xref: /linux/fs/nfs/dir.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 /*
166  * we are freeing strings created by nfs_add_to_readdir_array()
167  */
168 static
169 void nfs_readdir_clear_array(struct page *page)
170 {
171 	struct nfs_cache_array *array;
172 	int i;
173 
174 	array = kmap_atomic(page);
175 	for (i = 0; i < array->size; i++)
176 		kfree(array->array[i].string.name);
177 	kunmap_atomic(array);
178 }
179 
180 /*
181  * the caller is responsible for freeing qstr.name
182  * when called by nfs_readdir_add_to_array, the strings will be freed in
183  * nfs_clear_readdir_array()
184  */
185 static
186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
187 {
188 	string->len = len;
189 	string->name = kmemdup(name, len, GFP_KERNEL);
190 	if (string->name == NULL)
191 		return -ENOMEM;
192 	/*
193 	 * Avoid a kmemleak false positive. The pointer to the name is stored
194 	 * in a page cache page which kmemleak does not scan.
195 	 */
196 	kmemleak_not_leak(string->name);
197 	string->hash = full_name_hash(NULL, name, len);
198 	return 0;
199 }
200 
201 static
202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
203 {
204 	struct nfs_cache_array *array = kmap(page);
205 	struct nfs_cache_array_entry *cache_entry;
206 	int ret;
207 
208 	cache_entry = &array->array[array->size];
209 
210 	/* Check that this entry lies within the page bounds */
211 	ret = -ENOSPC;
212 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
213 		goto out;
214 
215 	cache_entry->cookie = entry->prev_cookie;
216 	cache_entry->ino = entry->ino;
217 	cache_entry->d_type = entry->d_type;
218 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
219 	if (ret)
220 		goto out;
221 	array->last_cookie = entry->cookie;
222 	array->size++;
223 	if (entry->eof != 0)
224 		array->eof_index = array->size;
225 out:
226 	kunmap(page);
227 	return ret;
228 }
229 
230 static
231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
232 {
233 	loff_t diff = desc->ctx->pos - desc->current_index;
234 	unsigned int index;
235 
236 	if (diff < 0)
237 		goto out_eof;
238 	if (diff >= array->size) {
239 		if (array->eof_index >= 0)
240 			goto out_eof;
241 		return -EAGAIN;
242 	}
243 
244 	index = (unsigned int)diff;
245 	*desc->dir_cookie = array->array[index].cookie;
246 	desc->cache_entry_index = index;
247 	return 0;
248 out_eof:
249 	desc->eof = true;
250 	return -EBADCOOKIE;
251 }
252 
253 static bool
254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
255 {
256 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
257 		return false;
258 	smp_rmb();
259 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
260 }
261 
262 static
263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264 {
265 	int i;
266 	loff_t new_pos;
267 	int status = -EAGAIN;
268 
269 	for (i = 0; i < array->size; i++) {
270 		if (array->array[i].cookie == *desc->dir_cookie) {
271 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
272 			struct nfs_open_dir_context *ctx = desc->file->private_data;
273 
274 			new_pos = desc->current_index + i;
275 			if (ctx->attr_gencount != nfsi->attr_gencount ||
276 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
277 				ctx->duped = 0;
278 				ctx->attr_gencount = nfsi->attr_gencount;
279 			} else if (new_pos < desc->ctx->pos) {
280 				if (ctx->duped > 0
281 				    && ctx->dup_cookie == *desc->dir_cookie) {
282 					if (printk_ratelimit()) {
283 						pr_notice("NFS: directory %pD2 contains a readdir loop."
284 								"Please contact your server vendor.  "
285 								"The file: %.*s has duplicate cookie %llu\n",
286 								desc->file, array->array[i].string.len,
287 								array->array[i].string.name, *desc->dir_cookie);
288 					}
289 					status = -ELOOP;
290 					goto out;
291 				}
292 				ctx->dup_cookie = *desc->dir_cookie;
293 				ctx->duped = -1;
294 			}
295 			desc->ctx->pos = new_pos;
296 			desc->cache_entry_index = i;
297 			return 0;
298 		}
299 	}
300 	if (array->eof_index >= 0) {
301 		status = -EBADCOOKIE;
302 		if (*desc->dir_cookie == array->last_cookie)
303 			desc->eof = true;
304 	}
305 out:
306 	return status;
307 }
308 
309 static
310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
311 {
312 	struct nfs_cache_array *array;
313 	int status;
314 
315 	array = kmap(desc->page);
316 
317 	if (*desc->dir_cookie == 0)
318 		status = nfs_readdir_search_for_pos(array, desc);
319 	else
320 		status = nfs_readdir_search_for_cookie(array, desc);
321 
322 	if (status == -EAGAIN) {
323 		desc->last_cookie = array->last_cookie;
324 		desc->current_index += array->size;
325 		desc->page_index++;
326 	}
327 	kunmap(desc->page);
328 	return status;
329 }
330 
331 /* Fill a page with xdr information before transferring to the cache page */
332 static
333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
334 			struct nfs_entry *entry, struct file *file, struct inode *inode)
335 {
336 	struct nfs_open_dir_context *ctx = file->private_data;
337 	const struct cred *cred = ctx->cred;
338 	unsigned long	timestamp, gencount;
339 	int		error;
340 
341  again:
342 	timestamp = jiffies;
343 	gencount = nfs_inc_attr_generation_counter();
344 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
345 					  NFS_SERVER(inode)->dtsize, desc->plus);
346 	if (error < 0) {
347 		/* We requested READDIRPLUS, but the server doesn't grok it */
348 		if (error == -ENOTSUPP && desc->plus) {
349 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
350 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
351 			desc->plus = false;
352 			goto again;
353 		}
354 		goto error;
355 	}
356 	desc->timestamp = timestamp;
357 	desc->gencount = gencount;
358 error:
359 	return error;
360 }
361 
362 static int xdr_decode(nfs_readdir_descriptor_t *desc,
363 		      struct nfs_entry *entry, struct xdr_stream *xdr)
364 {
365 	int error;
366 
367 	error = desc->decode(xdr, entry, desc->plus);
368 	if (error)
369 		return error;
370 	entry->fattr->time_start = desc->timestamp;
371 	entry->fattr->gencount = desc->gencount;
372 	return 0;
373 }
374 
375 /* Match file and dirent using either filehandle or fileid
376  * Note: caller is responsible for checking the fsid
377  */
378 static
379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
380 {
381 	struct inode *inode;
382 	struct nfs_inode *nfsi;
383 
384 	if (d_really_is_negative(dentry))
385 		return 0;
386 
387 	inode = d_inode(dentry);
388 	if (is_bad_inode(inode) || NFS_STALE(inode))
389 		return 0;
390 
391 	nfsi = NFS_I(inode);
392 	if (entry->fattr->fileid != nfsi->fileid)
393 		return 0;
394 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
395 		return 0;
396 	return 1;
397 }
398 
399 static
400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
401 {
402 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
403 		return false;
404 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
405 		return true;
406 	if (ctx->pos == 0)
407 		return true;
408 	return false;
409 }
410 
411 /*
412  * This function is called by the lookup and getattr code to request the
413  * use of readdirplus to accelerate any future lookups in the same
414  * directory.
415  */
416 void nfs_advise_use_readdirplus(struct inode *dir)
417 {
418 	struct nfs_inode *nfsi = NFS_I(dir);
419 
420 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
421 	    !list_empty(&nfsi->open_files))
422 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
423 }
424 
425 /*
426  * This function is mainly for use by nfs_getattr().
427  *
428  * If this is an 'ls -l', we want to force use of readdirplus.
429  * Do this by checking if there is an active file descriptor
430  * and calling nfs_advise_use_readdirplus, then forcing a
431  * cache flush.
432  */
433 void nfs_force_use_readdirplus(struct inode *dir)
434 {
435 	struct nfs_inode *nfsi = NFS_I(dir);
436 
437 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
438 	    !list_empty(&nfsi->open_files)) {
439 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
440 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
441 	}
442 }
443 
444 static
445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
446 {
447 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
448 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
449 	struct dentry *dentry;
450 	struct dentry *alias;
451 	struct inode *dir = d_inode(parent);
452 	struct inode *inode;
453 	int status;
454 
455 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
456 		return;
457 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
458 		return;
459 	if (filename.len == 0)
460 		return;
461 	/* Validate that the name doesn't contain any illegal '\0' */
462 	if (strnlen(filename.name, filename.len) != filename.len)
463 		return;
464 	/* ...or '/' */
465 	if (strnchr(filename.name, filename.len, '/'))
466 		return;
467 	if (filename.name[0] == '.') {
468 		if (filename.len == 1)
469 			return;
470 		if (filename.len == 2 && filename.name[1] == '.')
