;
351 }
352 
353 /* Fill a page with xdr information before transferring to the cache page */
354 static
355 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
356 			struct nfs_entry *entry, struct file *file, struct inode *inode)
357 {
358 	struct nfs_open_dir_context *ctx = file->private_data;
359 	struct rpc_cred	*cred = ctx->cred;
360 	unsigned long	timestamp, gencount;
361 	int		error;
362 
363  again:
364 	timestamp = jiffies;
365 	gencount = nfs_inc_attr_generation_counter();
366 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
367 					  NFS_SERVER(inode)->dtsize, desc->plus);
368 	if (error < 0) {
369 		/* We requested READDIRPLUS, but the server doesn't grok it */
370 		if (error == -ENOTSUPP && desc->plus) {
371 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
372 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
373 			desc->plus = 0;
374 			goto again;
375 		}
376 		goto error;
377 	}
378 	desc->timestamp = timestamp;
379 	desc->gencount = gencount;
380 error:
381 	return error;
382 }
383 
384 static int xdr_decode(nfs_readdir_descriptor_t *desc,
385 		      struct nfs_entry *entry, struct xdr_stream *xdr)
386 {
387 	int error;
388 
389 	error = desc->decode(xdr, entry, desc->plus);
390 	if (error)
391 		return error;
392 	entry->fattr->time_start = desc->timestamp;
393 	entry->fattr->gencount = desc->gencount;
394 	return 0;
395 }
396 
397 static
398 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
399 {
400 	if (dentry->d_inode == NULL)
401 		goto different;
402 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
403 		goto different;
404 	return 1;
405 different:
406 	return 0;
407 }
408 
409 static
410 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
411 {
412 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
413 		return false;
414 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
415 		return true;
416 	if (ctx->pos == 0)
417 		return true;
418 	return false;
419 }
420 
421 /*
422  * This function is called by the lookup code to request the use of
423  * readdirplus to accelerate any future lookups in the same
424  * directory.
425  */
426 static
427 void nfs_advise_use_readdirplus(struct inode *dir)
428 {
429 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
430 }
431 
432 static
433 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
434 {
435 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
436 	struct dentry *dentry;
437 	struct dentry *alias;
438 	struct inode *dir = parent->d_inode;
439 	struct inode *inode;
440 
441 	if (filename.name[0] == '.') {
442 		if (filename.len == 1)
443 			return;
444 		if (filename.len == 2 && filename.name[1] == '.')
445 			return;
446 	}
447 	filename.hash = full_name_hash(filename.name, filename.len);
448 
449 	dentry = d_lookup(parent, &filename);
450 	if (dentry != NULL) {
451 		if (nfs_same_file(dentry, entry)) {
452 			nfs_refresh_inode(dentry->d_inode, entry->fattr);
453 			goto out;
454 		} else {
455 			if (d_invalidate(dentry) != 0)
456 				goto out;
457 			dput(dentry);
458 		}
459 	}
460 
461 	dentry = d_alloc(parent, &filename);
462 	if (dentry == NULL)
463 		return;
464 
465 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
466 	if (IS_ERR(inode))
467 		goto out;
468 
469 	alias = d_materialise_unique(dentry, inode);
470 	if (IS_ERR(alias))
471 		goto out;
472 	else if (alias) {
473 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
474 		dput(alias);
475 	} else
476 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
477 
478 out:
479 	dput(dentry);
480 }
481 
482 /* Perform conversion from xdr to cache array */
483 static
484 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
485 				struct page **xdr_pages, struct page *page, unsigned int buflen)
486 {
487 	struct xdr_stream stream;
488 	struct xdr_buf buf;
489 	struct page *scratch;
490 	struct nfs_cache_array *array;
491 	unsigned int count = 0;
492 	int status;
493 
494 	scratch = alloc_page(GFP_KERNEL);
495 	if (scratch == NULL)
496 		return -ENOMEM;
497 
498 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
499 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
500 
501 	do {
502 		status = xdr_decode(desc, entry, &stream);
503 		if (status != 0) {
504 			if (status == -EAGAIN)
505 				status = 0;
506 			break;
507 		}
508 
509 		count++;
510 
511 		if (desc->plus != 0)
512 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
513 
514 		status = nfs_readdir_add_to_array(entry, page);
515 		if (status != 0)
516 			break;
517 	} while (!entry->eof);
518 
519 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
520 		array = nfs_readdir_get_array(page);
521 		if (!IS_ERR(array)) {
522 			array->eof_index = array->size;
523 			status = 0;
524 			nfs_readdir_release_array(page);
525 		} else
526 			status = PTR_ERR(array);
527 	}
528 
529 	put_page(scratch);
530 	return status;
531 }
532 
533 static
534 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
535 {
536 	unsigned int i;
537 	for (i = 0; i < npages; i++)
538 		put_page(pages[i]);
539 }
540 
541 static
542 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
543 		unsigned int npages)
544 {
545 	nfs_readdir_free_pagearray(pages, npages);
546 }
547 
548 /*
549  * nfs_readdir_large_page will allocate pages that must be freed with a call
550  * to nfs_readdir_free_large_page
551  */
552 static
553 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
554 {
555 	unsigned int i;
556 
557 	for (i = 0; i < npages; i++) {
558 		struct page *page = alloc_page(GFP_KERNEL);
559 		if (page == NULL)
560 			goto out_freepages;
561 		pages[i] = page;
562 	}
563 	return 0;
564 
565 out_freepages:
566 	nfs_readdir_free_pagearray(pages, i);
567 	return -ENOMEM;
568 }
569 
570 static
571 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
572 {
573 	struct page *pages[NFS_MAX_READDIR_PAGES];
574 	void *pages_ptr = NULL;
575 	struct nfs_entry entry;
576 	struct file	*file = desc->file;
577 	struct nfs_cache_array *array;
578 	int status = -ENOMEM;
579 	unsigned int array_size = ARRAY_SIZE(pages);
580 
581 	entry.prev_cookie = 0;
582 	entry.cookie = desc->last_cookie;
583 	entry.eof = 0;
584 	entry.fh = nfs_alloc_fhandle();
585 	entry.fattr = nfs_alloc_fattr();
586 	entry.server = NFS_SERVER(inode);
587 	if (entry.fh == NULL || entry.fattr == NULL)
588 		goto out;
589 
590 	array = nfs_readdir_get_array(page);
591 	if (IS_ERR(array)) {
592 		status = PTR_ERR(array);
593 		goto out;
594 	}
595 	memset(array, 0, sizeof(struct nfs_cache_array));
596 	array->eof_index = -1;
597 
598 	status = nfs_readdir_large_page(pages, array_size);
599 	if (status < 0)
600 		goto out_release_array;
601 	do {
602 		unsigned int pglen;
603 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
604 
605 		if (status < 0)
606 			break;
607 		pglen = status;
608 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
609 		if (status < 0) {
610 			if (status == -ENOSPC)
611 				status = 0;
612 			break;
613 		}
614 	} while (array->eof_index < 0);
615 
616 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
617 out_release_array:
618 	nfs_readdir_release_array(page);
619 out:
620 	nfs_free_fattr(entry.fattr);
621 	nfs_free_fhandle(entry.fh);
622 	return status;
623 }
624 
625 /*
626  * Now we cache directories properly, by converting xdr information
627  * to an array that can be used for lookups later.  This results in
628  * fewer cache pages, since we can store more information on each page.
