xref: /linux/fs/nfs/dir.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 #include <linux/kmemleak.h>
38 #include <linux/xattr.h>
39 
40 #include "delegation.h"
41 #include "iostat.h"
42 #include "internal.h"
43 #include "fscache.h"
44 
45 /* #define NFS_DEBUG_VERBOSE 1 */
46 
47 static int nfs_opendir(struct inode *, struct file *);
48 static int nfs_closedir(struct inode *, struct file *);
49 static int nfs_readdir(struct file *, void *, filldir_t);
50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52 static void nfs_readdir_clear_array(struct page*);
53 
54 const struct file_operations nfs_dir_operations = {
55 	.llseek		= nfs_llseek_dir,
56 	.read		= generic_read_dir,
57 	.readdir	= nfs_readdir,
58 	.open		= nfs_opendir,
59 	.release	= nfs_closedir,
60 	.fsync		= nfs_fsync_dir,
61 };
62 
63 const struct address_space_operations nfs_dir_aops = {
64 	.freepage = nfs_readdir_clear_array,
65 };
66 
67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68 {
69 	struct nfs_open_dir_context *ctx;
70 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 	if (ctx != NULL) {
72 		ctx->duped = 0;
73 		ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 		ctx->dir_cookie = 0;
75 		ctx->dup_cookie = 0;
76 		ctx->cred = get_rpccred(cred);
77 		return ctx;
78 	}
79 	return  ERR_PTR(-ENOMEM);
80 }
81 
82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83 {
84 	put_rpccred(ctx->cred);
85 	kfree(ctx);
86 }
87 
88 /*
89  * Open file
90  */
91 static int
92 nfs_opendir(struct inode *inode, struct file *filp)
93 {
94 	int res = 0;
95 	struct nfs_open_dir_context *ctx;
96 	struct rpc_cred *cred;
97 
98 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 			filp->f_path.dentry->d_parent->d_name.name,
100 			filp->f_path.dentry->d_name.name);
101 
102 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103 
104 	cred = rpc_lookup_cred();
105 	if (IS_ERR(cred))
106 		return PTR_ERR(cred);
107 	ctx = alloc_nfs_open_dir_context(inode, cred);
108 	if (IS_ERR(ctx)) {
109 		res = PTR_ERR(ctx);
110 		goto out;
111 	}
112 	filp->private_data = ctx;
113 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 		/* This is a mountpoint, so d_revalidate will never
115 		 * have been called, so we need to refresh the
116 		 * inode (for close-open consistency) ourselves.
117 		 */
118 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
119 	}
120 out:
121 	put_rpccred(cred);
122 	return res;
123 }
124 
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128 	put_nfs_open_dir_context(filp->private_data);
129 	return 0;
130 }
131 
132 struct nfs_cache_array_entry {
133 	u64 cookie;
134 	u64 ino;
135 	struct qstr string;
136 	unsigned char d_type;
137 };
138 
139 struct nfs_cache_array {
140 	int size;
141 	int eof_index;
142 	u64 last_cookie;
143 	struct nfs_cache_array_entry array[0];
144 };
145 
146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	unsigned long	page_index;
151 	u64		*dir_cookie;
152 	u64		last_cookie;
153 	loff_t		current_index;
154 	decode_dirent_t	decode;
155 
156 	unsigned long	timestamp;
157 	unsigned long	gencount;
158 	unsigned int	cache_entry_index;
159 	unsigned int	plus:1;
160 	unsigned int	eof:1;
161 } nfs_readdir_descriptor_t;
162 
163 /*
164  * The caller is responsible for calling nfs_readdir_release_array(page)
165  */
166 static
167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168 {
169 	void *ptr;
170 	if (page == NULL)
171 		return ERR_PTR(-EIO);
172 	ptr = kmap(page);
173 	if (ptr == NULL)
174 		return ERR_PTR(-ENOMEM);
175 	return ptr;
176 }
177 
178 static
179 void nfs_readdir_release_array(struct page *page)
180 {
181 	kunmap(page);
182 }
183 
184 /*
185  * we are freeing strings created by nfs_add_to_readdir_array()
186  */
187 static
188 void nfs_readdir_clear_array(struct page *page)
189 {
190 	struct nfs_cache_array *array;
191 	int i;
192 
193 	array = kmap_atomic(page);
194 	for (i = 0; i < array->size; i++)
195 		kfree(array->array[i].string.name);
196 	kunmap_atomic(array);
197 }
198 
199 /*
200  * the caller is responsible for freeing qstr.name
201  * when called by nfs_readdir_add_to_array, the strings will be freed in
202  * nfs_clear_readdir_array()
203  */
204 static
205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206 {
207 	string->len = len;
208 	string->name = kmemdup(name, len, GFP_KERNEL);
209 	if (string->name == NULL)
210 		return -ENOMEM;
211 	/*
212 	 * Avoid a kmemleak false positive. The pointer to the name is stored
213 	 * in a page cache page which kmemleak does not scan.
214 	 */
215 	kmemleak_not_leak(string->name);
216 	string->hash = full_name_hash(name, len);
217 	return 0;
218 }
219 
220 static
221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222 {
223 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 	struct nfs_cache_array_entry *cache_entry;
225 	int ret;
226 
227 	if (IS_ERR(array))
228 		return PTR_ERR(array);
229 
230 	cache_entry = &array->array[array->size];
231 
232 	/* Check that this entry lies within the page bounds */
233 	ret = -ENOSPC;
234 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 		goto out;
236 
237 	cache_entry->cookie = entry->prev_cookie;
238 	cache_entry->ino = entry->ino;
239 	cache_entry->d_type = entry->d_type;
240 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 	if (ret)
242 		goto out;
243 	array->last_cookie = entry->cookie;
244 	array->size++;
245 	if (entry->eof != 0)
246 		array->eof_index = array->size;
247 out:
248 	nfs_readdir_release_array(page);
249 	return ret;
250 }
251 
252 static
253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254 {
255 	loff_t diff = desc->file->f_pos - desc->current_index;
256 	unsigned int index;
257 
258 	if (diff < 0)
259 		goto out_eof;
260 	if (diff >= array->size) {
261 		if (array->eof_index >= 0)
262 			goto out_eof;
263 		return -EAGAIN;
264 	}
265 
266 	index = (unsigned int)diff;
267 	*desc->dir_cookie = array->array[index].cookie;
268 	desc->cache_entry_index = index;
269 	return 0;
270 out_eof:
271 	desc->eof = 1;
272 	return -EBADCOOKIE;
273 }
274 
275 static
276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 {
278 	int i;
279 	loff_t new_pos;
280 	int status = -EAGAIN;
281 
282 	for (i = 0; i < array->size; i++) {
283 		if (array->array[i].cookie == *desc->dir_cookie) {
284 			struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
285 			struct nfs_open_dir_context *ctx = desc->file->private_data;
286 
287 			new_pos = desc->current_index + i;
288 			if (ctx->attr_gencount != nfsi->attr_gencount
289 			    || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 				ctx->duped = 0;
291 				ctx->attr_gencount = nfsi->attr_gencount;
292 			} else if (new_pos < desc->file->f_pos) {
293 				if (ctx->duped > 0
294 				    && ctx->dup_cookie == *desc->dir_cookie) {
295 					if (printk_ratelimit()) {
296 						pr_notice("NFS: directory %s/%s contains a readdir loop."
