1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 122 /* This is a mountpoint, so d_revalidate will never 123 * have been called, so we need to refresh the 124 * inode (for close-open consistency) ourselves. 125 */ 126 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 127 } 128 out: 129 put_rpccred(cred); 130 return res; 131 } 132 133 static int 134 nfs_closedir(struct inode *inode, struct file *filp) 135 { 136 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 137 return 0; 138 } 139 140 struct nfs_cache_array_entry { 141 u64 cookie; 142 u64 ino; 143 struct qstr string; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 int size; 149 int eof_index; 150 u64 last_cookie; 151 struct nfs_cache_array_entry array[0]; 152 }; 153 154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 155 typedef struct { 156 struct file *file; 157 struct page *page; 158 struct dir_context *ctx; 159 unsigned long page_index; 160 u64 *dir_cookie; 161 u64 last_cookie; 162 loff_t current_index; 163 decode_dirent_t decode; 164 165 unsigned long timestamp; 166 unsigned long gencount; 167 unsigned int cache_entry_index; 168 unsigned int plus:1; 169 unsigned int eof:1; 170 } nfs_readdir_descriptor_t; 171 172 /* 173 * The caller is responsible for calling nfs_readdir_release_array(page) 174 */ 175 static 176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 177 { 178 void *ptr; 179 if (page == NULL) 180 return ERR_PTR(-EIO); 181 ptr = kmap(page); 182 if (ptr == NULL) 183 return ERR_PTR(-ENOMEM); 184 return ptr; 185 } 186 187 static 188 void nfs_readdir_release_array(struct page *page) 189 { 190 kunmap(page); 191 } 192 193 /* 194 * we are freeing strings created by nfs_add_to_readdir_array() 195 */ 196 static 197 void nfs_readdir_clear_array(struct page *page) 198 { 199 struct nfs_cache_array *array; 200 int i; 201 202 array = kmap_atomic(page); 203 for (i = 0; i < array->size; i++) 204 kfree(array->array[i].string.name); 205 kunmap_atomic(array); 206 } 207 208 /* 209 * the caller is responsible for freeing qstr.name 210 * when called by nfs_readdir_add_to_array, the strings will be freed in 211 * nfs_clear_readdir_array() 212 */ 213 static 214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 215 { 216 string->len = len; 217 string->name = kmemdup(name, len, GFP_KERNEL); 218 if (string->name == NULL) 219 return -ENOMEM; 220 /* 221 * Avoid a kmemleak false positive. The pointer to the name is stored 222 * in a page cache page which kmemleak does not scan. 223 */ 224 kmemleak_not_leak(string->name); 225 string->hash = full_name_hash(name, len); 226 return 0; 227 } 228 229 static 230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 231 { 232 struct nfs_cache_array *array = nfs_readdir_get_array(page); 233 struct nfs_cache_array_entry *cache_entry; 234 int ret; 235 236 if (IS_ERR(array)) 237 return PTR_ERR(array); 238 239 cache_entry = &array->array[array->size]; 240 241 /* Check that this entry lies within the page bounds */ 242 ret = -ENOSPC; 243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 244 goto out; 245 246 cache_entry->cookie = entry->prev_cookie; 247 cache_entry->ino = entry->ino; 248 cache_entry->d_type = entry->d_type; 249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 250 if (ret) 251 goto out; 252 array->last_cookie = entry->cookie; 253 array->size++; 254 if (entry->eof != 0) 255 array->eof_index = array->size; 256 out: 257 nfs_readdir_release_array(page); 258 return ret; 259 } 260 261 static 262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263 { 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279 out_eof: 280 desc->eof = 1; 281 return -EBADCOOKIE; 282 } 283 284 static bool 285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286 { 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291 } 292 293 static 294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295 { 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->ctx->pos) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 desc->ctx->pos = new_pos; 327 desc->cache_entry_index = i; 328 return 0; 329 } 330 } 331 if (array->eof_index >= 0) { 332 status = -EBADCOOKIE; 333 if (*desc->dir_cookie == array->last_cookie) 334 desc->eof = 1; 335 } 336 out: 337 return status; 338 } 339 340 static 341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 342 { 343 struct nfs_cache_array *array; 344 int status; 345 346 array = nfs_readdir_get_array(desc->page); 347 if (IS_ERR(array)) { 348 status = PTR_ERR(array); 349 goto out; 350 } 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 nfs_readdir_release_array(desc->page); 363 out: 364 return status; 365 } 366 367 /* Fill a page with xdr information before transferring to the cache page */ 368 static 369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 370 struct nfs_entry *entry, struct file *file, struct inode *inode) 371 { 372 struct nfs_open_dir_context *ctx = file->private_data; 373 struct rpc_cred *cred = ctx->cred; 374 unsigned long timestamp, gencount; 375 int error; 376 377 again: 378 timestamp = jiffies; 379 gencount = nfs_inc_attr_generation_counter(); 380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = 0; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394 error: 395 return error; 396 } 397 398 static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400 { 401 int error; 402 403 error = desc->decode(xdr, entry, desc->plus); 404 if (error) 405 return error; 406 entry->fattr->time_start = desc->timestamp; 407 entry->fattr->gencount = desc->gencount; 408 return 0; 409 } 410 411 /* Match file and dirent using either filehandle or fileid 412 * Note: caller is responsible for checking the fsid 413 */ 414 static 415 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 416 { 417 struct nfs_inode *nfsi; 418 419 if (d_really_is_negative(dentry)) 420 return 0; 421 422 nfsi = NFS_I(d_inode(dentry)); 423 if (entry->fattr->fileid == nfsi->fileid) 424 return 1; 425 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0) 426 return 1; 427 return 0; 428 } 429 430 static 431 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 432 { 433 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 434 return false; 435 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 436 return true; 437 if (ctx->pos == 0) 438 return true; 439 return false; 440 } 441 442 /* 443 * This function is called by the lookup code to request the use of 444 * readdirplus to accelerate any future lookups in the same 445 * directory. 446 */ 447 static 448 void nfs_advise_use_readdirplus(struct inode *dir) 449 { 450 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 451 } 452 453 /* 454 * This function is mainly for use by nfs_getattr(). 455 * 456 * If this is an 'ls -l', we want to force use of readdirplus. 457 * Do this by checking if there is an active file descriptor 458 * and calling nfs_advise_use_readdirplus, then forcing a 459 * cache flush. 460 */ 461 void nfs_force_use_readdirplus(struct inode *dir) 462 { 463 if (!list_empty(&NFS_I(dir)->open_files)) { 464 nfs_advise_use_readdirplus(dir); 465 nfs_zap_mapping(dir, dir->i_mapping); 466 } 467 } 468 469 static 470 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 471 { 472 struct qstr filename = QSTR_INIT(entry->name, entry->len); 473 struct dentry *dentry; 474 struct dentry *alias; 475 struct inode *dir = d_inode(parent); 476 struct inode *inode; 477 int status; 478 479 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 480 return; 481 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 482 return; 483 if (filename.name[0] == '.') { 484 if (filename.len == 1) 485 return; 486 if (filename.len == 2 && filename.name[1] == '.') 