1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/sched.h> 37 #include <linux/kmemleak.h> 38 #include <linux/xattr.h> 39 40 #include "delegation.h" 41 #include "iostat.h" 42 #include "internal.h" 43 #include "fscache.h" 44 45 /* #define NFS_DEBUG_VERBOSE 1 */ 46 47 static int nfs_opendir(struct inode *, struct file *); 48 static int nfs_closedir(struct inode *, struct file *); 49 static int nfs_readdir(struct file *, void *, filldir_t); 50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 51 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 52 static void nfs_readdir_clear_array(struct page*); 53 54 const struct file_operations nfs_dir_operations = { 55 .llseek = nfs_llseek_dir, 56 .read = generic_read_dir, 57 .readdir = nfs_readdir, 58 .open = nfs_opendir, 59 .release = nfs_closedir, 60 .fsync = nfs_fsync_dir, 61 }; 62 63 const struct address_space_operations nfs_dir_aops = { 64 .freepage = nfs_readdir_clear_array, 65 }; 66 67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 68 { 69 struct nfs_open_dir_context *ctx; 70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 71 if (ctx != NULL) { 72 ctx->duped = 0; 73 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 74 ctx->dir_cookie = 0; 75 ctx->dup_cookie = 0; 76 ctx->cred = get_rpccred(cred); 77 return ctx; 78 } 79 return ERR_PTR(-ENOMEM); 80 } 81 82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 83 { 84 put_rpccred(ctx->cred); 85 kfree(ctx); 86 } 87 88 /* 89 * Open file 90 */ 91 static int 92 nfs_opendir(struct inode *inode, struct file *filp) 93 { 94 int res = 0; 95 struct nfs_open_dir_context *ctx; 96 struct rpc_cred *cred; 97 98 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 99 filp->f_path.dentry->d_parent->d_name.name, 100 filp->f_path.dentry->d_name.name); 101 102 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 103 104 cred = rpc_lookup_cred(); 105 if (IS_ERR(cred)) 106 return PTR_ERR(cred); 107 ctx = alloc_nfs_open_dir_context(inode, cred); 108 if (IS_ERR(ctx)) { 109 res = PTR_ERR(ctx); 110 goto out; 111 } 112 filp->private_data = ctx; 113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 114 /* This is a mountpoint, so d_revalidate will never 115 * have been called, so we need to refresh the 116 * inode (for close-open consistency) ourselves. 117 */ 118 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 119 } 120 out: 121 put_rpccred(cred); 122 return res; 123 } 124 125 static int 126 nfs_closedir(struct inode *inode, struct file *filp) 127 { 128 put_nfs_open_dir_context(filp->private_data); 129 return 0; 130 } 131 132 struct nfs_cache_array_entry { 133 u64 cookie; 134 u64 ino; 135 struct qstr string; 136 unsigned char d_type; 137 }; 138 139 struct nfs_cache_array { 140 int size; 141 int eof_index; 142 u64 last_cookie; 143 struct nfs_cache_array_entry array[0]; 144 }; 145 146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 unsigned long page_index; 151 u64 *dir_cookie; 152 u64 last_cookie; 153 loff_t current_index; 154 decode_dirent_t decode; 155 156 unsigned long timestamp; 157 unsigned long gencount; 158 unsigned int cache_entry_index; 159 unsigned int plus:1; 160 unsigned int eof:1; 161 } nfs_readdir_descriptor_t; 162 163 /* 164 * The caller is responsible for calling nfs_readdir_release_array(page) 165 */ 166 static 167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 168 { 169 void *ptr; 170 if (page == NULL) 171 return ERR_PTR(-EIO); 172 ptr = kmap(page); 173 if (ptr == NULL) 174 return ERR_PTR(-ENOMEM); 175 return ptr; 176 } 177 178 static 179 void nfs_readdir_release_array(struct page *page) 180 { 181 kunmap(page); 182 } 183 184 /* 185 * we are freeing strings created by nfs_add_to_readdir_array() 186 */ 187 static 188 void nfs_readdir_clear_array(struct page *page) 189 { 190 struct nfs_cache_array *array; 191 int i; 192 193 array = kmap_atomic(page); 194 for (i = 0; i < array->size; i++) 195 kfree(array->array[i].string.name); 196 kunmap_atomic(array); 197 } 198 199 /* 200 * the caller is responsible for freeing qstr.name 201 * when called by nfs_readdir_add_to_array, the strings will be freed in 202 * nfs_clear_readdir_array() 203 */ 204 static 205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 206 { 207 string->len = len; 208 string->name = kmemdup(name, len, GFP_KERNEL); 209 if (string->name == NULL) 210 return -ENOMEM; 211 /* 212 * Avoid a kmemleak false positive. The pointer to the name is stored 