297 								"Please contact your server vendor.  "
298 								"The file: %s has duplicate cookie %llu\n",
299 								desc->file->f_dentry->d_parent->d_name.name,
300 								desc->file->f_dentry->d_name.name,
301 								array->array[i].string.name,
302 								*desc->dir_cookie);
303 					}
304 					status = -ELOOP;
305 					goto out;
306 				}
307 				ctx->dup_cookie = *desc->dir_cookie;
308 				ctx->duped = -1;
309 			}
310 			desc->file->f_pos = new_pos;
311 			desc->cache_entry_index = i;
312 			return 0;
313 		}
314 	}
315 	if (array->eof_index >= 0) {
316 		status = -EBADCOOKIE;
317 		if (*desc->dir_cookie == array->last_cookie)
318 			desc->eof = 1;
319 	}
320 out:
321 	return status;
322 }
323 
324 static
325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326 {
327 	struct nfs_cache_array *array;
328 	int status;
329 
330 	array = nfs_readdir_get_array(desc->page);
331 	if (IS_ERR(array)) {
332 		status = PTR_ERR(array);
333 		goto out;
334 	}
335 
336 	if (*desc->dir_cookie == 0)
337 		status = nfs_readdir_search_for_pos(array, desc);
338 	else
339 		status = nfs_readdir_search_for_cookie(array, desc);
340 
341 	if (status == -EAGAIN) {
342 		desc->last_cookie = array->last_cookie;
343 		desc->current_index += array->size;
344 		desc->page_index++;
345 	}
346 	nfs_readdir_release_array(desc->page);
347 out:
348 	return status;
349 }
350 
351 /* Fill a page with xdr information before transferring to the cache page */
352 static
353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 			struct nfs_entry *entry, struct file *file, struct inode *inode)
355 {
356 	struct nfs_open_dir_context *ctx = file->private_data;
357 	struct rpc_cred	*cred = ctx->cred;
358 	unsigned long	timestamp, gencount;
359 	int		error;
360 
361  again:
362 	timestamp = jiffies;
363 	gencount = nfs_inc_attr_generation_counter();
364 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 					  NFS_SERVER(inode)->dtsize, desc->plus);
366 	if (error < 0) {
367 		/* We requested READDIRPLUS, but the server doesn't grok it */
368 		if (error == -ENOTSUPP && desc->plus) {
369 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 			desc->plus = 0;
372 			goto again;
373 		}
374 		goto error;
375 	}
376 	desc->timestamp = timestamp;
377 	desc->gencount = gencount;
378 error:
379 	return error;
380 }
381 
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 		      struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385 	int error;
386 
387 	error = desc->decode(xdr, entry, desc->plus);
388 	if (error)
389 		return error;
390 	entry->fattr->time_start = desc->timestamp;
391 	entry->fattr->gencount = desc->gencount;
392 	return 0;
393 }
394 
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 	if (dentry->d_inode == NULL)
399 		goto different;
400 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 		goto different;
402 	return 1;
403 different:
404 	return 0;
405 }
406 
407 static
408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409 {
410 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 		return false;
412 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 		return true;
414 	if (filp->f_pos == 0)
415 		return true;
416 	return false;
417 }
418 
419 /*
420  * This function is called by the lookup code to request the use of
421  * readdirplus to accelerate any future lookups in the same
422  * directory.
423  */
424 static
425 void nfs_advise_use_readdirplus(struct inode *dir)
426 {
427 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428 }
429 
430 static
431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432 {
433 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 	struct dentry *dentry;
435 	struct dentry *alias;
436 	struct inode *dir = parent->d_inode;
437 	struct inode *inode;
438 
439 	if (filename.name[0] == '.') {
440 		if (filename.len == 1)
441 			return;
442 		if (filename.len == 2 && filename.name[1] == '.')
443 			return;
444 	}
445 	filename.hash = full_name_hash(filename.name, filename.len);
446 
447 	dentry = d_lookup(parent, &filename);
448 	if (dentry != NULL) {
449 		if (nfs_same_file(dentry, entry)) {
450 			nfs_refresh_inode(dentry->d_inode, entry->fattr);
451 			goto out;
452 		} else {
453 			d_drop(dentry);
454 			dput(dentry);
455 		}
456 	}
457 
458 	dentry = d_alloc(parent, &filename);
459 	if (dentry == NULL)
460 		return;
461 
462 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
463 	if (IS_ERR(inode))
464 		goto out;
465 
466 	alias = d_materialise_unique(dentry, inode);
467 	if (IS_ERR(alias))
468 		goto out;
469 	else if (alias) {
470 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
471 		dput(alias);
472 	} else
473 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
474 
475 out:
476 	dput(dentry);
477 }
478 
479 /* Perform conversion from xdr to cache array */
480 static
481 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
482 				struct page **xdr_pages, struct page *page, unsigned int buflen)
483 {
484 	struct xdr_stream stream;
485 	struct xdr_buf buf;
486 	struct page *scratch;
487 	struct nfs_cache_array *array;
488 	unsigned int count = 0;
489 	int status;
490 
491 	scratch = alloc_page(GFP_KERNEL);
492 	if (scratch == NULL)
493 		return -ENOMEM;
494 
495 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
496 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
497 
498 	do {
499 		status = xdr_decode(desc, entry, &stream);
500 		if (status != 0) {
501 			if (status == -EAGAIN)
502 				status = 0;
503 			break;
504 		}
505 
506 		count++;
507 
508 		if (desc->plus != 0)
509 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
510 
511 		status = nfs_readdir_add_to_array(entry, page);
512 		if (status != 0)
513 			break;
514 	} while (!entry->eof);
515 
516 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
517 		array = nfs_readdir_get_array(page);
518 		if (!IS_ERR(array)) {
519 			array->eof_index = array->size;
520 			status = 0;
521 			nfs_readdir_release_array(page);
522 		} else
523 			status = PTR_ERR(array);
524 	}
525 
526 	put_page(scratch);
527 	return status;
528 }
529 
530 static
531 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
532 {
533 	unsigned int i;
534 	for (i = 0; i < npages; i++)
535 		put_page(pages[i]);
536 }
537 
538 static
539 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
540 		unsigned int npages)
541 {
542 	nfs_readdir_free_pagearray(pages, npages);
543 }
544 
545 /*
546  * nfs_readdir_large_page will allocate pages that must be freed with a call
547  * to nfs_readdir_free_large_page
548  */
549 static
550 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
551 {
552 	unsigned int i;
553 
554 	for (i = 0; i < npages; i++) {
555 		struct page *page = alloc_page(GFP_KERNEL);
556 		if (page == NULL)
557 			goto out_freepages;
558 		pages[i] = page;
559 	}
560 	return 0;
561 
562 out_freepages:
563 	nfs_readdir_free_pagearray(pages, i);
564 	return -ENOMEM;
565 }
566 
567 static
568 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
569 {
570 	struct page *pages[NFS_MAX_READDIR_PAGES];
571 	void *pages_ptr = NULL;
572 	struct nfs_entry entry;
573 	struct file	*file = desc->file;
574 	struct nfs_cache_array *array;
575 	int status = -ENOMEM;
576 	unsigned int array_size = ARRAY_SIZE(pages);
577 
578 	entry.prev_cookie = 0;
579 	entry.cookie = desc->last_cookie;
580 	entry.eof = 0;
581 	entry.fh = nfs_alloc_fhandle();
582 	entry.fattr = nfs_alloc_fattr();
583 	entry.server = NFS_SERVER(inode);
584 	if (entry.fh == NULL || entry.fattr == NULL)
585 		goto out;
586 
587 	array = nfs_readdir_get_array(page);
588 	if (IS_ERR(array)) {
589 		status = PTR_ERR(array);
590 		goto out;
591 	}
592 	memset(array, 0, sizeof(struct nfs_cache_array));
593 	array->eof_index = -1;
594 
595 	status = nfs_readdir_large_page(pages, array_size);
596 	if (status < 0)
597 		goto out_release_array;
598 	do {
599 		unsigned int pglen;
600 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
601 
602 		if (status < 0)
603 			break;
604 		pglen = status;
605 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
606 		if (status < 0) {
607 			if (status == -ENOSPC)
608 				status = 0;
609 			break;
610 		}
611 	} while (array->eof_index < 0);
612 
613 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
614 out_release_array:
615 	nfs_readdir_release_array(page);
616 out:
617 	nfs_free_fattr(entry.fattr);
618 	nfs_free_fhandle(entry.fh);
619 	return status;
620 }
621 
622 /*
623  * Now we cache directories properly, by converting xdr information
624  * to an array that can be used for lookups later.  This results in
625  * fewer cache pages, since we can store more information on each page.