471 			return;
472 	}
473 	filename.hash = full_name_hash(parent, filename.name, filename.len);
474 
475 	dentry = d_lookup(parent, &filename);
476 again:
477 	if (!dentry) {
478 		dentry = d_alloc_parallel(parent, &filename, &wq);
479 		if (IS_ERR(dentry))
480 			return;
481 	}
482 	if (!d_in_lookup(dentry)) {
483 		/* Is there a mountpoint here? If so, just exit */
484 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
485 					&entry->fattr->fsid))
486 			goto out;
487 		if (nfs_same_file(dentry, entry)) {
488 			if (!entry->fh->size)
489 				goto out;
490 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
491 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
492 			if (!status)
493 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
494 			goto out;
495 		} else {
496 			d_invalidate(dentry);
497 			dput(dentry);
498 			dentry = NULL;
499 			goto again;
500 		}
501 	}
502 	if (!entry->fh->size) {
503 		d_lookup_done(dentry);
504 		goto out;
505 	}
506 
507 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
508 	alias = d_splice_alias(inode, dentry);
509 	d_lookup_done(dentry);
510 	if (alias) {
511 		if (IS_ERR(alias))
512 			goto out;
513 		dput(dentry);
514 		dentry = alias;
515 	}
516 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
517 out:
518 	dput(dentry);
519 }
520 
521 /* Perform conversion from xdr to cache array */
522 static
523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
524 				struct page **xdr_pages, struct page *page, unsigned int buflen)
525 {
526 	struct xdr_stream stream;
527 	struct xdr_buf buf;
528 	struct page *scratch;
529 	struct nfs_cache_array *array;
530 	unsigned int count = 0;
531 	int status;
532 
533 	scratch = alloc_page(GFP_KERNEL);
534 	if (scratch == NULL)
535 		return -ENOMEM;
536 
537 	if (buflen == 0)
538 		goto out_nopages;
539 
540 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
541 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
542 
543 	do {
544 		status = xdr_decode(desc, entry, &stream);
545 		if (status != 0) {
546 			if (status == -EAGAIN)
547 				status = 0;
548 			break;
549 		}
550 
551 		count++;
552 
553 		if (desc->plus)
554 			nfs_prime_dcache(file_dentry(desc->file), entry);
555 
556 		status = nfs_readdir_add_to_array(entry, page);
557 		if (status != 0)
558 			break;
559 	} while (!entry->eof);
560 
561 out_nopages:
562 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
563 		array = kmap(page);
564 		array->eof_index = array->size;
565 		status = 0;
566 		kunmap(page);
567 	}
568 
569 	put_page(scratch);
570 	return status;
571 }
572 
573 static
574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
575 {
576 	unsigned int i;
577 	for (i = 0; i < npages; i++)
578 		put_page(pages[i]);
579 }
580 
581 /*
582  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
583  * to nfs_readdir_free_pages()
584  */
585 static
586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
587 {
588 	unsigned int i;
589 
590 	for (i = 0; i < npages; i++) {
591 		struct page *page = alloc_page(GFP_KERNEL);
592 		if (page == NULL)
593 			goto out_freepages;
594 		pages[i] = page;
595 	}
596 	return 0;
597 
598 out_freepages:
599 	nfs_readdir_free_pages(pages, i);
600 	return -ENOMEM;
601 }
602 
603 static
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
605 {
606 	struct page *pages[NFS_MAX_READDIR_PAGES];
607 	struct nfs_entry entry;
608 	struct file	*file = desc->file;
609 	struct nfs_cache_array *array;
610 	int status = -ENOMEM;
611 	unsigned int array_size = ARRAY_SIZE(pages);
612 
613 	entry.prev_cookie = 0;
614 	entry.cookie = desc->last_cookie;
615 	entry.eof = 0;
616 	entry.fh = nfs_alloc_fhandle();
617 	entry.fattr = nfs_alloc_fattr();
618 	entry.server = NFS_SERVER(inode);
619 	if (entry.fh == NULL || entry.fattr == NULL)
620 		goto out;
621 
622 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
623 	if (IS_ERR(entry.label)) {
624 		status = PTR_ERR(entry.label);
625 		goto out;
626 	}
627 
628 	array = kmap(page);
629 	memset(array, 0, sizeof(struct nfs_cache_array));
630 	array->eof_index = -1;
631 
632 	status = nfs_readdir_alloc_pages(pages, array_size);
633 	if (status < 0)
634 		goto out_release_array;
635 	do {
636 		unsigned int pglen;
637 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
638 
639 		if (status < 0)
640 			break;
641 		pglen = status;
642 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
643 		if (status < 0) {
644 			if (status == -ENOSPC)
645 				status = 0;
646 			break;
647 		}
648 	} while (array->eof_index < 0);
649 
650 	nfs_readdir_free_pages(pages, array_size);
651 out_release_array:
652 	kunmap(page);
653 	nfs4_label_free(entry.label);
654 out:
655 	nfs_free_fattr(entry.fattr);
656 	nfs_free_fhandle(entry.fh);
657 	return status;
658 }
659 
660 /*
661  * Now we cache directories properly, by converting xdr information
662  * to an array that can be used for lookups later.  This results in
663  * fewer cache pages, since we can store more information on each page.
664  * We only need to convert from xdr once so future lookups are much simpler
665  */
666 static
667 int nfs_readdir_filler(void *data, struct page* page)
668 {
669 	nfs_readdir_descriptor_t *desc = data;
670 	struct inode	*inode = file_inode(desc->file);
671 	int ret;
672 
673 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
674 	if (ret < 0)
675 		goto error;
676 	SetPageUptodate(page);
677 
678 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
679 		/* Should never happen */
680 		nfs_zap_mapping(inode, inode->i_mapping);
681 	}
682 	unlock_page(page);
683 	return 0;
684  error:
685 	unlock_page(page);
686 	return ret;
687 }
688 
689 static
690 void cache_page_release(nfs_readdir_descriptor_t *desc)
691 {
692 	if (!desc->page->mapping)
693 		nfs_readdir_clear_array(desc->page);
694 	put_page(desc->page);
695 	desc->page = NULL;
696 }
697 
698 static
699 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
700 {
701 	return read_cache_page(desc->file->f_mapping, desc->page_index,
702 			nfs_readdir_filler, desc);
703 }
704 
705 /*
706  * Returns 0 if desc->dir_cookie was found on page desc->page_index
707  */
708 static
709 int find_cache_page(nfs_readdir_descriptor_t *desc)
710 {
711 	int res;
712 
713 	desc->page = get_cache_page(desc);
714 	if (IS_ERR(desc->page))
715 		return PTR_ERR(desc->page);
716 
717 	res = nfs_readdir_search_array(desc);
718 	if (res != 0)
719 		cache_page_release(desc);
720 	return res;
721 }
722 
723 /* Search for desc->dir_cookie from the beginning of the page cache */
724 static inline
725 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
726 {
727 	int res;
728 
729 	if (desc->page_index == 0) {
730 		desc->current_index = 0;
731 		desc->last_cookie = 0;
732 	}
733 	do {
734 		res = find_cache_page(desc);
735 	} while (res == -EAGAIN);
736 	return res;
737 }
738 
739 /*
740  * Once we've found the start of the dirent within a page: fill 'er up...
741  */
742 static
743 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
744 {
745 	struct file	*file = desc->file;
746 	int i = 0;
747 	int res = 0;
748 	struct nfs_cache_array *array = NULL;
749 	struct nfs_open_dir_context *ctx = file->private_data;
750 
751 	array = kmap(desc->page);
752 	for (i = desc->cache_entry_index; i < array->size; i++) {
753 		struct nfs_cache_array_entry *ent;
754 
755 		ent = &array->array[i];
756 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
757 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
758 			desc->eof = true;
759 			break;
760 		}
761 		desc->ctx->pos++;
762 		if (i < (array->size-1))
763 			*desc->dir_cookie = array->array[i+1].cookie;
764 		else
765 			*desc->dir_cookie = array->last_cookie;
766 		if (ctx->duped != 0)
767 			ctx->duped = 1;
768 	}
769 	if (array->eof_index >= 0)
770 		desc->eof = true;
771 
772 	kunmap(desc->page);
773 	cache_page_release(desc);
774 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
775 			(unsigned long long)*desc->dir_cookie, res);
776 	return res;
777 }
778 
779 /*
780  * If we cannot find a cookie in our cache, we suspect that this is
781  * because it points to a deleted file, so we ask the server to return
782  * whatever it thinks is the next entry. We then feed this to filldir.
783  * If all goes well, we should then be able to find our way round the
784  * cache on the next call to readdir_search_pagecache();
785  *
786  * NOTE: we cannot add the anonymous page to the pagecache because
787  *	 the data it contains might not be page aligned. Besides,
788  *	 we should already have a complete representation of the
789  *	 directory in the page cache by the time we get here.