487 return; 488 } 489 filename.hash = full_name_hash(filename.name, filename.len); 490 491 dentry = d_lookup(parent, &filename); 492 if (dentry != NULL) { 493 /* Is there a mountpoint here? If so, just exit */ 494 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 495 &entry->fattr->fsid)) 496 goto out; 497 if (nfs_same_file(dentry, entry)) { 498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 499 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 500 if (!status) 501 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 502 goto out; 503 } else { 504 d_invalidate(dentry); 505 dput(dentry); 506 } 507 } 508 509 dentry = d_alloc(parent, &filename); 510 if (dentry == NULL) 511 return; 512 513 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 514 if (IS_ERR(inode)) 515 goto out; 516 517 alias = d_splice_alias(inode, dentry); 518 if (IS_ERR(alias)) 519 goto out; 520 else if (alias) { 521 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 522 dput(alias); 523 } else 524 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 525 526 out: 527 dput(dentry); 528 } 529 530 /* Perform conversion from xdr to cache array */ 531 static 532 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 533 struct page **xdr_pages, struct page *page, unsigned int buflen) 534 { 535 struct xdr_stream stream; 536 struct xdr_buf buf; 537 struct page *scratch; 538 struct nfs_cache_array *array; 539 unsigned int count = 0; 540 int status; 541 542 scratch = alloc_page(GFP_KERNEL); 543 if (scratch == NULL) 544 return -ENOMEM; 545 546 if (buflen == 0) 547 goto out_nopages; 548 549 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 550 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 551 552 do { 553 status = xdr_decode(desc, entry, &stream); 554 if (status != 0) { 555 if (status == -EAGAIN) 556 status = 0; 557 break; 558 } 559 560 count++; 561 562 if (desc->plus != 0) 563 nfs_prime_dcache(file_dentry(desc->file), entry); 564 565 status = nfs_readdir_add_to_array(entry, page); 566 if (status != 0) 567 break; 568 } while (!entry->eof); 569 570 out_nopages: 571 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 572 array = nfs_readdir_get_array(page); 573 if (!IS_ERR(array)) { 574 array->eof_index = array->size; 575 status = 0; 576 nfs_readdir_release_array(page); 577 } else 578 status = PTR_ERR(array); 579 } 580 581 put_page(scratch); 582 return status; 583 } 584 585 static 586 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 587 { 588 unsigned int i; 589 for (i = 0; i < npages; i++) 590 put_page(pages[i]); 591 } 592 593 /* 594 * nfs_readdir_large_page will allocate pages that must be freed with a call 595 * to nfs_readdir_free_pagearray 596 */ 597 static 598 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 599 { 600 unsigned int i; 601 602 for (i = 0; i < npages; i++) { 603 struct page *page = alloc_page(GFP_KERNEL); 604 if (page == NULL) 605 goto out_freepages; 606 pages[i] = page; 607 } 608 return 0; 609 610 out_freepages: 611 nfs_readdir_free_pages(pages, i); 612 return -ENOMEM; 613 } 614 615 static 616 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 617 { 618 struct page *pages[NFS_MAX_READDIR_PAGES]; 619 struct nfs_entry entry; 620 struct file *file = desc->file; 621 struct nfs_cache_array *array; 622 int status = -ENOMEM; 623 unsigned int array_size = ARRAY_SIZE(pages); 624 625 entry.prev_cookie = 0; 626 entry.cookie = desc->last_cookie; 627 entry.eof = 0; 628 entry.fh = nfs_alloc_fhandle(); 629 entry.fattr = nfs_alloc_fattr(); 630 entry.server = NFS_SERVER(inode); 631 if (entry.fh == NULL || entry.fattr == NULL) 632 goto out; 633 634 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 635 if (IS_ERR(entry.label)) { 636 status = PTR_ERR(entry.label); 637 goto out; 638 } 639 640 array = nfs_readdir_get_array(page); 641 if (IS_ERR(array)) { 642 status = PTR_ERR(array); 643 goto out_label_free; 644 } 645 memset(array, 0, sizeof(struct nfs_cache_array)); 646 array->eof_index = -1; 647 648 status = nfs_readdir_alloc_pages(pages, array_size); 649 if (status < 0) 650 goto out_release_array; 651 do { 652 unsigned int pglen; 653 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 654 655 if (status < 0) 656 break; 657 pglen = status; 658 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 659 if (status < 0) { 660 if (status == -ENOSPC) 661 status = 0; 662 break; 663 } 664 } while (array->eof_index < 0); 665 666 nfs_readdir_free_pages(pages, array_size); 667 out_release_array: 668 nfs_readdir_release_array(page); 669 out_label_free: 670 nfs4_label_free(entry.label); 671 out: 672 nfs_free_fattr(entry.fattr); 673 nfs_free_fhandle(entry.fh); 674 return status; 675 } 676 677 /* 678 * Now we cache directories properly, by converting xdr information 679 * to an array that can be used for lookups later. This results in 680 * fewer cache pages, since we can store more information on each page. 681 * We only need to convert from xdr once so future lookups are much simpler 682 */ 683 static 684 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 685 { 686 struct inode *inode = file_inode(desc->file); 687 int ret; 688 689 ret = nfs_readdir_xdr_to_array(desc, page, inode); 690 if (ret < 0) 691 goto error; 692 SetPageUptodate(page); 693 694 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 695 /* Should never happen */ 696 nfs_zap_mapping(inode, inode->i_mapping); 697 } 698 unlock_page(page); 699 return 0; 700 error: 701 unlock_page(page); 702 return ret; 703 } 704 705 static 706 void cache_page_release(nfs_readdir_descriptor_t *desc) 707 { 708 if (!desc->page->mapping) 709 nfs_readdir_clear_array(desc->page); 710 put_page(desc->page); 711 desc->page = NULL; 712 } 713 714 static 715 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 716 { 717 return read_cache_page(file_inode(desc->file)->i_mapping, 718 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 719 } 720 721 /* 722 * Returns 0 if desc->dir_cookie was found on page desc->page_index 723 */ 724 static 725 int find_cache_page(nfs_readdir_descriptor_t *desc) 726 { 727 int res; 728 729 desc->page = get_cache_page(desc); 730 if (IS_ERR(desc->page)) 731 return PTR_ERR(desc->page); 732 733 res = nfs_readdir_search_array(desc); 734 if (res != 0) 735 cache_page_release(desc); 736 return res; 737 } 738 739 /* Search for desc->dir_cookie from the beginning of the page cache */ 740 static inline 741 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 742 { 743 int res; 744 745 if (desc->page_index == 0) { 746 desc->current_index = 0; 747 desc->last_cookie = 0; 748 } 749 do { 750 res = find_cache_page(desc); 751 } while (res == -EAGAIN); 752 return res; 753 } 754 755 /* 756 * Once we've found the start of the dirent within a page: fill 'er up... 757 */ 758 static 759 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 760 { 761 struct file *file = desc->file; 762 int i = 0; 763 int res = 0; 764 struct nfs_cache_array *array = NULL; 765 struct nfs_open_dir_context *ctx = file->private_data; 766 767 array = nfs_readdir_get_array(desc->page); 768 if (IS_ERR(array)) { 769 res = PTR_ERR(array); 770 goto out; 771 } 772 773 for (i = desc->cache_entry_index; i < array->size; i++) { 774 struct nfs_cache_array_entry *ent; 775 776 ent = &array->array[i]; 777 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 778 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 779 desc->eof = 1; 780 break; 781 } 782 desc->ctx->pos++; 783 if (i < (array->size-1)) 784 *desc->dir_cookie = array->array[i+1].cookie; 785 else 786 *desc->dir_cookie = array->last_cookie; 787 if (ctx->duped != 0) 788 ctx->duped = 1; 789 } 790 if (array->eof_index >= 0) 791 desc->eof = 1; 792 793 nfs_readdir_release_array(desc->page); 794 out: 795 cache_page_release(desc); 796 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 797 (unsigned long long)*desc->dir_cookie, res); 798 return res; 799 } 800 801 /* 802 * If we cannot find a cookie in our cache, we suspect that this is 803 * because it points to a deleted file, so we ask the server to return 804 * whatever it thinks is the next entry. We then feed this to filldir. 