626  * We only need to convert from xdr once so future lookups are much simpler
627  */
628 static
629 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
630 {
631 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
632 	int ret;
633 
634 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
635 	if (ret < 0)
636 		goto error;
637 	SetPageUptodate(page);
638 
639 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
640 		/* Should never happen */
641 		nfs_zap_mapping(inode, inode->i_mapping);
642 	}
643 	unlock_page(page);
644 	return 0;
645  error:
646 	unlock_page(page);
647 	return ret;
648 }
649 
650 static
651 void cache_page_release(nfs_readdir_descriptor_t *desc)
652 {
653 	if (!desc->page->mapping)
654 		nfs_readdir_clear_array(desc->page);
655 	page_cache_release(desc->page);
656 	desc->page = NULL;
657 }
658 
659 static
660 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
661 {
662 	return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
663 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
664 }
665 
666 /*
667  * Returns 0 if desc->dir_cookie was found on page desc->page_index
668  */
669 static
670 int find_cache_page(nfs_readdir_descriptor_t *desc)
671 {
672 	int res;
673 
674 	desc->page = get_cache_page(desc);
675 	if (IS_ERR(desc->page))
676 		return PTR_ERR(desc->page);
677 
678 	res = nfs_readdir_search_array(desc);
679 	if (res != 0)
680 		cache_page_release(desc);
681 	return res;
682 }
683 
684 /* Search for desc->dir_cookie from the beginning of the page cache */
685 static inline
686 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
687 {
688 	int res;
689 
690 	if (desc->page_index == 0) {
691 		desc->current_index = 0;
692 		desc->last_cookie = 0;
693 	}
694 	do {
695 		res = find_cache_page(desc);
696 	} while (res == -EAGAIN);
697 	return res;
698 }
699 
700 /*
701  * Once we've found the start of the dirent within a page: fill 'er up...
702  */
703 static
704 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
705 		   filldir_t filldir)
706 {
707 	struct file	*file = desc->file;
708 	int i = 0;
709 	int res = 0;
710 	struct nfs_cache_array *array = NULL;
711 	struct nfs_open_dir_context *ctx = file->private_data;
712 
713 	array = nfs_readdir_get_array(desc->page);
714 	if (IS_ERR(array)) {
715 		res = PTR_ERR(array);
716 		goto out;
717 	}
718 
719 	for (i = desc->cache_entry_index; i < array->size; i++) {
720 		struct nfs_cache_array_entry *ent;
721 
722 		ent = &array->array[i];
723 		if (filldir(dirent, ent->string.name, ent->string.len,
724 		    file->f_pos, nfs_compat_user_ino64(ent->ino),
725 		    ent->d_type) < 0) {
726 			desc->eof = 1;
727 			break;
728 		}
729 		file->f_pos++;
730 		if (i < (array->size-1))
731 			*desc->dir_cookie = array->array[i+1].cookie;
732 		else
733 			*desc->dir_cookie = array->last_cookie;
734 		if (ctx->duped != 0)
735 			ctx->duped = 1;
736 	}
737 	if (array->eof_index >= 0)
738 		desc->eof = 1;
739 
740 	nfs_readdir_release_array(desc->page);
741 out:
742 	cache_page_release(desc);
743 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
744 			(unsigned long long)*desc->dir_cookie, res);
745 	return res;
746 }
747 
748 /*
749  * If we cannot find a cookie in our cache, we suspect that this is
750  * because it points to a deleted file, so we ask the server to return
751  * whatever it thinks is the next entry. We then feed this to filldir.
752  * If all goes well, we should then be able to find our way round the
753  * cache on the next call to readdir_search_pagecache();
754  *
755  * NOTE: we cannot add the anonymous page to the pagecache because
756  *	 the data it contains might not be page aligned. Besides,
757  *	 we should already have a complete representation of the
758  *	 directory in the page cache by the time we get here.
759  */
760 static inline
761 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
762 		     filldir_t filldir)
763 {
764 	struct page	*page = NULL;
765 	int		status;
766 	struct inode *inode = desc->file->f_path.dentry->d_inode;
767 	struct nfs_open_dir_context *ctx = desc->file->private_data;
768 
769 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
770 			(unsigned long long)*desc->dir_cookie);
771 
772 	page = alloc_page(GFP_HIGHUSER);
773 	if (!page) {
774 		status = -ENOMEM;
775 		goto out;
776 	}
777 
778 	desc->page_index = 0;
779 	desc->last_cookie = *desc->dir_cookie;
780 	desc->page = page;
781 	ctx->duped = 0;
782 
783 	status = nfs_readdir_xdr_to_array(desc, page, inode);
784 	if (status < 0)
785 		goto out_release;
786 
787 	status = nfs_do_filldir(desc, dirent, filldir);
788 
789  out:
790 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
791 			__func__, status);
792 	return status;
793  out_release:
794 	cache_page_release(desc);
795 	goto out;
796 }
797 
798 /* The file offset position represents the dirent entry number.  A
799    last cookie cache takes care of the common case of reading the
800    whole directory.
801  */
802 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
803 {
804 	struct dentry	*dentry = filp->f_path.dentry;
805 	struct inode	*inode = dentry->d_inode;
806 	nfs_readdir_descriptor_t my_desc,
807 			*desc = &my_desc;
808 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
809 	int res;
810 
811 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
812 			dentry->d_parent->d_name.name, dentry->d_name.name,
813 			(long long)filp->f_pos);
814 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
815 
816 	/*
817 	 * filp->f_pos points to the dirent entry number.
818 	 * *desc->dir_cookie has the cookie for the next entry. We have
819 	 * to either find the entry with the appropriate number or
820 	 * revalidate the cookie.
821 	 */
822 	memset(desc, 0, sizeof(*desc));
823 
824 	desc->file = filp;
825 	desc->dir_cookie = &dir_ctx->dir_cookie;
826 	desc->decode = NFS_PROTO(inode)->decode_dirent;
827 	desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
828 
829 	nfs_block_sillyrename(dentry);
830 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
831 	if (res < 0)
832 		goto out;
833 
834 	do {
835 		res = readdir_search_pagecache(desc);
836 
837 		if (res == -EBADCOOKIE) {
838 			res = 0;
839 			/* This means either end of directory */
840 			if (*desc->dir_cookie && desc->eof == 0) {
841 				/* Or that the server has 'lost' a cookie */
842 				res = uncached_readdir(desc, dirent, filldir);
843 				if (res == 0)
844 					continue;
845 			}
846 			break;
847 		}
848 		if (res == -ETOOSMALL && desc->plus) {
849 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
850 			nfs_zap_caches(inode);
851 			desc->page_index = 0;
852 			desc->plus = 0;
853 			desc->eof = 0;
854 			continue;
855 		}
856 		if (res < 0)
857 			break;
858 
859 		res = nfs_do_filldir(desc, dirent, filldir);
860 		if (res < 0)
861 			break;
862 	} while (!desc->eof);
863 out:
864 	nfs_unblock_sillyrename(dentry);
865 	if (res > 0)
866 		res = 0;
867 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
868 			dentry->d_parent->d_name.name, dentry->d_name.name,
869 			res);
870 	return res;
871 }
872 
873 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
874 {
875 	struct dentry *dentry = filp->f_path.dentry;
876 	struct inode *inode = dentry->d_inode;
877 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
878 
879 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
880 			dentry->d_parent->d_name.name,
881 			dentry->d_name.name,
882 			offset, origin);
883 
884 	mutex_lock(&inode->i_mutex);
885 	switch (origin) {
886 		case 1:
887 			offset += filp->f_pos;
888 		case 0:
889 			if (offset >= 0)
890 				break;
891 		default:
892 			offset = -EINVAL;
893 			goto out;
894 	}
895 	if (offset != filp->f_pos) {
896 		filp->f_pos = offset;
897 		dir_ctx->dir_cookie = 0;
898 		dir_ctx->duped = 0;
899 	}
900 out:
901 	mutex_unlock(&inode->i_mutex);
902 	return offset;
903 }
904 
905 /*
906  * All directory operations under NFS are synchronous, so fsync()
907  * is a dummy operation.
