1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->cred = get_cred(cred); 82 spin_lock(&dir->i_lock); 83 if (list_empty(&nfsi->open_files) && 84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 85 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 86 NFS_INO_REVAL_FORCED; 87 list_add(&ctx->list, &nfsi->open_files); 88 spin_unlock(&dir->i_lock); 89 return ctx; 90 } 91 return ERR_PTR(-ENOMEM); 92 } 93 94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 95 { 96 spin_lock(&dir->i_lock); 97 list_del(&ctx->list); 98 spin_unlock(&dir->i_lock); 99 put_cred(ctx->cred); 100 kfree(ctx); 101 } 102 103 /* 104 * Open file 105 */ 106 static int 107 nfs_opendir(struct inode *inode, struct file *filp) 108 { 109 int res = 0; 110 struct nfs_open_dir_context *ctx; 111 112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 113 114 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 115 116 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 117 if (IS_ERR(ctx)) { 118 res = PTR_ERR(ctx); 119 goto out; 120 } 121 filp->private_data = ctx; 122 out: 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long dir_verifier; 159 unsigned long timestamp; 160 unsigned long gencount; 161 unsigned int cache_entry_index; 162 bool plus; 163 bool eof; 164 } nfs_readdir_descriptor_t; 165 166 static 167 void nfs_readdir_init_array(struct page *page) 168 { 169 struct nfs_cache_array *array; 170 171 array = kmap_atomic(page); 172 memset(array, 0, sizeof(struct nfs_cache_array)); 173 array->eof_index = -1; 174 kunmap_atomic(array); 175 } 176 177 /* 178 * we are freeing strings created by nfs_add_to_readdir_array() 179 */ 180 static 181 void nfs_readdir_clear_array(struct page *page) 182 { 183 struct nfs_cache_array *array; 184 int i; 185 186 array = kmap_atomic(page); 187 for (i = 0; i < array->size; i++) 188 kfree(array->array[i].string.name); 189 array->size = 0; 190 kunmap_atomic(array); 191 } 192 193 /* 194 * the caller is responsible for freeing qstr.name 195 * when called by nfs_readdir_add_to_array, the strings will be freed in 196 * nfs_clear_readdir_array() 197 */ 198 static 199 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 200 { 201 string->len = len; 202 string->name = kmemdup_nul(name, len, GFP_KERNEL); 203 if (string->name == NULL) 204 return -ENOMEM; 205 /* 206 * Avoid a kmemleak false positive. The pointer to the name is stored 207 * in a page cache page which kmemleak does not scan. 208 */ 209 kmemleak_not_leak(string->name); 210 string->hash = full_name_hash(NULL, name, len); 211 return 0; 212 } 213 214 static 215 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 216 { 217 struct nfs_cache_array *array = kmap(page); 218 struct nfs_cache_array_entry *cache_entry; 219 int ret; 220 221 cache_entry = &array->array[array->size]; 222 223 /* Check that this entry lies within the page bounds */ 224 ret = -ENOSPC; 225 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 226 goto out; 227 228 cache_entry->cookie = entry->prev_cookie; 229 cache_entry->ino = entry->ino; 230 cache_entry->d_type = entry->d_type; 231 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 232 if (ret) 233 goto out; 234 array->last_cookie = entry->cookie; 235 array->size++; 236 if (entry->eof != 0) 237 array->eof_index = array->size; 238 out: 239 kunmap(page); 240 return ret; 241 } 242 243 static 244 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 245 { 246 loff_t diff = desc->ctx->pos - desc->current_index; 247 unsigned int index; 248 249 if (diff < 0) 250 goto out_eof; 251 if (diff >= array->size) { 252 if (array->eof_index >= 0) 253 goto out_eof; 254 return -EAGAIN; 255 } 256 257 index = (unsigned int)diff; 258 *desc->dir_cookie = array->array[index].cookie; 259 desc->cache_entry_index = index; 260 return 0; 261 out_eof: 262 desc->eof = true; 263 return -EBADCOOKIE; 264 } 265 266 static bool 267 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 268 { 269 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 270 return false; 271 smp_rmb(); 272 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 273 } 274 275 static 276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 277 { 278 int i; 279 loff_t new_pos; 280 int status = -EAGAIN; 281 282 for (i = 0; i < array->size; i++) { 283 if (array->array[i].cookie == *desc->dir_cookie) { 284 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 285 struct nfs_open_dir_context *ctx = desc->file->private_data; 286 287 new_pos = desc->current_index + i; 288 if (ctx->attr_gencount != nfsi->attr_gencount || 289 !nfs_readdir_inode_mapping_valid(nfsi)) { 290 ctx->duped = 0; 291 ctx->attr_gencount = nfsi->attr_gencount; 292 } else if (new_pos < desc->ctx->pos) { 293 if (ctx->duped > 0 294 && ctx->dup_cookie == *desc->dir_cookie) { 295 if (printk_ratelimit()) { 296 pr_notice("NFS: directory %pD2 contains a readdir loop." 297 "Please contact your server vendor. " 298 "The file: %.*s has duplicate cookie %llu\n", 299 desc->file, array->array[i].string.len, 300 array->array[i].string.name, *desc->dir_cookie); 301 } 302 status = -ELOOP; 303 goto out; 304 } 305 ctx->dup_cookie = *desc->dir_cookie; 306 ctx->duped = -1; 307 } 308 desc->ctx->pos = new_pos; 309 desc->cache_entry_index = i; 310 return 0; 311 } 312 } 313 if (array->eof_index >= 0) { 314 status = -EBADCOOKIE; 315 if (*desc->dir_cookie == array->last_cookie) 316 desc->eof = true; 317 } 318 out: 319 return status; 320 } 321 322 static 323 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 324 { 325 struct nfs_cache_array *array; 326 int status; 327 328 array = kmap(desc->page); 329 330 if (*desc->dir_cookie == 0) 331 status = nfs_readdir_search_for_pos(array, desc); 332 else 333 status = nfs_readdir_search_for_cookie(array, desc); 334 335 if (status == -EAGAIN) { 336 desc->last_cookie = array->last_cookie; 337 desc->current_index += array->size; 338 desc->page_index++; 339 } 340 kunmap(desc->page); 341 return status; 342 } 343 344 /* Fill a page with xdr information before transferring to the cache page */ 345 static 346 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 347 struct nfs_entry *entry, struct file *file, struct inode *inode) 348 { 349 struct nfs_open_dir_context *ctx = file->private_data; 350 const struct cred *cred = ctx->cred; 351 unsigned long timestamp, gencount; 352 int error; 353 354 again: 355 timestamp = jiffies; 356 gencount = nfs_inc_attr_generation_counter(); 357 desc->dir_verifier = nfs_save_change_attribute(inode); 358 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 359 NFS_SERVER(inode)->dtsize, desc->plus); 360 if (error < 0) { 361 /* We requested READDIRPLUS, but the server doesn't grok it */ 362 if (error == -ENOTSUPP && desc->plus) { 363 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 364 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 365 desc->plus = false; 366 goto again; 367 } 368 goto error; 369 } 370 desc->timestamp = timestamp; 371 desc->gencount = gencount; 372 error: 373 return error; 374 } 375 376 static int xdr_decode(nfs_readdir_descriptor_t *desc, 377 struct nfs_entry *entry, struct xdr_stream *xdr) 378 { 379 int error; 380 381 error = desc->decode(xdr, entry, desc->plus); 382 if (error) 383 return error; 384 entry->fattr->time_start = desc->timestamp; 385 entry->fattr->gencount = desc->gencount; 386 return 0; 387 } 388 389 /* Match file and dirent using either filehandle or fileid 390 * Note: caller is responsible for checking the fsid 391 */ 392 static 393 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 394 { 395 struct inode *inode; 396 struct nfs_inode *nfsi; 397 398 if (d_really_is_negative(dentry)) 399 return 0; 400 401 inode = d_inode(dentry); 402 if (is_bad_inode(inode) || NFS_STALE(inode)) 403 return 0; 404 405 nfsi = NFS_I(inode); 406 if (entry->fattr->fileid != nfsi->fileid) 407 return 0; 408 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 409 return 0; 410 return 1; 411 } 412 413 static 414 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 415 { 416 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 417 return false; 418 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 419 return true; 420 if (ctx->pos == 0) 421 return true; 422 return false; 423 } 424 425 /* 426 * This function is called by the lookup and getattr code to request the 427 * use of readdirplus to accelerate any future lookups in the same 428 * directory. 429 */ 430 void nfs_advise_use_readdirplus(struct inode *dir) 431 { 432 struct nfs_inode *nfsi = NFS_I(dir); 433 434 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 435 !list_empty(&nfsi->open_files)) 436 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 437 } 438 439 /* 440 * This function is mainly for use by nfs_getattr(). 441 * 442 * If this is an 'ls -l', we want to force use of readdirplus. 443 * Do this by checking if there is an active file descriptor 444 * and calling nfs_advise_use_readdirplus, then forcing a 445 * cache flush. 