805 * If all goes well, we should then be able to find our way round the 806 * cache on the next call to readdir_search_pagecache(); 807 * 808 * NOTE: we cannot add the anonymous page to the pagecache because 809 * the data it contains might not be page aligned. Besides, 810 * we should already have a complete representation of the 811 * directory in the page cache by the time we get here. 812 */ 813 static inline 814 int uncached_readdir(nfs_readdir_descriptor_t *desc) 815 { 816 struct page *page = NULL; 817 int status; 818 struct inode *inode = file_inode(desc->file); 819 struct nfs_open_dir_context *ctx = desc->file->private_data; 820 821 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 822 (unsigned long long)*desc->dir_cookie); 823 824 page = alloc_page(GFP_HIGHUSER); 825 if (!page) { 826 status = -ENOMEM; 827 goto out; 828 } 829 830 desc->page_index = 0; 831 desc->last_cookie = *desc->dir_cookie; 832 desc->page = page; 833 ctx->duped = 0; 834 835 status = nfs_readdir_xdr_to_array(desc, page, inode); 836 if (status < 0) 837 goto out_release; 838 839 status = nfs_do_filldir(desc); 840 841 out: 842 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 843 __func__, status); 844 return status; 845 out_release: 846 cache_page_release(desc); 847 goto out; 848 } 849 850 static bool nfs_dir_mapping_need_revalidate(struct inode *dir) 851 { 852 struct nfs_inode *nfsi = NFS_I(dir); 853 854 if (nfs_attribute_cache_expired(dir)) 855 return true; 856 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 857 return true; 858 return false; 859 } 860 861 /* The file offset position represents the dirent entry number. A 862 last cookie cache takes care of the common case of reading the 863 whole directory. 864 */ 865 static int nfs_readdir(struct file *file, struct dir_context *ctx) 866 { 867 struct dentry *dentry = file_dentry(file); 868 struct inode *inode = d_inode(dentry); 869 nfs_readdir_descriptor_t my_desc, 870 *desc = &my_desc; 871 struct nfs_open_dir_context *dir_ctx = file->private_data; 872 int res = 0; 873 874 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 875 file, (long long)ctx->pos); 876 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 877 878 /* 879 * ctx->pos points to the dirent entry number. 880 * *desc->dir_cookie has the cookie for the next entry. We have 881 * to either find the entry with the appropriate number or 882 * revalidate the cookie. 883 */ 884 memset(desc, 0, sizeof(*desc)); 885 886 desc->file = file; 887 desc->ctx = ctx; 888 desc->dir_cookie = &dir_ctx->dir_cookie; 889 desc->decode = NFS_PROTO(inode)->decode_dirent; 890 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 891 892 nfs_block_sillyrename(dentry); 893 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode)) 894 res = nfs_revalidate_mapping(inode, file->f_mapping); 895 if (res < 0) 896 goto out; 897 898 do { 899 res = readdir_search_pagecache(desc); 900 901 if (res == -EBADCOOKIE) { 902 res = 0; 903 /* This means either end of directory */ 904 if (*desc->dir_cookie && desc->eof == 0) { 905 /* Or that the server has 'lost' a cookie */ 906 res = uncached_readdir(desc); 907 if (res == 0) 908 continue; 909 } 910 break; 911 } 912 if (res == -ETOOSMALL && desc->plus) { 913 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 914 nfs_zap_caches(inode); 915 desc->page_index = 0; 916 desc->plus = 0; 917 desc->eof = 0; 918 continue; 919 } 920 if (res < 0) 921 break; 922 923 res = nfs_do_filldir(desc); 924 if (res < 0) 925 break; 926 } while (!desc->eof); 927 out: 928 nfs_unblock_sillyrename(dentry); 929 if (res > 0) 930 res = 0; 931 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 932 return res; 933 } 934 935 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 936 { 937 struct inode *inode = file_inode(filp); 938 struct nfs_open_dir_context *dir_ctx = filp->private_data; 939 940 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 941 filp, offset, whence); 942 943 inode_lock(inode); 944 switch (whence) { 945 case 1: 946 offset += filp->f_pos; 947 case 0: 948 if (offset >= 0) 949 break; 950 default: 951 offset = -EINVAL; 952 goto out; 953 } 954 if (offset != filp->f_pos) { 955 filp->f_pos = offset; 956 dir_ctx->dir_cookie = 0; 957 dir_ctx->duped = 0; 958 } 959 out: 960 inode_unlock(inode); 961 return offset; 962 } 963 964 /* 965 * All directory operations under NFS are synchronous, so fsync() 966 * is a dummy operation. 967 */ 968 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 969 int datasync) 970 { 971 struct inode *inode = file_inode(filp); 972 973 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 974 975 inode_lock(inode); 976 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 977 inode_unlock(inode); 978 return 0; 979 } 980 981 /** 982 * nfs_force_lookup_revalidate - Mark the directory as having changed 983 * @dir - pointer to directory inode 984 * 985 * This forces the revalidation code in nfs_lookup_revalidate() to do a 986 * full lookup on all child dentries of 'dir' whenever a change occurs 987 * on the server that might have invalidated our dcache. 988 * 989 * The caller should be holding dir->i_lock 990 */ 991 void nfs_force_lookup_revalidate(struct inode *dir) 992 { 993 NFS_I(dir)->cache_change_attribute++; 994 } 995 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 996 997 /* 998 * A check for whether or not the parent directory has changed. 999 * In the case it has, we assume that the dentries are untrustworthy 1000 * and may need to be looked up again. 1001 * If rcu_walk prevents us from performing a full check, return 0. 1002 */ 1003 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1004 int rcu_walk) 1005 { 1006 int ret; 1007 1008 if (IS_ROOT(dentry)) 1009 return 1; 1010 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1011 return 0; 1012 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1013 return 0; 1014 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1015 if (rcu_walk) 1016 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir); 1017 else 1018 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1019 if (ret < 0) 1020 return 0; 1021 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1022 return 0; 1023 return 1; 1024 } 1025 1026 /* 1027 * Use intent information to check whether or not we're going to do 1028 * an O_EXCL create using this path component. 1029 */ 1030 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1031 { 1032 if (NFS_PROTO(dir)->version == 2) 1033 return 0; 1034 return flags & LOOKUP_EXCL; 1035 } 1036 1037 /* 1038 * Inode and filehandle revalidation for lookups. 1039 * 1040 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1041 * or if the intent information indicates that we're about to open this 1042 * particular file and the "nocto" mount flag is not set. 1043 * 1044 */ 1045 static 1046 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1047 { 1048 struct nfs_server *server = NFS_SERVER(inode); 1049 int ret; 1050 1051 if (IS_AUTOMOUNT(inode)) 1052 return 0; 1053 /* VFS wants an on-the-wire revalidation */ 1054 if (flags & LOOKUP_REVAL) 1055 goto out_force; 1056 /* This is an open(2) */ 1057 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1058 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1059 goto out_force; 1060 out: 1061 return (inode->i_nlink == 0) ? -ENOENT : 0; 1062 out_force: 1063 if (flags & LOOKUP_RCU) 1064 return -ECHILD; 1065 ret = __nfs_revalidate_inode(server, inode); 1066 if (ret != 0) 1067 return ret; 1068 goto out; 1069 } 1070 1071 /* 1072 * We judge how long we want to trust negative 1073 * dentries by looking at the parent inode mtime. 1074 * 1075 * If parent mtime has changed, we revalidate, else we wait for a 1076 * period corresponding to the parent's attribute cache timeout value. 1077 * 1078 * If LOOKUP_RCU prevents us from performing a full check, return 1 1079 * suggesting a reval is needed. 1080 */ 1081 static inline 1082 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1083 unsigned int flags) 1084 { 1085 /* Don't revalidate a negative dentry if we're creating a new file */ 1086 if (flags & LOOKUP_CREATE) 1087 return 0; 1088 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1089 return 1; 1090 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1091 } 1092 1093 /* 1094 * This is called every time the dcache has a lookup hit, 1095 * and we should check whether we can really trust that 1096 * lookup. 1097 * 1098 * NOTE! The hit can be a negative hit too, don't assume 1099 * we have an inode! 1100 * 1101 * If the parent directory is seen to have changed, we throw out the 1102 * cached dentry and do a new lookup. 