629  * We only need to convert from xdr once so future lookups are much simpler
630  */
631 static
632 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
633 {
634 	struct inode	*inode = file_inode(desc->file);
635 	int ret;
636 
637 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
638 	if (ret < 0)
639 		goto error;
640 	SetPageUptodate(page);
641 
642 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
643 		/* Should never happen */
644 		nfs_zap_mapping(inode, inode->i_mapping);
645 	}
646 	unlock_page(page);
647 	return 0;
648  error:
649 	unlock_page(page);
650 	return ret;
651 }
652 
653 static
654 void cache_page_release(nfs_readdir_descriptor_t *desc)
655 {
656 	if (!desc->page->mapping)
657 		nfs_readdir_clear_array(desc->page);
658 	page_cache_release(desc->page);
659 	desc->page = NULL;
660 }
661 
662 static
663 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
664 {
665 	return read_cache_page(file_inode(desc->file)->i_mapping,
666 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
667 }
668 
669 /*
670  * Returns 0 if desc->dir_cookie was found on page desc->page_index
671  */
672 static
673 int find_cache_page(nfs_readdir_descriptor_t *desc)
674 {
675 	int res;
676 
677 	desc->page = get_cache_page(desc);
678 	if (IS_ERR(desc->page))
679 		return PTR_ERR(desc->page);
680 
681 	res = nfs_readdir_search_array(desc);
682 	if (res != 0)
683 		cache_page_release(desc);
684 	return res;
685 }
686 
687 /* Search for desc->dir_cookie from the beginning of the page cache */
688 static inline
689 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
690 {
691 	int res;
692 
693 	if (desc->page_index == 0) {
694 		desc->current_index = 0;
695 		desc->last_cookie = 0;
696 	}
697 	do {
698 		res = find_cache_page(desc);
699 	} while (res == -EAGAIN);
700 	return res;
701 }
702 
703 /*
704  * Once we've found the start of the dirent within a page: fill 'er up...
705  */
706 static
707 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
708 {
709 	struct file	*file = desc->file;
710 	int i = 0;
711 	int res = 0;
712 	struct nfs_cache_array *array = NULL;
713 	struct nfs_open_dir_context *ctx = file->private_data;
714 
715 	array = nfs_readdir_get_array(desc->page);
716 	if (IS_ERR(array)) {
717 		res = PTR_ERR(array);
718 		goto out;
719 	}
720 
721 	for (i = desc->cache_entry_index; i < array->size; i++) {
722 		struct nfs_cache_array_entry *ent;
723 
724 		ent = &array->array[i];
725 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
726 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
727 			desc->eof = 1;
728 			break;
729 		}
730 		desc->ctx->pos++;
731 		if (i < (array->size-1))
732 			*desc->dir_cookie = array->array[i+1].cookie;
733 		else
734 			*desc->dir_cookie = array->last_cookie;
735 		if (ctx->duped != 0)
736 			ctx->duped = 1;
737 	}
738 	if (array->eof_index >= 0)
739 		desc->eof = 1;
740 
741 	nfs_readdir_release_array(desc->page);
742 out:
743 	cache_page_release(desc);
744 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
745 			(unsigned long long)*desc->dir_cookie, res);
746 	return res;
747 }
748 
749 /*
750  * If we cannot find a cookie in our cache, we suspect that this is
751  * because it points to a deleted file, so we ask the server to return
752  * whatever it thinks is the next entry. We then feed this to filldir.
753  * If all goes well, we should then be able to find our way round the
754  * cache on the next call to readdir_search_pagecache();
755  *
756  * NOTE: we cannot add the anonymous page to the pagecache because
757  *	 the data it contains might not be page aligned. Besides,
758  *	 we should already have a complete representation of the
759  *	 directory in the page cache by the time we get here.
760  */
761 static inline
762 int uncached_readdir(nfs_readdir_descriptor_t *desc)
763 {
764 	struct page	*page = NULL;
765 	int		status;
766 	struct inode *inode = file_inode(desc->file);
767 	struct nfs_open_dir_context *ctx = desc->file->private_data;
768 
769 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
770 			(unsigned long long)*desc->dir_cookie);
771 
772 	page = alloc_page(GFP_HIGHUSER);
773 	if (!page) {
774 		status = -ENOMEM;
775 		goto out;
776 	}
777 
778 	desc->page_index = 0;
779 	desc->last_cookie = *desc->dir_cookie;
780 	desc->page = page;
781 	ctx->duped = 0;
782 
783 	status = nfs_readdir_xdr_to_array(desc, page, inode);
784 	if (status < 0)
785 		goto out_release;
786 
787 	status = nfs_do_filldir(desc);
788 
789  out:
790 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
791 			__func__, status);
792 	return status;
793  out_release:
794 	cache_page_release(desc);
795 	goto out;
796 }
797 
798 /* The file offset position represents the dirent entry number.  A
799    last cookie cache takes care of the common case of reading the
800    whole directory.
801  */
802 static int nfs_readdir(struct file *file, struct dir_context *ctx)
803 {
804 	struct dentry	*dentry = file->f_path.dentry;
805 	struct inode	*inode = dentry->d_inode;
806 	nfs_readdir_descriptor_t my_desc,
807 			*desc = &my_desc;
808 	struct nfs_open_dir_context *dir_ctx = file->private_data;
809 	int res;
810 
811 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
812 			dentry->d_parent->d_name.name, dentry->d_name.name,
813 			(long long)ctx->pos);
814 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
815 
816 	/*
817 	 * ctx->pos points to the dirent entry number.
818 	 * *desc->dir_cookie has the cookie for the next entry. We have
819 	 * to either find the entry with the appropriate number or
820 	 * revalidate the cookie.
821 	 */
822 	memset(desc, 0, sizeof(*desc));
823 
824 	desc->file = file;
825 	desc->ctx = ctx;
826 	desc->dir_cookie = &dir_ctx->dir_cookie;
827 	desc->decode = NFS_PROTO(inode)->decode_dirent;
828 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
829 
830 	nfs_block_sillyrename(dentry);
831 	res = nfs_revalidate_mapping(inode, file->f_mapping);
832 	if (res < 0)
833 		goto out;
834 
835 	do {
836 		res = readdir_search_pagecache(desc);
837 
838 		if (res == -EBADCOOKIE) {
839 			res = 0;
840 			/* This means either end of directory */
841 			if (*desc->dir_cookie && desc->eof == 0) {
842 				/* Or that the server has 'lost' a cookie */
843 				res = uncached_readdir(desc);
844 				if (res == 0)
845 					continue;
846 			}
847 			break;
848 		}
849 		if (res == -ETOOSMALL && desc->plus) {
850 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
851 			nfs_zap_caches(inode);
852 			desc->page_index = 0;
853 			desc->plus = 0;
854 			desc->eof = 0;
855 			continue;
856 		}
857 		if (res < 0)
858 			break;
859 
860 		res = nfs_do_filldir(desc);
861 		if (res < 0)
862 			break;
863 	} while (!desc->eof);
864 out:
865 	nfs_unblock_sillyrename(dentry);
866 	if (res > 0)
867 		res = 0;
868 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
869 			dentry->d_parent->d_name.name, dentry->d_name.name,
870 			res);
871 	return res;
872 }
873 
874 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
875 {
876 	struct dentry *dentry = filp->f_path.dentry;
877 	struct inode *inode = dentry->d_inode;
878 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
879 
880 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
881 			dentry->d_parent->d_name.name,
882 			dentry->d_name.name,
883 			offset, whence);
884 
885 	mutex_lock(&inode->i_mutex);
886 	switch (whence) {
887 		case 1:
888 			offset += filp->f_pos;
889 		case 0:
890 			if (offset >= 0)
891 				break;
892 		default:
893 			offset = -EINVAL;
894 			goto out;
895 	}
896 	if (offset != filp->f_pos) {
897 		filp->f_pos = offset;
898 		dir_ctx->dir_cookie = 0;
899 		dir_ctx->duped = 0;
900 	}
901 out:
902 	mutex_unlock(&inode->i_mutex);
903 	return offset;
904 }
905 
906 /*
907  * All directory operations under NFS are synchronous, so fsync()
908  * is a dummy operation.