446 */ 447 void nfs_force_use_readdirplus(struct inode *dir) 448 { 449 struct nfs_inode *nfsi = NFS_I(dir); 450 451 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 452 !list_empty(&nfsi->open_files)) { 453 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 454 invalidate_mapping_pages(dir->i_mapping, 455 nfsi->page_index + 1, -1); 456 } 457 } 458 459 static 460 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 461 unsigned long dir_verifier) 462 { 463 struct qstr filename = QSTR_INIT(entry->name, entry->len); 464 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 465 struct dentry *dentry; 466 struct dentry *alias; 467 struct inode *inode; 468 int status; 469 470 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 471 return; 472 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 473 return; 474 if (filename.len == 0) 475 return; 476 /* Validate that the name doesn't contain any illegal '\0' */ 477 if (strnlen(filename.name, filename.len) != filename.len) 478 return; 479 /* ...or '/' */ 480 if (strnchr(filename.name, filename.len, '/')) 481 return; 482 if (filename.name[0] == '.') { 483 if (filename.len == 1) 484 return; 485 if (filename.len == 2 && filename.name[1] == '.') 486 return; 487 } 488 filename.hash = full_name_hash(parent, filename.name, filename.len); 489 490 dentry = d_lookup(parent, &filename); 491 again: 492 if (!dentry) { 493 dentry = d_alloc_parallel(parent, &filename, &wq); 494 if (IS_ERR(dentry)) 495 return; 496 } 497 if (!d_in_lookup(dentry)) { 498 /* Is there a mountpoint here? If so, just exit */ 499 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 500 &entry->fattr->fsid)) 501 goto out; 502 if (nfs_same_file(dentry, entry)) { 503 if (!entry->fh->size) 504 goto out; 505 nfs_set_verifier(dentry, dir_verifier); 506 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 507 if (!status) 508 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 509 goto out; 510 } else { 511 d_invalidate(dentry); 512 dput(dentry); 513 dentry = NULL; 514 goto again; 515 } 516 } 517 if (!entry->fh->size) { 518 d_lookup_done(dentry); 519 goto out; 520 } 521 522 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 523 alias = d_splice_alias(inode, dentry); 524 d_lookup_done(dentry); 525 if (alias) { 526 if (IS_ERR(alias)) 527 goto out; 528 dput(dentry); 529 dentry = alias; 530 } 531 nfs_set_verifier(dentry, dir_verifier); 532 out: 533 dput(dentry); 534 } 535 536 /* Perform conversion from xdr to cache array */ 537 static 538 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 539 struct page **xdr_pages, struct page *page, unsigned int buflen) 540 { 541 struct xdr_stream stream; 542 struct xdr_buf buf; 543 struct page *scratch; 544 struct nfs_cache_array *array; 545 unsigned int count = 0; 546 int status; 547 548 scratch = alloc_page(GFP_KERNEL); 549 if (scratch == NULL) 550 return -ENOMEM; 551 552 if (buflen == 0) 553 goto out_nopages; 554 555 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 556 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 557 558 do { 559 status = xdr_decode(desc, entry, &stream); 560 if (status != 0) { 561 if (status == -EAGAIN) 562 status = 0; 563 break; 564 } 565 566 count++; 567 568 if (desc->plus) 569 nfs_prime_dcache(file_dentry(desc->file), entry, 570 desc->dir_verifier); 571 572 status = nfs_readdir_add_to_array(entry, page); 573 if (status != 0) 574 break; 575 } while (!entry->eof); 576 577 out_nopages: 578 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 579 array = kmap(page); 580 array->eof_index = array->size; 581 status = 0; 582 kunmap(page); 583 } 584 585 put_page(scratch); 586 return status; 587 } 588 589 static 590 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 591 { 592 unsigned int i; 593 for (i = 0; i < npages; i++) 594 put_page(pages[i]); 595 } 596 597 /* 598 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 599 * to nfs_readdir_free_pages() 600 */ 601 static 602 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 603 { 604 unsigned int i; 605 606 for (i = 0; i < npages; i++) { 607 struct page *page = alloc_page(GFP_KERNEL); 608 if (page == NULL) 609 goto out_freepages; 610 pages[i] = page; 611 } 612 return 0; 613 614 out_freepages: 615 nfs_readdir_free_pages(pages, i); 616 return -ENOMEM; 617 } 618 619 static 620 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 621 { 622 struct page *pages[NFS_MAX_READDIR_PAGES]; 623 struct nfs_entry entry; 624 struct file *file = desc->file; 625 struct nfs_cache_array *array; 626 int status = -ENOMEM; 627 unsigned int array_size = ARRAY_SIZE(pages); 628 629 nfs_readdir_init_array(page); 630 631 entry.prev_cookie = 0; 632 entry.cookie = desc->last_cookie; 633 entry.eof = 0; 634 entry.fh = nfs_alloc_fhandle(); 635 entry.fattr = nfs_alloc_fattr(); 636 entry.server = NFS_SERVER(inode); 637 if (entry.fh == NULL || entry.fattr == NULL) 638 goto out; 639 640 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 641 if (IS_ERR(entry.label)) { 642 status = PTR_ERR(entry.label); 643 goto out; 644 } 645 646 array = kmap(page); 647 648 status = nfs_readdir_alloc_pages(pages, array_size); 649 if (status < 0) 650 goto out_release_array; 651 do { 652 unsigned int pglen; 653 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 654 655 if (status < 0) 656 break; 657 pglen = status; 658 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 659 if (status < 0) { 660 if (status == -ENOSPC) 661 status = 0; 662 break; 663 } 664 } while (array->eof_index < 0); 665 666 nfs_readdir_free_pages(pages, array_size); 667 out_release_array: 668 kunmap(page); 669 nfs4_label_free(entry.label); 670 out: 671 nfs_free_fattr(entry.fattr); 672 nfs_free_fhandle(entry.fh); 673 return status; 674 } 675 676 /* 677 * Now we cache directories properly, by converting xdr information 678 * to an array that can be used for lookups later. This results in 679 * fewer cache pages, since we can store more information on each page. 680 * We only need to convert from xdr once so future lookups are much simpler 681 */ 682 static 683 int nfs_readdir_filler(void *data, struct page* page) 684 { 685 nfs_readdir_descriptor_t *desc = data; 686 struct inode *inode = file_inode(desc->file); 687 int ret; 688 689 ret = nfs_readdir_xdr_to_array(desc, page, inode); 690 if (ret < 0) 691 goto error; 692 SetPageUptodate(page); 693 694 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 695 /* Should never happen */ 696 nfs_zap_mapping(inode, inode->i_mapping); 697 } 698 unlock_page(page); 699 return 0; 700 error: 701 nfs_readdir_clear_array(page); 702 unlock_page(page); 703 return ret; 704 } 705 706 static 707 void cache_page_release(nfs_readdir_descriptor_t *desc) 708 { 709 put_page(desc->page); 710 desc->page = NULL; 711 } 712 713 static 714 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 715 { 716 return read_cache_page(desc->file->f_mapping, desc->page_index, 717 nfs_readdir_filler, desc); 718 } 719 720 /* 721 * Returns 0 if desc->dir_cookie was found on page desc->page_index 722 * and locks the page to prevent removal from the page cache. 723 */ 724 static 725 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) 726 { 727 struct inode *inode = file_inode(desc->file); 728 struct nfs_inode *nfsi = NFS_I(inode); 729 int res; 730 731 desc->page = get_cache_page(desc); 732 if (IS_ERR(desc->page)) 733 return PTR_ERR(desc->page); 734 res = lock_page_killable(desc->page); 735 if (res != 0) 736 goto error; 737 res = -EAGAIN; 738 if (desc->page->mapping != NULL) { 739 res = nfs_readdir_search_array(desc); 740 if (res == 0) { 741 nfsi->page_index = desc->page_index; 742 return 0; 743 } 744 } 745 unlock_page(desc->page); 746 error: 747 cache_page_release(desc); 748 return res; 749 } 750 751 /* Search for desc->dir_cookie from the beginning of the page cache */ 752 static inline 753 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 754 { 755 int res; 756 757 if (desc->page_index == 0) { 758 desc->current_index = 0; 759 desc->last_cookie = 0; 760 } 761 do { 762 res = find_and_lock_cache_page(desc); 763 } while (res == -EAGAIN); 764 return res; 765 } 766 767 /* 768 * Once we've found the start of the dirent within a page: fill 'er up... 769 */ 770 static 771 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 772 { 773 struct file *file = desc->file; 774 int i = 0; 775 int res = 0; 776 struct nfs_cache_array *array = NULL; 777 struct nfs_open_dir_context *ctx = file->private_data; 778 779 array = kmap(desc->page); 780 for (i = desc->cache_entry_index; i < array->size; i++) { 781 struct nfs_cache_array_entry *ent; 782 783 ent = &array->array[i]; 784 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 785 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 786 desc->eof = true; 787 break; 788 } 789 desc->ctx->pos++; 790 if (i < (array->size-1)) 791 *desc->dir_cookie = array->array[i+1].cookie; 792 else 793 *desc->dir_cookie = array->last_cookie; 794 if (ctx->duped != 0) 795 ctx->duped = 1; 796 } 797 if (array->eof_index >= 0) 798 desc->eof = true; 799 800 kunmap(desc->page); 801 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 802 (unsigned long long)*desc->dir_cookie, res); 803 return res; 804 } 805 806 /* 807 * If we cannot find a cookie in our cache, we suspect that this is 808 * because it points to a deleted file, so we ask the server to return 809 * whatever it thinks is the next entry. We then feed this to filldir. 