1103 */ 1104 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1105 { 1106 struct inode *dir; 1107 struct inode *inode; 1108 struct dentry *parent; 1109 struct nfs_fh *fhandle = NULL; 1110 struct nfs_fattr *fattr = NULL; 1111 struct nfs4_label *label = NULL; 1112 int error; 1113 1114 if (flags & LOOKUP_RCU) { 1115 parent = ACCESS_ONCE(dentry->d_parent); 1116 dir = d_inode_rcu(parent); 1117 if (!dir) 1118 return -ECHILD; 1119 } else { 1120 parent = dget_parent(dentry); 1121 dir = d_inode(parent); 1122 } 1123 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1124 inode = d_inode(dentry); 1125 1126 if (!inode) { 1127 if (nfs_neg_need_reval(dir, dentry, flags)) { 1128 if (flags & LOOKUP_RCU) 1129 return -ECHILD; 1130 goto out_bad; 1131 } 1132 goto out_valid_noent; 1133 } 1134 1135 if (is_bad_inode(inode)) { 1136 if (flags & LOOKUP_RCU) 1137 return -ECHILD; 1138 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1139 __func__, dentry); 1140 goto out_bad; 1141 } 1142 1143 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1144 goto out_set_verifier; 1145 1146 /* Force a full look up iff the parent directory has changed */ 1147 if (!nfs_is_exclusive_create(dir, flags) && 1148 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1149 1150 if (nfs_lookup_verify_inode(inode, flags)) { 1151 if (flags & LOOKUP_RCU) 1152 return -ECHILD; 1153 goto out_zap_parent; 1154 } 1155 goto out_valid; 1156 } 1157 1158 if (flags & LOOKUP_RCU) 1159 return -ECHILD; 1160 1161 if (NFS_STALE(inode)) 1162 goto out_bad; 1163 1164 error = -ENOMEM; 1165 fhandle = nfs_alloc_fhandle(); 1166 fattr = nfs_alloc_fattr(); 1167 if (fhandle == NULL || fattr == NULL) 1168 goto out_error; 1169 1170 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1171 if (IS_ERR(label)) 1172 goto out_error; 1173 1174 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1175 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1176 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1177 if (error) 1178 goto out_bad; 1179 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1180 goto out_bad; 1181 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1182 goto out_bad; 1183 1184 nfs_setsecurity(inode, fattr, label); 1185 1186 nfs_free_fattr(fattr); 1187 nfs_free_fhandle(fhandle); 1188 nfs4_label_free(label); 1189 1190 out_set_verifier: 1191 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1192 out_valid: 1193 /* Success: notify readdir to use READDIRPLUS */ 1194 nfs_advise_use_readdirplus(dir); 1195 out_valid_noent: 1196 if (flags & LOOKUP_RCU) { 1197 if (parent != ACCESS_ONCE(dentry->d_parent)) 1198 return -ECHILD; 1199 } else 1200 dput(parent); 1201 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1202 __func__, dentry); 1203 return 1; 1204 out_zap_parent: 1205 nfs_zap_caches(dir); 1206 out_bad: 1207 WARN_ON(flags & LOOKUP_RCU); 1208 nfs_free_fattr(fattr); 1209 nfs_free_fhandle(fhandle); 1210 nfs4_label_free(label); 1211 nfs_mark_for_revalidate(dir); 1212 if (inode && S_ISDIR(inode->i_mode)) { 1213 /* Purge readdir caches. */ 1214 nfs_zap_caches(inode); 1215 /* 1216 * We can't d_drop the root of a disconnected tree: 1217 * its d_hash is on the s_anon list and d_drop() would hide 1218 * it from shrink_dcache_for_unmount(), leading to busy 1219 * inodes on unmount and further oopses. 1220 */ 1221 if (IS_ROOT(dentry)) 1222 goto out_valid; 1223 } 1224 dput(parent); 1225 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1226 __func__, dentry); 1227 return 0; 1228 out_error: 1229 WARN_ON(flags & LOOKUP_RCU); 1230 nfs_free_fattr(fattr); 1231 nfs_free_fhandle(fhandle); 1232 nfs4_label_free(label); 1233 dput(parent); 1234 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1235 __func__, dentry, error); 1236 return error; 1237 } 1238 1239 /* 1240 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1241 * when we don't really care about the dentry name. This is called when a 1242 * pathwalk ends on a dentry that was not found via a normal lookup in the 1243 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1244 * 1245 * In this situation, we just want to verify that the inode itself is OK 1246 * since the dentry might have changed on the server. 1247 */ 1248 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1249 { 1250 int error; 1251 struct inode *inode = d_inode(dentry); 1252 1253 /* 1254 * I believe we can only get a negative dentry here in the case of a 1255 * procfs-style symlink. Just assume it's correct for now, but we may 1256 * eventually need to do something more here. 1257 */ 1258 if (!inode) { 1259 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1260 __func__, dentry); 1261 return 1; 1262 } 1263 1264 if (is_bad_inode(inode)) { 1265 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1266 __func__, dentry); 1267 return 0; 1268 } 1269 1270 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1271 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1272 __func__, inode->i_ino, error ? "invalid" : "valid"); 1273 return !error; 1274 } 1275 1276 /* 1277 * This is called from dput() when d_count is going to 0. 1278 */ 1279 static int nfs_dentry_delete(const struct dentry *dentry) 1280 { 1281 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1282 dentry, dentry->d_flags); 1283 1284 /* Unhash any dentry with a stale inode */ 1285 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1286 return 1; 1287 1288 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1289 /* Unhash it, so that ->d_iput() would be called */ 1290 return 1; 1291 } 1292 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1293 /* Unhash it, so that ancestors of killed async unlink 1294 * files will be cleaned up during umount */ 1295 return 1; 1296 } 1297 return 0; 1298 1299 } 1300 1301 /* Ensure that we revalidate inode->i_nlink */ 1302 static void nfs_drop_nlink(struct inode *inode) 1303 { 1304 spin_lock(&inode->i_lock); 1305 /* drop the inode if we're reasonably sure this is the last link */ 1306 if (inode->i_nlink == 1) 1307 clear_nlink(inode); 1308 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1309 spin_unlock(&inode->i_lock); 1310 } 1311 1312 /* 1313 * Called when the dentry loses inode. 1314 * We use it to clean up silly-renamed files. 1315 */ 1316 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1317 { 1318 if (S_ISDIR(inode->i_mode)) 1319 /* drop any readdir cache as it could easily be old */ 1320 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1321 1322 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1323 nfs_complete_unlink(dentry, inode); 1324 nfs_drop_nlink(inode); 1325 } 1326 iput(inode); 1327 } 1328 1329 static void nfs_d_release(struct dentry *dentry) 1330 { 1331 /* free cached devname value, if it survived that far */ 1332 if (unlikely(dentry->d_fsdata)) { 1333 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1334 WARN_ON(1); 1335 else 1336 kfree(dentry->d_fsdata); 1337 } 1338 } 1339 1340 const struct dentry_operations nfs_dentry_operations = { 1341 .d_revalidate = nfs_lookup_revalidate, 1342 .d_weak_revalidate = nfs_weak_revalidate, 1343 .d_delete = nfs_dentry_delete, 1344 .d_iput = nfs_dentry_iput, 1345 .d_automount = nfs_d_automount, 1346 .d_release = nfs_d_release, 1347 }; 1348 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1349 1350 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1351 { 1352 struct dentry *res; 1353 struct dentry *parent; 1354 struct inode *inode = NULL; 1355 struct nfs_fh *fhandle = NULL; 1356 struct nfs_fattr *fattr = NULL; 1357 struct nfs4_label *label = NULL; 1358 int error; 1359 1360 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1361 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1362 1363 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1364 return ERR_PTR(-ENAMETOOLONG); 1365 1366 /* 1367 * If we're doing an exclusive create, optimize away the lookup 1368 * but don't hash the dentry. 