909  */
910 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
911 			 int datasync)
912 {
913 	struct dentry *dentry = filp->f_path.dentry;
914 	struct inode *inode = dentry->d_inode;
915 
916 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
917 			dentry->d_parent->d_name.name, dentry->d_name.name,
918 			datasync);
919 
920 	mutex_lock(&inode->i_mutex);
921 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
922 	mutex_unlock(&inode->i_mutex);
923 	return 0;
924 }
925 
926 /**
927  * nfs_force_lookup_revalidate - Mark the directory as having changed
928  * @dir - pointer to directory inode
929  *
930  * This forces the revalidation code in nfs_lookup_revalidate() to do a
931  * full lookup on all child dentries of 'dir' whenever a change occurs
932  * on the server that might have invalidated our dcache.
933  *
934  * The caller should be holding dir->i_lock
935  */
936 void nfs_force_lookup_revalidate(struct inode *dir)
937 {
938 	NFS_I(dir)->cache_change_attribute++;
939 }
940 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
941 
942 /*
943  * A check for whether or not the parent directory has changed.
944  * In the case it has, we assume that the dentries are untrustworthy
945  * and may need to be looked up again.
946  */
947 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
948 {
949 	if (IS_ROOT(dentry))
950 		return 1;
951 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
952 		return 0;
953 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
954 		return 0;
955 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
956 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
957 		return 0;
958 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
959 		return 0;
960 	return 1;
961 }
962 
963 /*
964  * Use intent information to check whether or not we're going to do
965  * an O_EXCL create using this path component.
966  */
967 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
968 {
969 	if (NFS_PROTO(dir)->version == 2)
970 		return 0;
971 	return flags & LOOKUP_EXCL;
972 }
973 
974 /*
975  * Inode and filehandle revalidation for lookups.
976  *
977  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
978  * or if the intent information indicates that we're about to open this
979  * particular file and the "nocto" mount flag is not set.
980  *
981  */
982 static
983 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
984 {
985 	struct nfs_server *server = NFS_SERVER(inode);
986 	int ret;
987 
988 	if (IS_AUTOMOUNT(inode))
989 		return 0;
990 	/* VFS wants an on-the-wire revalidation */
991 	if (flags & LOOKUP_REVAL)
992 		goto out_force;
993 	/* This is an open(2) */
994 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
995 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
996 		goto out_force;
997 out:
998 	return (inode->i_nlink == 0) ? -ENOENT : 0;
999 out_force:
1000 	ret = __nfs_revalidate_inode(server, inode);
1001 	if (ret != 0)
1002 		return ret;
1003 	goto out;
1004 }
1005 
1006 /*
1007  * We judge how long we want to trust negative
1008  * dentries by looking at the parent inode mtime.
1009  *
1010  * If parent mtime has changed, we revalidate, else we wait for a
1011  * period corresponding to the parent's attribute cache timeout value.
1012  */
1013 static inline
1014 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1015 		       unsigned int flags)
1016 {
1017 	/* Don't revalidate a negative dentry if we're creating a new file */
1018 	if (flags & LOOKUP_CREATE)
1019 		return 0;
1020 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1021 		return 1;
1022 	return !nfs_check_verifier(dir, dentry);
1023 }
1024 
1025 /*
1026  * This is called every time the dcache has a lookup hit,
1027  * and we should check whether we can really trust that
1028  * lookup.
1029  *
1030  * NOTE! The hit can be a negative hit too, don't assume
1031  * we have an inode!
1032  *
1033  * If the parent directory is seen to have changed, we throw out the
1034  * cached dentry and do a new lookup.
1035  */
1036 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1037 {
1038 	struct inode *dir;
1039 	struct inode *inode;
1040 	struct dentry *parent;
1041 	struct nfs_fh *fhandle = NULL;
1042 	struct nfs_fattr *fattr = NULL;
1043 	int error;
1044 
1045 	if (flags & LOOKUP_RCU)
1046 		return -ECHILD;
1047 
1048 	parent = dget_parent(dentry);
1049 	dir = parent->d_inode;
1050 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1051 	inode = dentry->d_inode;
1052 
1053 	if (!inode) {
1054 		if (nfs_neg_need_reval(dir, dentry, flags))
1055 			goto out_bad;
1056 		goto out_valid_noent;
1057 	}
1058 
1059 	if (is_bad_inode(inode)) {
1060 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1061 				__func__, dentry->d_parent->d_name.name,
1062 				dentry->d_name.name);
1063 		goto out_bad;
1064 	}
1065 
1066 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1067 		goto out_set_verifier;
1068 
1069 	/* Force a full look up iff the parent directory has changed */
1070 	if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1071 		if (nfs_lookup_verify_inode(inode, flags))
1072 			goto out_zap_parent;
1073 		goto out_valid;
1074 	}
1075 
1076 	if (NFS_STALE(inode))
1077 		goto out_bad;
1078 
1079 	error = -ENOMEM;
1080 	fhandle = nfs_alloc_fhandle();
1081 	fattr = nfs_alloc_fattr();
1082 	if (fhandle == NULL || fattr == NULL)
1083 		goto out_error;
1084 
1085 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1086 	if (error)
1087 		goto out_bad;
1088 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1089 		goto out_bad;
1090 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1091 		goto out_bad;
1092 
1093 	nfs_free_fattr(fattr);
1094 	nfs_free_fhandle(fhandle);
1095 out_set_verifier:
1096 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1097  out_valid:
1098 	/* Success: notify readdir to use READDIRPLUS */
1099 	nfs_advise_use_readdirplus(dir);
1100  out_valid_noent:
1101 	dput(parent);
1102 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1103 			__func__, dentry->d_parent->d_name.name,
1104 			dentry->d_name.name);
1105 	return 1;
1106 out_zap_parent:
1107 	nfs_zap_caches(dir);
1108  out_bad:
1109 	nfs_free_fattr(fattr);
1110 	nfs_free_fhandle(fhandle);
1111 	nfs_mark_for_revalidate(dir);
1112 	if (inode && S_ISDIR(inode->i_mode)) {
1113 		/* Purge readdir caches. */
1114 		nfs_zap_caches(inode);
1115 		/* If we have submounts, don't unhash ! */
1116 		if (have_submounts(dentry))
1117 			goto out_valid;
1118 		if (dentry->d_flags & DCACHE_DISCONNECTED)
1119 			goto out_valid;
1120 		shrink_dcache_parent(dentry);
1121 	}
1122 	d_drop(dentry);
1123 	dput(parent);
1124 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1125 			__func__, dentry->d_parent->d_name.name,
1126 			dentry->d_name.name);
1127 	return 0;
1128 out_error:
1129 	nfs_free_fattr(fattr);
1130 	nfs_free_fhandle(fhandle);
1131 	dput(parent);
1132 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1133 			__func__, dentry->d_parent->d_name.name,
1134 			dentry->d_name.name, error);
1135 	return error;
1136 }
1137 
1138 /*
1139  * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1140  * when we don't really care about the dentry name. This is called when a
1141  * pathwalk ends on a dentry that was not found via a normal lookup in the
1142  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1143  *
1144  * In this situation, we just want to verify that the inode itself is OK
1145  * since the dentry might have changed on the server.