810 * If all goes well, we should then be able to find our way round the 811 * cache on the next call to readdir_search_pagecache(); 812 * 813 * NOTE: we cannot add the anonymous page to the pagecache because 814 * the data it contains might not be page aligned. Besides, 815 * we should already have a complete representation of the 816 * directory in the page cache by the time we get here. 817 */ 818 static inline 819 int uncached_readdir(nfs_readdir_descriptor_t *desc) 820 { 821 struct page *page = NULL; 822 int status; 823 struct inode *inode = file_inode(desc->file); 824 struct nfs_open_dir_context *ctx = desc->file->private_data; 825 826 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 827 (unsigned long long)*desc->dir_cookie); 828 829 page = alloc_page(GFP_HIGHUSER); 830 if (!page) { 831 status = -ENOMEM; 832 goto out; 833 } 834 835 desc->page_index = 0; 836 desc->last_cookie = *desc->dir_cookie; 837 desc->page = page; 838 ctx->duped = 0; 839 840 status = nfs_readdir_xdr_to_array(desc, page, inode); 841 if (status < 0) 842 goto out_release; 843 844 status = nfs_do_filldir(desc); 845 846 out_release: 847 nfs_readdir_clear_array(desc->page); 848 cache_page_release(desc); 849 out: 850 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 851 __func__, status); 852 return status; 853 } 854 855 /* The file offset position represents the dirent entry number. A 856 last cookie cache takes care of the common case of reading the 857 whole directory. 858 */ 859 static int nfs_readdir(struct file *file, struct dir_context *ctx) 860 { 861 struct dentry *dentry = file_dentry(file); 862 struct inode *inode = d_inode(dentry); 863 nfs_readdir_descriptor_t my_desc, 864 *desc = &my_desc; 865 struct nfs_open_dir_context *dir_ctx = file->private_data; 866 int res = 0; 867 868 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 869 file, (long long)ctx->pos); 870 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 871 872 /* 873 * ctx->pos points to the dirent entry number. 874 * *desc->dir_cookie has the cookie for the next entry. We have 875 * to either find the entry with the appropriate number or 876 * revalidate the cookie. 877 */ 878 memset(desc, 0, sizeof(*desc)); 879 880 desc->file = file; 881 desc->ctx = ctx; 882 desc->dir_cookie = &dir_ctx->dir_cookie; 883 desc->decode = NFS_PROTO(inode)->decode_dirent; 884 desc->plus = nfs_use_readdirplus(inode, ctx); 885 886 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 887 res = nfs_revalidate_mapping(inode, file->f_mapping); 888 if (res < 0) 889 goto out; 890 891 do { 892 res = readdir_search_pagecache(desc); 893 894 if (res == -EBADCOOKIE) { 895 res = 0; 896 /* This means either end of directory */ 897 if (*desc->dir_cookie && !desc->eof) { 898 /* Or that the server has 'lost' a cookie */ 899 res = uncached_readdir(desc); 900 if (res == 0) 901 continue; 902 } 903 break; 904 } 905 if (res == -ETOOSMALL && desc->plus) { 906 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 907 nfs_zap_caches(inode); 908 desc->page_index = 0; 909 desc->plus = false; 910 desc->eof = false; 911 continue; 912 } 913 if (res < 0) 914 break; 915 916 res = nfs_do_filldir(desc); 917 unlock_page(desc->page); 918 cache_page_release(desc); 919 if (res < 0) 920 break; 921 } while (!desc->eof); 922 out: 923 if (res > 0) 924 res = 0; 925 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 926 return res; 927 } 928 929 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 930 { 931 struct inode *inode = file_inode(filp); 932 struct nfs_open_dir_context *dir_ctx = filp->private_data; 933 934 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 935 filp, offset, whence); 936 937 switch (whence) { 938 default: 939 return -EINVAL; 940 case SEEK_SET: 941 if (offset < 0) 942 return -EINVAL; 943 inode_lock(inode); 944 break; 945 case SEEK_CUR: 946 if (offset == 0) 947 return filp->f_pos; 948 inode_lock(inode); 949 offset += filp->f_pos; 950 if (offset < 0) { 951 inode_unlock(inode); 952 return -EINVAL; 953 } 954 } 955 if (offset != filp->f_pos) { 956 filp->f_pos = offset; 957 dir_ctx->dir_cookie = 0; 958 dir_ctx->duped = 0; 959 } 960 inode_unlock(inode); 961 return offset; 962 } 963 964 /* 965 * All directory operations under NFS are synchronous, so fsync() 966 * is a dummy operation. 967 */ 968 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 969 int datasync) 970 { 971 struct inode *inode = file_inode(filp); 972 973 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 974 975 inode_lock(inode); 976 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 977 inode_unlock(inode); 978 return 0; 979 } 980 981 /** 982 * nfs_force_lookup_revalidate - Mark the directory as having changed 983 * @dir: pointer to directory inode 984 * 985 * This forces the revalidation code in nfs_lookup_revalidate() to do a 986 * full lookup on all child dentries of 'dir' whenever a change occurs 987 * on the server that might have invalidated our dcache. 988 * 989 * Note that we reserve bit '0' as a tag to let us know when a dentry 990 * was revalidated while holding a delegation on its inode. 991 * 992 * The caller should be holding dir->i_lock 993 */ 994 void nfs_force_lookup_revalidate(struct inode *dir) 995 { 996 NFS_I(dir)->cache_change_attribute += 2; 997 } 998 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 999 1000 /** 1001 * nfs_verify_change_attribute - Detects NFS remote directory changes 1002 * @dir: pointer to parent directory inode 1003 * @verf: previously saved change attribute 1004 * 1005 * Return "false" if the verifiers doesn't match the change attribute. 1006 * This would usually indicate that the directory contents have changed on 1007 * the server, and that any dentries need revalidating. 1008 */ 1009 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1010 { 1011 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1012 } 1013 1014 static void nfs_set_verifier_delegated(unsigned long *verf) 1015 { 1016 *verf |= 1UL; 1017 } 1018 1019 #if IS_ENABLED(CONFIG_NFS_V4) 1020 static void nfs_unset_verifier_delegated(unsigned long *verf) 1021 { 1022 *verf &= ~1UL; 1023 } 1024 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1025 1026 static bool nfs_test_verifier_delegated(unsigned long verf) 1027 { 1028 return verf & 1; 1029 } 1030 1031 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1032 { 1033 return nfs_test_verifier_delegated(dentry->d_time); 1034 } 1035 1036 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1037 { 1038 struct inode *inode = d_inode(dentry); 1039 1040 if (!nfs_verifier_is_delegated(dentry) && 1041 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf)) 1042 goto out; 1043 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1044 nfs_set_verifier_delegated(&verf); 1045 out: 1046 dentry->d_time = verf; 1047 } 1048 1049 /** 1050 * nfs_set_verifier - save a parent directory verifier in the dentry 1051 * @dentry: pointer to dentry 1052 * @verf: verifier to save 1053 * 1054 * Saves the parent directory verifier in @dentry. If the inode has 1055 * a delegation, we also tag the dentry as having been revalidated 1056 * while holding a delegation so that we know we don't have to 1057 * look it up again after a directory change. 1058 */ 1059 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1060 { 1061 1062 spin_lock(&dentry->d_lock); 1063 nfs_set_verifier_locked(dentry, verf); 1064 spin_unlock(&dentry->d_lock); 1065 } 1066 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1067 1068 #if IS_ENABLED(CONFIG_NFS_V4) 1069 /** 1070 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1071 * @inode: pointer to inode 1072 * 1073 * Iterates through the dentries in the inode alias list and clears 1074 * the tag used to indicate that the dentry has been revalidated 1075 * while holding a delegation. 1076 * This function is intended for use when the delegation is being 1077 * returned or revoked. 1078 */ 1079 void nfs_clear_verifier_delegated(struct inode *inode) 1080 { 1081 struct dentry *alias; 1082 1083 if (!inode) 1084 return; 1085 spin_lock(&inode->i_lock); 1086 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1087 spin_lock(&alias->d_lock); 1088 nfs_unset_verifier_delegated(&alias->d_time); 1089 spin_unlock(&alias->d_lock); 1090 } 1091 spin_unlock(&inode->i_lock); 1092 } 1093 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1094 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1095 1096 /* 1097 * A check for whether or not the parent directory has changed. 1098 * In the case it has, we assume that the dentries are untrustworthy 1099 * and may need to be looked up again. 1100 * If rcu_walk prevents us from performing a full check, return 0. 1101 */ 1102 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1103 int rcu_walk) 1104 { 1105 if (IS_ROOT(dentry)) 1106 return 1; 1107 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1108 return 0; 1109 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1110 return 0; 1111 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1112 if (nfs_mapping_need_revalidate_inode(dir)) { 1113 if (rcu_walk) 1114 return 0; 1115 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1116 return 0; 1117 } 1118 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1119 return 0; 1120 return 1; 1121 } 1122 1123 /* 1124 * Use intent information to check whether or not we're going to do 1125 * an O_EXCL create using this path component. 1126 */ 1127 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1128 { 1129 if (NFS_PROTO(dir)->version == 2) 1130 return 0; 1131 return flags & LOOKUP_EXCL; 1132 } 1133 1134 /* 1135 * Inode and filehandle revalidation for lookups. 