790  */
791 static inline
792 int uncached_readdir(nfs_readdir_descriptor_t *desc)
793 {
794 	struct page	*page = NULL;
795 	int		status;
796 	struct inode *inode = file_inode(desc->file);
797 	struct nfs_open_dir_context *ctx = desc->file->private_data;
798 
799 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
800 			(unsigned long long)*desc->dir_cookie);
801 
802 	page = alloc_page(GFP_HIGHUSER);
803 	if (!page) {
804 		status = -ENOMEM;
805 		goto out;
806 	}
807 
808 	desc->page_index = 0;
809 	desc->last_cookie = *desc->dir_cookie;
810 	desc->page = page;
811 	ctx->duped = 0;
812 
813 	status = nfs_readdir_xdr_to_array(desc, page, inode);
814 	if (status < 0)
815 		goto out_release;
816 
817 	status = nfs_do_filldir(desc);
818 
819  out:
820 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
821 			__func__, status);
822 	return status;
823  out_release:
824 	cache_page_release(desc);
825 	goto out;
826 }
827 
828 /* The file offset position represents the dirent entry number.  A
829    last cookie cache takes care of the common case of reading the
830    whole directory.
831  */
832 static int nfs_readdir(struct file *file, struct dir_context *ctx)
833 {
834 	struct dentry	*dentry = file_dentry(file);
835 	struct inode	*inode = d_inode(dentry);
836 	nfs_readdir_descriptor_t my_desc,
837 			*desc = &my_desc;
838 	struct nfs_open_dir_context *dir_ctx = file->private_data;
839 	int res = 0;
840 
841 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
842 			file, (long long)ctx->pos);
843 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
844 
845 	/*
846 	 * ctx->pos points to the dirent entry number.
847 	 * *desc->dir_cookie has the cookie for the next entry. We have
848 	 * to either find the entry with the appropriate number or
849 	 * revalidate the cookie.
850 	 */
851 	memset(desc, 0, sizeof(*desc));
852 
853 	desc->file = file;
854 	desc->ctx = ctx;
855 	desc->dir_cookie = &dir_ctx->dir_cookie;
856 	desc->decode = NFS_PROTO(inode)->decode_dirent;
857 	desc->plus = nfs_use_readdirplus(inode, ctx);
858 
859 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
860 		res = nfs_revalidate_mapping(inode, file->f_mapping);
861 	if (res < 0)
862 		goto out;
863 
864 	do {
865 		res = readdir_search_pagecache(desc);
866 
867 		if (res == -EBADCOOKIE) {
868 			res = 0;
869 			/* This means either end of directory */
870 			if (*desc->dir_cookie && !desc->eof) {
871 				/* Or that the server has 'lost' a cookie */
872 				res = uncached_readdir(desc);
873 				if (res == 0)
874 					continue;
875 			}
876 			break;
877 		}
878 		if (res == -ETOOSMALL && desc->plus) {
879 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
880 			nfs_zap_caches(inode);
881 			desc->page_index = 0;
882 			desc->plus = false;
883 			desc->eof = false;
884 			continue;
885 		}
886 		if (res < 0)
887 			break;
888 
889 		res = nfs_do_filldir(desc);
890 		if (res < 0)
891 			break;
892 	} while (!desc->eof);
893 out:
894 	if (res > 0)
895 		res = 0;
896 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
897 	return res;
898 }
899 
900 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
901 {
902 	struct inode *inode = file_inode(filp);
903 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
904 
905 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
906 			filp, offset, whence);
907 
908 	switch (whence) {
909 	default:
910 		return -EINVAL;
911 	case SEEK_SET:
912 		if (offset < 0)
913 			return -EINVAL;
914 		inode_lock(inode);
915 		break;
916 	case SEEK_CUR:
917 		if (offset == 0)
918 			return filp->f_pos;
919 		inode_lock(inode);
920 		offset += filp->f_pos;
921 		if (offset < 0) {
922 			inode_unlock(inode);
923 			return -EINVAL;
924 		}
925 	}
926 	if (offset != filp->f_pos) {
927 		filp->f_pos = offset;
928 		dir_ctx->dir_cookie = 0;
929 		dir_ctx->duped = 0;
930 	}
931 	inode_unlock(inode);
932 	return offset;
933 }
934 
935 /*
936  * All directory operations under NFS are synchronous, so fsync()
937  * is a dummy operation.
938  */
939 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
940 			 int datasync)
941 {
942 	struct inode *inode = file_inode(filp);
943 
944 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
945 
946 	inode_lock(inode);
947 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
948 	inode_unlock(inode);
949 	return 0;
950 }
951 
952 /**
953  * nfs_force_lookup_revalidate - Mark the directory as having changed
954  * @dir: pointer to directory inode
955  *
956  * This forces the revalidation code in nfs_lookup_revalidate() to do a
957  * full lookup on all child dentries of 'dir' whenever a change occurs
958  * on the server that might have invalidated our dcache.
959  *
960  * The caller should be holding dir->i_lock
961  */
962 void nfs_force_lookup_revalidate(struct inode *dir)
963 {
964 	NFS_I(dir)->cache_change_attribute++;
965 }
966 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
967 
968 /*
969  * A check for whether or not the parent directory has changed.
970  * In the case it has, we assume that the dentries are untrustworthy
971  * and may need to be looked up again.
972  * If rcu_walk prevents us from performing a full check, return 0.
973  */
974 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
975 			      int rcu_walk)
976 {
977 	if (IS_ROOT(dentry))
978 		return 1;
979 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
980 		return 0;
981 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
982 		return 0;
983 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
984 	if (nfs_mapping_need_revalidate_inode(dir)) {
985 		if (rcu_walk)
986 			return 0;
987 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
988 			return 0;
989 	}
990 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
991 		return 0;
992 	return 1;
993 }
994 
995 /*
996  * Use intent information to check whether or not we're going to do
997  * an O_EXCL create using this path component.
998  */
999 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1000 {
1001 	if (NFS_PROTO(dir)->version == 2)
1002 		return 0;
1003 	return flags & LOOKUP_EXCL;
1004 }
1005 
1006 /*
1007  * Inode and filehandle revalidation for lookups.
1008  *
1009  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1010  * or if the intent information indicates that we're about to open this
1011  * particular file and the "nocto" mount flag is not set.
1012  *
1013  */
1014 static
1015 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1016 {
1017 	struct nfs_server *server = NFS_SERVER(inode);
1018 	int ret;
1019 
1020 	if (IS_AUTOMOUNT(inode))
1021 		return 0;
1022 
1023 	if (flags & LOOKUP_OPEN) {
1024 		switch (inode->i_mode & S_IFMT) {
1025 		case S_IFREG:
1026 			/* A NFSv4 OPEN will revalidate later */
1027 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1028 				goto out;
1029 			/* Fallthrough */
1030 		case S_IFDIR:
1031 			if (server->flags & NFS_MOUNT_NOCTO)
1032 				break;
1033 			/* NFS close-to-open cache consistency validation */
1034 			goto out_force;
1035 		}
1036 	}
1037 
1038 	/* VFS wants an on-the-wire revalidation */
1039 	if (flags & LOOKUP_REVAL)
1040 		goto out_force;
1041 out:
1042 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1043 out_force:
1044 	if (flags & LOOKUP_RCU)
1045 		return -ECHILD;
1046 	ret = __nfs_revalidate_inode(server, inode);
1047 	if (ret != 0)
1048 		return ret;
1049 	goto out;
1050 }
1051 
1052 /*
1053  * We judge how long we want to trust negative
1054  * dentries by looking at the parent inode mtime.
1055  *
1056  * If parent mtime has changed, we revalidate, else we wait for a
1057  * period corresponding to the parent's attribute cache timeout value.
1058  *
1059  * If LOOKUP_RCU prevents us from performing a full check, return 1
1060  * suggesting a reval is needed.
1061  *
1062  * Note that when creating a new file, or looking up a rename target,
1063  * then it shouldn't be necessary to revalidate a negative dentry.
1064  */
1065 static inline
1066 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1067 		       unsigned int flags)
1068 {
1069 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1070 		return 0;
1071 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1072 		return 1;
1073 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1074 }
1075 
1076 static int
1077 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1078 			   struct inode *inode, int error)
1079 {
1080 	switch (error) {
1081 	case 1:
1082 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1083 			__func__, dentry);
1084 		return 1;
1085 	case 0:
1086 		nfs_mark_for_revalidate(dir);
1087 		if (inode && S_ISDIR(inode->i_mode)) {
1088 			/* Purge readdir caches. */
1089 			nfs_zap_caches(inode);
1090 			/*
1091 			 * We can't d_drop the root of a disconnected tree:
1092 			 * its d_hash is on the s_anon list and d_drop() would hide
1093 			 * it from shrink_dcache_for_unmount(), leading to busy
1094 			 * inodes on unmount and further oopses.