1146  */
1147 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1148 {
1149 	int error;
1150 	struct inode *inode = dentry->d_inode;
1151 
1152 	/*
1153 	 * I believe we can only get a negative dentry here in the case of a
1154 	 * procfs-style symlink. Just assume it's correct for now, but we may
1155 	 * eventually need to do something more here.
1156 	 */
1157 	if (!inode) {
1158 		dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1159 				__func__, dentry->d_parent->d_name.name,
1160 				dentry->d_name.name);
1161 		return 1;
1162 	}
1163 
1164 	if (is_bad_inode(inode)) {
1165 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1166 				__func__, dentry->d_parent->d_name.name,
1167 				dentry->d_name.name);
1168 		return 0;
1169 	}
1170 
1171 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1172 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1173 			__func__, inode->i_ino, error ? "invalid" : "valid");
1174 	return !error;
1175 }
1176 
1177 /*
1178  * This is called from dput() when d_count is going to 0.
1179  */
1180 static int nfs_dentry_delete(const struct dentry *dentry)
1181 {
1182 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1183 		dentry->d_parent->d_name.name, dentry->d_name.name,
1184 		dentry->d_flags);
1185 
1186 	/* Unhash any dentry with a stale inode */
1187 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1188 		return 1;
1189 
1190 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1191 		/* Unhash it, so that ->d_iput() would be called */
1192 		return 1;
1193 	}
1194 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1195 		/* Unhash it, so that ancestors of killed async unlink
1196 		 * files will be cleaned up during umount */
1197 		return 1;
1198 	}
1199 	return 0;
1200 
1201 }
1202 
1203 /* Ensure that we revalidate inode->i_nlink */
1204 static void nfs_drop_nlink(struct inode *inode)
1205 {
1206 	spin_lock(&inode->i_lock);
1207 	/* drop the inode if we're reasonably sure this is the last link */
1208 	if (inode->i_nlink == 1)
1209 		clear_nlink(inode);
1210 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1211 	spin_unlock(&inode->i_lock);
1212 }
1213 
1214 /*
1215  * Called when the dentry loses inode.
1216  * We use it to clean up silly-renamed files.
1217  */
1218 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1219 {
1220 	if (S_ISDIR(inode->i_mode))
1221 		/* drop any readdir cache as it could easily be old */
1222 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1223 
1224 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1225 		nfs_complete_unlink(dentry, inode);
1226 		nfs_drop_nlink(inode);
1227 	}
1228 	iput(inode);
1229 }
1230 
1231 static void nfs_d_release(struct dentry *dentry)
1232 {
1233 	/* free cached devname value, if it survived that far */
1234 	if (unlikely(dentry->d_fsdata)) {
1235 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1236 			WARN_ON(1);
1237 		else
1238 			kfree(dentry->d_fsdata);
1239 	}
1240 }
1241 
1242 const struct dentry_operations nfs_dentry_operations = {
1243 	.d_revalidate	= nfs_lookup_revalidate,
1244 	.d_weak_revalidate	= nfs_weak_revalidate,
1245 	.d_delete	= nfs_dentry_delete,
1246 	.d_iput		= nfs_dentry_iput,
1247 	.d_automount	= nfs_d_automount,
1248 	.d_release	= nfs_d_release,
1249 };
1250 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1251 
1252 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1253 {
1254 	struct dentry *res;
1255 	struct dentry *parent;
1256 	struct inode *inode = NULL;
1257 	struct nfs_fh *fhandle = NULL;
1258 	struct nfs_fattr *fattr = NULL;
1259 	int error;
1260 
1261 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1262 		dentry->d_parent->d_name.name, dentry->d_name.name);
1263 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1264 
1265 	res = ERR_PTR(-ENAMETOOLONG);
1266 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1267 		goto out;
1268 
1269 	/*
1270 	 * If we're doing an exclusive create, optimize away the lookup
1271 	 * but don't hash the dentry.
1272 	 */
1273 	if (nfs_is_exclusive_create(dir, flags)) {
1274 		d_instantiate(dentry, NULL);
1275 		res = NULL;
1276 		goto out;
1277 	}
1278 
1279 	res = ERR_PTR(-ENOMEM);
1280 	fhandle = nfs_alloc_fhandle();
1281 	fattr = nfs_alloc_fattr();
1282 	if (fhandle == NULL || fattr == NULL)
1283 		goto out;
1284 
1285 	parent = dentry->d_parent;
1286 	/* Protect against concurrent sillydeletes */
1287 	nfs_block_sillyrename(parent);
1288 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1289 	if (error == -ENOENT)
1290 		goto no_entry;
1291 	if (error < 0) {
1292 		res = ERR_PTR(error);
1293 		goto out_unblock_sillyrename;
1294 	}
1295 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1296 	res = ERR_CAST(inode);
1297 	if (IS_ERR(res))
1298 		goto out_unblock_sillyrename;
1299 
1300 	/* Success: notify readdir to use READDIRPLUS */
1301 	nfs_advise_use_readdirplus(dir);
1302 
1303 no_entry:
1304 	res = d_materialise_unique(dentry, inode);
1305 	if (res != NULL) {
1306 		if (IS_ERR(res))
1307 			goto out_unblock_sillyrename;
1308 		dentry = res;
1309 	}
1310 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1311 out_unblock_sillyrename:
1312 	nfs_unblock_sillyrename(parent);
1313 out:
1314 	nfs_free_fattr(fattr);
1315 	nfs_free_fhandle(fhandle);
1316 	return res;
1317 }
1318 EXPORT_SYMBOL_GPL(nfs_lookup);
1319 
1320 #if IS_ENABLED(CONFIG_NFS_V4)
1321 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1322 
1323 const struct dentry_operations nfs4_dentry_operations = {
1324 	.d_revalidate	= nfs4_lookup_revalidate,
1325 	.d_delete	= nfs_dentry_delete,
1326 	.d_iput		= nfs_dentry_iput,
1327 	.d_automount	= nfs_d_automount,
1328 	.d_release	= nfs_d_release,
1329 };
1330 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1331 
1332 static fmode_t flags_to_mode(int flags)
1333 {
1334 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1335 	if ((flags & O_ACCMODE) != O_WRONLY)
1336 		res |= FMODE_READ;
1337 	if ((flags & O_ACCMODE) != O_RDONLY)
1338 		res |= FMODE_WRITE;
1339 	return res;
1340 }
1341 
1342 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1343 {
1344 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1345 }
1346 
1347 static int do_open(struct inode *inode, struct file *filp)