1136 * 1137 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1138 * or if the intent information indicates that we're about to open this 1139 * particular file and the "nocto" mount flag is not set. 1140 * 1141 */ 1142 static 1143 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1144 { 1145 struct nfs_server *server = NFS_SERVER(inode); 1146 int ret; 1147 1148 if (IS_AUTOMOUNT(inode)) 1149 return 0; 1150 1151 if (flags & LOOKUP_OPEN) { 1152 switch (inode->i_mode & S_IFMT) { 1153 case S_IFREG: 1154 /* A NFSv4 OPEN will revalidate later */ 1155 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1156 goto out; 1157 /* Fallthrough */ 1158 case S_IFDIR: 1159 if (server->flags & NFS_MOUNT_NOCTO) 1160 break; 1161 /* NFS close-to-open cache consistency validation */ 1162 goto out_force; 1163 } 1164 } 1165 1166 /* VFS wants an on-the-wire revalidation */ 1167 if (flags & LOOKUP_REVAL) 1168 goto out_force; 1169 out: 1170 return (inode->i_nlink == 0) ? -ESTALE : 0; 1171 out_force: 1172 if (flags & LOOKUP_RCU) 1173 return -ECHILD; 1174 ret = __nfs_revalidate_inode(server, inode); 1175 if (ret != 0) 1176 return ret; 1177 goto out; 1178 } 1179 1180 /* 1181 * We judge how long we want to trust negative 1182 * dentries by looking at the parent inode mtime. 1183 * 1184 * If parent mtime has changed, we revalidate, else we wait for a 1185 * period corresponding to the parent's attribute cache timeout value. 1186 * 1187 * If LOOKUP_RCU prevents us from performing a full check, return 1 1188 * suggesting a reval is needed. 1189 * 1190 * Note that when creating a new file, or looking up a rename target, 1191 * then it shouldn't be necessary to revalidate a negative dentry. 1192 */ 1193 static inline 1194 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1195 unsigned int flags) 1196 { 1197 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1198 return 0; 1199 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1200 return 1; 1201 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1202 } 1203 1204 static int 1205 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1206 struct inode *inode, int error) 1207 { 1208 switch (error) { 1209 case 1: 1210 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1211 __func__, dentry); 1212 return 1; 1213 case 0: 1214 nfs_mark_for_revalidate(dir); 1215 if (inode && S_ISDIR(inode->i_mode)) { 1216 /* Purge readdir caches. */ 1217 nfs_zap_caches(inode); 1218 /* 1219 * We can't d_drop the root of a disconnected tree: 1220 * its d_hash is on the s_anon list and d_drop() would hide 1221 * it from shrink_dcache_for_unmount(), leading to busy 1222 * inodes on unmount and further oopses. 1223 */ 1224 if (IS_ROOT(dentry)) 1225 return 1; 1226 } 1227 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1228 __func__, dentry); 1229 return 0; 1230 } 1231 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1232 __func__, dentry, error); 1233 return error; 1234 } 1235 1236 static int 1237 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1238 unsigned int flags) 1239 { 1240 int ret = 1; 1241 if (nfs_neg_need_reval(dir, dentry, flags)) { 1242 if (flags & LOOKUP_RCU) 1243 return -ECHILD; 1244 ret = 0; 1245 } 1246 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1247 } 1248 1249 static int 1250 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1251 struct inode *inode) 1252 { 1253 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1254 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1255 } 1256 1257 static int 1258 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1259 struct inode *inode) 1260 { 1261 struct nfs_fh *fhandle; 1262 struct nfs_fattr *fattr; 1263 struct nfs4_label *label; 1264 unsigned long dir_verifier; 1265 int ret; 1266 1267 ret = -ENOMEM; 1268 fhandle = nfs_alloc_fhandle(); 1269 fattr = nfs_alloc_fattr(); 1270 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1271 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1272 goto out; 1273 1274 dir_verifier = nfs_save_change_attribute(dir); 1275 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1276 if (ret < 0) { 1277 switch (ret) { 1278 case -ESTALE: 1279 case -ENOENT: 1280 ret = 0; 1281 break; 1282 case -ETIMEDOUT: 1283 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1284 ret = 1; 1285 } 1286 goto out; 1287 } 1288 ret = 0; 1289 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1290 goto out; 1291 if (nfs_refresh_inode(inode, fattr) < 0) 1292 goto out; 1293 1294 nfs_setsecurity(inode, fattr, label); 1295 nfs_set_verifier(dentry, dir_verifier); 1296 1297 /* set a readdirplus hint that we had a cache miss */ 1298 nfs_force_use_readdirplus(dir); 1299 ret = 1; 1300 out: 1301 nfs_free_fattr(fattr); 1302 nfs_free_fhandle(fhandle); 1303 nfs4_label_free(label); 1304 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1305 } 1306 1307 /* 1308 * This is called every time the dcache has a lookup hit, 1309 * and we should check whether we can really trust that 1310 * lookup. 1311 * 1312 * NOTE! The hit can be a negative hit too, don't assume 1313 * we have an inode! 1314 * 1315 * If the parent directory is seen to have changed, we throw out the 1316 * cached dentry and do a new lookup. 1317 */ 1318 static int 1319 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1320 unsigned int flags) 1321 { 1322 struct inode *inode; 1323 int error; 1324 1325 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1326 inode = d_inode(dentry); 1327 1328 if (!inode) 1329 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1330 1331 if (is_bad_inode(inode)) { 1332 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1333 __func__, dentry); 1334 goto out_bad; 1335 } 1336 1337 if (nfs_verifier_is_delegated(dentry)) 1338 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1339 1340 /* Force a full look up iff the parent directory has changed */ 1341 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1342 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1343 error = nfs_lookup_verify_inode(inode, flags); 1344 if (error) { 1345 if (error == -ESTALE) 1346 nfs_zap_caches(dir); 1347 goto out_bad; 1348 } 1349 nfs_advise_use_readdirplus(dir); 1350 goto out_valid; 1351 } 1352 1353 if (flags & LOOKUP_RCU) 1354 return -ECHILD; 1355 1356 if (NFS_STALE(inode)) 1357 goto out_bad; 1358 1359 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1360 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1361 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1362 return error; 1363 out_valid: 1364 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1365 out_bad: 1366 if (flags & LOOKUP_RCU) 1367 return -ECHILD; 1368 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1369 } 1370 1371 static int 1372 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1373 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1374 { 1375 struct dentry *parent; 1376 struct inode *dir; 1377 int ret; 1378 1379 if (flags & LOOKUP_RCU) { 1380 parent = READ_ONCE(dentry->d_parent); 1381 dir = d_inode_rcu(parent); 1382 if (!dir) 1383 return -ECHILD; 1384 ret = reval(dir, dentry, flags); 1385 if (parent != READ_ONCE(dentry->d_parent)) 1386 return -ECHILD; 1387 } else { 1388 parent = dget_parent(dentry); 1389 ret = reval(d_inode(parent), dentry, flags); 1390 dput(parent); 1391 } 1392 return ret; 1393 } 1394 1395 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1396 { 1397 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1398 } 1399 1400 /* 1401 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1402 * when we don't really care about the dentry name. This is called when a 1403 * pathwalk ends on a dentry that was not found via a normal lookup in the 1404 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1405 * 1406 * In this situation, we just want to verify that the inode itself is OK 1407 * since the dentry might have changed on the server. 1408 */ 1409 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1410 { 1411 struct inode *inode = d_inode(dentry); 1412 int error = 0; 1413 1414 /* 1415 * I believe we can only get a negative dentry here in the case of a 1416 * procfs-style symlink. Just assume it's correct for now, but we may 1417 * eventually need to do something more here. 1418 */ 1419 if (!inode) { 1420 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1421 __func__, dentry); 1422 return 1; 1423 } 1424 1425 if (is_bad_inode(inode)) { 1426 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1427 __func__, dentry); 1428 return 0; 1429 } 1430 1431 error = nfs_lookup_verify_inode(inode, flags); 1432 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1433 __func__, inode->i_ino, error ? "invalid" : "valid"); 1434 return !error; 1435 } 1436 1437 /* 1438 * This is called from dput() when d_count is going to 0. 1439 */ 1440 static int nfs_dentry_delete(const struct dentry *dentry) 1441 { 1442 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1443 dentry, dentry->d_flags); 1444 1445 /* Unhash any dentry with a stale inode */ 1446 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1447 return 1; 1448 1449 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1450 /* Unhash it, so that ->d_iput() would be called */ 1451 return 1; 1452 } 1453 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1454 /* Unhash it, so that ancestors of killed async unlink 1455 * files will be cleaned up during umount */ 1456 return 1; 1457 } 1458 return 0; 1459 1460 } 1461 1462 /* Ensure that we revalidate inode->i_nlink */ 1463 static void nfs_drop_nlink(struct inode *inode) 1464 { 1465 spin_lock(&inode->i_lock); 1466 /* drop the inode if we're reasonably sure this is the last link */ 1467 if (inode->i_nlink > 0) 1468 drop_nlink(inode); 1469 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1470 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1471 | NFS_INO_INVALID_CTIME 1472 | NFS_INO_INVALID_OTHER 1473 | NFS_INO_REVAL_FORCED; 1474 spin_unlock(&inode->i_lock); 1475 } 1476 1477 /* 1478 * Called when the dentry loses inode. 