908  */
909 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
910 			 int datasync)
911 {
912 	struct dentry *dentry = filp->f_path.dentry;
913 	struct inode *inode = dentry->d_inode;
914 
915 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
916 			dentry->d_parent->d_name.name, dentry->d_name.name,
917 			datasync);
918 
919 	mutex_lock(&inode->i_mutex);
920 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
921 	mutex_unlock(&inode->i_mutex);
922 	return 0;
923 }
924 
925 /**
926  * nfs_force_lookup_revalidate - Mark the directory as having changed
927  * @dir - pointer to directory inode
928  *
929  * This forces the revalidation code in nfs_lookup_revalidate() to do a
930  * full lookup on all child dentries of 'dir' whenever a change occurs
931  * on the server that might have invalidated our dcache.
932  *
933  * The caller should be holding dir->i_lock
934  */
935 void nfs_force_lookup_revalidate(struct inode *dir)
936 {
937 	NFS_I(dir)->cache_change_attribute++;
938 }
939 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
940 
941 /*
942  * A check for whether or not the parent directory has changed.
943  * In the case it has, we assume that the dentries are untrustworthy
944  * and may need to be looked up again.
945  */
946 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
947 {
948 	if (IS_ROOT(dentry))
949 		return 1;
950 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
951 		return 0;
952 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
953 		return 0;
954 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
955 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
956 		return 0;
957 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
958 		return 0;
959 	return 1;
960 }
961 
962 /*
963  * Use intent information to check whether or not we're going to do
964  * an O_EXCL create using this path component.
965  */
966 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
967 {
968 	if (NFS_PROTO(dir)->version == 2)
969 		return 0;
970 	return flags & LOOKUP_EXCL;
971 }
972 
973 /*
974  * Inode and filehandle revalidation for lookups.
975  *
976  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
977  * or if the intent information indicates that we're about to open this
978  * particular file and the "nocto" mount flag is not set.
979  *
980  */
981 static inline
982 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
983 {
984 	struct nfs_server *server = NFS_SERVER(inode);
985 
986 	if (IS_AUTOMOUNT(inode))
987 		return 0;
988 	/* VFS wants an on-the-wire revalidation */
989 	if (flags & LOOKUP_REVAL)
990 		goto out_force;
991 	/* This is an open(2) */
992 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
993 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
994 		goto out_force;
995 	return 0;
996 out_force:
997 	return __nfs_revalidate_inode(server, inode);
998 }
999 
1000 /*
1001  * We judge how long we want to trust negative
1002  * dentries by looking at the parent inode mtime.
1003  *
1004  * If parent mtime has changed, we revalidate, else we wait for a
1005  * period corresponding to the parent's attribute cache timeout value.
1006  */
1007 static inline
1008 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1009 		       unsigned int flags)
1010 {
1011 	/* Don't revalidate a negative dentry if we're creating a new file */
1012 	if (flags & LOOKUP_CREATE)
1013 		return 0;
1014 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1015 		return 1;
1016 	return !nfs_check_verifier(dir, dentry);
1017 }
1018 
1019 /*
1020  * This is called every time the dcache has a lookup hit,
1021  * and we should check whether we can really trust that
1022  * lookup.
1023  *
1024  * NOTE! The hit can be a negative hit too, don't assume
1025  * we have an inode!
1026  *
1027  * If the parent directory is seen to have changed, we throw out the
1028  * cached dentry and do a new lookup.
1029  */
1030 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1031 {
1032 	struct inode *dir;
1033 	struct inode *inode;
1034 	struct dentry *parent;
1035 	struct nfs_fh *fhandle = NULL;
1036 	struct nfs_fattr *fattr = NULL;
1037 	int error;
1038 
1039 	if (flags & LOOKUP_RCU)
1040 		return -ECHILD;
1041 
1042 	parent = dget_parent(dentry);
1043 	dir = parent->d_inode;
1044 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1045 	inode = dentry->d_inode;
1046 
1047 	if (!inode) {
1048 		if (nfs_neg_need_reval(dir, dentry, flags))
1049 			goto out_bad;
1050 		goto out_valid_noent;
1051 	}
1052 
1053 	if (is_bad_inode(inode)) {
1054 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1055 				__func__, dentry->d_parent->d_name.name,
1056 				dentry->d_name.name);
1057 		goto out_bad;
1058 	}
1059 
1060 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1061 		goto out_set_verifier;
1062 
1063 	/* Force a full look up iff the parent directory has changed */
1064 	if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1065 		if (nfs_lookup_verify_inode(inode, flags))
1066 			goto out_zap_parent;
1067 		goto out_valid;
1068 	}
1069 
1070 	if (NFS_STALE(inode))
1071 		goto out_bad;
1072 
1073 	error = -ENOMEM;
1074 	fhandle = nfs_alloc_fhandle();
1075 	fattr = nfs_alloc_fattr();
1076 	if (fhandle == NULL || fattr == NULL)
1077 		goto out_error;
1078 
1079 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1080 	if (error)
1081 		goto out_bad;
1082 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1083 		goto out_bad;
1084 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1085 		goto out_bad;
1086 
1087 	nfs_free_fattr(fattr);
1088 	nfs_free_fhandle(fhandle);
1089 out_set_verifier:
1090 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1091  out_valid:
1092 	/* Success: notify readdir to use READDIRPLUS */
1093 	nfs_advise_use_readdirplus(dir);
1094  out_valid_noent:
1095 	dput(parent);
1096 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1097 			__func__, dentry->d_parent->d_name.name,
1098 			dentry->d_name.name);
1099 	return 1;
1100 out_zap_parent:
1101 	nfs_zap_caches(dir);
1102  out_bad:
1103 	nfs_mark_for_revalidate(dir);
1104 	if (inode && S_ISDIR(inode->i_mode)) {
1105 		/* Purge readdir caches. */
1106 		nfs_zap_caches(inode);
1107 		/* If we have submounts, don't unhash ! */
1108 		if (have_submounts(dentry))
1109 			goto out_valid;
1110 		if (dentry->d_flags & DCACHE_DISCONNECTED)
1111 			goto out_valid;
1112 		shrink_dcache_parent(dentry);
1113 	}
1114 	d_drop(dentry);
1115 	nfs_free_fattr(fattr);
1116 	nfs_free_fhandle(fhandle);
1117 	dput(parent);
1118 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1119 			__func__, dentry->d_parent->d_name.name,
1120 			dentry->d_name.name);
1121 	return 0;
1122 out_error:
1123 	nfs_free_fattr(fattr);
1124 	nfs_free_fhandle(fhandle);
1125 	dput(parent);
1126 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1127 			__func__, dentry->d_parent->d_name.name,
1128 			dentry->d_name.name, error);
1129 	return error;
1130 }
1131 
1132 /*
1133  * This is called from dput() when d_count is going to 0.
1134  */
1135 static int nfs_dentry_delete(const struct dentry *dentry)
1136 {
1137 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1138 		dentry->d_parent->d_name.name, dentry->d_name.name,
1139 		dentry->d_flags);
1140 
1141 	/* Unhash any dentry with a stale inode */
1142 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1143 		return 1;
1144 
1145 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1146 		/* Unhash it, so that ->d_iput() would be called */
1147 		return 1;
1148 	}
1149 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1150 		/* Unhash it, so that ancestors of killed async unlink
1151 		 * files will be cleaned up during umount */
1152 		return 1;
1153 	}
1154 	return 0;
1155 
1156 }
1157 
1158 static void nfs_drop_nlink(struct inode *inode)
1159 {
1160 	spin_lock(&inode->i_lock);
1161 	if (inode->i_nlink > 0)
1162 		drop_nlink(inode);
1163 	spin_unlock(&inode->i_lock);
1164 }
1165 
1166 /*
1167  * Called when the dentry loses inode.
1168  * We use it to clean up silly-renamed files.