1369 */ 1370 if (nfs_is_exclusive_create(dir, flags)) 1371 return NULL; 1372 1373 res = ERR_PTR(-ENOMEM); 1374 fhandle = nfs_alloc_fhandle(); 1375 fattr = nfs_alloc_fattr(); 1376 if (fhandle == NULL || fattr == NULL) 1377 goto out; 1378 1379 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1380 if (IS_ERR(label)) 1381 goto out; 1382 1383 parent = dentry->d_parent; 1384 /* Protect against concurrent sillydeletes */ 1385 trace_nfs_lookup_enter(dir, dentry, flags); 1386 nfs_block_sillyrename(parent); 1387 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1388 if (error == -ENOENT) 1389 goto no_entry; 1390 if (error < 0) { 1391 res = ERR_PTR(error); 1392 goto out_unblock_sillyrename; 1393 } 1394 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1395 res = ERR_CAST(inode); 1396 if (IS_ERR(res)) 1397 goto out_unblock_sillyrename; 1398 1399 /* Success: notify readdir to use READDIRPLUS */ 1400 nfs_advise_use_readdirplus(dir); 1401 1402 no_entry: 1403 res = d_splice_alias(inode, dentry); 1404 if (res != NULL) { 1405 if (IS_ERR(res)) 1406 goto out_unblock_sillyrename; 1407 dentry = res; 1408 } 1409 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1410 out_unblock_sillyrename: 1411 nfs_unblock_sillyrename(parent); 1412 trace_nfs_lookup_exit(dir, dentry, flags, error); 1413 nfs4_label_free(label); 1414 out: 1415 nfs_free_fattr(fattr); 1416 nfs_free_fhandle(fhandle); 1417 return res; 1418 } 1419 EXPORT_SYMBOL_GPL(nfs_lookup); 1420 1421 #if IS_ENABLED(CONFIG_NFS_V4) 1422 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1423 1424 const struct dentry_operations nfs4_dentry_operations = { 1425 .d_revalidate = nfs4_lookup_revalidate, 1426 .d_delete = nfs_dentry_delete, 1427 .d_iput = nfs_dentry_iput, 1428 .d_automount = nfs_d_automount, 1429 .d_release = nfs_d_release, 1430 }; 1431 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1432 1433 static fmode_t flags_to_mode(int flags) 1434 { 1435 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1436 if ((flags & O_ACCMODE) != O_WRONLY) 1437 res |= FMODE_READ; 1438 if ((flags & O_ACCMODE) != O_RDONLY) 1439 res |= FMODE_WRITE; 1440 return res; 1441 } 1442 1443 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1444 { 1445 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1446 } 1447 1448 static int do_open(struct inode *inode, struct file *filp) 1449 { 1450 nfs_fscache_open_file(inode, filp); 1451 return 0; 1452 } 1453 1454 static int nfs_finish_open(struct nfs_open_context *ctx, 1455 struct dentry *dentry, 1456 struct file *file, unsigned open_flags, 1457 int *opened) 1458 { 1459 int err; 1460 1461 err = finish_open(file, dentry, do_open, opened); 1462 if (err) 1463 goto out; 1464 nfs_file_set_open_context(file, ctx); 1465 1466 out: 1467 return err; 1468 } 1469 1470 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1471 struct file *file, unsigned open_flags, 1472 umode_t mode, int *opened) 1473 { 1474 struct nfs_open_context *ctx; 1475 struct dentry *res; 1476 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1477 struct inode *inode; 1478 unsigned int lookup_flags = 0; 1479 int err; 1480 1481 /* Expect a negative dentry */ 1482 BUG_ON(d_inode(dentry)); 1483 1484 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1485 dir->i_sb->s_id, dir->i_ino, dentry); 1486 1487 err = nfs_check_flags(open_flags); 1488 if (err) 1489 return err; 1490 1491 /* NFS only supports OPEN on regular files */ 1492 if ((open_flags & O_DIRECTORY)) { 1493 if (!d_unhashed(dentry)) { 1494 /* 1495 * Hashed negative dentry with O_DIRECTORY: dentry was 1496 * revalidated and is fine, no need to perform lookup 1497 * again 1498 */ 1499 return -ENOENT; 1500 } 1501 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1502 goto no_open; 1503 } 1504 1505 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1506 return -ENAMETOOLONG; 1507 1508 if (open_flags & O_CREAT) { 1509 attr.ia_valid |= ATTR_MODE; 1510 attr.ia_mode = mode & ~current_umask(); 1511 } 1512 if (open_flags & O_TRUNC) { 1513 attr.ia_valid |= ATTR_SIZE; 1514 attr.ia_size = 0; 1515 } 1516 1517 ctx = create_nfs_open_context(dentry, open_flags); 1518 err = PTR_ERR(ctx); 1519 if (IS_ERR(ctx)) 1520 goto out; 1521 1522 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1523 nfs_block_sillyrename(dentry->d_parent); 1524 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1525 nfs_unblock_sillyrename(dentry->d_parent); 1526 if (IS_ERR(inode)) { 1527 err = PTR_ERR(inode); 1528 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1529 put_nfs_open_context(ctx); 1530 switch (err) { 1531 case -ENOENT: 1532 d_drop(dentry); 1533 d_add(dentry, NULL); 1534 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1535 break; 1536 case -EISDIR: 1537 case -ENOTDIR: 1538 goto no_open; 1539 case -ELOOP: 1540 if (!(open_flags & O_NOFOLLOW)) 1541 goto no_open; 1542 break; 1543 /* case -EINVAL: */ 1544 default: 1545 break; 1546 } 1547 goto out; 1548 } 1549 1550 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1551 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1552 put_nfs_open_context(ctx); 1553 out: 1554 return err; 1555 1556 no_open: 1557 res = nfs_lookup(dir, dentry, lookup_flags); 1558 err = PTR_ERR(res); 1559 if (IS_ERR(res)) 1560 goto out; 1561 1562 return finish_no_open(file, res); 1563 } 1564 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1565 1566 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1567 { 1568 struct inode *inode; 1569 int ret = 0; 1570 1571 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1572 goto no_open; 1573 if (d_mountpoint(dentry)) 1574 goto no_open; 1575 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1576 goto no_open; 1577 1578 inode = d_inode(dentry); 1579 1580 /* We can't create new files in nfs_open_revalidate(), so we 1581 * optimize away revalidation of negative dentries. 1582 */ 1583 if (inode == NULL) { 1584 struct dentry *parent; 1585 struct inode *dir; 1586 1587 if (flags & LOOKUP_RCU) { 1588 parent = ACCESS_ONCE(dentry->d_parent); 1589 dir = d_inode_rcu(parent); 1590 if (!dir) 1591 return -ECHILD; 1592 } else { 1593 parent = dget_parent(dentry); 1594 dir = d_inode(parent); 1595 } 1596 if (!nfs_neg_need_reval(dir, dentry, flags)) 1597 ret = 1; 1598 else if (flags & LOOKUP_RCU) 1599 ret = -ECHILD; 1600 if (!(flags & LOOKUP_RCU)) 1601 dput(parent); 1602 else if (parent != ACCESS_ONCE(dentry->d_parent)) 1603 return -ECHILD; 1604 goto out; 1605 } 1606 1607 /* NFS only supports OPEN on regular files */ 1608 if (!S_ISREG(inode->i_mode)) 1609 goto no_open; 1610 /* We cannot do exclusive creation on a positive dentry */ 1611 if (flags & LOOKUP_EXCL) 1612 goto no_open; 1613 1614 /* Let f_op->open() actually open (and revalidate) the file */ 1615 ret = 1; 1616 1617 out: 1618 return ret; 1619 1620 no_open: 1621 return nfs_lookup_revalidate(dentry, flags); 1622 } 1623 1624 #endif /* CONFIG_NFSV4 */ 1625 1626 /* 1627 * Code common to create, mkdir, and mknod. 1628 */ 1629 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1630 struct nfs_fattr *fattr, 1631 struct nfs4_label *label) 1632 { 1633 struct dentry *parent = dget_parent(dentry); 1634 struct inode *dir = d_inode(parent); 1635 struct inode *inode; 1636 int error = -EACCES; 1637 1638 d_drop(dentry); 1639 1640 /* We may have been initialized further down */ 1641 if (d_really_is_positive(dentry)) 1642 goto out; 1643 if (fhandle->size == 0) { 1644 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1645 if (error) 1646 goto out_error; 1647 } 1648 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1649 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1650 struct nfs_server *server = NFS_SB(dentry->d_sb); 1651 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1652 if (error < 0) 1653 goto out_error; 1654 } 1655 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1656 error = PTR_ERR(inode); 1657 if (IS_ERR(inode)) 1658 goto out_error; 1659 d_add(dentry, inode); 1660 out: 1661 dput(parent); 1662 return 0; 1663 out_error: 1664 nfs_mark_for_revalidate(dir); 1665 dput(parent); 1666 return error; 1667 } 1668 EXPORT_SYMBOL_GPL(nfs_instantiate); 1669 1670 /* 1671 * Following a failed create operation, we drop the dentry rather 1672 * than retain a negative dentry. This avoids a problem in the event 1673 * that the operation succeeded on the server, but an error in the 1674 * reply path made it appear to have failed. 