1095 			 */
1096 			if (IS_ROOT(dentry))
1097 				return 1;
1098 		}
1099 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1100 				__func__, dentry);
1101 		return 0;
1102 	}
1103 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1104 				__func__, dentry, error);
1105 	return error;
1106 }
1107 
1108 static int
1109 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1110 			       unsigned int flags)
1111 {
1112 	int ret = 1;
1113 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1114 		if (flags & LOOKUP_RCU)
1115 			return -ECHILD;
1116 		ret = 0;
1117 	}
1118 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1119 }
1120 
1121 static int
1122 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1123 				struct inode *inode)
1124 {
1125 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1126 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1127 }
1128 
1129 static int
1130 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1131 			     struct inode *inode)
1132 {
1133 	struct nfs_fh *fhandle;
1134 	struct nfs_fattr *fattr;
1135 	struct nfs4_label *label;
1136 	int ret;
1137 
1138 	ret = -ENOMEM;
1139 	fhandle = nfs_alloc_fhandle();
1140 	fattr = nfs_alloc_fattr();
1141 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1142 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1143 		goto out;
1144 
1145 	ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1146 	if (ret < 0) {
1147 		if (ret == -ESTALE || ret == -ENOENT)
1148 			ret = 0;
1149 		goto out;
1150 	}
1151 	ret = 0;
1152 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1153 		goto out;
1154 	if (nfs_refresh_inode(inode, fattr) < 0)
1155 		goto out;
1156 
1157 	nfs_setsecurity(inode, fattr, label);
1158 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1159 
1160 	/* set a readdirplus hint that we had a cache miss */
1161 	nfs_force_use_readdirplus(dir);
1162 	ret = 1;
1163 out:
1164 	nfs_free_fattr(fattr);
1165 	nfs_free_fhandle(fhandle);
1166 	nfs4_label_free(label);
1167 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1168 }
1169 
1170 /*
1171  * This is called every time the dcache has a lookup hit,
1172  * and we should check whether we can really trust that
1173  * lookup.
1174  *
1175  * NOTE! The hit can be a negative hit too, don't assume
1176  * we have an inode!
1177  *
1178  * If the parent directory is seen to have changed, we throw out the
1179  * cached dentry and do a new lookup.
1180  */
1181 static int
1182 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1183 			 unsigned int flags)
1184 {
1185 	struct inode *inode;
1186 	int error;
1187 
1188 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1189 	inode = d_inode(dentry);
1190 
1191 	if (!inode)
1192 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1193 
1194 	if (is_bad_inode(inode)) {
1195 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1196 				__func__, dentry);
1197 		goto out_bad;
1198 	}
1199 
1200 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1201 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1202 
1203 	/* Force a full look up iff the parent directory has changed */
1204 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1205 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1206 		error = nfs_lookup_verify_inode(inode, flags);
1207 		if (error) {
1208 			if (error == -ESTALE)
1209 				nfs_zap_caches(dir);
1210 			goto out_bad;
1211 		}
1212 		nfs_advise_use_readdirplus(dir);
1213 		goto out_valid;
1214 	}
1215 
1216 	if (flags & LOOKUP_RCU)
1217 		return -ECHILD;
1218 
1219 	if (NFS_STALE(inode))
1220 		goto out_bad;
1221 
1222 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1223 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1224 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1225 	return error;
1226 out_valid:
1227 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1228 out_bad:
1229 	if (flags & LOOKUP_RCU)
1230 		return -ECHILD;
1231 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1232 }
1233 
1234 static int
1235 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1236 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1237 {
1238 	struct dentry *parent;
1239 	struct inode *dir;
1240 	int ret;
1241 
1242 	if (flags & LOOKUP_RCU) {
1243 		parent = READ_ONCE(dentry->d_parent);
1244 		dir = d_inode_rcu(parent);
1245 		if (!dir)
1246 			return -ECHILD;
1247 		ret = reval(dir, dentry, flags);
1248 		if (parent != READ_ONCE(dentry->d_parent))
1249 			return -ECHILD;
1250 	} else {
1251 		parent = dget_parent(dentry);
1252 		ret = reval(d_inode(parent), dentry, flags);
1253 		dput(parent);
1254 	}
1255 	return ret;
1256 }
1257 
1258 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1259 {
1260 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1261 }
1262 
1263 /*
1264  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1265  * when we don't really care about the dentry name. This is called when a
1266  * pathwalk ends on a dentry that was not found via a normal lookup in the
1267  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1268  *
1269  * In this situation, we just want to verify that the inode itself is OK
1270  * since the dentry might have changed on the server.
1271  */
1272 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1273 {
1274 	struct inode *inode = d_inode(dentry);
1275 	int error = 0;
1276 
1277 	/*
1278 	 * I believe we can only get a negative dentry here in the case of a
1279 	 * procfs-style symlink. Just assume it's correct for now, but we may
1280 	 * eventually need to do something more here.
1281 	 */
1282 	if (!inode) {
1283 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1284 				__func__, dentry);
1285 		return 1;
1286 	}
1287 
1288 	if (is_bad_inode(inode)) {
1289 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1290 				__func__, dentry);
1291 		return 0;
1292 	}
1293 
1294 	error = nfs_lookup_verify_inode(inode, flags);
1295 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1296 			__func__, inode->i_ino, error ? "invalid" : "valid");
1297 	return !error;
1298 }
1299 
1300 /*
1301  * This is called from dput() when d_count is going to 0.
1302  */
1303 static int nfs_dentry_delete(const struct dentry *dentry)
1304 {
1305 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1306 		dentry, dentry->d_flags);
1307 
1308 	/* Unhash any dentry with a stale inode */
1309 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1310 		return 1;
1311 
1312 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1313 		/* Unhash it, so that ->d_iput() would be called */
1314 		return 1;
1315 	}
1316 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1317 		/* Unhash it, so that ancestors of killed async unlink
1318 		 * files will be cleaned up during umount */
1319 		return 1;
1320 	}
1321 	return 0;
1322 
1323 }
1324 
1325 /* Ensure that we revalidate inode->i_nlink */
1326 static void nfs_drop_nlink(struct inode *inode)
1327 {
1328 	spin_lock(&inode->i_lock);
1329 	/* drop the inode if we're reasonably sure this is the last link */
1330 	if (inode->i_nlink > 0)
1331 		drop_nlink(inode);
1332 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1333 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1334 		| NFS_INO_INVALID_CTIME
1335 		| NFS_INO_INVALID_OTHER
1336 		| NFS_INO_REVAL_FORCED;
1337 	spin_unlock(&inode->i_lock);
1338 }
1339 
1340 /*
1341  * Called when the dentry loses inode.
1342  * We use it to clean up silly-renamed files.
1343  */
1344 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1345 {
1346 	if (S_ISDIR(inode->i_mode))
1347 		/* drop any readdir cache as it could easily be old */
1348 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1349 
1350 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1351 		nfs_complete_unlink(dentry, inode);
1352 		nfs_drop_nlink(inode);
1353 	}
1354 	iput(inode);
1355 }
1356 
1357 static void nfs_d_release(struct dentry *dentry)
1358 {
1359 	/* free cached devname value, if it survived that far */
1360 	if (unlikely(dentry->d_fsdata)) {
1361 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1362 			WARN_ON(1);
1363 		else
1364 			kfree(dentry->d_fsdata);
1365 	}
1366 }
1367 
1368 const struct dentry_operations nfs_dentry_operations = {
1369 	.d_revalidate	= nfs_lookup_revalidate,
1370 	.d_weak_revalidate	= nfs_weak_revalidate,
1371 	.d_delete	= nfs_dentry_delete,
1372 	.d_iput		= nfs_dentry_iput,
1373 	.d_automount	= nfs_d_automount,
1374 	.d_release	= nfs_d_release,
1375 };
1376 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1377 
1378 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1379 {
1380 	struct dentry *res;
1381 	struct inode *inode = NULL;
1382 	struct nfs_fh *fhandle = NULL;
1383 	struct nfs_fattr *fattr = NULL;
1384 	struct nfs4_label *label = NULL;
1385 	int error;
1386 
1387 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1388 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1389 
1390 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1391 		return ERR_PTR(-ENAMETOOLONG);
1392 
1393 	/*
1394 	 * If we're doing an exclusive create, optimize away the lookup
1395 	 * but don't hash the dentry.