1479 * We use it to clean up silly-renamed files. 1480 */ 1481 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1482 { 1483 if (S_ISDIR(inode->i_mode)) 1484 /* drop any readdir cache as it could easily be old */ 1485 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1486 1487 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1488 nfs_complete_unlink(dentry, inode); 1489 nfs_drop_nlink(inode); 1490 } 1491 iput(inode); 1492 } 1493 1494 static void nfs_d_release(struct dentry *dentry) 1495 { 1496 /* free cached devname value, if it survived that far */ 1497 if (unlikely(dentry->d_fsdata)) { 1498 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1499 WARN_ON(1); 1500 else 1501 kfree(dentry->d_fsdata); 1502 } 1503 } 1504 1505 const struct dentry_operations nfs_dentry_operations = { 1506 .d_revalidate = nfs_lookup_revalidate, 1507 .d_weak_revalidate = nfs_weak_revalidate, 1508 .d_delete = nfs_dentry_delete, 1509 .d_iput = nfs_dentry_iput, 1510 .d_automount = nfs_d_automount, 1511 .d_release = nfs_d_release, 1512 }; 1513 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1514 1515 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1516 { 1517 struct dentry *res; 1518 struct inode *inode = NULL; 1519 struct nfs_fh *fhandle = NULL; 1520 struct nfs_fattr *fattr = NULL; 1521 struct nfs4_label *label = NULL; 1522 unsigned long dir_verifier; 1523 int error; 1524 1525 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1526 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1527 1528 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1529 return ERR_PTR(-ENAMETOOLONG); 1530 1531 /* 1532 * If we're doing an exclusive create, optimize away the lookup 1533 * but don't hash the dentry. 1534 */ 1535 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1536 return NULL; 1537 1538 res = ERR_PTR(-ENOMEM); 1539 fhandle = nfs_alloc_fhandle(); 1540 fattr = nfs_alloc_fattr(); 1541 if (fhandle == NULL || fattr == NULL) 1542 goto out; 1543 1544 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1545 if (IS_ERR(label)) 1546 goto out; 1547 1548 dir_verifier = nfs_save_change_attribute(dir); 1549 trace_nfs_lookup_enter(dir, dentry, flags); 1550 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1551 if (error == -ENOENT) 1552 goto no_entry; 1553 if (error < 0) { 1554 res = ERR_PTR(error); 1555 goto out_label; 1556 } 1557 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1558 res = ERR_CAST(inode); 1559 if (IS_ERR(res)) 1560 goto out_label; 1561 1562 /* Notify readdir to use READDIRPLUS */ 1563 nfs_force_use_readdirplus(dir); 1564 1565 no_entry: 1566 res = d_splice_alias(inode, dentry); 1567 if (res != NULL) { 1568 if (IS_ERR(res)) 1569 goto out_label; 1570 dentry = res; 1571 } 1572 nfs_set_verifier(dentry, dir_verifier); 1573 out_label: 1574 trace_nfs_lookup_exit(dir, dentry, flags, error); 1575 nfs4_label_free(label); 1576 out: 1577 nfs_free_fattr(fattr); 1578 nfs_free_fhandle(fhandle); 1579 return res; 1580 } 1581 EXPORT_SYMBOL_GPL(nfs_lookup); 1582 1583 #if IS_ENABLED(CONFIG_NFS_V4) 1584 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1585 1586 const struct dentry_operations nfs4_dentry_operations = { 1587 .d_revalidate = nfs4_lookup_revalidate, 1588 .d_weak_revalidate = nfs_weak_revalidate, 1589 .d_delete = nfs_dentry_delete, 1590 .d_iput = nfs_dentry_iput, 1591 .d_automount = nfs_d_automount, 1592 .d_release = nfs_d_release, 1593 }; 1594 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1595 1596 static fmode_t flags_to_mode(int flags) 1597 { 1598 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1599 if ((flags & O_ACCMODE) != O_WRONLY) 1600 res |= FMODE_READ; 1601 if ((flags & O_ACCMODE) != O_RDONLY) 1602 res |= FMODE_WRITE; 1603 return res; 1604 } 1605 1606 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1607 { 1608 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1609 } 1610 1611 static int do_open(struct inode *inode, struct file *filp) 1612 { 1613 nfs_fscache_open_file(inode, filp); 1614 return 0; 1615 } 1616 1617 static int nfs_finish_open(struct nfs_open_context *ctx, 1618 struct dentry *dentry, 1619 struct file *file, unsigned open_flags) 1620 { 1621 int err; 1622 1623 err = finish_open(file, dentry, do_open); 1624 if (err) 1625 goto out; 1626 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1627 nfs_file_set_open_context(file, ctx); 1628 else 1629 err = -EOPENSTALE; 1630 out: 1631 return err; 1632 } 1633 1634 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1635 struct file *file, unsigned open_flags, 1636 umode_t mode) 1637 { 1638 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1639 struct nfs_open_context *ctx; 1640 struct dentry *res; 1641 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1642 struct inode *inode; 1643 unsigned int lookup_flags = 0; 1644 bool switched = false; 1645 int created = 0; 1646 int err; 1647 1648 /* Expect a negative dentry */ 1649 BUG_ON(d_inode(dentry)); 1650 1651 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1652 dir->i_sb->s_id, dir->i_ino, dentry); 1653 1654 err = nfs_check_flags(open_flags); 1655 if (err) 1656 return err; 1657 1658 /* NFS only supports OPEN on regular files */ 1659 if ((open_flags & O_DIRECTORY)) { 1660 if (!d_in_lookup(dentry)) { 1661 /* 1662 * Hashed negative dentry with O_DIRECTORY: dentry was 1663 * revalidated and is fine, no need to perform lookup 1664 * again 1665 */ 1666 return -ENOENT; 1667 } 1668 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1669 goto no_open; 1670 } 1671 1672 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1673 return -ENAMETOOLONG; 1674 1675 if (open_flags & O_CREAT) { 1676 struct nfs_server *server = NFS_SERVER(dir); 1677 1678 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1679 mode &= ~current_umask(); 1680 1681 attr.ia_valid |= ATTR_MODE; 1682 attr.ia_mode = mode; 1683 } 1684 if (open_flags & O_TRUNC) { 1685 attr.ia_valid |= ATTR_SIZE; 1686 attr.ia_size = 0; 1687 } 1688 1689 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1690 d_drop(dentry); 1691 switched = true; 1692 dentry = d_alloc_parallel(dentry->d_parent, 1693 &dentry->d_name, &wq); 1694 if (IS_ERR(dentry)) 1695 return PTR_ERR(dentry); 1696 if (unlikely(!d_in_lookup(dentry))) 1697 return finish_no_open(file, dentry); 1698 } 1699 1700 ctx = create_nfs_open_context(dentry, open_flags, file); 1701 err = PTR_ERR(ctx); 1702 if (IS_ERR(ctx)) 1703 goto out; 1704 1705 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1706 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1707 if (created) 1708 file->f_mode |= FMODE_CREATED; 1709 if (IS_ERR(inode)) { 1710 err = PTR_ERR(inode); 1711 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1712 put_nfs_open_context(ctx); 1713 d_drop(dentry); 1714 switch (err) { 1715 case -ENOENT: 1716 d_splice_alias(NULL, dentry); 1717 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1718 break; 1719 case -EISDIR: 1720 case -ENOTDIR: 1721 goto no_open; 1722 case -ELOOP: 1723 if (!(open_flags & O_NOFOLLOW)) 1724 goto no_open; 1725 break; 1726 /* case -EINVAL: */ 1727 default: 1728 break; 1729 } 1730 goto out; 1731 } 1732 1733 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1734 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1735 put_nfs_open_context(ctx); 1736 out: 1737 if (unlikely(switched)) { 1738 d_lookup_done(dentry); 1739 dput(dentry); 1740 } 1741 return err; 1742 1743 no_open: 1744 res = nfs_lookup(dir, dentry, lookup_flags); 1745 if (switched) { 1746 d_lookup_done(dentry); 1747 if (!res) 1748 res = dentry; 1749 else 1750 dput(dentry); 1751 } 1752 if (IS_ERR(res)) 1753 return PTR_ERR(res); 1754 return finish_no_open(file, res); 1755 } 1756 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1757 1758 static int 1759 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1760 unsigned int flags) 1761 { 1762 struct inode *inode; 1763 1764 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1765 goto full_reval; 1766 if (d_mountpoint(dentry)) 1767 goto full_reval; 1768 1769 inode = d_inode(dentry); 1770 1771 /* We can't create new files in nfs_open_revalidate(), so we 1772 * optimize away revalidation of negative dentries. 