1675 */ 1676 int nfs_create(struct inode *dir, struct dentry *dentry, 1677 umode_t mode, bool excl) 1678 { 1679 struct iattr attr; 1680 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1681 int error; 1682 1683 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1684 dir->i_sb->s_id, dir->i_ino, dentry); 1685 1686 attr.ia_mode = mode; 1687 attr.ia_valid = ATTR_MODE; 1688 1689 trace_nfs_create_enter(dir, dentry, open_flags); 1690 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1691 trace_nfs_create_exit(dir, dentry, open_flags, error); 1692 if (error != 0) 1693 goto out_err; 1694 return 0; 1695 out_err: 1696 d_drop(dentry); 1697 return error; 1698 } 1699 EXPORT_SYMBOL_GPL(nfs_create); 1700 1701 /* 1702 * See comments for nfs_proc_create regarding failed operations. 1703 */ 1704 int 1705 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1706 { 1707 struct iattr attr; 1708 int status; 1709 1710 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1711 dir->i_sb->s_id, dir->i_ino, dentry); 1712 1713 attr.ia_mode = mode; 1714 attr.ia_valid = ATTR_MODE; 1715 1716 trace_nfs_mknod_enter(dir, dentry); 1717 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1718 trace_nfs_mknod_exit(dir, dentry, status); 1719 if (status != 0) 1720 goto out_err; 1721 return 0; 1722 out_err: 1723 d_drop(dentry); 1724 return status; 1725 } 1726 EXPORT_SYMBOL_GPL(nfs_mknod); 1727 1728 /* 1729 * See comments for nfs_proc_create regarding failed operations. 1730 */ 1731 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1732 { 1733 struct iattr attr; 1734 int error; 1735 1736 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1737 dir->i_sb->s_id, dir->i_ino, dentry); 1738 1739 attr.ia_valid = ATTR_MODE; 1740 attr.ia_mode = mode | S_IFDIR; 1741 1742 trace_nfs_mkdir_enter(dir, dentry); 1743 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1744 trace_nfs_mkdir_exit(dir, dentry, error); 1745 if (error != 0) 1746 goto out_err; 1747 return 0; 1748 out_err: 1749 d_drop(dentry); 1750 return error; 1751 } 1752 EXPORT_SYMBOL_GPL(nfs_mkdir); 1753 1754 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1755 { 1756 if (simple_positive(dentry)) 1757 d_delete(dentry); 1758 } 1759 1760 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1761 { 1762 int error; 1763 1764 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1765 dir->i_sb->s_id, dir->i_ino, dentry); 1766 1767 trace_nfs_rmdir_enter(dir, dentry); 1768 if (d_really_is_positive(dentry)) { 1769 nfs_wait_on_sillyrename(dentry); 1770 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1771 /* Ensure the VFS deletes this inode */ 1772 switch (error) { 1773 case 0: 1774 clear_nlink(d_inode(dentry)); 1775 break; 1776 case -ENOENT: 1777 nfs_dentry_handle_enoent(dentry); 1778 } 1779 } else 1780 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1781 trace_nfs_rmdir_exit(dir, dentry, error); 1782 1783 return error; 1784 } 1785 EXPORT_SYMBOL_GPL(nfs_rmdir); 1786 1787 /* 1788 * Remove a file after making sure there are no pending writes, 1789 * and after checking that the file has only one user. 1790 * 1791 * We invalidate the attribute cache and free the inode prior to the operation 1792 * to avoid possible races if the server reuses the inode. 1793 */ 1794 static int nfs_safe_remove(struct dentry *dentry) 1795 { 1796 struct inode *dir = d_inode(dentry->d_parent); 1797 struct inode *inode = d_inode(dentry); 1798 int error = -EBUSY; 1799 1800 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1801 1802 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1803 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1804 error = 0; 1805 goto out; 1806 } 1807 1808 trace_nfs_remove_enter(dir, dentry); 1809 if (inode != NULL) { 1810 NFS_PROTO(inode)->return_delegation(inode); 1811 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1812 if (error == 0) 1813 nfs_drop_nlink(inode); 1814 } else 1815 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1816 if (error == -ENOENT) 1817 nfs_dentry_handle_enoent(dentry); 1818 trace_nfs_remove_exit(dir, dentry, error); 1819 out: 1820 return error; 1821 } 1822 1823 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1824 * belongs to an active ".nfs..." file and we return -EBUSY. 1825 * 1826 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1827 */ 1828 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1829 { 1830 int error; 1831 int need_rehash = 0; 1832 1833 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1834 dir->i_ino, dentry); 1835 1836 trace_nfs_unlink_enter(dir, dentry); 1837 spin_lock(&dentry->d_lock); 1838 if (d_count(dentry) > 1) { 1839 spin_unlock(&dentry->d_lock); 1840 /* Start asynchronous writeout of the inode */ 1841 write_inode_now(d_inode(dentry), 0); 1842 error = nfs_sillyrename(dir, dentry); 1843 goto out; 1844 } 1845 if (!d_unhashed(dentry)) { 1846 __d_drop(dentry); 1847 need_rehash = 1; 1848 } 1849 spin_unlock(&dentry->d_lock); 1850 error = nfs_safe_remove(dentry); 1851 if (!error || error == -ENOENT) { 1852 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1853 } else if (need_rehash) 1854 d_rehash(dentry); 1855 out: 1856 trace_nfs_unlink_exit(dir, dentry, error); 1857 return error; 1858 } 1859 EXPORT_SYMBOL_GPL(nfs_unlink); 1860 1861 /* 1862 * To create a symbolic link, most file systems instantiate a new inode, 1863 * add a page to it containing the path, then write it out to the disk 1864 * using prepare_write/commit_write. 1865 * 1866 * Unfortunately the NFS client can't create the in-core inode first 1867 * because it needs a file handle to create an in-core inode (see 1868 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1869 * symlink request has completed on the server. 1870 * 1871 * So instead we allocate a raw page, copy the symname into it, then do 1872 * the SYMLINK request with the page as the buffer. If it succeeds, we 1873 * now have a new file handle and can instantiate an in-core NFS inode 1874 * and move the raw page into its mapping. 1875 */ 1876 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1877 { 1878 struct page *page; 1879 char *kaddr; 1880 struct iattr attr; 1881 unsigned int pathlen = strlen(symname); 1882 int error; 1883 1884 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1885 dir->i_ino, dentry, symname); 1886 1887 if (pathlen > PAGE_SIZE) 1888 return -ENAMETOOLONG; 1889 1890 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1891 attr.ia_valid = ATTR_MODE; 1892 1893 page = alloc_page(GFP_USER); 1894 if (!page) 1895 return -ENOMEM; 1896 1897 kaddr = page_address(page); 1898 memcpy(kaddr, symname, pathlen); 1899 if (pathlen < PAGE_SIZE) 1900 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1901 1902 trace_nfs_symlink_enter(dir, dentry); 1903 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1904 trace_nfs_symlink_exit(dir, dentry, error); 1905 if (error != 0) { 1906 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1907 dir->i_sb->s_id, dir->i_ino, 1908 dentry, symname, error); 1909 d_drop(dentry); 1910 __free_page(page); 1911 return error; 1912 } 1913 1914 /* 1915 * No big deal if we can't add this page to the page cache here. 1916 * READLINK will get the missing page from the server if needed. 1917 */ 1918 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1919 GFP_KERNEL)) { 1920 SetPageUptodate(page); 1921 unlock_page(page); 1922 /* 1923 * add_to_page_cache_lru() grabs an extra page refcount. 1924 * Drop it here to avoid leaking this page later. 1925 */ 1926 put_page(page); 1927 } else 1928 __free_page(page); 1929 1930 return 0; 1931 } 1932 EXPORT_SYMBOL_GPL(nfs_symlink); 1933 1934 int 1935 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1936 { 1937 struct inode *inode = d_inode(old_dentry); 1938 int error; 1939 1940 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1941 old_dentry, dentry); 1942 1943 trace_nfs_link_enter(inode, dir, dentry); 1944 NFS_PROTO(inode)->return_delegation(inode); 1945 1946 d_drop(dentry); 1947 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1948 if (error == 0) { 1949 ihold(inode); 1950 d_add(dentry, inode); 1951 } 1952 trace_nfs_link_exit(inode, dir, dentry, error); 1953 return error; 1954 } 1955 EXPORT_SYMBOL_GPL(nfs_link); 1956 1957 /* 1958 * RENAME 1959 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1960 * different file handle for the same inode after a rename (e.g. when 1961 * moving to a different directory). A fail-safe method to do so would 1962 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1963 * rename the old file using the sillyrename stuff. This way, the original 1964 * file in old_dir will go away when the last process iput()s the inode. 