1348 {
1349 	nfs_fscache_set_inode_cookie(inode, filp);
1350 	return 0;
1351 }
1352 
1353 static int nfs_finish_open(struct nfs_open_context *ctx,
1354 			   struct dentry *dentry,
1355 			   struct file *file, unsigned open_flags,
1356 			   int *opened)
1357 {
1358 	int err;
1359 
1360 	if (ctx->dentry != dentry) {
1361 		dput(ctx->dentry);
1362 		ctx->dentry = dget(dentry);
1363 	}
1364 
1365 	/* If the open_intent is for execute, we have an extra check to make */
1366 	if (ctx->mode & FMODE_EXEC) {
1367 		err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1368 		if (err < 0)
1369 			goto out;
1370 	}
1371 
1372 	err = finish_open(file, dentry, do_open, opened);
1373 	if (err)
1374 		goto out;
1375 	nfs_file_set_open_context(file, ctx);
1376 
1377 out:
1378 	put_nfs_open_context(ctx);
1379 	return err;
1380 }
1381 
1382 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1383 		    struct file *file, unsigned open_flags,
1384 		    umode_t mode, int *opened)
1385 {
1386 	struct nfs_open_context *ctx;
1387 	struct dentry *res;
1388 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1389 	struct inode *inode;
1390 	int err;
1391 
1392 	/* Expect a negative dentry */
1393 	BUG_ON(dentry->d_inode);
1394 
1395 	dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1396 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1397 
1398 	/* NFS only supports OPEN on regular files */
1399 	if ((open_flags & O_DIRECTORY)) {
1400 		if (!d_unhashed(dentry)) {
1401 			/*
1402 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1403 			 * revalidated and is fine, no need to perform lookup
1404 			 * again
1405 			 */
1406 			return -ENOENT;
1407 		}
1408 		goto no_open;
1409 	}
1410 
1411 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1412 		return -ENAMETOOLONG;
1413 
1414 	if (open_flags & O_CREAT) {
1415 		attr.ia_valid |= ATTR_MODE;
1416 		attr.ia_mode = mode & ~current_umask();
1417 	}
1418 	if (open_flags & O_TRUNC) {
1419 		attr.ia_valid |= ATTR_SIZE;
1420 		attr.ia_size = 0;
1421 	}
1422 
1423 	ctx = create_nfs_open_context(dentry, open_flags);
1424 	err = PTR_ERR(ctx);
1425 	if (IS_ERR(ctx))
1426 		goto out;
1427 
1428 	nfs_block_sillyrename(dentry->d_parent);
1429 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1430 	d_drop(dentry);
1431 	if (IS_ERR(inode)) {
1432 		nfs_unblock_sillyrename(dentry->d_parent);
1433 		put_nfs_open_context(ctx);
1434 		err = PTR_ERR(inode);
1435 		switch (err) {
1436 		case -ENOENT:
1437 			d_add(dentry, NULL);
1438 			break;
1439 		case -EISDIR:
1440 		case -ENOTDIR:
1441 			goto no_open;
1442 		case -ELOOP:
1443 			if (!(open_flags & O_NOFOLLOW))
1444 				goto no_open;
1445 			break;
1446 			/* case -EINVAL: */
1447 		default:
1448 			break;
1449 		}
1450 		goto out;
1451 	}
1452 	res = d_add_unique(dentry, inode);
1453 	if (res != NULL)
1454 		dentry = res;
1455 
1456 	nfs_unblock_sillyrename(dentry->d_parent);
1457 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1458 
1459 	err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1460 
1461 	dput(res);
1462 out:
1463 	return err;
1464 
1465 no_open:
1466 	res = nfs_lookup(dir, dentry, 0);
1467 	err = PTR_ERR(res);
1468 	if (IS_ERR(res))
1469 		goto out;
1470 
1471 	return finish_no_open(file, res);
1472 }
1473 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1474 
1475 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1476 {
1477 	struct dentry *parent = NULL;
1478 	struct inode *inode;
1479 	struct inode *dir;
1480 	int ret = 0;
1481 
1482 	if (flags & LOOKUP_RCU)
1483 		return -ECHILD;
1484 
1485 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1486 		goto no_open;
1487 	if (d_mountpoint(dentry))
1488 		goto no_open;
1489 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1490 		goto no_open;
1491 
1492 	inode = dentry->d_inode;
1493 	parent = dget_parent(dentry);
1494 	dir = parent->d_inode;
1495 
1496 	/* We can't create new files in nfs_open_revalidate(), so we
1497 	 * optimize away revalidation of negative dentries.
1498 	 */
1499 	if (inode == NULL) {
1500 		if (!nfs_neg_need_reval(dir, dentry, flags))
1501 			ret = 1;
1502 		goto out;
1503 	}
1504 
1505 	/* NFS only supports OPEN on regular files */
1506 	if (!S_ISREG(inode->i_mode))
1507 		goto no_open_dput;
1508 	/* We cannot do exclusive creation on a positive dentry */
1509 	if (flags & LOOKUP_EXCL)
1510 		goto no_open_dput;
1511 
1512 	/* Let f_op->open() actually open (and revalidate) the file */
1513 	ret = 1;
1514 
1515 out:
1516 	dput(parent);
1517 	return ret;
1518 
1519 no_open_dput:
1520 	dput(parent);
1521 no_open:
1522 	return nfs_lookup_revalidate(dentry, flags);
1523 }
1524 
1525 #endif /* CONFIG_NFSV4 */
1526 
1527 /*
1528  * Code common to create, mkdir, and mknod.
1529  */
1530 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1531 				struct nfs_fattr *fattr)
1532 {
1533 	struct dentry *parent = dget_parent(dentry);
1534 	struct inode *dir = parent->d_inode;
1535 	struct inode *inode;
1536 	int error = -EACCES;
1537 
1538 	d_drop(dentry);
1539 
1540 	/* We may have been initialized further down */
1541 	if (dentry->d_inode)
1542 		goto out;
1543 	if (fhandle->size == 0) {
1544 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1545 		if (error)
1546 			goto out_error;
1547 	}
1548 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1549 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1550 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1551 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1552 		if (error < 0)
1553 			goto out_error;
1554 	}
1555 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1556 	error = PTR_ERR(inode);
1557 	if (IS_ERR(inode))
1558 		goto out_error;
1559 	d_add(dentry, inode);
1560 out:
1561 	dput(parent);
1562 	return 0;
1563 out_error:
1564 	nfs_mark_for_revalidate(dir);
1565 	dput(parent);
1566 	return error;
1567 }
1568 EXPORT_SYMBOL_GPL(nfs_instantiate);
1569 
1570 /*
1571  * Following a failed create operation, we drop the dentry rather
1572  * than retain a negative dentry. This avoids a problem in the event
1573  * that the operation succeeded on the server, but an error in the
1574  * reply path made it appear to have failed.