1169  */
1170 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1171 {
1172 	if (S_ISDIR(inode->i_mode))
1173 		/* drop any readdir cache as it could easily be old */
1174 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1175 
1176 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1177 		drop_nlink(inode);
1178 		nfs_complete_unlink(dentry, inode);
1179 	}
1180 	iput(inode);
1181 }
1182 
1183 static void nfs_d_release(struct dentry *dentry)
1184 {
1185 	/* free cached devname value, if it survived that far */
1186 	if (unlikely(dentry->d_fsdata)) {
1187 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1188 			WARN_ON(1);
1189 		else
1190 			kfree(dentry->d_fsdata);
1191 	}
1192 }
1193 
1194 const struct dentry_operations nfs_dentry_operations = {
1195 	.d_revalidate	= nfs_lookup_revalidate,
1196 	.d_delete	= nfs_dentry_delete,
1197 	.d_iput		= nfs_dentry_iput,
1198 	.d_automount	= nfs_d_automount,
1199 	.d_release	= nfs_d_release,
1200 };
1201 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1202 
1203 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1204 {
1205 	struct dentry *res;
1206 	struct dentry *parent;
1207 	struct inode *inode = NULL;
1208 	struct nfs_fh *fhandle = NULL;
1209 	struct nfs_fattr *fattr = NULL;
1210 	int error;
1211 
1212 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1213 		dentry->d_parent->d_name.name, dentry->d_name.name);
1214 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1215 
1216 	res = ERR_PTR(-ENAMETOOLONG);
1217 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1218 		goto out;
1219 
1220 	/*
1221 	 * If we're doing an exclusive create, optimize away the lookup
1222 	 * but don't hash the dentry.
1223 	 */
1224 	if (nfs_is_exclusive_create(dir, flags)) {
1225 		d_instantiate(dentry, NULL);
1226 		res = NULL;
1227 		goto out;
1228 	}
1229 
1230 	res = ERR_PTR(-ENOMEM);
1231 	fhandle = nfs_alloc_fhandle();
1232 	fattr = nfs_alloc_fattr();
1233 	if (fhandle == NULL || fattr == NULL)
1234 		goto out;
1235 
1236 	parent = dentry->d_parent;
1237 	/* Protect against concurrent sillydeletes */
1238 	nfs_block_sillyrename(parent);
1239 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1240 	if (error == -ENOENT)
1241 		goto no_entry;
1242 	if (error < 0) {
1243 		res = ERR_PTR(error);
1244 		goto out_unblock_sillyrename;
1245 	}
1246 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1247 	res = ERR_CAST(inode);
1248 	if (IS_ERR(res))
1249 		goto out_unblock_sillyrename;
1250 
1251 	/* Success: notify readdir to use READDIRPLUS */
1252 	nfs_advise_use_readdirplus(dir);
1253 
1254 no_entry:
1255 	res = d_materialise_unique(dentry, inode);
1256 	if (res != NULL) {
1257 		if (IS_ERR(res))
1258 			goto out_unblock_sillyrename;
1259 		dentry = res;
1260 	}
1261 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1262 out_unblock_sillyrename:
1263 	nfs_unblock_sillyrename(parent);
1264 out:
1265 	nfs_free_fattr(fattr);
1266 	nfs_free_fhandle(fhandle);
1267 	return res;
1268 }
1269 EXPORT_SYMBOL_GPL(nfs_lookup);
1270 
1271 #if IS_ENABLED(CONFIG_NFS_V4)
1272 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1273 
1274 const struct dentry_operations nfs4_dentry_operations = {
1275 	.d_revalidate	= nfs4_lookup_revalidate,
1276 	.d_delete	= nfs_dentry_delete,
1277 	.d_iput		= nfs_dentry_iput,
1278 	.d_automount	= nfs_d_automount,
1279 	.d_release	= nfs_d_release,
1280 };
1281 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1282 
1283 static fmode_t flags_to_mode(int flags)
1284 {
1285 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1286 	if ((flags & O_ACCMODE) != O_WRONLY)
1287 		res |= FMODE_READ;
1288 	if ((flags & O_ACCMODE) != O_RDONLY)
1289 		res |= FMODE_WRITE;
1290 	return res;
1291 }
1292 
1293 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1294 {
1295 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1296 }
1297 
1298 static int do_open(struct inode *inode, struct file *filp)
1299 {
1300 	nfs_fscache_set_inode_cookie(inode, filp);
1301 	return 0;
1302 }
1303 
1304 static int nfs_finish_open(struct nfs_open_context *ctx,
1305 			   struct dentry *dentry,
1306 			   struct file *file, unsigned open_flags,
1307 			   int *opened)
1308 {
1309 	int err;
1310 
1311 	if (ctx->dentry != dentry) {
1312 		dput(ctx->dentry);
1313 		ctx->dentry = dget(dentry);
1314 	}
1315 
1316 	/* If the open_intent is for execute, we have an extra check to make */
1317 	if (ctx->mode & FMODE_EXEC) {
1318 		err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1319 		if (err < 0)
1320 			goto out;
1321 	}
1322 
1323 	err = finish_open(file, dentry, do_open, opened);
1324 	if (err)
1325 		goto out;
1326 	nfs_file_set_open_context(file, ctx);
1327 
1328 out:
1329 	put_nfs_open_context(ctx);
1330 	return err;
1331 }
1332 
1333 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1334 		    struct file *file, unsigned open_flags,
1335 		    umode_t mode, int *opened)
1336 {
1337 	struct nfs_open_context *ctx;
1338 	struct dentry *res;
1339 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1340 	struct inode *inode;
1341 	int err;
1342 
1343 	/* Expect a negative dentry */
1344 	BUG_ON(dentry->d_inode);
1345 
1346 	dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1347 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1348 
1349 	/* NFS only supports OPEN on regular files */
1350 	if ((open_flags & O_DIRECTORY)) {
1351 		if (!d_unhashed(dentry)) {
1352 			/*
1353 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1354 			 * revalidated and is fine, no need to perform lookup
1355 			 * again
1356 			 */
1357 			return -ENOENT;
1358 		}
1359 		goto no_open;
1360 	}
1361 
1362 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1363 		return -ENAMETOOLONG;
1364 
1365 	if (open_flags & O_CREAT) {
1366 		attr.ia_valid |= ATTR_MODE;
1367 		attr.ia_mode = mode & ~current_umask();
1368 	}
1369 	if (open_flags & O_TRUNC) {
1370 		attr.ia_valid |= ATTR_SIZE;
1371 		attr.ia_size = 0;
1372 	}
1373 
1374 	ctx = create_nfs_open_context(dentry, open_flags);
1375 	err = PTR_ERR(ctx);
1376 	if (IS_ERR(ctx))
1377 		goto out;
1378 
1379 	nfs_block_sillyrename(dentry->d_parent);
1380 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1381 	d_drop(dentry);
1382 	if (IS_ERR(inode)) {
1383 		nfs_unblock_sillyrename(dentry->d_parent);
1384 		put_nfs_open_context(ctx);
1385 		err = PTR_ERR(inode);
1386 		switch (err) {
1387 		case -ENOENT:
1388 			d_add(dentry, NULL);
1389 			break;
1390 		case -EISDIR:
1391 		case -ENOTDIR:
1392 			goto no_open;
1393 		case -ELOOP:
1394 			if (!(open_flags & O_NOFOLLOW))
1395 				goto no_open;
1396 			break;
1397 			/* case -EINVAL: */
1398 		default:
1399 			break;
1400 		}
1401 		goto out;
1402 	}
1403 	res = d_add_unique(dentry, inode);
1404 	if (res != NULL)
1405 		dentry = res;
1406 
1407 	nfs_unblock_sillyrename(dentry->d_parent);
1408 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1409 
1410 	err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1411 
1412 	dput(res);
1413 out:
1414 	return err;
1415 
1416 no_open:
1417 	res = nfs_lookup(dir, dentry, 0);
1418 	err = PTR_ERR(res);
1419 	if (IS_ERR(res))
1420 		goto out;
1421 
1422 	return finish_no_open(file, res);
1423 }
1424 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1425 
1426 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1427 {
1428 	struct dentry *parent = NULL;
1429 	struct inode *inode;
1430 	struct inode *dir;
1431 	int ret = 0;
1432 
1433 	if (flags & LOOKUP_RCU)
1434 		return -ECHILD;
1435 
1436 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1437 		goto no_open;
1438 	if (d_mountpoint(dentry))
1439 		goto no_open;
1440 
1441 	inode = dentry->d_inode;
1442 	parent = dget_parent(dentry);
1443 	dir = parent->d_inode;
1444 
1445 	/* We can't create new files in nfs_open_revalidate(), so we
1446 	 * optimize away revalidation of negative dentries.