1773 */ 1774 if (inode == NULL) 1775 goto full_reval; 1776 1777 if (nfs_verifier_is_delegated(dentry)) 1778 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1779 1780 /* NFS only supports OPEN on regular files */ 1781 if (!S_ISREG(inode->i_mode)) 1782 goto full_reval; 1783 1784 /* We cannot do exclusive creation on a positive dentry */ 1785 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1786 goto reval_dentry; 1787 1788 /* Check if the directory changed */ 1789 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1790 goto reval_dentry; 1791 1792 /* Let f_op->open() actually open (and revalidate) the file */ 1793 return 1; 1794 reval_dentry: 1795 if (flags & LOOKUP_RCU) 1796 return -ECHILD; 1797 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1798 1799 full_reval: 1800 return nfs_do_lookup_revalidate(dir, dentry, flags); 1801 } 1802 1803 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1804 { 1805 return __nfs_lookup_revalidate(dentry, flags, 1806 nfs4_do_lookup_revalidate); 1807 } 1808 1809 #endif /* CONFIG_NFSV4 */ 1810 1811 struct dentry * 1812 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 1813 struct nfs_fattr *fattr, 1814 struct nfs4_label *label) 1815 { 1816 struct dentry *parent = dget_parent(dentry); 1817 struct inode *dir = d_inode(parent); 1818 struct inode *inode; 1819 struct dentry *d; 1820 int error; 1821 1822 d_drop(dentry); 1823 1824 if (fhandle->size == 0) { 1825 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); 1826 if (error) 1827 goto out_error; 1828 } 1829 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1830 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1831 struct nfs_server *server = NFS_SB(dentry->d_sb); 1832 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1833 fattr, NULL, NULL); 1834 if (error < 0) 1835 goto out_error; 1836 } 1837 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1838 d = d_splice_alias(inode, dentry); 1839 out: 1840 dput(parent); 1841 return d; 1842 out_error: 1843 nfs_mark_for_revalidate(dir); 1844 d = ERR_PTR(error); 1845 goto out; 1846 } 1847 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 1848 1849 /* 1850 * Code common to create, mkdir, and mknod. 1851 */ 1852 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1853 struct nfs_fattr *fattr, 1854 struct nfs4_label *label) 1855 { 1856 struct dentry *d; 1857 1858 d = nfs_add_or_obtain(dentry, fhandle, fattr, label); 1859 if (IS_ERR(d)) 1860 return PTR_ERR(d); 1861 1862 /* Callers don't care */ 1863 dput(d); 1864 return 0; 1865 } 1866 EXPORT_SYMBOL_GPL(nfs_instantiate); 1867 1868 /* 1869 * Following a failed create operation, we drop the dentry rather 1870 * than retain a negative dentry. This avoids a problem in the event 1871 * that the operation succeeded on the server, but an error in the 1872 * reply path made it appear to have failed. 1873 */ 1874 int nfs_create(struct inode *dir, struct dentry *dentry, 1875 umode_t mode, bool excl) 1876 { 1877 struct iattr attr; 1878 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1879 int error; 1880 1881 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1882 dir->i_sb->s_id, dir->i_ino, dentry); 1883 1884 attr.ia_mode = mode; 1885 attr.ia_valid = ATTR_MODE; 1886 1887 trace_nfs_create_enter(dir, dentry, open_flags); 1888 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1889 trace_nfs_create_exit(dir, dentry, open_flags, error); 1890 if (error != 0) 1891 goto out_err; 1892 return 0; 1893 out_err: 1894 d_drop(dentry); 1895 return error; 1896 } 1897 EXPORT_SYMBOL_GPL(nfs_create); 1898 1899 /* 1900 * See comments for nfs_proc_create regarding failed operations. 1901 */ 1902 int 1903 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1904 { 1905 struct iattr attr; 1906 int status; 1907 1908 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1909 dir->i_sb->s_id, dir->i_ino, dentry); 1910 1911 attr.ia_mode = mode; 1912 attr.ia_valid = ATTR_MODE; 1913 1914 trace_nfs_mknod_enter(dir, dentry); 1915 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1916 trace_nfs_mknod_exit(dir, dentry, status); 1917 if (status != 0) 1918 goto out_err; 1919 return 0; 1920 out_err: 1921 d_drop(dentry); 1922 return status; 1923 } 1924 EXPORT_SYMBOL_GPL(nfs_mknod); 1925 1926 /* 1927 * See comments for nfs_proc_create regarding failed operations. 1928 */ 1929 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1930 { 1931 struct iattr attr; 1932 int error; 1933 1934 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1935 dir->i_sb->s_id, dir->i_ino, dentry); 1936 1937 attr.ia_valid = ATTR_MODE; 1938 attr.ia_mode = mode | S_IFDIR; 1939 1940 trace_nfs_mkdir_enter(dir, dentry); 1941 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1942 trace_nfs_mkdir_exit(dir, dentry, error); 1943 if (error != 0) 1944 goto out_err; 1945 return 0; 1946 out_err: 1947 d_drop(dentry); 1948 return error; 1949 } 1950 EXPORT_SYMBOL_GPL(nfs_mkdir); 1951 1952 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1953 { 1954 if (simple_positive(dentry)) 1955 d_delete(dentry); 1956 } 1957 1958 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1959 { 1960 int error; 1961 1962 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1963 dir->i_sb->s_id, dir->i_ino, dentry); 1964 1965 trace_nfs_rmdir_enter(dir, dentry); 1966 if (d_really_is_positive(dentry)) { 1967 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1968 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1969 /* Ensure the VFS deletes this inode */ 1970 switch (error) { 1971 case 0: 1972 clear_nlink(d_inode(dentry)); 1973 break; 1974 case -ENOENT: 1975 nfs_dentry_handle_enoent(dentry); 1976 } 1977 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1978 } else 1979 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1980 trace_nfs_rmdir_exit(dir, dentry, error); 1981 1982 return error; 1983 } 1984 EXPORT_SYMBOL_GPL(nfs_rmdir); 1985 1986 /* 1987 * Remove a file after making sure there are no pending writes, 1988 * and after checking that the file has only one user. 1989 * 1990 * We invalidate the attribute cache and free the inode prior to the operation 1991 * to avoid possible races if the server reuses the inode. 1992 */ 1993 static int nfs_safe_remove(struct dentry *dentry) 1994 { 1995 struct inode *dir = d_inode(dentry->d_parent); 1996 struct inode *inode = d_inode(dentry); 1997 int error = -EBUSY; 1998 1999 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2000 2001 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2002 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2003 error = 0; 2004 goto out; 2005 } 2006 2007 trace_nfs_remove_enter(dir, dentry); 2008 if (inode != NULL) { 2009 error = NFS_PROTO(dir)->remove(dir, dentry); 2010 if (error == 0) 2011 nfs_drop_nlink(inode); 2012 } else 2013 error = NFS_PROTO(dir)->remove(dir, dentry); 2014 if (error == -ENOENT) 2015 nfs_dentry_handle_enoent(dentry); 2016 trace_nfs_remove_exit(dir, dentry, error); 2017 out: 2018 return error; 2019 } 2020 2021 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2022 * belongs to an active ".nfs..." file and we return -EBUSY. 2023 * 2024 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2025 */ 2026 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2027 { 2028 int error; 2029 int need_rehash = 0; 2030 2031 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2032 dir->i_ino, dentry); 2033 2034 trace_nfs_unlink_enter(dir, dentry); 2035 spin_lock(&dentry->d_lock); 2036 if (d_count(dentry) > 1) { 2037 spin_unlock(&dentry->d_lock); 2038 /* Start asynchronous writeout of the inode */ 2039 write_inode_now(d_inode(dentry), 0); 2040 error = nfs_sillyrename(dir, dentry); 2041 goto out; 2042 } 2043 if (!d_unhashed(dentry)) { 2044 __d_drop(dentry); 2045 need_rehash = 1; 2046 } 2047 spin_unlock(&dentry->d_lock); 2048 error = nfs_safe_remove(dentry); 2049 if (!error || error == -ENOENT) { 2050 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2051 } else if (need_rehash) 2052 d_rehash(dentry); 2053 out: 2054 trace_nfs_unlink_exit(dir, dentry, error); 2055 return error; 2056 } 2057 EXPORT_SYMBOL_GPL(nfs_unlink); 2058 2059 /* 2060 * To create a symbolic link, most file systems instantiate a new inode, 2061 * add a page to it containing the path, then write it out to the disk 2062 * using prepare_write/commit_write. 2063 * 2064 * Unfortunately the NFS client can't create the in-core inode first 2065 * because it needs a file handle to create an in-core inode (see 2066 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2067 * symlink request has completed on the server. 2068 * 2069 * So instead we allocate a raw page, copy the symname into it, then do 2070 * the SYMLINK request with the page as the buffer. If it succeeds, we 2071 * now have a new file handle and can instantiate an in-core NFS inode 2072 * and move the raw page into its mapping. 2073 */ 2074 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2075 { 2076 struct page *page; 2077 char *kaddr; 2078 struct iattr attr; 2079 unsigned int pathlen = strlen(symname); 2080 int error; 2081 2082 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2083 dir->i_ino, dentry, symname); 2084 2085 if (pathlen > PAGE_SIZE) 2086 return -ENAMETOOLONG; 2087 2088 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2089 attr.ia_valid = ATTR_MODE; 2090 2091 page = alloc_page(GFP_USER); 2092 if (!page) 2093 return -ENOMEM; 2094 2095 kaddr = page_address(page); 2096 memcpy(kaddr, symname, pathlen); 2097 if (pathlen < PAGE_SIZE) 2098 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2099 2100 trace_nfs_symlink_enter(dir, dentry); 2101 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2102 trace_nfs_symlink_exit(dir, dentry, error); 2103 if (error != 0) { 2104 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2105 dir->i_sb->s_id, dir->i_ino, 2106 dentry, symname, error); 2107 d_drop(dentry); 2108 __free_page(page); 2109 return error; 2110 } 2111 2112 /* 2113 * No big deal if we can't add this page to the page cache here. 2114 * READLINK will get the missing page from the server if needed. 2115 */ 2116 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2117 GFP_KERNEL)) { 2118 SetPageUptodate(page); 2119 unlock_page(page); 2120 /* 2121 * add_to_page_cache_lru() grabs an extra page refcount. 2122 * Drop it here to avoid leaking this page later. 