1396 	 */
1397 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1398 		return NULL;
1399 
1400 	res = ERR_PTR(-ENOMEM);
1401 	fhandle = nfs_alloc_fhandle();
1402 	fattr = nfs_alloc_fattr();
1403 	if (fhandle == NULL || fattr == NULL)
1404 		goto out;
1405 
1406 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1407 	if (IS_ERR(label))
1408 		goto out;
1409 
1410 	trace_nfs_lookup_enter(dir, dentry, flags);
1411 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1412 	if (error == -ENOENT)
1413 		goto no_entry;
1414 	if (error < 0) {
1415 		res = ERR_PTR(error);
1416 		goto out_label;
1417 	}
1418 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1419 	res = ERR_CAST(inode);
1420 	if (IS_ERR(res))
1421 		goto out_label;
1422 
1423 	/* Notify readdir to use READDIRPLUS */
1424 	nfs_force_use_readdirplus(dir);
1425 
1426 no_entry:
1427 	res = d_splice_alias(inode, dentry);
1428 	if (res != NULL) {
1429 		if (IS_ERR(res))
1430 			goto out_label;
1431 		dentry = res;
1432 	}
1433 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1434 out_label:
1435 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1436 	nfs4_label_free(label);
1437 out:
1438 	nfs_free_fattr(fattr);
1439 	nfs_free_fhandle(fhandle);
1440 	return res;
1441 }
1442 EXPORT_SYMBOL_GPL(nfs_lookup);
1443 
1444 #if IS_ENABLED(CONFIG_NFS_V4)
1445 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1446 
1447 const struct dentry_operations nfs4_dentry_operations = {
1448 	.d_revalidate	= nfs4_lookup_revalidate,
1449 	.d_weak_revalidate	= nfs_weak_revalidate,
1450 	.d_delete	= nfs_dentry_delete,
1451 	.d_iput		= nfs_dentry_iput,
1452 	.d_automount	= nfs_d_automount,
1453 	.d_release	= nfs_d_release,
1454 };
1455 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1456 
1457 static fmode_t flags_to_mode(int flags)
1458 {
1459 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1460 	if ((flags & O_ACCMODE) != O_WRONLY)
1461 		res |= FMODE_READ;
1462 	if ((flags & O_ACCMODE) != O_RDONLY)
1463 		res |= FMODE_WRITE;
1464 	return res;
1465 }
1466 
1467 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1468 {
1469 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1470 }
1471 
1472 static int do_open(struct inode *inode, struct file *filp)
1473 {
1474 	nfs_fscache_open_file(inode, filp);
1475 	return 0;
1476 }
1477 
1478 static int nfs_finish_open(struct nfs_open_context *ctx,
1479 			   struct dentry *dentry,
1480 			   struct file *file, unsigned open_flags)
1481 {
1482 	int err;
1483 
1484 	err = finish_open(file, dentry, do_open);
1485 	if (err)
1486 		goto out;
1487 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1488 		nfs_file_set_open_context(file, ctx);
1489 	else
1490 		err = -EOPENSTALE;
1491 out:
1492 	return err;
1493 }
1494 
1495 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1496 		    struct file *file, unsigned open_flags,
1497 		    umode_t mode)
1498 {
1499 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1500 	struct nfs_open_context *ctx;
1501 	struct dentry *res;
1502 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1503 	struct inode *inode;
1504 	unsigned int lookup_flags = 0;
1505 	bool switched = false;
1506 	int created = 0;
1507 	int err;
1508 
1509 	/* Expect a negative dentry */
1510 	BUG_ON(d_inode(dentry));
1511 
1512 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1513 			dir->i_sb->s_id, dir->i_ino, dentry);
1514 
1515 	err = nfs_check_flags(open_flags);
1516 	if (err)
1517 		return err;
1518 
1519 	/* NFS only supports OPEN on regular files */
1520 	if ((open_flags & O_DIRECTORY)) {
1521 		if (!d_in_lookup(dentry)) {
1522 			/*
1523 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1524 			 * revalidated and is fine, no need to perform lookup
1525 			 * again
1526 			 */
1527 			return -ENOENT;
1528 		}
1529 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1530 		goto no_open;
1531 	}
1532 
1533 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1534 		return -ENAMETOOLONG;
1535 
1536 	if (open_flags & O_CREAT) {
1537 		struct nfs_server *server = NFS_SERVER(dir);
1538 
1539 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1540 			mode &= ~current_umask();
1541 
1542 		attr.ia_valid |= ATTR_MODE;
1543 		attr.ia_mode = mode;
1544 	}
1545 	if (open_flags & O_TRUNC) {
1546 		attr.ia_valid |= ATTR_SIZE;
1547 		attr.ia_size = 0;
1548 	}
1549 
1550 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1551 		d_drop(dentry);
1552 		switched = true;
1553 		dentry = d_alloc_parallel(dentry->d_parent,
1554 					  &dentry->d_name, &wq);
1555 		if (IS_ERR(dentry))
1556 			return PTR_ERR(dentry);
1557 		if (unlikely(!d_in_lookup(dentry)))
1558 			return finish_no_open(file, dentry);
1559 	}
1560 
1561 	ctx = create_nfs_open_context(dentry, open_flags, file);
1562 	err = PTR_ERR(ctx);
1563 	if (IS_ERR(ctx))
1564 		goto out;
1565 
1566 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1567 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1568 	if (created)
1569 		file->f_mode |= FMODE_CREATED;
1570 	if (IS_ERR(inode)) {
1571 		err = PTR_ERR(inode);
1572 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1573 		put_nfs_open_context(ctx);
1574 		d_drop(dentry);
1575 		switch (err) {
1576 		case -ENOENT:
1577 			d_splice_alias(NULL, dentry);
1578 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1579 			break;
1580 		case -EISDIR:
1581 		case -ENOTDIR:
1582 			goto no_open;
1583 		case -ELOOP:
1584 			if (!(open_flags & O_NOFOLLOW))
1585 				goto no_open;
1586 			break;
1587 			/* case -EINVAL: */
1588 		default:
1589 			break;
1590 		}
1591 		goto out;
1592 	}
1593 
1594 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1595 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1596 	put_nfs_open_context(ctx);
1597 out:
1598 	if (unlikely(switched)) {
1599 		d_lookup_done(dentry);
1600 		dput(dentry);
1601 	}
1602 	return err;
1603 
1604 no_open:
1605 	res = nfs_lookup(dir, dentry, lookup_flags);
1606 	if (switched) {
1607 		d_lookup_done(dentry);
1608 		if (!res)
1609 			res = dentry;
1610 		else
1611 			dput(dentry);
1612 	}
1613 	if (IS_ERR(res))
1614 		return PTR_ERR(res);
1615 	return finish_no_open(file, res);
1616 }
1617 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1618 
1619 static int
1620 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1621 			  unsigned int flags)
1622 {
1623 	struct inode *inode;
1624 
1625 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1626 		goto full_reval;
1627 	if (d_mountpoint(dentry))
1628 		goto full_reval;
1629 
1630 	inode = d_inode(dentry);
1631 
1632 	/* We can't create new files in nfs_open_revalidate(), so we
1633 	 * optimize away revalidation of negative dentries.
1634 	 */
1635 	if (inode == NULL)
1636 		goto full_reval;
1637 
1638 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1639 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1640 
1641 	/* NFS only supports OPEN on regular files */
1642 	if (!S_ISREG(inode->i_mode))
1643 		goto full_reval;
1644 
1645 	/* We cannot do exclusive creation on a positive dentry */
1646 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1647 		goto reval_dentry;
1648 
1649 	/* Check if the directory changed */
1650 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1651 		goto reval_dentry;
1652 
1653 	/* Let f_op->open() actually open (and revalidate) the file */
1654 	return 1;
1655 reval_dentry:
1656 	if (flags & LOOKUP_RCU)
1657 		return -ECHILD;
1658 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1659 
1660 full_reval:
1661 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1662 }
1663 
1664 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1665 {
1666 	return __nfs_lookup_revalidate(dentry, flags,
1667 			nfs4_do_lookup_revalidate);
1668 }
1669 
1670 #endif /* CONFIG_NFSV4 */
1671 
1672 struct dentry *
1673 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1674 				struct nfs_fattr *fattr,
1675 				struct nfs4_label *label)
1676 {
1677 	struct dentry *parent = dget_parent(dentry);
1678 	struct inode *dir = d_inode(parent);
1679 	struct inode *inode;
1680 	struct dentry *d;
1681 	int error;
1682 
1683 	d_drop(dentry);
1684 
1685 	if (fhandle->size == 0) {
1686 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1687 		if (error)
1688 			goto out_error;
1689 	}
1690 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1691 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1692 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1693 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1694 				fattr, NULL, NULL);
1695 		if (error < 0)
1696 			goto out_error;
1697 	}
1698 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1699 	d = d_splice_alias(inode, dentry);
1700 out:
1701 	dput(parent);
1702 	return d;
1703 out_error:
1704 	nfs_mark_for_revalidate(dir);
1705 	d = ERR_PTR(error);
1706 	goto out;
1707 }
1708 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1709 
1710 /*
1711  * Code common to create, mkdir, and mknod.
1712  */
1713 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1714 				struct nfs_fattr *fattr,
1715 				struct nfs4_label *label)
1716 {
1717 	struct dentry *d;
1718 
1719 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1720 	if (IS_ERR(d))
1721 		return PTR_ERR(d);
1722 
1723 	/* Callers don't care */
1724 	dput(d);
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL_GPL(nfs_instantiate);
1728 
1729 /*
1730  * Following a failed create operation, we drop the dentry rather
1731  * than retain a negative dentry. This avoids a problem in the event
1732  * that the operation succeeded on the server, but an error in the
1733  * reply path made it appear to have failed.
1734  */
1735 int nfs_create(struct inode *dir, struct dentry *dentry,
1736 		umode_t mode, bool excl)
1737 {
1738 	struct iattr attr;
1739 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1740 	int error;
1741 
1742 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1743 			dir->i_sb->s_id, dir->i_ino, dentry);
1744 
1745 	attr.ia_mode = mode;
1746 	attr.ia_valid = ATTR_MODE;
1747 
1748 	trace_nfs_create_enter(dir, dentry, open_flags);
1749 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1750 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1751 	if (error != 0)
1752 		goto out_err;
1753 	return 0;
1754 out_err:
1755 	d_drop(dentry);
1756 	return error;
1757 }
1758 EXPORT_SYMBOL_GPL(nfs_create);
1759 
1760 /*
1761  * See comments for nfs_proc_create regarding failed operations.