1965 * 1966 * FIXED. 1967 * 1968 * It actually works quite well. One needs to have the possibility for 1969 * at least one ".nfs..." file in each directory the file ever gets 1970 * moved or linked to which happens automagically with the new 1971 * implementation that only depends on the dcache stuff instead of 1972 * using the inode layer 1973 * 1974 * Unfortunately, things are a little more complicated than indicated 1975 * above. For a cross-directory move, we want to make sure we can get 1976 * rid of the old inode after the operation. This means there must be 1977 * no pending writes (if it's a file), and the use count must be 1. 1978 * If these conditions are met, we can drop the dentries before doing 1979 * the rename. 1980 */ 1981 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1982 struct inode *new_dir, struct dentry *new_dentry) 1983 { 1984 struct inode *old_inode = d_inode(old_dentry); 1985 struct inode *new_inode = d_inode(new_dentry); 1986 struct dentry *dentry = NULL, *rehash = NULL; 1987 struct rpc_task *task; 1988 int error = -EBUSY; 1989 1990 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 1991 old_dentry, new_dentry, 1992 d_count(new_dentry)); 1993 1994 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 1995 /* 1996 * For non-directories, check whether the target is busy and if so, 1997 * make a copy of the dentry and then do a silly-rename. If the 1998 * silly-rename succeeds, the copied dentry is hashed and becomes 1999 * the new target. 2000 */ 2001 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2002 /* 2003 * To prevent any new references to the target during the 2004 * rename, we unhash the dentry in advance. 2005 */ 2006 if (!d_unhashed(new_dentry)) { 2007 d_drop(new_dentry); 2008 rehash = new_dentry; 2009 } 2010 2011 if (d_count(new_dentry) > 2) { 2012 int err; 2013 2014 /* copy the target dentry's name */ 2015 dentry = d_alloc(new_dentry->d_parent, 2016 &new_dentry->d_name); 2017 if (!dentry) 2018 goto out; 2019 2020 /* silly-rename the existing target ... */ 2021 err = nfs_sillyrename(new_dir, new_dentry); 2022 if (err) 2023 goto out; 2024 2025 new_dentry = dentry; 2026 rehash = NULL; 2027 new_inode = NULL; 2028 } 2029 } 2030 2031 NFS_PROTO(old_inode)->return_delegation(old_inode); 2032 if (new_inode != NULL) 2033 NFS_PROTO(new_inode)->return_delegation(new_inode); 2034 2035 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2036 if (IS_ERR(task)) { 2037 error = PTR_ERR(task); 2038 goto out; 2039 } 2040 2041 error = rpc_wait_for_completion_task(task); 2042 if (error == 0) 2043 error = task->tk_status; 2044 rpc_put_task(task); 2045 nfs_mark_for_revalidate(old_inode); 2046 out: 2047 if (rehash) 2048 d_rehash(rehash); 2049 trace_nfs_rename_exit(old_dir, old_dentry, 2050 new_dir, new_dentry, error); 2051 if (!error) { 2052 if (new_inode != NULL) 2053 nfs_drop_nlink(new_inode); 2054 d_move(old_dentry, new_dentry); 2055 nfs_set_verifier(new_dentry, 2056 nfs_save_change_attribute(new_dir)); 2057 } else if (error == -ENOENT) 2058 nfs_dentry_handle_enoent(old_dentry); 2059 2060 /* new dentry created? */ 2061 if (dentry) 2062 dput(dentry); 2063 return error; 2064 } 2065 EXPORT_SYMBOL_GPL(nfs_rename); 2066 2067 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2068 static LIST_HEAD(nfs_access_lru_list); 2069 static atomic_long_t nfs_access_nr_entries; 2070 2071 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2072 module_param(nfs_access_max_cachesize, ulong, 0644); 2073 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2074 2075 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2076 { 2077 put_rpccred(entry->cred); 2078 kfree_rcu(entry, rcu_head); 2079 smp_mb__before_atomic(); 2080 atomic_long_dec(&nfs_access_nr_entries); 2081 smp_mb__after_atomic(); 2082 } 2083 2084 static void nfs_access_free_list(struct list_head *head) 2085 { 2086 struct nfs_access_entry *cache; 2087 2088 while (!list_empty(head)) { 2089 cache = list_entry(head->next, struct nfs_access_entry, lru); 2090 list_del(&cache->lru); 2091 nfs_access_free_entry(cache); 2092 } 2093 } 2094 2095 static unsigned long 2096 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2097 { 2098 LIST_HEAD(head); 2099 struct nfs_inode *nfsi, *next; 2100 struct nfs_access_entry *cache; 2101 long freed = 0; 2102 2103 spin_lock(&nfs_access_lru_lock); 2104 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2105 struct inode *inode; 2106 2107 if (nr_to_scan-- == 0) 2108 break; 2109 inode = &nfsi->vfs_inode; 2110 spin_lock(&inode->i_lock); 2111 if (list_empty(&nfsi->access_cache_entry_lru)) 2112 goto remove_lru_entry; 2113 cache = list_entry(nfsi->access_cache_entry_lru.next, 2114 struct nfs_access_entry, lru); 2115 list_move(&cache->lru, &head); 2116 rb_erase(&cache->rb_node, &nfsi->access_cache); 2117 freed++; 2118 if (!list_empty(&nfsi->access_cache_entry_lru)) 2119 list_move_tail(&nfsi->access_cache_inode_lru, 2120 &nfs_access_lru_list); 2121 else { 2122 remove_lru_entry: 2123 list_del_init(&nfsi->access_cache_inode_lru); 2124 smp_mb__before_atomic(); 2125 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2126 smp_mb__after_atomic(); 2127 } 2128 spin_unlock(&inode->i_lock); 2129 } 2130 spin_unlock(&nfs_access_lru_lock); 2131 nfs_access_free_list(&head); 2132 return freed; 2133 } 2134 2135 unsigned long 2136 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2137 { 2138 int nr_to_scan = sc->nr_to_scan; 2139 gfp_t gfp_mask = sc->gfp_mask; 2140 2141 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2142 return SHRINK_STOP; 2143 return nfs_do_access_cache_scan(nr_to_scan); 2144 } 2145 2146 2147 unsigned long 2148 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2149 { 2150 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2151 } 2152 2153 static void 2154 nfs_access_cache_enforce_limit(void) 2155 { 2156 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2157 unsigned long diff; 2158 unsigned int nr_to_scan; 2159 2160 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2161 return; 2162 nr_to_scan = 100; 2163 diff = nr_entries - nfs_access_max_cachesize; 2164 if (diff < nr_to_scan) 2165 nr_to_scan = diff; 2166 nfs_do_access_cache_scan(nr_to_scan); 2167 } 2168 2169 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2170 { 2171 struct rb_root *root_node = &nfsi->access_cache; 2172 struct rb_node *n; 2173 struct nfs_access_entry *entry; 2174 2175 /* Unhook entries from the cache */ 2176 while ((n = rb_first(root_node)) != NULL) { 2177 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2178 rb_erase(n, root_node); 2179 list_move(&entry->lru, head); 2180 } 2181 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2182 } 2183 2184 void nfs_access_zap_cache(struct inode *inode) 2185 { 2186 LIST_HEAD(head); 2187 2188 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2189 return; 2190 /* Remove from global LRU init */ 2191 spin_lock(&nfs_access_lru_lock); 2192 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2193 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2194 2195 spin_lock(&inode->i_lock); 2196 __nfs_access_zap_cache(NFS_I(inode), &head); 2197 spin_unlock(&inode->i_lock); 2198 spin_unlock(&nfs_access_lru_lock); 2199 nfs_access_free_list(&head); 2200 } 2201 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2202 2203 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2204 { 2205 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2206 struct nfs_access_entry *entry; 2207 2208 while (n != NULL) { 2209 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2210 2211 if (cred < entry->cred) 2212 n = n->rb_left; 2213 else if (cred > entry->cred) 2214 n = n->rb_right; 2215 else 2216 return entry; 2217 } 2218 return NULL; 2219 } 2220 2221 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2222 { 2223 struct nfs_inode *nfsi = NFS_I(inode); 2224 struct nfs_access_entry *cache; 2225 int err = -ENOENT; 2226 2227 spin_lock(&inode->i_lock); 2228 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2229 goto out_zap; 2230 cache = nfs_access_search_rbtree(inode, cred); 2231 if (cache == NULL) 2232 goto out; 2233 if (!nfs_have_delegated_attributes(inode) && 2234 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2235 goto out_stale; 2236 res->jiffies = cache->jiffies; 2237 res->cred = cache->cred; 2238 res->mask = cache->mask; 2239 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2240 err = 0; 2241 out: 2242 spin_unlock(&inode->i_lock); 2243 return err; 2244 out_stale: 2245 rb_erase(&cache->rb_node, &nfsi->access_cache); 2246 list_del(&cache->lru); 2247 spin_unlock(&inode->i_lock); 2248 nfs_access_free_entry(cache); 2249 return -ENOENT; 2250 out_zap: 2251 spin_unlock(&inode->i_lock); 2252 nfs_access_zap_cache(inode); 2253 return -ENOENT; 2254 } 2255 2256 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2257 { 2258 /* Only check the most recently returned cache entry, 2259 * but do it without locking. 