1447 	 */
1448 	if (inode == NULL) {
1449 		if (!nfs_neg_need_reval(dir, dentry, flags))
1450 			ret = 1;
1451 		goto out;
1452 	}
1453 
1454 	/* NFS only supports OPEN on regular files */
1455 	if (!S_ISREG(inode->i_mode))
1456 		goto no_open_dput;
1457 	/* We cannot do exclusive creation on a positive dentry */
1458 	if (flags & LOOKUP_EXCL)
1459 		goto no_open_dput;
1460 
1461 	/* Let f_op->open() actually open (and revalidate) the file */
1462 	ret = 1;
1463 
1464 out:
1465 	dput(parent);
1466 	return ret;
1467 
1468 no_open_dput:
1469 	dput(parent);
1470 no_open:
1471 	return nfs_lookup_revalidate(dentry, flags);
1472 }
1473 
1474 #endif /* CONFIG_NFSV4 */
1475 
1476 /*
1477  * Code common to create, mkdir, and mknod.
1478  */
1479 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1480 				struct nfs_fattr *fattr)
1481 {
1482 	struct dentry *parent = dget_parent(dentry);
1483 	struct inode *dir = parent->d_inode;
1484 	struct inode *inode;
1485 	int error = -EACCES;
1486 
1487 	d_drop(dentry);
1488 
1489 	/* We may have been initialized further down */
1490 	if (dentry->d_inode)
1491 		goto out;
1492 	if (fhandle->size == 0) {
1493 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1494 		if (error)
1495 			goto out_error;
1496 	}
1497 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1498 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1499 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1500 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1501 		if (error < 0)
1502 			goto out_error;
1503 	}
1504 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1505 	error = PTR_ERR(inode);
1506 	if (IS_ERR(inode))
1507 		goto out_error;
1508 	d_add(dentry, inode);
1509 out:
1510 	dput(parent);
1511 	return 0;
1512 out_error:
1513 	nfs_mark_for_revalidate(dir);
1514 	dput(parent);
1515 	return error;
1516 }
1517 EXPORT_SYMBOL_GPL(nfs_instantiate);
1518 
1519 /*
1520  * Following a failed create operation, we drop the dentry rather
1521  * than retain a negative dentry. This avoids a problem in the event
1522  * that the operation succeeded on the server, but an error in the
1523  * reply path made it appear to have failed.
1524  */
1525 int nfs_create(struct inode *dir, struct dentry *dentry,
1526 		umode_t mode, bool excl)
1527 {
1528 	struct iattr attr;
1529 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1530 	int error;
1531 
1532 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1533 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1534 
1535 	attr.ia_mode = mode;
1536 	attr.ia_valid = ATTR_MODE;
1537 
1538 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1539 	if (error != 0)
1540 		goto out_err;
1541 	return 0;
1542 out_err:
1543 	d_drop(dentry);
1544 	return error;
1545 }
1546 EXPORT_SYMBOL_GPL(nfs_create);
1547 
1548 /*
1549  * See comments for nfs_proc_create regarding failed operations.
1550  */
1551 int
1552 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1553 {
1554 	struct iattr attr;
1555 	int status;
1556 
1557 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1558 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1559 
1560 	if (!new_valid_dev(rdev))
1561 		return -EINVAL;
1562 
1563 	attr.ia_mode = mode;
1564 	attr.ia_valid = ATTR_MODE;
1565 
1566 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1567 	if (status != 0)
1568 		goto out_err;
1569 	return 0;
1570 out_err:
1571 	d_drop(dentry);
1572 	return status;
1573 }
1574 EXPORT_SYMBOL_GPL(nfs_mknod);
1575 
1576 /*
1577  * See comments for nfs_proc_create regarding failed operations.
1578  */
1579 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1580 {
1581 	struct iattr attr;
1582 	int error;
1583 
1584 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1585 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1586 
1587 	attr.ia_valid = ATTR_MODE;
1588 	attr.ia_mode = mode | S_IFDIR;
1589 
1590 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1591 	if (error != 0)
1592 		goto out_err;
1593 	return 0;
1594 out_err:
1595 	d_drop(dentry);
1596 	return error;
1597 }
1598 EXPORT_SYMBOL_GPL(nfs_mkdir);
1599 
1600 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1601 {
1602 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1603 		d_delete(dentry);
1604 }
1605 
1606 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1607 {
1608 	int error;
1609 
1610 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1611 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1612 
1613 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1614 	/* Ensure the VFS deletes this inode */
1615 	if (error == 0 && dentry->d_inode != NULL)
1616 		clear_nlink(dentry->d_inode);
1617 	else if (error == -ENOENT)
1618 		nfs_dentry_handle_enoent(dentry);
1619 
1620 	return error;
1621 }
1622 EXPORT_SYMBOL_GPL(nfs_rmdir);
1623 
1624 /*
1625  * Remove a file after making sure there are no pending writes,
1626  * and after checking that the file has only one user.
1627  *
1628  * We invalidate the attribute cache and free the inode prior to the operation
1629  * to avoid possible races if the server reuses the inode.
1630  */
1631 static int nfs_safe_remove(struct dentry *dentry)
1632 {
1633 	struct inode *dir = dentry->d_parent->d_inode;
1634 	struct inode *inode = dentry->d_inode;
1635 	int error = -EBUSY;
1636 
1637 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1638 		dentry->d_parent->d_name.name, dentry->d_name.name);
1639 
1640 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1641 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1642 		error = 0;
1643 		goto out;
1644 	}
1645 
1646 	if (inode != NULL) {
1647 		NFS_PROTO(inode)->return_delegation(inode);
1648 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1649 		/* The VFS may want to delete this inode */
1650 		if (error == 0)
1651 			nfs_drop_nlink(inode);
1652 		nfs_mark_for_revalidate(inode);
1653 	} else
1654 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1655 	if (error == -ENOENT)
1656 		nfs_dentry_handle_enoent(dentry);
1657 out:
1658 	return error;
1659 }
1660 
1661 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1662  *  belongs to an active ".nfs..." file and we return -EBUSY.
1663  *
1664  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1665  */
1666 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1667 {
1668 	int error;
1669 	int need_rehash = 0;
1670 
1671 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1672 		dir->i_ino, dentry->d_name.name);
1673 
1674 	spin_lock(&dentry->d_lock);
1675 	if (dentry->d_count > 1) {
1676 		spin_unlock(&dentry->d_lock);
1677 		/* Start asynchronous writeout of the inode */
1678 		write_inode_now(dentry->d_inode, 0);
1679 		error = nfs_sillyrename(dir, dentry);
1680 		return error;
1681 	}
1682 	if (!d_unhashed(dentry)) {
1683 		__d_drop(dentry);
1684 		need_rehash = 1;
1685 	}
1686 	spin_unlock(&dentry->d_lock);
1687 	error = nfs_safe_remove(dentry);
1688 	if (!error || error == -ENOENT) {
1689 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1690 	} else if (need_rehash)
1691 		d_rehash(dentry);
1692 	return error;
1693 }
1694 EXPORT_SYMBOL_GPL(nfs_unlink);
1695 
1696 /*
1697  * To create a symbolic link, most file systems instantiate a new inode,
1698  * add a page to it containing the path, then write it out to the disk
1699  * using prepare_write/commit_write.
1700  *
1701  * Unfortunately the NFS client can't create the in-core inode first
1702  * because it needs a file handle to create an in-core inode (see
1703  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1704  * symlink request has completed on the server.
1705  *
1706  * So instead we allocate a raw page, copy the symname into it, then do
1707  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1708  * now have a new file handle and can instantiate an in-core NFS inode
1709  * and move the raw page into its mapping.