1575  */
1576 int nfs_create(struct inode *dir, struct dentry *dentry,
1577 		umode_t mode, bool excl)
1578 {
1579 	struct iattr attr;
1580 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1581 	int error;
1582 
1583 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1584 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1585 
1586 	attr.ia_mode = mode;
1587 	attr.ia_valid = ATTR_MODE;
1588 
1589 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1590 	if (error != 0)
1591 		goto out_err;
1592 	return 0;
1593 out_err:
1594 	d_drop(dentry);
1595 	return error;
1596 }
1597 EXPORT_SYMBOL_GPL(nfs_create);
1598 
1599 /*
1600  * See comments for nfs_proc_create regarding failed operations.
1601  */
1602 int
1603 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1604 {
1605 	struct iattr attr;
1606 	int status;
1607 
1608 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1609 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1610 
1611 	if (!new_valid_dev(rdev))
1612 		return -EINVAL;
1613 
1614 	attr.ia_mode = mode;
1615 	attr.ia_valid = ATTR_MODE;
1616 
1617 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1618 	if (status != 0)
1619 		goto out_err;
1620 	return 0;
1621 out_err:
1622 	d_drop(dentry);
1623 	return status;
1624 }
1625 EXPORT_SYMBOL_GPL(nfs_mknod);
1626 
1627 /*
1628  * See comments for nfs_proc_create regarding failed operations.
1629  */
1630 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1631 {
1632 	struct iattr attr;
1633 	int error;
1634 
1635 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1636 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1637 
1638 	attr.ia_valid = ATTR_MODE;
1639 	attr.ia_mode = mode | S_IFDIR;
1640 
1641 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1642 	if (error != 0)
1643 		goto out_err;
1644 	return 0;
1645 out_err:
1646 	d_drop(dentry);
1647 	return error;
1648 }
1649 EXPORT_SYMBOL_GPL(nfs_mkdir);
1650 
1651 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1652 {
1653 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1654 		d_delete(dentry);
1655 }
1656 
1657 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1658 {
1659 	int error;
1660 
1661 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1662 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1663 
1664 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1665 	/* Ensure the VFS deletes this inode */
1666 	if (error == 0 && dentry->d_inode != NULL)
1667 		clear_nlink(dentry->d_inode);
1668 	else if (error == -ENOENT)
1669 		nfs_dentry_handle_enoent(dentry);
1670 
1671 	return error;
1672 }
1673 EXPORT_SYMBOL_GPL(nfs_rmdir);
1674 
1675 /*
1676  * Remove a file after making sure there are no pending writes,
1677  * and after checking that the file has only one user.
1678  *
1679  * We invalidate the attribute cache and free the inode prior to the operation
1680  * to avoid possible races if the server reuses the inode.
1681  */
1682 static int nfs_safe_remove(struct dentry *dentry)
1683 {
1684 	struct inode *dir = dentry->d_parent->d_inode;
1685 	struct inode *inode = dentry->d_inode;
1686 	int error = -EBUSY;
1687 
1688 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1689 		dentry->d_parent->d_name.name, dentry->d_name.name);
1690 
1691 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1692 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1693 		error = 0;
1694 		goto out;
1695 	}
1696 
1697 	if (inode != NULL) {
1698 		NFS_PROTO(inode)->return_delegation(inode);
1699 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1700 		if (error == 0)
1701 			nfs_drop_nlink(inode);
1702 	} else
1703 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1704 	if (error == -ENOENT)
1705 		nfs_dentry_handle_enoent(dentry);
1706 out:
1707 	return error;
1708 }
1709 
1710 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1711  *  belongs to an active ".nfs..." file and we return -EBUSY.
1712  *
1713  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1714  */
1715 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1716 {
1717 	int error;
1718 	int need_rehash = 0;
1719 
1720 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1721 		dir->i_ino, dentry->d_name.name);
1722 
1723 	spin_lock(&dentry->d_lock);
1724 	if (dentry->d_count > 1) {
1725 		spin_unlock(&dentry->d_lock);
1726 		/* Start asynchronous writeout of the inode */
1727 		write_inode_now(dentry->d_inode, 0);
1728 		error = nfs_sillyrename(dir, dentry);
1729 		return error;
1730 	}
1731 	if (!d_unhashed(dentry)) {
1732 		__d_drop(dentry);
1733 		need_rehash = 1;
1734 	}
1735 	spin_unlock(&dentry->d_lock);
1736 	error = nfs_safe_remove(dentry);
1737 	if (!error || error == -ENOENT) {
1738 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1739 	} else if (need_rehash)
1740 		d_rehash(dentry);
1741 	return error;
1742 }
1743 EXPORT_SYMBOL_GPL(nfs_unlink);
1744 
1745 /*
1746  * To create a symbolic link, most file systems instantiate a new inode,
1747  * add a page to it containing the path, then write it out to the disk
1748  * using prepare_write/commit_write.
1749  *
1750  * Unfortunately the NFS client can't create the in-core inode first
1751  * because it needs a file handle to create an in-core inode (see
1752  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1753  * symlink request has completed on the server.
1754  *
1755  * So instead we allocate a raw page, copy the symname into it, then do
1756  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1757  * now have a new file handle and can instantiate an in-core NFS inode
1758  * and move the raw page into its mapping.
1759  */
1760 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1761 {
1762 	struct page *page;
1763 	char *kaddr;
1764 	struct iattr attr;
1765 	unsigned int pathlen = strlen(symname);
1766 	int error;
1767 
1768 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1769 		dir->i_ino, dentry->d_name.name, symname);
1770 
1771 	if (pathlen > PAGE_SIZE)
1772 		return -ENAMETOOLONG;
1773 
1774 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1775 	attr.ia_valid = ATTR_MODE;
1776 
1777 	page = alloc_page(GFP_HIGHUSER);
1778 	if (!page)
1779 		return -ENOMEM;
1780 
1781 	kaddr = kmap_atomic(page);
1782 	memcpy(kaddr, symname, pathlen);
1783 	if (pathlen < PAGE_SIZE)
1784 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1785 	kunmap_atomic(kaddr);
1786 
1787 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1788 	if (error != 0) {
1789 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1790 			dir->i_sb->s_id, dir->i_ino,
1791 			dentry->d_name.name, symname, error);
1792 		d_drop(dentry);
1793 		__free_page(page);
1794 		return error;
1795 	}
1796 
1797 	/*
1798 	 * No big deal if we can't add this page to the page cache here.
1799 	 * READLINK will get the missing page from the server if needed.
1800 	 */
1801 	if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1802 							GFP_KERNEL)) {
1803 		SetPageUptodate(page);
1804 		unlock_page(page);
1805 	} else
1806 		__free_page(page);
1807 
1808 	return 0;
1809 }
1810 EXPORT_SYMBOL_GPL(nfs_symlink);
1811 
1812 int
1813 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1814 {
1815 	struct inode *inode = old_dentry->d_inode;
1816 	int error;
1817 
1818 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1819 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1820 		dentry->d_parent->d_name.name, dentry->d_name.name);
1821 
1822 	NFS_PROTO(inode)->return_delegation(inode);
1823 
1824 	d_drop(dentry);
1825 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1826 	if (error == 0) {
1827 		ihold(inode);
1828 		d_add(dentry, inode);
1829 	}
1830 	return error;
1831 }
1832 EXPORT_SYMBOL_GPL(nfs_link);
1833 
1834 /*
1835  * RENAME
1836  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1837  * different file handle for the same inode after a rename (e.g. when
1838  * moving to a different directory). A fail-safe method to do so would
1839  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1840  * rename the old file using the sillyrename stuff. This way, the original
1841  * file in old_dir will go away when the last process iput()s the inode.