2260 */ 2261 struct nfs_inode *nfsi = NFS_I(inode); 2262 struct nfs_access_entry *cache; 2263 int err = -ECHILD; 2264 struct list_head *lh; 2265 2266 rcu_read_lock(); 2267 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2268 goto out; 2269 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2270 cache = list_entry(lh, struct nfs_access_entry, lru); 2271 if (lh == &nfsi->access_cache_entry_lru || 2272 cred != cache->cred) 2273 cache = NULL; 2274 if (cache == NULL) 2275 goto out; 2276 if (!nfs_have_delegated_attributes(inode) && 2277 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2278 goto out; 2279 res->jiffies = cache->jiffies; 2280 res->cred = cache->cred; 2281 res->mask = cache->mask; 2282 err = 0; 2283 out: 2284 rcu_read_unlock(); 2285 return err; 2286 } 2287 2288 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2289 { 2290 struct nfs_inode *nfsi = NFS_I(inode); 2291 struct rb_root *root_node = &nfsi->access_cache; 2292 struct rb_node **p = &root_node->rb_node; 2293 struct rb_node *parent = NULL; 2294 struct nfs_access_entry *entry; 2295 2296 spin_lock(&inode->i_lock); 2297 while (*p != NULL) { 2298 parent = *p; 2299 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2300 2301 if (set->cred < entry->cred) 2302 p = &parent->rb_left; 2303 else if (set->cred > entry->cred) 2304 p = &parent->rb_right; 2305 else 2306 goto found; 2307 } 2308 rb_link_node(&set->rb_node, parent, p); 2309 rb_insert_color(&set->rb_node, root_node); 2310 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2311 spin_unlock(&inode->i_lock); 2312 return; 2313 found: 2314 rb_replace_node(parent, &set->rb_node, root_node); 2315 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2316 list_del(&entry->lru); 2317 spin_unlock(&inode->i_lock); 2318 nfs_access_free_entry(entry); 2319 } 2320 2321 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2322 { 2323 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2324 if (cache == NULL) 2325 return; 2326 RB_CLEAR_NODE(&cache->rb_node); 2327 cache->jiffies = set->jiffies; 2328 cache->cred = get_rpccred(set->cred); 2329 cache->mask = set->mask; 2330 2331 /* The above field assignments must be visible 2332 * before this item appears on the lru. We cannot easily 2333 * use rcu_assign_pointer, so just force the memory barrier. 2334 */ 2335 smp_wmb(); 2336 nfs_access_add_rbtree(inode, cache); 2337 2338 /* Update accounting */ 2339 smp_mb__before_atomic(); 2340 atomic_long_inc(&nfs_access_nr_entries); 2341 smp_mb__after_atomic(); 2342 2343 /* Add inode to global LRU list */ 2344 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2345 spin_lock(&nfs_access_lru_lock); 2346 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2347 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2348 &nfs_access_lru_list); 2349 spin_unlock(&nfs_access_lru_lock); 2350 } 2351 nfs_access_cache_enforce_limit(); 2352 } 2353 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2354 2355 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2356 { 2357 entry->mask = 0; 2358 if (access_result & NFS4_ACCESS_READ) 2359 entry->mask |= MAY_READ; 2360 if (access_result & 2361 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2362 entry->mask |= MAY_WRITE; 2363 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2364 entry->mask |= MAY_EXEC; 2365 } 2366 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2367 2368 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2369 { 2370 struct nfs_access_entry cache; 2371 int status; 2372 2373 trace_nfs_access_enter(inode); 2374 2375 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2376 if (status != 0) 2377 status = nfs_access_get_cached(inode, cred, &cache); 2378 if (status == 0) 2379 goto out_cached; 2380 2381 status = -ECHILD; 2382 if (mask & MAY_NOT_BLOCK) 2383 goto out; 2384 2385 /* Be clever: ask server to check for all possible rights */ 2386 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2387 cache.cred = cred; 2388 cache.jiffies = jiffies; 2389 status = NFS_PROTO(inode)->access(inode, &cache); 2390 if (status != 0) { 2391 if (status == -ESTALE) { 2392 nfs_zap_caches(inode); 2393 if (!S_ISDIR(inode->i_mode)) 2394 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2395 } 2396 goto out; 2397 } 2398 nfs_access_add_cache(inode, &cache); 2399 out_cached: 2400 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2401 status = -EACCES; 2402 out: 2403 trace_nfs_access_exit(inode, status); 2404 return status; 2405 } 2406 2407 static int nfs_open_permission_mask(int openflags) 2408 { 2409 int mask = 0; 2410 2411 if (openflags & __FMODE_EXEC) { 2412 /* ONLY check exec rights */ 2413 mask = MAY_EXEC; 2414 } else { 2415 if ((openflags & O_ACCMODE) != O_WRONLY) 2416 mask |= MAY_READ; 2417 if ((openflags & O_ACCMODE) != O_RDONLY) 2418 mask |= MAY_WRITE; 2419 } 2420 2421 return mask; 2422 } 2423 2424 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2425 { 2426 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2427 } 2428 EXPORT_SYMBOL_GPL(nfs_may_open); 2429 2430 static int nfs_execute_ok(struct inode *inode, int mask) 2431 { 2432 struct nfs_server *server = NFS_SERVER(inode); 2433 int ret; 2434 2435 if (mask & MAY_NOT_BLOCK) 2436 ret = nfs_revalidate_inode_rcu(server, inode); 2437 else 2438 ret = nfs_revalidate_inode(server, inode); 2439 if (ret == 0 && !execute_ok(inode)) 2440 ret = -EACCES; 2441 return ret; 2442 } 2443 2444 int nfs_permission(struct inode *inode, int mask) 2445 { 2446 struct rpc_cred *cred; 2447 int res = 0; 2448 2449 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2450 2451 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2452 goto out; 2453 /* Is this sys_access() ? */ 2454 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2455 goto force_lookup; 2456 2457 switch (inode->i_mode & S_IFMT) { 2458 case S_IFLNK: 2459 goto out; 2460 case S_IFREG: 2461 if ((mask & MAY_OPEN) && 2462 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2463 return 0; 2464 break; 2465 case S_IFDIR: 2466 /* 2467 * Optimize away all write operations, since the server 2468 * will check permissions when we perform the op. 2469 */ 2470 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2471 goto out; 2472 } 2473 2474 force_lookup: 2475 if (!NFS_PROTO(inode)->access) 2476 goto out_notsup; 2477 2478 /* Always try fast lookups first */ 2479 rcu_read_lock(); 2480 cred = rpc_lookup_cred_nonblock(); 2481 if (!IS_ERR(cred)) 2482 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2483 else 2484 res = PTR_ERR(cred); 2485 rcu_read_unlock(); 2486 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2487 /* Fast lookup failed, try the slow way */ 2488 cred = rpc_lookup_cred(); 2489 if (!IS_ERR(cred)) { 2490 res = nfs_do_access(inode, cred, mask); 2491 put_rpccred(cred); 2492 } else 2493 res = PTR_ERR(cred); 2494 } 2495 out: 2496 if (!res && (mask & MAY_EXEC)) 2497 res = nfs_execute_ok(inode, mask); 2498 2499 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2500 inode->i_sb->s_id, inode->i_ino, mask, res); 2501 return res; 2502 out_notsup: 2503 if (mask & MAY_NOT_BLOCK) 2504 return -ECHILD; 2505 2506 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2507 if (res == 0) 2508 res = generic_permission(inode, mask); 2509 goto out; 2510 } 2511 EXPORT_SYMBOL_GPL(nfs_permission); 2512 2513 /* 2514 * Local variables: 2515 * version-control: t 2516 * kept-new-versions: 5 2517 * End: 2518 */ 2519