1762  */
1763 int
1764 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1765 {
1766 	struct iattr attr;
1767 	int status;
1768 
1769 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1770 			dir->i_sb->s_id, dir->i_ino, dentry);
1771 
1772 	attr.ia_mode = mode;
1773 	attr.ia_valid = ATTR_MODE;
1774 
1775 	trace_nfs_mknod_enter(dir, dentry);
1776 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1777 	trace_nfs_mknod_exit(dir, dentry, status);
1778 	if (status != 0)
1779 		goto out_err;
1780 	return 0;
1781 out_err:
1782 	d_drop(dentry);
1783 	return status;
1784 }
1785 EXPORT_SYMBOL_GPL(nfs_mknod);
1786 
1787 /*
1788  * See comments for nfs_proc_create regarding failed operations.
1789  */
1790 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1791 {
1792 	struct iattr attr;
1793 	int error;
1794 
1795 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1796 			dir->i_sb->s_id, dir->i_ino, dentry);
1797 
1798 	attr.ia_valid = ATTR_MODE;
1799 	attr.ia_mode = mode | S_IFDIR;
1800 
1801 	trace_nfs_mkdir_enter(dir, dentry);
1802 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1803 	trace_nfs_mkdir_exit(dir, dentry, error);
1804 	if (error != 0)
1805 		goto out_err;
1806 	return 0;
1807 out_err:
1808 	d_drop(dentry);
1809 	return error;
1810 }
1811 EXPORT_SYMBOL_GPL(nfs_mkdir);
1812 
1813 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1814 {
1815 	if (simple_positive(dentry))
1816 		d_delete(dentry);
1817 }
1818 
1819 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1820 {
1821 	int error;
1822 
1823 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1824 			dir->i_sb->s_id, dir->i_ino, dentry);
1825 
1826 	trace_nfs_rmdir_enter(dir, dentry);
1827 	if (d_really_is_positive(dentry)) {
1828 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1829 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1830 		/* Ensure the VFS deletes this inode */
1831 		switch (error) {
1832 		case 0:
1833 			clear_nlink(d_inode(dentry));
1834 			break;
1835 		case -ENOENT:
1836 			nfs_dentry_handle_enoent(dentry);
1837 		}
1838 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1839 	} else
1840 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1841 	trace_nfs_rmdir_exit(dir, dentry, error);
1842 
1843 	return error;
1844 }
1845 EXPORT_SYMBOL_GPL(nfs_rmdir);
1846 
1847 /*
1848  * Remove a file after making sure there are no pending writes,
1849  * and after checking that the file has only one user.
1850  *
1851  * We invalidate the attribute cache and free the inode prior to the operation
1852  * to avoid possible races if the server reuses the inode.
1853  */
1854 static int nfs_safe_remove(struct dentry *dentry)
1855 {
1856 	struct inode *dir = d_inode(dentry->d_parent);
1857 	struct inode *inode = d_inode(dentry);
1858 	int error = -EBUSY;
1859 
1860 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1861 
1862 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1863 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1864 		error = 0;
1865 		goto out;
1866 	}
1867 
1868 	trace_nfs_remove_enter(dir, dentry);
1869 	if (inode != NULL) {
1870 		error = NFS_PROTO(dir)->remove(dir, dentry);
1871 		if (error == 0)
1872 			nfs_drop_nlink(inode);
1873 	} else
1874 		error = NFS_PROTO(dir)->remove(dir, dentry);
1875 	if (error == -ENOENT)
1876 		nfs_dentry_handle_enoent(dentry);
1877 	trace_nfs_remove_exit(dir, dentry, error);
1878 out:
1879 	return error;
1880 }
1881 
1882 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1883  *  belongs to an active ".nfs..." file and we return -EBUSY.
1884  *
1885  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1886  */
1887 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1888 {
1889 	int error;
1890 	int need_rehash = 0;
1891 
1892 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1893 		dir->i_ino, dentry);
1894 
1895 	trace_nfs_unlink_enter(dir, dentry);
1896 	spin_lock(&dentry->d_lock);
1897 	if (d_count(dentry) > 1) {
1898 		spin_unlock(&dentry->d_lock);
1899 		/* Start asynchronous writeout of the inode */
1900 		write_inode_now(d_inode(dentry), 0);
1901 		error = nfs_sillyrename(dir, dentry);
1902 		goto out;
1903 	}
1904 	if (!d_unhashed(dentry)) {
1905 		__d_drop(dentry);
1906 		need_rehash = 1;
1907 	}
1908 	spin_unlock(&dentry->d_lock);
1909 	error = nfs_safe_remove(dentry);
1910 	if (!error || error == -ENOENT) {
1911 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1912 	} else if (need_rehash)
1913 		d_rehash(dentry);
1914 out:
1915 	trace_nfs_unlink_exit(dir, dentry, error);
1916 	return error;
1917 }
1918 EXPORT_SYMBOL_GPL(nfs_unlink);
1919 
1920 /*
1921  * To create a symbolic link, most file systems instantiate a new inode,
1922  * add a page to it containing the path, then write it out to the disk
1923  * using prepare_write/commit_write.
1924  *
1925  * Unfortunately the NFS client can't create the in-core inode first
1926  * because it needs a file handle to create an in-core inode (see
1927  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1928  * symlink request has completed on the server.
1929  *
1930  * So instead we allocate a raw page, copy the symname into it, then do
1931  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1932  * now have a new file handle and can instantiate an in-core NFS inode
1933  * and move the raw page into its mapping.
1934  */
1935 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1936 {
1937 	struct page *page;
1938 	char *kaddr;
1939 	struct iattr attr;
1940 	unsigned int pathlen = strlen(symname);
1941 	int error;
1942 
1943 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1944 		dir->i_ino, dentry, symname);
1945 
1946 	if (pathlen > PAGE_SIZE)
1947 		return -ENAMETOOLONG;
1948 
1949 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1950 	attr.ia_valid = ATTR_MODE;
1951 
1952 	page = alloc_page(GFP_USER);
1953 	if (!page)
1954 		return -ENOMEM;
1955 
1956 	kaddr = page_address(page);
1957 	memcpy(kaddr, symname, pathlen);
1958 	if (pathlen < PAGE_SIZE)
1959 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1960 
1961 	trace_nfs_symlink_enter(dir, dentry);
1962 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1963 	trace_nfs_symlink_exit(dir, dentry, error);
1964 	if (error != 0) {
1965 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1966 			dir->i_sb->s_id, dir->i_ino,
1967 			dentry, symname, error);
1968 		d_drop(dentry);
1969 		__free_page(page);
1970 		return error;
1971 	}
1972 
1973 	/*
1974 	 * No big deal if we can't add this page to the page cache here.
1975 	 * READLINK will get the missing page from the server if needed.
1976 	 */
1977 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1978 							GFP_KERNEL)) {
1979 		SetPageUptodate(page);
1980 		unlock_page(page);
1981 		/*
1982 		 * add_to_page_cache_lru() grabs an extra page refcount.
1983 		 * Drop it here to avoid leaking this page later.
1984 		 */
1985 		put_page(page);
1986 	} else
1987 		__free_page(page);
1988 
1989 	return 0;
1990 }
1991 EXPORT_SYMBOL_GPL(nfs_symlink);
1992 
1993 int
1994 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1995 {
1996 	struct inode *inode = d_inode(old_dentry);
1997 	int error;
1998 
1999 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2000 		old_dentry, dentry);
2001 
2002 	trace_nfs_link_enter(inode, dir, dentry);
2003 	d_drop(dentry);
2004 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2005 	if (error == 0) {
2006 		ihold(inode);
2007 		d_add(dentry, inode);
2008 	}
2009 	trace_nfs_link_exit(inode, dir, dentry, error);
2010 	return error;
2011 }
2012 EXPORT_SYMBOL_GPL(nfs_link);
2013 
2014 /*
2015  * RENAME
2016  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2017  * different file handle for the same inode after a rename (e.g. when
2018  * moving to a different directory). A fail-safe method to do so would
2019  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2020  * rename the old file using the sillyrename stuff. This way, the original
2021  * file in old_dir will go away when the last process iput()s the inode.
2022  *
2023  * FIXED.
2024  *
2025  * It actually works quite well. One needs to have the possibility for
2026  * at least one ".nfs..." file in each directory the file ever gets
2027  * moved or linked to which happens automagically with the new
2028  * implementation that only depends on the dcache stuff instead of
2029  * using the inode layer
2030  *
2031  * Unfortunately, things are a little more complicated than indicated
2032  * above. For a cross-directory move, we want to make sure we can get
2033  * rid of the old inode after the operation.  This means there must be
2034  * no pending writes (if it's a file), and the use count must be 1.
2035  * If these conditions are met, we can drop the dentries before doing
2036  * the rename.