1842  *
1843  * FIXED.
1844  *
1845  * It actually works quite well. One needs to have the possibility for
1846  * at least one ".nfs..." file in each directory the file ever gets
1847  * moved or linked to which happens automagically with the new
1848  * implementation that only depends on the dcache stuff instead of
1849  * using the inode layer
1850  *
1851  * Unfortunately, things are a little more complicated than indicated
1852  * above. For a cross-directory move, we want to make sure we can get
1853  * rid of the old inode after the operation.  This means there must be
1854  * no pending writes (if it's a file), and the use count must be 1.
1855  * If these conditions are met, we can drop the dentries before doing
1856  * the rename.
1857  */
1858 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1859 		      struct inode *new_dir, struct dentry *new_dentry)
1860 {
1861 	struct inode *old_inode = old_dentry->d_inode;
1862 	struct inode *new_inode = new_dentry->d_inode;
1863 	struct dentry *dentry = NULL, *rehash = NULL;
1864 	int error = -EBUSY;
1865 
1866 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1867 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1868 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1869 		 new_dentry->d_count);
1870 
1871 	/*
1872 	 * For non-directories, check whether the target is busy and if so,
1873 	 * make a copy of the dentry and then do a silly-rename. If the
1874 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1875 	 * the new target.
1876 	 */
1877 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1878 		/*
1879 		 * To prevent any new references to the target during the
1880 		 * rename, we unhash the dentry in advance.
1881 		 */
1882 		if (!d_unhashed(new_dentry)) {
1883 			d_drop(new_dentry);
1884 			rehash = new_dentry;
1885 		}
1886 
1887 		if (new_dentry->d_count > 2) {
1888 			int err;
1889 
1890 			/* copy the target dentry's name */
1891 			dentry = d_alloc(new_dentry->d_parent,
1892 					 &new_dentry->d_name);
1893 			if (!dentry)
1894 				goto out;
1895 
1896 			/* silly-rename the existing target ... */
1897 			err = nfs_sillyrename(new_dir, new_dentry);
1898 			if (err)
1899 				goto out;
1900 
1901 			new_dentry = dentry;
1902 			rehash = NULL;
1903 			new_inode = NULL;
1904 		}
1905 	}
1906 
1907 	NFS_PROTO(old_inode)->return_delegation(old_inode);
1908 	if (new_inode != NULL)
1909 		NFS_PROTO(new_inode)->return_delegation(new_inode);
1910 
1911 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1912 					   new_dir, &new_dentry->d_name);
1913 	nfs_mark_for_revalidate(old_inode);
1914 out:
1915 	if (rehash)
1916 		d_rehash(rehash);
1917 	if (!error) {
1918 		if (new_inode != NULL)
1919 			nfs_drop_nlink(new_inode);
1920 		d_move(old_dentry, new_dentry);
1921 		nfs_set_verifier(new_dentry,
1922 					nfs_save_change_attribute(new_dir));
1923 	} else if (error == -ENOENT)
1924 		nfs_dentry_handle_enoent(old_dentry);
1925 
1926 	/* new dentry created? */
1927 	if (dentry)
1928 		dput(dentry);
1929 	return error;
1930 }
1931 EXPORT_SYMBOL_GPL(nfs_rename);
1932 
1933 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1934 static LIST_HEAD(nfs_access_lru_list);
1935 static atomic_long_t nfs_access_nr_entries;
1936 
1937 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1938 {
1939 	put_rpccred(entry->cred);
1940 	kfree(entry);
1941 	smp_mb__before_atomic_dec();
1942 	atomic_long_dec(&nfs_access_nr_entries);
1943 	smp_mb__after_atomic_dec();
1944 }
1945 
1946 static void nfs_access_free_list(struct list_head *head)
1947 {
1948 	struct nfs_access_entry *cache;
1949 
1950 	while (!list_empty(head)) {
1951 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1952 		list_del(&cache->lru);
1953 		nfs_access_free_entry(cache);
1954 	}
1955 }
1956 
1957 int nfs_access_cache_shrinker(struct shrinker *shrink,
1958 			      struct shrink_control *sc)
1959 {
1960 	LIST_HEAD(head);
1961 	struct nfs_inode *nfsi, *next;
1962 	struct nfs_access_entry *cache;
1963 	int nr_to_scan = sc->nr_to_scan;
1964 	gfp_t gfp_mask = sc->gfp_mask;
1965 
1966 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1967 		return (nr_to_scan == 0) ? 0 : -1;
1968 
1969 	spin_lock(&nfs_access_lru_lock);
1970 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1971 		struct inode *inode;
1972 
1973 		if (nr_to_scan-- == 0)
1974 			break;
1975 		inode = &nfsi->vfs_inode;
1976 		spin_lock(&inode->i_lock);
1977 		if (list_empty(&nfsi->access_cache_entry_lru))
1978 			goto remove_lru_entry;
1979 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1980 				struct nfs_access_entry, lru);
1981 		list_move(&cache->lru, &head);
1982 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1983 		if (!list_empty(&nfsi->access_cache_entry_lru))
1984 			list_move_tail(&nfsi->access_cache_inode_lru,
1985 					&nfs_access_lru_list);
1986 		else {
1987 remove_lru_entry:
1988 			list_del_init(&nfsi->access_cache_inode_lru);
1989 			smp_mb__before_clear_bit();
1990 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1991 			smp_mb__after_clear_bit();
1992 		}
1993 		spin_unlock(&inode->i_lock);
1994 	}
1995 	spin_unlock(&nfs_access_lru_lock);
1996 	nfs_access_free_list(&head);
1997 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1998 }
1999 
2000 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2001 {
2002 	struct rb_root *root_node = &nfsi->access_cache;
2003 	struct rb_node *n;
2004 	struct nfs_access_entry *entry;
2005 
2006 	/* Unhook entries from the cache */
2007 	while ((n = rb_first(root_node)) != NULL) {
2008 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2009 		rb_erase(n, root_node);
2010 		list_move(&entry->lru, head);
2011 	}
2012 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2013 }
2014 
2015 void nfs_access_zap_cache(struct inode *inode)
2016 {
2017 	LIST_HEAD(head);
2018 
2019 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2020 		return;
2021 	/* Remove from global LRU init */
2022 	spin_lock(&nfs_access_lru_lock);
2023 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2024 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2025 
2026 	spin_lock(&inode->i_lock);
2027 	__nfs_access_zap_cache(NFS_I(inode), &head);
2028 	spin_unlock(&inode->i_lock);
2029 	spin_unlock(&nfs_access_lru_lock);
2030 	nfs_access_free_list(&head);
2031 }
2032 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2033 
2034 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2035 {
2036 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2037 	struct nfs_access_entry *entry;
2038 
2039 	while (n != NULL) {
2040 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2041 
2042 		if (cred < entry->cred)
2043 			n = n->rb_left;
2044 		else if (cred > entry->cred)
2045 			n = n->rb_right;
2046 		else