2123 */ 2124 put_page(page); 2125 } else 2126 __free_page(page); 2127 2128 return 0; 2129 } 2130 EXPORT_SYMBOL_GPL(nfs_symlink); 2131 2132 int 2133 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2134 { 2135 struct inode *inode = d_inode(old_dentry); 2136 int error; 2137 2138 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2139 old_dentry, dentry); 2140 2141 trace_nfs_link_enter(inode, dir, dentry); 2142 d_drop(dentry); 2143 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2144 if (error == 0) { 2145 ihold(inode); 2146 d_add(dentry, inode); 2147 } 2148 trace_nfs_link_exit(inode, dir, dentry, error); 2149 return error; 2150 } 2151 EXPORT_SYMBOL_GPL(nfs_link); 2152 2153 /* 2154 * RENAME 2155 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2156 * different file handle for the same inode after a rename (e.g. when 2157 * moving to a different directory). A fail-safe method to do so would 2158 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2159 * rename the old file using the sillyrename stuff. This way, the original 2160 * file in old_dir will go away when the last process iput()s the inode. 2161 * 2162 * FIXED. 2163 * 2164 * It actually works quite well. One needs to have the possibility for 2165 * at least one ".nfs..." file in each directory the file ever gets 2166 * moved or linked to which happens automagically with the new 2167 * implementation that only depends on the dcache stuff instead of 2168 * using the inode layer 2169 * 2170 * Unfortunately, things are a little more complicated than indicated 2171 * above. For a cross-directory move, we want to make sure we can get 2172 * rid of the old inode after the operation. This means there must be 2173 * no pending writes (if it's a file), and the use count must be 1. 2174 * If these conditions are met, we can drop the dentries before doing 2175 * the rename. 2176 */ 2177 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2178 struct inode *new_dir, struct dentry *new_dentry, 2179 unsigned int flags) 2180 { 2181 struct inode *old_inode = d_inode(old_dentry); 2182 struct inode *new_inode = d_inode(new_dentry); 2183 struct dentry *dentry = NULL, *rehash = NULL; 2184 struct rpc_task *task; 2185 int error = -EBUSY; 2186 2187 if (flags) 2188 return -EINVAL; 2189 2190 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2191 old_dentry, new_dentry, 2192 d_count(new_dentry)); 2193 2194 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2195 /* 2196 * For non-directories, check whether the target is busy and if so, 2197 * make a copy of the dentry and then do a silly-rename. If the 2198 * silly-rename succeeds, the copied dentry is hashed and becomes 2199 * the new target. 2200 */ 2201 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2202 /* 2203 * To prevent any new references to the target during the 2204 * rename, we unhash the dentry in advance. 2205 */ 2206 if (!d_unhashed(new_dentry)) { 2207 d_drop(new_dentry); 2208 rehash = new_dentry; 2209 } 2210 2211 if (d_count(new_dentry) > 2) { 2212 int err; 2213 2214 /* copy the target dentry's name */ 2215 dentry = d_alloc(new_dentry->d_parent, 2216 &new_dentry->d_name); 2217 if (!dentry) 2218 goto out; 2219 2220 /* silly-rename the existing target ... */ 2221 err = nfs_sillyrename(new_dir, new_dentry); 2222 if (err) 2223 goto out; 2224 2225 new_dentry = dentry; 2226 rehash = NULL; 2227 new_inode = NULL; 2228 } 2229 } 2230 2231 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2232 if (IS_ERR(task)) { 2233 error = PTR_ERR(task); 2234 goto out; 2235 } 2236 2237 error = rpc_wait_for_completion_task(task); 2238 if (error != 0) { 2239 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2240 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2241 smp_wmb(); 2242 } else 2243 error = task->tk_status; 2244 rpc_put_task(task); 2245 /* Ensure the inode attributes are revalidated */ 2246 if (error == 0) { 2247 spin_lock(&old_inode->i_lock); 2248 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2249 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2250 | NFS_INO_INVALID_CTIME 2251 | NFS_INO_REVAL_FORCED; 2252 spin_unlock(&old_inode->i_lock); 2253 } 2254 out: 2255 if (rehash) 2256 d_rehash(rehash); 2257 trace_nfs_rename_exit(old_dir, old_dentry, 2258 new_dir, new_dentry, error); 2259 if (!error) { 2260 if (new_inode != NULL) 2261 nfs_drop_nlink(new_inode); 2262 /* 2263 * The d_move() should be here instead of in an async RPC completion 2264 * handler because we need the proper locks to move the dentry. If 2265 * we're interrupted by a signal, the async RPC completion handler 2266 * should mark the directories for revalidation. 2267 */ 2268 d_move(old_dentry, new_dentry); 2269 nfs_set_verifier(old_dentry, 2270 nfs_save_change_attribute(new_dir)); 2271 } else if (error == -ENOENT) 2272 nfs_dentry_handle_enoent(old_dentry); 2273 2274 /* new dentry created? */ 2275 if (dentry) 2276 dput(dentry); 2277 return error; 2278 } 2279 EXPORT_SYMBOL_GPL(nfs_rename); 2280 2281 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2282 static LIST_HEAD(nfs_access_lru_list); 2283 static atomic_long_t nfs_access_nr_entries; 2284 2285 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2286 module_param(nfs_access_max_cachesize, ulong, 0644); 2287 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2288 2289 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2290 { 2291 put_cred(entry->cred); 2292 kfree_rcu(entry, rcu_head); 2293 smp_mb__before_atomic(); 2294 atomic_long_dec(&nfs_access_nr_entries); 2295 smp_mb__after_atomic(); 2296 } 2297 2298 static void nfs_access_free_list(struct list_head *head) 2299 { 2300 struct nfs_access_entry *cache; 2301 2302 while (!list_empty(head)) { 2303 cache = list_entry(head->next, struct nfs_access_entry, lru); 2304 list_del(&cache->lru); 2305 nfs_access_free_entry(cache); 2306 } 2307 } 2308 2309 static unsigned long 2310 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2311 { 2312 LIST_HEAD(head); 2313 struct nfs_inode *nfsi, *next; 2314 struct nfs_access_entry *cache; 2315 long freed = 0; 2316 2317 spin_lock(&nfs_access_lru_lock); 2318 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2319 struct inode *inode; 2320 2321 if (nr_to_scan-- == 0) 2322 break; 2323 inode = &nfsi->vfs_inode; 2324 spin_lock(&inode->i_lock); 2325 if (list_empty(&nfsi->access_cache_entry_lru)) 2326 goto remove_lru_entry; 2327 cache = list_entry(nfsi->access_cache_entry_lru.next, 2328 struct nfs_access_entry, lru); 2329 list_move(&cache->lru, &head); 2330 rb_erase(&cache->rb_node, &nfsi->access_cache); 2331 freed++; 2332 if (!list_empty(&nfsi->access_cache_entry_lru)) 2333 list_move_tail(&nfsi->access_cache_inode_lru, 2334 &nfs_access_lru_list); 2335 else { 2336 remove_lru_entry: 2337 list_del_init(&nfsi->access_cache_inode_lru); 2338 smp_mb__before_atomic(); 2339 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2340 smp_mb__after_atomic(); 2341 } 2342 spin_unlock(&inode->i_lock); 2343 } 2344 spin_unlock(&nfs_access_lru_lock); 2345 nfs_access_free_list(&head); 2346 return freed; 2347 } 2348 2349 unsigned long 2350 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2351 { 2352 int nr_to_scan = sc->nr_to_scan; 2353 gfp_t gfp_mask = sc->gfp_mask; 2354 2355 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2356 return SHRINK_STOP; 2357 return nfs_do_access_cache_scan(nr_to_scan); 2358 } 2359 2360 2361 unsigned long 2362 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2363 { 2364 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2365 } 2366 2367 static void 2368 nfs_access_cache_enforce_limit(void) 2369 { 2370 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2371 unsigned long diff; 2372 unsigned int nr_to_scan; 2373 2374 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2375 return; 2376 nr_to_scan = 100; 2377 diff = nr_entries - nfs_access_max_cachesize; 2378 if (diff < nr_to_scan) 2379 nr_to_scan = diff; 2380 nfs_do_access_cache_scan(nr_to_scan); 2381 } 2382 2383 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2384 { 2385 struct rb_root *root_node = &nfsi->access_cache; 2386 struct rb_node *n; 2387 struct nfs_access_entry *entry; 2388 2389 /* Unhook entries from the cache */ 2390 while ((n = rb_first(root_node)) != NULL) { 2391 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2392 rb_erase(n, root_node); 2393 list_move(&entry->lru, head); 2394 } 2395 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2396 } 2397 2398 void nfs_access_zap_cache(struct inode *inode) 2399 { 2400 LIST_HEAD(head); 2401 2402 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2403 return; 2404 /* Remove from global LRU init */ 2405 spin_lock(&nfs_access_lru_lock); 2406 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2407 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2408 2409 spin_lock(&inode->i_lock); 2410 __nfs_access_zap_cache(NFS_I(inode), &head); 2411 spin_unlock(&inode->i_lock); 2412 spin_unlock(&nfs_access_lru_lock); 2413 nfs_access_free_list(&head); 2414 } 2415 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2416 2417 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2418 { 2419 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2420 2421 while (n != NULL) { 2422 struct nfs_access_entry *entry = 2423 rb_entry(n, struct nfs_access_entry, rb_node); 2424 int cmp = cred_fscmp(cred, entry->cred); 2425 2426 if (cmp < 0) 2427 n = n->rb_left; 2428 else if (cmp > 0) 2429 n = n->rb_right; 2430 else 2431 return entry; 2432 } 2433 return NULL; 2434 } 2435 2436 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2437 { 2438 struct nfs_inode *nfsi = NFS_I(inode); 2439 struct nfs_access_entry *cache; 2440 bool retry = true; 2441 int err; 2442 2443 spin_lock(&inode->i_lock); 2444 for(;;) { 2445 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2446 goto out_zap; 2447 cache = nfs_access_search_rbtree(inode, cred); 2448 err = -ENOENT; 2449 if (cache == NULL) 2450 goto out; 2451 /* Found an entry, is our attribute cache valid? */ 2452 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2453 break; 2454 if (!retry) 2455 break; 2456 err = -ECHILD; 2457 if (!may_block) 2458 goto out; 2459 spin_unlock(&inode->i_lock); 2460 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2461 if (err) 2462 return err; 2463 spin_lock(&inode->i_lock); 2464 retry = false; 2465 } 2466 res->cred = cache->cred; 2467 res->mask = cache->mask; 2468 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2469 err = 0; 2470 out: 2471 spin_unlock(&inode->i_lock); 2472 return err; 2473 out_zap: 2474 spin_unlock(&inode->i_lock); 2475 nfs_access_zap_cache(inode); 2476 return -ENOENT; 2477 } 2478 2479 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2480 { 2481 /* Only check the most recently returned cache entry, 2482 * but do it without locking. 