1710  */
1711 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1712 {
1713 	struct pagevec lru_pvec;
1714 	struct page *page;
1715 	char *kaddr;
1716 	struct iattr attr;
1717 	unsigned int pathlen = strlen(symname);
1718 	int error;
1719 
1720 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1721 		dir->i_ino, dentry->d_name.name, symname);
1722 
1723 	if (pathlen > PAGE_SIZE)
1724 		return -ENAMETOOLONG;
1725 
1726 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1727 	attr.ia_valid = ATTR_MODE;
1728 
1729 	page = alloc_page(GFP_HIGHUSER);
1730 	if (!page)
1731 		return -ENOMEM;
1732 
1733 	kaddr = kmap_atomic(page);
1734 	memcpy(kaddr, symname, pathlen);
1735 	if (pathlen < PAGE_SIZE)
1736 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1737 	kunmap_atomic(kaddr);
1738 
1739 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1740 	if (error != 0) {
1741 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1742 			dir->i_sb->s_id, dir->i_ino,
1743 			dentry->d_name.name, symname, error);
1744 		d_drop(dentry);
1745 		__free_page(page);
1746 		return error;
1747 	}
1748 
1749 	/*
1750 	 * No big deal if we can't add this page to the page cache here.
1751 	 * READLINK will get the missing page from the server if needed.
1752 	 */
1753 	pagevec_init(&lru_pvec, 0);
1754 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1755 							GFP_KERNEL)) {
1756 		pagevec_add(&lru_pvec, page);
1757 		pagevec_lru_add_file(&lru_pvec);
1758 		SetPageUptodate(page);
1759 		unlock_page(page);
1760 	} else
1761 		__free_page(page);
1762 
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL_GPL(nfs_symlink);
1766 
1767 int
1768 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1769 {
1770 	struct inode *inode = old_dentry->d_inode;
1771 	int error;
1772 
1773 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1774 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1775 		dentry->d_parent->d_name.name, dentry->d_name.name);
1776 
1777 	NFS_PROTO(inode)->return_delegation(inode);
1778 
1779 	d_drop(dentry);
1780 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1781 	if (error == 0) {
1782 		ihold(inode);
1783 		d_add(dentry, inode);
1784 	}
1785 	return error;
1786 }
1787 EXPORT_SYMBOL_GPL(nfs_link);
1788 
1789 /*
1790  * RENAME
1791  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1792  * different file handle for the same inode after a rename (e.g. when
1793  * moving to a different directory). A fail-safe method to do so would
1794  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1795  * rename the old file using the sillyrename stuff. This way, the original
1796  * file in old_dir will go away when the last process iput()s the inode.
1797  *
1798  * FIXED.
1799  *
1800  * It actually works quite well. One needs to have the possibility for
1801  * at least one ".nfs..." file in each directory the file ever gets
1802  * moved or linked to which happens automagically with the new
1803  * implementation that only depends on the dcache stuff instead of
1804  * using the inode layer
1805  *
1806  * Unfortunately, things are a little more complicated than indicated
1807  * above. For a cross-directory move, we want to make sure we can get
1808  * rid of the old inode after the operation.  This means there must be
1809  * no pending writes (if it's a file), and the use count must be 1.
1810  * If these conditions are met, we can drop the dentries before doing
1811  * the rename.
1812  */
1813 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1814 		      struct inode *new_dir, struct dentry *new_dentry)
1815 {
1816 	struct inode *old_inode = old_dentry->d_inode;
1817 	struct inode *new_inode = new_dentry->d_inode;
1818 	struct dentry *dentry = NULL, *rehash = NULL;
1819 	int error = -EBUSY;
1820 
1821 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1822 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1823 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1824 		 new_dentry->d_count);
1825 
1826 	/*
1827 	 * For non-directories, check whether the target is busy and if so,
1828 	 * make a copy of the dentry and then do a silly-rename. If the
1829 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1830 	 * the new target.
1831 	 */
1832 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1833 		/*
1834 		 * To prevent any new references to the target during the
1835 		 * rename, we unhash the dentry in advance.
1836 		 */
1837 		if (!d_unhashed(new_dentry)) {
1838 			d_drop(new_dentry);
1839 			rehash = new_dentry;
1840 		}
1841 
1842 		if (new_dentry->d_count > 2) {
1843 			int err;
1844 
1845 			/* copy the target dentry's name */
1846 			dentry = d_alloc(new_dentry->d_parent,
1847 					 &new_dentry->d_name);
1848 			if (!dentry)
1849 				goto out;
1850 
1851 			/* silly-rename the existing target ... */
1852 			err = nfs_sillyrename(new_dir, new_dentry);
1853 			if (err)
1854 				goto out;
1855 
1856 			new_dentry = dentry;
1857 			rehash = NULL;
1858 			new_inode = NULL;
1859 		}
1860 	}
1861 
1862 	NFS_PROTO(old_inode)->return_delegation(old_inode);
1863 	if (new_inode != NULL)
1864 		NFS_PROTO(new_inode)->return_delegation(new_inode);
1865 
1866 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1867 					   new_dir, &new_dentry->d_name);
1868 	nfs_mark_for_revalidate(old_inode);
1869 out:
1870 	if (rehash)
1871 		d_rehash(rehash);
1872 	if (!error) {
1873 		if (new_inode != NULL)
1874 			nfs_drop_nlink(new_inode);
1875 		d_move(old_dentry, new_dentry);
1876 		nfs_set_verifier(new_dentry,
1877 					nfs_save_change_attribute(new_dir));
1878 	} else if (error == -ENOENT)
1879 		nfs_dentry_handle_enoent(old_dentry);
1880 
1881 	/* new dentry created? */
1882 	if (dentry)
1883 		dput(dentry);
1884 	return error;
1885 }
1886 EXPORT_SYMBOL_GPL(nfs_rename);
1887 
1888 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1889 static LIST_HEAD(nfs_access_lru_list);
1890 static atomic_long_t nfs_access_nr_entries;
1891 
1892 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1893 {
1894 	put_rpccred(entry->cred);
1895 	kfree(entry);
1896 	smp_mb__before_atomic_dec();
1897 	atomic_long_dec(&nfs_access_nr_entries);
1898 	smp_mb__after_atomic_dec();
1899 }
1900 
1901 static void nfs_access_free_list(struct list_head *head)
1902 {
1903 	struct nfs_access_entry *cache;
1904 
1905 	while (!list_empty(head)) {
1906 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1907 		list_del(&cache->lru);
1908 		nfs_access_free_entry(cache);
1909 	}
1910 }
1911 
1912 int nfs_access_cache_shrinker(struct shrinker *shrink,
1913 			      struct shrink_control *sc)
1914 {
1915 	LIST_HEAD(head);
1916 	struct nfs_inode *nfsi, *next;
1917 	struct nfs_access_entry *cache;
1918 	int nr_to_scan = sc->nr_to_scan;
1919 	gfp_t gfp_mask = sc->gfp_mask;
1920 
1921 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1922 		return (nr_to_scan == 0) ? 0 : -1;
1923 
1924 	spin_lock(&nfs_access_lru_lock);
1925 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1926 		struct inode *inode;
1927 
1928 		if (nr_to_scan-- == 0)
1929 			break;
1930 		inode = &nfsi->vfs_inode;
1931 		spin_lock(&inode->i_lock);
1932 		if (list_empty(&nfsi->access_cache_entry_lru))
1933 			goto remove_lru_entry;
1934 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1935 				struct nfs_access_entry, lru);
1936 		list_move(&cache->lru, &head);
1937 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1938 		if (!list_empty(&nfsi->access_cache_entry_lru))
1939 			list_move_tail(&nfsi->access_cache_inode_lru,
1940 					&nfs_access_lru_list);
1941 		else {
1942 remove_lru_entry:
1943 			list_del_init(&nfsi->access_cache_inode_lru);
1944 			smp_mb__before_clear_bit();
1945 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1946 			smp_mb__after_clear_bit();
1947 		}
1948 		spin_unlock(&inode->i_lock);
1949 	}
1950 	spin_unlock(&nfs_access_lru_lock);
1951 	nfs_access_free_list(&head);
1952 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1953 }
1954 
1955 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1956 {
1957 	struct rb_root *root_node = &nfsi->access_cache;