2037  */
2038 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2039 	       struct inode *new_dir, struct dentry *new_dentry,
2040 	       unsigned int flags)
2041 {
2042 	struct inode *old_inode = d_inode(old_dentry);
2043 	struct inode *new_inode = d_inode(new_dentry);
2044 	struct dentry *dentry = NULL, *rehash = NULL;
2045 	struct rpc_task *task;
2046 	int error = -EBUSY;
2047 
2048 	if (flags)
2049 		return -EINVAL;
2050 
2051 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2052 		 old_dentry, new_dentry,
2053 		 d_count(new_dentry));
2054 
2055 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2056 	/*
2057 	 * For non-directories, check whether the target is busy and if so,
2058 	 * make a copy of the dentry and then do a silly-rename. If the
2059 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2060 	 * the new target.
2061 	 */
2062 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2063 		/*
2064 		 * To prevent any new references to the target during the
2065 		 * rename, we unhash the dentry in advance.
2066 		 */
2067 		if (!d_unhashed(new_dentry)) {
2068 			d_drop(new_dentry);
2069 			rehash = new_dentry;
2070 		}
2071 
2072 		if (d_count(new_dentry) > 2) {
2073 			int err;
2074 
2075 			/* copy the target dentry's name */
2076 			dentry = d_alloc(new_dentry->d_parent,
2077 					 &new_dentry->d_name);
2078 			if (!dentry)
2079 				goto out;
2080 
2081 			/* silly-rename the existing target ... */
2082 			err = nfs_sillyrename(new_dir, new_dentry);
2083 			if (err)
2084 				goto out;
2085 
2086 			new_dentry = dentry;
2087 			rehash = NULL;
2088 			new_inode = NULL;
2089 		}
2090 	}
2091 
2092 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2093 	if (IS_ERR(task)) {
2094 		error = PTR_ERR(task);
2095 		goto out;
2096 	}
2097 
2098 	error = rpc_wait_for_completion_task(task);
2099 	if (error != 0) {
2100 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2101 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2102 		smp_wmb();
2103 	} else
2104 		error = task->tk_status;
2105 	rpc_put_task(task);
2106 	/* Ensure the inode attributes are revalidated */
2107 	if (error == 0) {
2108 		spin_lock(&old_inode->i_lock);
2109 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2110 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2111 			| NFS_INO_INVALID_CTIME
2112 			| NFS_INO_REVAL_FORCED;
2113 		spin_unlock(&old_inode->i_lock);
2114 	}
2115 out:
2116 	if (rehash)
2117 		d_rehash(rehash);
2118 	trace_nfs_rename_exit(old_dir, old_dentry,
2119 			new_dir, new_dentry, error);
2120 	if (!error) {
2121 		if (new_inode != NULL)
2122 			nfs_drop_nlink(new_inode);
2123 		/*
2124 		 * The d_move() should be here instead of in an async RPC completion
2125 		 * handler because we need the proper locks to move the dentry.  If
2126 		 * we're interrupted by a signal, the async RPC completion handler
2127 		 * should mark the directories for revalidation.
2128 		 */
2129 		d_move(old_dentry, new_dentry);
2130 		nfs_set_verifier(old_dentry,
2131 					nfs_save_change_attribute(new_dir));
2132 	} else if (error == -ENOENT)
2133 		nfs_dentry_handle_enoent(old_dentry);
2134 
2135 	/* new dentry created? */
2136 	if (dentry)
2137 		dput(dentry);
2138 	return error;
2139 }
2140 EXPORT_SYMBOL_GPL(nfs_rename);
2141 
2142 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2143 static LIST_HEAD(nfs_access_lru_list);
2144 static atomic_long_t nfs_access_nr_entries;
2145 
2146 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2147 module_param(nfs_access_max_cachesize, ulong, 0644);
2148 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2149 
2150 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2151 {
2152 	put_cred(entry->cred);
2153 	kfree_rcu(entry, rcu_head);
2154 	smp_mb__before_atomic();
2155 	atomic_long_dec(&nfs_access_nr_entries);
2156 	smp_mb__after_atomic();
2157 }
2158 
2159 static void nfs_access_free_list(struct list_head *head)
2160 {
2161 	struct nfs_access_entry *cache;
2162 
2163 	while (!list_empty(head)) {
2164 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2165 		list_del(&cache->lru);
2166 		nfs_access_free_entry(cache);
2167 	}
2168 }
2169 
2170 static unsigned long
2171 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2172 {
2173 	LIST_HEAD(head);
2174 	struct nfs_inode *nfsi, *next;
2175 	struct nfs_access_entry *cache;
2176 	long freed = 0;
2177 
2178 	spin_lock(&nfs_access_lru_lock);
2179 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2180 		struct inode *inode;
2181 
2182 		if (nr_to_scan-- == 0)
2183 			break;
2184 		inode = &nfsi->vfs_inode;
2185 		spin_lock(&inode->i_lock);
2186 		if (list_empty(&nfsi->access_cache_entry_lru))
2187 			goto remove_lru_entry;
2188 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2189 				struct nfs_access_entry, lru);
2190 		list_move(&cache->lru, &head);
2191 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2192 		freed++;
2193 		if (!list_empty(&nfsi->access_cache_entry_lru))
2194 			list_move_tail(&nfsi->access_cache_inode_lru,
2195 					&nfs_access_lru_list);
2196 		else {
2197 remove_lru_entry:
2198 			list_del_init(&nfsi->access_cache_inode_lru);
2199 			smp_mb__before_atomic();
2200 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2201 			smp_mb__after_atomic();
2202 		}
2203 		spin_unlock(&inode->i_lock);
2204 	}
2205 	spin_unlock(&nfs_access_lru_lock);
2206 	nfs_access_free_list(&head);
2207 	return freed;
2208 }
2209 
2210 unsigned long
2211 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2212 {
2213 	int nr_to_scan = sc->nr_to_scan;
2214 	gfp_t gfp_mask = sc->gfp_mask;
2215 
2216 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2217 		return SHRINK_STOP;
2218 	return nfs_do_access_cache_scan(nr_to_scan);
2219 }
2220 
2221 
2222 unsigned long
2223 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2224 {
2225 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2226 }
2227 
2228 static void
2229 nfs_access_cache_enforce_limit(void)
2230 {
2231 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2232 	unsigned long diff;
2233 	unsigned int nr_to_scan;
2234 
2235 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2236 		return;
2237 	nr_to_scan = 100;
2238 	diff = nr_entries - nfs_access_max_cachesize;
2239 	if (diff < nr_to_scan)
2240 		nr_to_scan = diff;
2241 	nfs_do_access_cache_scan(nr_to_scan);
2242 }
2243 
2244 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2245 {
2246 	struct rb_root *root_node = &nfsi->access_cache;
2247 	struct rb_node *n;
2248 	struct nfs_access_entry *entry;
2249 
2250 	/* Unhook entries from the cache */
2251 	while ((n = rb_first(root_node)) != NULL) {
2252 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2253 		rb_erase(n, root_node);
2254 		list_move(&entry->lru, head);
2255 	}
2256 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2257 }
2258 
2259 void nfs_access_zap_cache(struct inode *inode)
2260 {
2261 	LIST_HEAD(head);
2262 
2263 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2264 		return;
2265 	/* Remove from global LRU init */
2266 	spin_lock(&nfs_access_lru_lock);
2267 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2268 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2269 
2270 	spin_lock(&inode->i_lock);
2271 	__nfs_access_zap_cache(NFS_I(inode), &head);
2272 	spin_unlock(&inode->i_lock);
2273 	spin_unlock(&nfs_access_lru_lock);
2274 	nfs_access_free_list(&head);
2275 }
2276 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2277 
2278 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2279 {
2280 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2281 
2282 	while (n != NULL) {
2283 		struct nfs_access_entry *entry =
2284 			rb_entry(n, struct nfs_access_entry, rb_node);
2285 		int cmp = cred_fscmp(cred, entry->cred);
2286 
2287 		if (cmp < 0)
2288 			n = n->rb_left;
2289 		else if (cmp > 0)
2290 			n = n->rb_right;
2291 		else
2292 			return entry;
2293 	}
2294 	return NULL;
2295 }
2296 
2297 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2298 {
2299 	struct nfs_inode *nfsi = NFS_I(inode);
2300 	struct nfs_access_entry *cache;
2301 	bool retry = true;
2302 	int err;
2303 
2304 	spin_lock(&inode->i_lock);
2305 	for(;;) {
2306 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2307 			goto out_zap;
2308 		cache = nfs_access_search_rbtree(inode, cred);
2309 		err = -ENOENT;
2310 		if (cache == NULL)
2311 			goto out;
2312 		/* Found an entry, is our attribute cache valid? */
2313 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2314 			break;
2315 		err = -ECHILD;
2316 		if (!may_block)
2317 			goto out;
2318 		if (!retry)
2319 			goto out_zap;
2320 		spin_unlock(&inode->i_lock);
2321 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2322 		if (err)
2323 			return err;
2324 		spin_lock(&inode->i_lock);
2325 		retry = false;
2326 	}
2327 	res->cred = cache->cred;
2328 	res->mask = cache->mask;
2329 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2330 	err = 0;
2331 out:
2332 	spin_unlock(&inode->i_lock);
2333 	return err;
2334 out_zap:
2335 	spin_unlock(&inode->i_lock);
2336 	nfs_access_zap_cache(inode);
2337 	return -ENOENT;
2338 }
2339 
2340 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2341 {
2342 	/* Only check the most recently returned cache entry,
2343 	 * but do it without locking.