2483 */ 2484 struct nfs_inode *nfsi = NFS_I(inode); 2485 struct nfs_access_entry *cache; 2486 int err = -ECHILD; 2487 struct list_head *lh; 2488 2489 rcu_read_lock(); 2490 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2491 goto out; 2492 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2493 cache = list_entry(lh, struct nfs_access_entry, lru); 2494 if (lh == &nfsi->access_cache_entry_lru || 2495 cred_fscmp(cred, cache->cred) != 0) 2496 cache = NULL; 2497 if (cache == NULL) 2498 goto out; 2499 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2500 goto out; 2501 res->cred = cache->cred; 2502 res->mask = cache->mask; 2503 err = 0; 2504 out: 2505 rcu_read_unlock(); 2506 return err; 2507 } 2508 2509 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2510 { 2511 struct nfs_inode *nfsi = NFS_I(inode); 2512 struct rb_root *root_node = &nfsi->access_cache; 2513 struct rb_node **p = &root_node->rb_node; 2514 struct rb_node *parent = NULL; 2515 struct nfs_access_entry *entry; 2516 int cmp; 2517 2518 spin_lock(&inode->i_lock); 2519 while (*p != NULL) { 2520 parent = *p; 2521 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2522 cmp = cred_fscmp(set->cred, entry->cred); 2523 2524 if (cmp < 0) 2525 p = &parent->rb_left; 2526 else if (cmp > 0) 2527 p = &parent->rb_right; 2528 else 2529 goto found; 2530 } 2531 rb_link_node(&set->rb_node, parent, p); 2532 rb_insert_color(&set->rb_node, root_node); 2533 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2534 spin_unlock(&inode->i_lock); 2535 return; 2536 found: 2537 rb_replace_node(parent, &set->rb_node, root_node); 2538 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2539 list_del(&entry->lru); 2540 spin_unlock(&inode->i_lock); 2541 nfs_access_free_entry(entry); 2542 } 2543 2544 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2545 { 2546 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2547 if (cache == NULL) 2548 return; 2549 RB_CLEAR_NODE(&cache->rb_node); 2550 cache->cred = get_cred(set->cred); 2551 cache->mask = set->mask; 2552 2553 /* The above field assignments must be visible 2554 * before this item appears on the lru. We cannot easily 2555 * use rcu_assign_pointer, so just force the memory barrier. 2556 */ 2557 smp_wmb(); 2558 nfs_access_add_rbtree(inode, cache); 2559 2560 /* Update accounting */ 2561 smp_mb__before_atomic(); 2562 atomic_long_inc(&nfs_access_nr_entries); 2563 smp_mb__after_atomic(); 2564 2565 /* Add inode to global LRU list */ 2566 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2567 spin_lock(&nfs_access_lru_lock); 2568 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2569 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2570 &nfs_access_lru_list); 2571 spin_unlock(&nfs_access_lru_lock); 2572 } 2573 nfs_access_cache_enforce_limit(); 2574 } 2575 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2576 2577 #define NFS_MAY_READ (NFS_ACCESS_READ) 2578 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2579 NFS_ACCESS_EXTEND | \ 2580 NFS_ACCESS_DELETE) 2581 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2582 NFS_ACCESS_EXTEND) 2583 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2584 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2585 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2586 static int 2587 nfs_access_calc_mask(u32 access_result, umode_t umode) 2588 { 2589 int mask = 0; 2590 2591 if (access_result & NFS_MAY_READ) 2592 mask |= MAY_READ; 2593 if (S_ISDIR(umode)) { 2594 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2595 mask |= MAY_WRITE; 2596 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2597 mask |= MAY_EXEC; 2598 } else if (S_ISREG(umode)) { 2599 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2600 mask |= MAY_WRITE; 2601 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2602 mask |= MAY_EXEC; 2603 } else if (access_result & NFS_MAY_WRITE) 2604 mask |= MAY_WRITE; 2605 return mask; 2606 } 2607 2608 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2609 { 2610 entry->mask = access_result; 2611 } 2612 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2613 2614 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2615 { 2616 struct nfs_access_entry cache; 2617 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2618 int cache_mask = -1; 2619 int status; 2620 2621 trace_nfs_access_enter(inode); 2622 2623 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2624 if (status != 0) 2625 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2626 if (status == 0) 2627 goto out_cached; 2628 2629 status = -ECHILD; 2630 if (!may_block) 2631 goto out; 2632 2633 /* 2634 * Determine which access bits we want to ask for... 2635 */ 2636 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2637 if (S_ISDIR(inode->i_mode)) 2638 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2639 else 2640 cache.mask |= NFS_ACCESS_EXECUTE; 2641 cache.cred = cred; 2642 status = NFS_PROTO(inode)->access(inode, &cache); 2643 if (status != 0) { 2644 if (status == -ESTALE) { 2645 nfs_zap_caches(inode); 2646 if (!S_ISDIR(inode->i_mode)) 2647 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2648 } 2649 goto out; 2650 } 2651 nfs_access_add_cache(inode, &cache); 2652 out_cached: 2653 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2654 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2655 status = -EACCES; 2656 out: 2657 trace_nfs_access_exit(inode, mask, cache_mask, status); 2658 return status; 2659 } 2660 2661 static int nfs_open_permission_mask(int openflags) 2662 { 2663 int mask = 0; 2664 2665 if (openflags & __FMODE_EXEC) { 2666 /* ONLY check exec rights */ 2667 mask = MAY_EXEC; 2668 } else { 2669 if ((openflags & O_ACCMODE) != O_WRONLY) 2670 mask |= MAY_READ; 2671 if ((openflags & O_ACCMODE) != O_RDONLY) 2672 mask |= MAY_WRITE; 2673 } 2674 2675 return mask; 2676 } 2677 2678 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2679 { 2680 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2681 } 2682 EXPORT_SYMBOL_GPL(nfs_may_open); 2683 2684 static int nfs_execute_ok(struct inode *inode, int mask) 2685 { 2686 struct nfs_server *server = NFS_SERVER(inode); 2687 int ret = 0; 2688 2689 if (S_ISDIR(inode->i_mode)) 2690 return 0; 2691 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2692 if (mask & MAY_NOT_BLOCK) 2693 return -ECHILD; 2694 ret = __nfs_revalidate_inode(server, inode); 2695 } 2696 if (ret == 0 && !execute_ok(inode)) 2697 ret = -EACCES; 2698 return ret; 2699 } 2700 2701 int nfs_permission(struct inode *inode, int mask) 2702 { 2703 const struct cred *cred = current_cred(); 2704 int res = 0; 2705 2706 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2707 2708 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2709 goto out; 2710 /* Is this sys_access() ? */ 2711 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2712 goto force_lookup; 2713 2714 switch (inode->i_mode & S_IFMT) { 2715 case S_IFLNK: 2716 goto out; 2717 case S_IFREG: 2718 if ((mask & MAY_OPEN) && 2719 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2720 return 0; 2721 break; 2722 case S_IFDIR: 2723 /* 2724 * Optimize away all write operations, since the server 2725 * will check permissions when we perform the op. 2726 */ 2727 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2728 goto out; 2729 } 2730 2731 force_lookup: 2732 if (!NFS_PROTO(inode)->access) 2733 goto out_notsup; 2734 2735 /* Always try fast lookups first */ 2736 rcu_read_lock(); 2737 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2738 rcu_read_unlock(); 2739 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2740 /* Fast lookup failed, try the slow way */ 2741 res = nfs_do_access(inode, cred, mask); 2742 } 2743 out: 2744 if (!res && (mask & MAY_EXEC)) 2745 res = nfs_execute_ok(inode, mask); 2746 2747 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2748 inode->i_sb->s_id, inode->i_ino, mask, res); 2749 return res; 2750 out_notsup: 2751 if (mask & MAY_NOT_BLOCK) 2752 return -ECHILD; 2753 2754 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2755 if (res == 0) 2756 res = generic_permission(inode, mask); 2757 goto out; 2758 } 2759 EXPORT_SYMBOL_GPL(nfs_permission); 2760 2761 /* 2762 * Local variables: 2763 * version-control: t 2764 * kept-new-versions: 5 2765 * End: 2766 */ 2767