1958 	struct rb_node *n;
1959 	struct nfs_access_entry *entry;
1960 
1961 	/* Unhook entries from the cache */
1962 	while ((n = rb_first(root_node)) != NULL) {
1963 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1964 		rb_erase(n, root_node);
1965 		list_move(&entry->lru, head);
1966 	}
1967 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1968 }
1969 
1970 void nfs_access_zap_cache(struct inode *inode)
1971 {
1972 	LIST_HEAD(head);
1973 
1974 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1975 		return;
1976 	/* Remove from global LRU init */
1977 	spin_lock(&nfs_access_lru_lock);
1978 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1979 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1980 
1981 	spin_lock(&inode->i_lock);
1982 	__nfs_access_zap_cache(NFS_I(inode), &head);
1983 	spin_unlock(&inode->i_lock);
1984 	spin_unlock(&nfs_access_lru_lock);
1985 	nfs_access_free_list(&head);
1986 }
1987 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
1988 
1989 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1990 {
1991 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1992 	struct nfs_access_entry *entry;
1993 
1994 	while (n != NULL) {
1995 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1996 
1997 		if (cred < entry->cred)
1998 			n = n->rb_left;
1999 		else if (cred > entry->cred)
2000 			n = n->rb_right;
2001 		else
2002 			return entry;
2003 	}
2004 	return NULL;
2005 }
2006 
2007 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2008 {
2009 	struct nfs_inode *nfsi = NFS_I(inode);
2010 	struct nfs_access_entry *cache;
2011 	int err = -ENOENT;
2012 
2013 	spin_lock(&inode->i_lock);
2014 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2015 		goto out_zap;
2016 	cache = nfs_access_search_rbtree(inode, cred);
2017 	if (cache == NULL)
2018 		goto out;
2019 	if (!nfs_have_delegated_attributes(inode) &&
2020 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2021 		goto out_stale;
2022 	res->jiffies = cache->jiffies;
2023 	res->cred = cache->cred;
2024 	res->mask = cache->mask;
2025 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2026 	err = 0;
2027 out:
2028 	spin_unlock(&inode->i_lock);
2029 	return err;
2030 out_stale:
2031 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2032 	list_del(&cache->lru);
2033 	spin_unlock(&inode->i_lock);
2034 	nfs_access_free_entry(cache);
2035 	return -ENOENT;
2036 out_zap:
2037 	spin_unlock(&inode->i_lock);
2038 	nfs_access_zap_cache(inode);
2039 	return -ENOENT;
2040 }
2041 
2042 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2043 {
2044 	struct nfs_inode *nfsi = NFS_I(inode);
2045 	struct rb_root *root_node = &nfsi->access_cache;
2046 	struct rb_node **p = &root_node->rb_node;
2047 	struct rb_node *parent = NULL;
2048 	struct nfs_access_entry *entry;
2049 
2050 	spin_lock(&inode->i_lock);
2051 	while (*p != NULL) {
2052 		parent = *p;
2053 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2054 
2055 		if (set->cred < entry->cred)
2056 			p = &parent->rb_left;
2057 		else if (set->cred > entry->cred)
2058 			p = &parent->rb_right;
2059 		else
2060 			goto found;
2061 	}
2062 	rb_link_node(&set->rb_node, parent, p);
2063 	rb_insert_color(&set->rb_node, root_node);
2064 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2065 	spin_unlock(&inode->i_lock);
2066 	return;
2067 found:
2068 	rb_replace_node(parent, &set->rb_node, root_node);
2069 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2070 	list_del(&entry->lru);
2071 	spin_unlock(&inode->i_lock);
2072 	nfs_access_free_entry(entry);
2073 }
2074 
2075 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2076 {
2077 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2078 	if (cache == NULL)
2079 		return;
2080 	RB_CLEAR_NODE(&cache->rb_node);
2081 	cache->jiffies = set->jiffies;
2082 	cache->cred = get_rpccred(set->cred);
2083 	cache->mask = set->mask;
2084 
2085 	nfs_access_add_rbtree(inode, cache);
2086 
2087 	/* Update accounting */
2088 	smp_mb__before_atomic_inc();
2089 	atomic_long_inc(&nfs_access_nr_entries);
2090 	smp_mb__after_atomic_inc();
2091 
2092 	/* Add inode to global LRU list */
2093 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2094 		spin_lock(&nfs_access_lru_lock);
2095 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2096 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2097 					&nfs_access_lru_list);
2098 		spin_unlock(&nfs_access_lru_lock);
2099 	}
2100 }
2101 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2102 
2103 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2104 {
2105 	entry->mask = 0;
2106 	if (access_result & NFS4_ACCESS_READ)
2107 		entry->mask |= MAY_READ;
2108 	if (access_result &
2109 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2110 		entry->mask |= MAY_WRITE;
2111 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2112 		entry->mask |= MAY_EXEC;
2113 }
2114 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2115 
2116 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2117 {
2118 	struct nfs_access_entry cache;
2119 	int status;
2120 
2121 	status = nfs_access_get_cached(inode, cred, &cache);
2122 	if (status == 0)
2123 		goto out;
2124 
2125 	/* Be clever: ask server to check for all possible rights */
2126 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2127 	cache.cred = cred;
2128 	cache.jiffies = jiffies;
2129 	status = NFS_PROTO(inode)->access(inode, &cache);
2130 	if (status != 0) {
2131 		if (status == -ESTALE) {
2132 			nfs_zap_caches(inode);
2133 			if (!S_ISDIR(inode->i_mode))
2134 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2135 		}
2136 		return status;
2137 	}
2138 	nfs_access_add_cache(inode, &cache);
2139 out:
2140 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2141 		return 0;
2142 	return -EACCES;
2143 }
2144 
2145 static int nfs_open_permission_mask(int openflags)
2146 {
2147 	int mask = 0;
2148 
2149 	if ((openflags & O_ACCMODE) != O_WRONLY)
2150 		mask |= MAY_READ;
2151 	if ((openflags & O_ACCMODE) != O_RDONLY)
2152 		mask |= MAY_WRITE;
2153 	if (openflags & __FMODE_EXEC)
2154 		mask |= MAY_EXEC;
2155 	return mask;
2156 }
2157 
2158 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2159 {
2160 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2161 }
2162 EXPORT_SYMBOL_GPL(nfs_may_open);
2163 
2164 int nfs_permission(struct inode *inode, int mask)
2165 {
2166 	struct rpc_cred *cred;
2167 	int res = 0;
2168 
2169 	if (mask & MAY_NOT_BLOCK)
2170 		return -ECHILD;
2171 
2172 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2173 
2174 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2175 		goto out;
2176 	/* Is this sys_access() ? */
2177 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2178 		goto force_lookup;
2179 
2180 	switch (inode->i_mode & S_IFMT) {
2181 		case S_IFLNK:
2182 			goto out;
2183 		case S_IFREG:
2184 			/* NFSv4 has atomic_open... */
2185 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2186 					&& (mask & MAY_OPEN)
2187 					&& !(mask & MAY_EXEC))
2188 				goto out;
2189 			break;
2190 		case S_IFDIR:
2191 			/*
2192 			 * Optimize away all write operations, since the server
2193 			 * will check permissions when we perform the op.
2194 			 */
2195 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2196 				goto out;
2197 	}
2198 
2199 force_lookup:
2200 	if (!NFS_PROTO(inode)->access)
2201 		goto out_notsup;
2202 
2203 	cred = rpc_lookup_cred();
2204 	if (!IS_ERR(cred)) {
2205 		res = nfs_do_access(inode, cred, mask);
2206 		put_rpccred(cred);
2207 	} else
2208 		res = PTR_ERR(cred);
2209 out:
2210 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2211 		res = -EACCES;
2212 
2213 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2214 		inode->i_sb->s_id, inode->i_ino, mask, res);
2215 	return res;
2216 out_notsup:
2217 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2218 	if (res == 0)
2219 		res = generic_permission(inode, mask);
2220 	goto out;
2221 }
2222 EXPORT_SYMBOL_GPL(nfs_permission);
2223 
2224 /*
2225  * Local variables:
2226  *  version-control: t
2227  *  kept-new-versions: 5
2228  * End:
2229  */
2230