2047 			return entry;
2048 	}
2049 	return NULL;
2050 }
2051 
2052 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2053 {
2054 	struct nfs_inode *nfsi = NFS_I(inode);
2055 	struct nfs_access_entry *cache;
2056 	int err = -ENOENT;
2057 
2058 	spin_lock(&inode->i_lock);
2059 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2060 		goto out_zap;
2061 	cache = nfs_access_search_rbtree(inode, cred);
2062 	if (cache == NULL)
2063 		goto out;
2064 	if (!nfs_have_delegated_attributes(inode) &&
2065 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2066 		goto out_stale;
2067 	res->jiffies = cache->jiffies;
2068 	res->cred = cache->cred;
2069 	res->mask = cache->mask;
2070 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2071 	err = 0;
2072 out:
2073 	spin_unlock(&inode->i_lock);
2074 	return err;
2075 out_stale:
2076 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2077 	list_del(&cache->lru);
2078 	spin_unlock(&inode->i_lock);
2079 	nfs_access_free_entry(cache);
2080 	return -ENOENT;
2081 out_zap:
2082 	spin_unlock(&inode->i_lock);
2083 	nfs_access_zap_cache(inode);
2084 	return -ENOENT;
2085 }
2086 
2087 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2088 {
2089 	struct nfs_inode *nfsi = NFS_I(inode);
2090 	struct rb_root *root_node = &nfsi->access_cache;
2091 	struct rb_node **p = &root_node->rb_node;
2092 	struct rb_node *parent = NULL;
2093 	struct nfs_access_entry *entry;
2094 
2095 	spin_lock(&inode->i_lock);
2096 	while (*p != NULL) {
2097 		parent = *p;
2098 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2099 
2100 		if (set->cred < entry->cred)
2101 			p = &parent->rb_left;
2102 		else if (set->cred > entry->cred)
2103 			p = &parent->rb_right;
2104 		else
2105 			goto found;
2106 	}
2107 	rb_link_node(&set->rb_node, parent, p);
2108 	rb_insert_color(&set->rb_node, root_node);
2109 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2110 	spin_unlock(&inode->i_lock);
2111 	return;
2112 found:
2113 	rb_replace_node(parent, &set->rb_node, root_node);
2114 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2115 	list_del(&entry->lru);
2116 	spin_unlock(&inode->i_lock);
2117 	nfs_access_free_entry(entry);
2118 }
2119 
2120 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2121 {
2122 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2123 	if (cache == NULL)
2124 		return;
2125 	RB_CLEAR_NODE(&cache->rb_node);
2126 	cache->jiffies = set->jiffies;
2127 	cache->cred = get_rpccred(set->cred);
2128 	cache->mask = set->mask;
2129 
2130 	nfs_access_add_rbtree(inode, cache);
2131 
2132 	/* Update accounting */
2133 	smp_mb__before_atomic_inc();
2134 	atomic_long_inc(&nfs_access_nr_entries);
2135 	smp_mb__after_atomic_inc();
2136 
2137 	/* Add inode to global LRU list */
2138 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2139 		spin_lock(&nfs_access_lru_lock);
2140 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2141 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2142 					&nfs_access_lru_list);
2143 		spin_unlock(&nfs_access_lru_lock);
2144 	}
2145 }
2146 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2147 
2148 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2149 {
2150 	entry->mask = 0;
2151 	if (access_result & NFS4_ACCESS_READ)
2152 		entry->mask |= MAY_READ;
2153 	if (access_result &
2154 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2155 		entry->mask |= MAY_WRITE;
2156 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2157 		entry->mask |= MAY_EXEC;
2158 }
2159 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2160 
2161 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2162 {
2163 	struct nfs_access_entry cache;
2164 	int status;
2165 
2166 	status = nfs_access_get_cached(inode, cred, &cache);
2167 	if (status == 0)
2168 		goto out;
2169 
2170 	/* Be clever: ask server to check for all possible rights */
2171 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2172 	cache.cred = cred;
2173 	cache.jiffies = jiffies;
2174 	status = NFS_PROTO(inode)->access(inode, &cache);
2175 	if (status != 0) {
2176 		if (status == -ESTALE) {
2177 			nfs_zap_caches(inode);
2178 			if (!S_ISDIR(inode->i_mode))
2179 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2180 		}
2181 		return status;
2182 	}
2183 	nfs_access_add_cache(inode, &cache);
2184 out:
2185 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2186 		return 0;
2187 	return -EACCES;
2188 }
2189 
2190 static int nfs_open_permission_mask(int openflags)
2191 {
2192 	int mask = 0;
2193 
2194 	if (openflags & __FMODE_EXEC) {
2195 		/* ONLY check exec rights */
2196 		mask = MAY_EXEC;
2197 	} else {
2198 		if ((openflags & O_ACCMODE) != O_WRONLY)
2199 			mask |= MAY_READ;
2200 		if ((openflags & O_ACCMODE) != O_RDONLY)
2201 			mask |= MAY_WRITE;
2202 	}
2203 
2204 	return mask;
2205 }
2206 
2207 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2208 {
2209 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2210 }
2211 EXPORT_SYMBOL_GPL(nfs_may_open);
2212 
2213 int nfs_permission(struct inode *inode, int mask)
2214 {
2215 	struct rpc_cred *cred;
2216 	int res = 0;
2217 
2218 	if (mask & MAY_NOT_BLOCK)
2219 		return -ECHILD;
2220 
2221 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2222 
2223 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2224 		goto out;
2225 	/* Is this sys_access() ? */
2226 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2227 		goto force_lookup;
2228 
2229 	switch (inode->i_mode & S_IFMT) {
2230 		case S_IFLNK:
2231 			goto out;
2232 		case S_IFREG:
2233 			/* NFSv4 has atomic_open... */
2234 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2235 					&& (mask & MAY_OPEN)
2236 					&& !(mask & MAY_EXEC))
2237 				goto out;
2238 			break;
2239 		case S_IFDIR:
2240 			/*
2241 			 * Optimize away all write operations, since the server
2242 			 * will check permissions when we perform the op.
2243 			 */
2244 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2245 				goto out;
2246 	}
2247 
2248 force_lookup:
2249 	if (!NFS_PROTO(inode)->access)
2250 		goto out_notsup;
2251 
2252 	cred = rpc_lookup_cred();
2253 	if (!IS_ERR(cred)) {
2254 		res = nfs_do_access(inode, cred, mask);
2255 		put_rpccred(cred);
2256 	} else
2257 		res = PTR_ERR(cred);
2258 out:
2259 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2260 		res = -EACCES;
2261 
2262 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2263 		inode->i_sb->s_id, inode->i_ino, mask, res);
2264 	return res;
2265 out_notsup:
2266 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2267 	if (res == 0)
2268 		res = generic_permission(inode, mask);
2269 	goto out;
2270 }
2271 EXPORT_SYMBOL_GPL(nfs_permission);
2272 
2273 /*
2274  * Local variables:
2275  *  version-control: t
2276  *  kept-new-versions: 5
2277  * End:
2278  */
2279