2344 	 */
2345 	struct nfs_inode *nfsi = NFS_I(inode);
2346 	struct nfs_access_entry *cache;
2347 	int err = -ECHILD;
2348 	struct list_head *lh;
2349 
2350 	rcu_read_lock();
2351 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2352 		goto out;
2353 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2354 	cache = list_entry(lh, struct nfs_access_entry, lru);
2355 	if (lh == &nfsi->access_cache_entry_lru ||
2356 	    cred != cache->cred)
2357 		cache = NULL;
2358 	if (cache == NULL)
2359 		goto out;
2360 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2361 		goto out;
2362 	res->cred = cache->cred;
2363 	res->mask = cache->mask;
2364 	err = 0;
2365 out:
2366 	rcu_read_unlock();
2367 	return err;
2368 }
2369 
2370 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2371 {
2372 	struct nfs_inode *nfsi = NFS_I(inode);
2373 	struct rb_root *root_node = &nfsi->access_cache;
2374 	struct rb_node **p = &root_node->rb_node;
2375 	struct rb_node *parent = NULL;
2376 	struct nfs_access_entry *entry;
2377 	int cmp;
2378 
2379 	spin_lock(&inode->i_lock);
2380 	while (*p != NULL) {
2381 		parent = *p;
2382 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2383 		cmp = cred_fscmp(set->cred, entry->cred);
2384 
2385 		if (cmp < 0)
2386 			p = &parent->rb_left;
2387 		else if (cmp > 0)
2388 			p = &parent->rb_right;
2389 		else
2390 			goto found;
2391 	}
2392 	rb_link_node(&set->rb_node, parent, p);
2393 	rb_insert_color(&set->rb_node, root_node);
2394 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2395 	spin_unlock(&inode->i_lock);
2396 	return;
2397 found:
2398 	rb_replace_node(parent, &set->rb_node, root_node);
2399 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2400 	list_del(&entry->lru);
2401 	spin_unlock(&inode->i_lock);
2402 	nfs_access_free_entry(entry);
2403 }
2404 
2405 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2406 {
2407 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2408 	if (cache == NULL)
2409 		return;
2410 	RB_CLEAR_NODE(&cache->rb_node);
2411 	cache->cred = get_cred(set->cred);
2412 	cache->mask = set->mask;
2413 
2414 	/* The above field assignments must be visible
2415 	 * before this item appears on the lru.  We cannot easily
2416 	 * use rcu_assign_pointer, so just force the memory barrier.
2417 	 */
2418 	smp_wmb();
2419 	nfs_access_add_rbtree(inode, cache);
2420 
2421 	/* Update accounting */
2422 	smp_mb__before_atomic();
2423 	atomic_long_inc(&nfs_access_nr_entries);
2424 	smp_mb__after_atomic();
2425 
2426 	/* Add inode to global LRU list */
2427 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2428 		spin_lock(&nfs_access_lru_lock);
2429 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2430 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2431 					&nfs_access_lru_list);
2432 		spin_unlock(&nfs_access_lru_lock);
2433 	}
2434 	nfs_access_cache_enforce_limit();
2435 }
2436 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2437 
2438 #define NFS_MAY_READ (NFS_ACCESS_READ)
2439 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2440 		NFS_ACCESS_EXTEND | \
2441 		NFS_ACCESS_DELETE)
2442 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2443 		NFS_ACCESS_EXTEND)
2444 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2445 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2446 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2447 static int
2448 nfs_access_calc_mask(u32 access_result, umode_t umode)
2449 {
2450 	int mask = 0;
2451 
2452 	if (access_result & NFS_MAY_READ)
2453 		mask |= MAY_READ;
2454 	if (S_ISDIR(umode)) {
2455 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2456 			mask |= MAY_WRITE;
2457 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2458 			mask |= MAY_EXEC;
2459 	} else if (S_ISREG(umode)) {
2460 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2461 			mask |= MAY_WRITE;
2462 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2463 			mask |= MAY_EXEC;
2464 	} else if (access_result & NFS_MAY_WRITE)
2465 			mask |= MAY_WRITE;
2466 	return mask;
2467 }
2468 
2469 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2470 {
2471 	entry->mask = access_result;
2472 }
2473 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2474 
2475 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2476 {
2477 	struct nfs_access_entry cache;
2478 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2479 	int cache_mask;
2480 	int status;
2481 
2482 	trace_nfs_access_enter(inode);
2483 
2484 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2485 	if (status != 0)
2486 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2487 	if (status == 0)
2488 		goto out_cached;
2489 
2490 	status = -ECHILD;
2491 	if (!may_block)
2492 		goto out;
2493 
2494 	/*
2495 	 * Determine which access bits we want to ask for...
2496 	 */
2497 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2498 	if (S_ISDIR(inode->i_mode))
2499 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2500 	else
2501 		cache.mask |= NFS_ACCESS_EXECUTE;
2502 	cache.cred = cred;
2503 	status = NFS_PROTO(inode)->access(inode, &cache);
2504 	if (status != 0) {
2505 		if (status == -ESTALE) {
2506 			nfs_zap_caches(inode);
2507 			if (!S_ISDIR(inode->i_mode))
2508 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2509 		}
2510 		goto out;
2511 	}
2512 	nfs_access_add_cache(inode, &cache);
2513 out_cached:
2514 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2515 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2516 		status = -EACCES;
2517 out:
2518 	trace_nfs_access_exit(inode, status);
2519 	return status;
2520 }
2521 
2522 static int nfs_open_permission_mask(int openflags)
2523 {
2524 	int mask = 0;
2525 
2526 	if (openflags & __FMODE_EXEC) {
2527 		/* ONLY check exec rights */
2528 		mask = MAY_EXEC;
2529 	} else {
2530 		if ((openflags & O_ACCMODE) != O_WRONLY)
2531 			mask |= MAY_READ;
2532 		if ((openflags & O_ACCMODE) != O_RDONLY)
2533 			mask |= MAY_WRITE;
2534 	}
2535 
2536 	return mask;
2537 }
2538 
2539 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2540 {
2541 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2542 }
2543 EXPORT_SYMBOL_GPL(nfs_may_open);
2544 
2545 static int nfs_execute_ok(struct inode *inode, int mask)
2546 {
2547 	struct nfs_server *server = NFS_SERVER(inode);
2548 	int ret = 0;
2549 
2550 	if (S_ISDIR(inode->i_mode))
2551 		return 0;
2552 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2553 		if (mask & MAY_NOT_BLOCK)
2554 			return -ECHILD;
2555 		ret = __nfs_revalidate_inode(server, inode);
2556 	}
2557 	if (ret == 0 && !execute_ok(inode))
2558 		ret = -EACCES;
2559 	return ret;
2560 }
2561 
2562 int nfs_permission(struct inode *inode, int mask)
2563 {
2564 	const struct cred *cred = current_cred();
2565 	int res = 0;
2566 
2567 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2568 
2569 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2570 		goto out;
2571 	/* Is this sys_access() ? */
2572 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2573 		goto force_lookup;
2574 
2575 	switch (inode->i_mode & S_IFMT) {
2576 		case S_IFLNK:
2577 			goto out;
2578 		case S_IFREG:
2579 			if ((mask & MAY_OPEN) &&
2580 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2581 				return 0;
2582 			break;
2583 		case S_IFDIR:
2584 			/*
2585 			 * Optimize away all write operations, since the server
2586 			 * will check permissions when we perform the op.
2587 			 */
2588 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2589 				goto out;
2590 	}
2591 
2592 force_lookup:
2593 	if (!NFS_PROTO(inode)->access)
2594 		goto out_notsup;
2595 
2596 	/* Always try fast lookups first */
2597 	rcu_read_lock();
2598 	res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2599 	rcu_read_unlock();
2600 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2601 		/* Fast lookup failed, try the slow way */
2602 		res = nfs_do_access(inode, cred, mask);
2603 	}
2604 out:
2605 	if (!res && (mask & MAY_EXEC))
2606 		res = nfs_execute_ok(inode, mask);
2607 
2608 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2609 		inode->i_sb->s_id, inode->i_ino, mask, res);
2610 	return res;
2611 out_notsup:
2612 	if (mask & MAY_NOT_BLOCK)
2613 		return -ECHILD;
2614 
2615 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2616 	if (res == 0)
2617 		res = generic_permission(inode, mask);
2618 	goto out;
2619 }
2620 EXPORT_SYMBOL_GPL(nfs_permission);
2621 
2622 /*
2623  * Local variables:
2624  *  version-control: t
2625  *  kept-new-versions: 5
2626  * End:
2627  */
2628