213 * in a page cache page which kmemleak does not scan. 214 */ 215 kmemleak_not_leak(string->name); 216 string->hash = full_name_hash(name, len); 217 return 0; 218 } 219 220 static 221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 222 { 223 struct nfs_cache_array *array = nfs_readdir_get_array(page); 224 struct nfs_cache_array_entry *cache_entry; 225 int ret; 226 227 if (IS_ERR(array)) 228 return PTR_ERR(array); 229 230 cache_entry = &array->array[array->size]; 231 232 /* Check that this entry lies within the page bounds */ 233 ret = -ENOSPC; 234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 235 goto out; 236 237 cache_entry->cookie = entry->prev_cookie; 238 cache_entry->ino = entry->ino; 239 cache_entry->d_type = entry->d_type; 240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 241 if (ret) 242 goto out; 243 array->last_cookie = entry->cookie; 244 array->size++; 245 if (entry->eof != 0) 246 array->eof_index = array->size; 247 out: 248 nfs_readdir_release_array(page); 249 return ret; 250 } 251 252 static 253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 254 { 255 loff_t diff = desc->file->f_pos - desc->current_index; 256 unsigned int index; 257 258 if (diff < 0) 259 goto out_eof; 260 if (diff >= array->size) { 261 if (array->eof_index >= 0) 262 goto out_eof; 263 return -EAGAIN; 264 } 265 266 index = (unsigned int)diff; 267 *desc->dir_cookie = array->array[index].cookie; 268 desc->cache_entry_index = index; 269 return 0; 270 out_eof: 271 desc->eof = 1; 272 return -EBADCOOKIE; 273 } 274 275 static 276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 277 { 278 int i; 279 loff_t new_pos; 280 int status = -EAGAIN; 281 282 for (i = 0; i < array->size; i++) { 283 if (array->array[i].cookie == *desc->dir_cookie) { 284 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode); 285 struct nfs_open_dir_context *ctx = desc->file->private_data; 286 287 new_pos = desc->current_index + i; 288 if (ctx->attr_gencount != nfsi->attr_gencount 289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 290 ctx->duped = 0; 291 ctx->attr_gencount = nfsi->attr_gencount; 292 } else if (new_pos < desc->file->f_pos) { 293 if (ctx->duped > 0 294 && ctx->dup_cookie == *desc->dir_cookie) { 295 if (printk_ratelimit()) { 296 pr_notice("NFS: directory %s/%s contains a readdir loop." 297 "Please contact your server vendor. " 298 "The file: %s has duplicate cookie %llu\n", 299 desc->file->f_dentry->d_parent->d_name.name, 300 desc->file->f_dentry->d_name.name, 301 array->array[i].string.name, 302 *desc->dir_cookie); 303 } 304 status = -ELOOP; 305 goto out; 306 } 307 ctx->dup_cookie = *desc->dir_cookie; 308 ctx->duped = -1; 309 } 310 desc->file->f_pos = new_pos; 311 desc->cache_entry_index = i; 312 return 0; 313 } 314 } 315 if (array->eof_index >= 0) { 316 status = -EBADCOOKIE; 317 if (*desc->dir_cookie == array->last_cookie) 318 desc->eof = 1; 319 } 320 out: 321 return status; 322 } 323 324 static 325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 326 { 327 struct nfs_cache_array *array; 328 int status; 329 330 array = nfs_readdir_get_array(desc->page); 331 if (IS_ERR(array)) { 332 status = PTR_ERR(array); 333 goto out; 334 } 335 336 if (*desc->dir_cookie == 0) 337 status = nfs_readdir_search_for_pos(array, desc); 338 else 339 status = nfs_readdir_search_for_cookie(array, desc); 340 341 if (status == -EAGAIN) { 342 desc->last_cookie = array->last_cookie; 343 desc->current_index += array->size; 344 desc->page_index++; 345 } 346 nfs_readdir_release_array(desc->page); 347 out: 348 return status; 349 } 350 351 /* Fill a page with xdr information before transferring to the cache page */ 352 static 353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 354 struct nfs_entry *entry, struct file *file, struct inode *inode) 355 { 356 struct nfs_open_dir_context *ctx = file->private_data; 357 struct rpc_cred *cred = ctx->cred; 358 unsigned long timestamp, gencount; 359 int error; 360 361 again: 362 timestamp = jiffies; 363 gencount = nfs_inc_attr_generation_counter(); 364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 365 NFS_SERVER(inode)->dtsize, desc->plus); 366 if (error < 0) { 367 /* We requested READDIRPLUS, but the server doesn't grok it */ 368 if (error == -ENOTSUPP && desc->plus) { 369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 371 desc->plus = 0; 372 goto again; 373 } 374 goto error; 375 } 376 desc->timestamp = timestamp; 377 desc->gencount = gencount; 378 error: 379 return error; 380 } 381 382 static int xdr_decode(nfs_readdir_descriptor_t *desc, 383 struct nfs_entry *entry, struct xdr_stream *xdr) 384 { 385 int error; 386 387 error = desc->decode(xdr, entry, desc->plus); 388 if (error) 389 return error; 390 entry->fattr->time_start = desc->timestamp; 391 entry->fattr->gencount = desc->gencount; 392 return 0; 393 } 394 395 static 396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 397 { 398 if (dentry->d_inode == NULL) 399 goto different; 400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 401 goto different; 402 return 1; 403 different: 404 return 0; 405 } 406 407 static 408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp) 409 { 410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 411 return false; 412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 413 return true; 414 if (filp->f_pos == 0) 415 return true; 416 return false; 417 } 418 419 /* 420 * This function is called by the lookup code to request the use of 421 * readdirplus to accelerate any future lookups in the same 422 * directory. 423 */ 424 static 425 void nfs_advise_use_readdirplus(struct inode *dir) 426 { 427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 428 } 429 430 static 431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 432 { 433 struct qstr filename = QSTR_INIT(entry->name, entry->len); 434 struct dentry *dentry; 435 struct dentry *alias; 436 struct inode *dir = parent->d_inode; 437 struct inode *inode; 438 439 if (filename.name[0] == '.') { 440 if (filename.len == 1) 441 return; 442 if (filename.len == 2 && filename.name[1] == '.') 443 return; 444 } 445 filename.hash = full_name_hash(filename.name, filename.len); 446 447 dentry = d_lookup(parent, &filename); 448 if (dentry != NULL) { 449 if (nfs_same_file(dentry, entry)) { 450 nfs_refresh_inode(dentry->d_inode, entry->fattr); 451 goto out; 452 } else { 453 d_drop(dentry); 454 dput(dentry); 455 } 456 } 457 458 dentry = d_alloc(parent, &filename); 459 if (dentry == NULL) 460 return; 461 462 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 463 if (IS_ERR(inode)) 464 goto out; 465 466 alias = d_materialise_unique(dentry, inode); 467 if (IS_ERR(alias)) 468 goto out; 469 else if (alias) { 470 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 471 dput(alias); 472 } else 473 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 474 475 out: 476 dput(dentry); 477 } 478 479 /* Perform conversion from xdr to cache array */ 480 static 481 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 482 struct page **xdr_pages, struct page *page, unsigned int buflen) 483 { 484 struct xdr_stream stream; 485 struct xdr_buf buf; 486 struct page *scratch; 487 struct nfs_cache_array *array; 488 unsigned int count = 0; 489 int status; 490 491 scratch = alloc_page(GFP_KERNEL); 492 if (scratch == NULL) 493 return -ENOMEM; 494 495 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 496 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 497 498 do { 499 status = xdr_decode(desc, entry, &stream); 500 if (status != 0) { 501 if (status == -EAGAIN) 502 status = 0; 503 break; 504 } 505 506 count++; 507 508 if (desc->plus != 0) 509 nfs_prime_dcache(desc->file->f_path.dentry, entry); 510 511 status = nfs_readdir_add_to_array(entry, page); 512 if (status != 0) 513 break; 514 } while (!entry->eof); 515 516 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 517 array = nfs_readdir_get_array(page); 518 if (!IS_ERR(array)) { 519 array->eof_index = array->size; 520 status = 0; 521 nfs_readdir_release_array(page); 522 } else 523 status = PTR_ERR(array); 524 } 525 526 put_page(scratch); 527 return status; 528 } 529 530 static 531 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 532 { 533 unsigned int i; 534 for (i = 0; i < npages; i++) 535 put_page(pages[i]); 536 } 537 538 static 539 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 540 unsigned int npages) 541 { 542 nfs_readdir_free_pagearray(pages, npages); 543 } 544 545 /* 546 * nfs_readdir_large_page will allocate pages that must be freed with a call 547 * to nfs_readdir_free_large_page 548 */ 549 static 550 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 551 { 552 unsigned int i; 553 554 for (i = 0; i < npages; i++) { 555 struct page *page = alloc_page(GFP_KERNEL); 556 if (page == NULL) 557 goto out_freepages; 558 pages[i] = page; 559 } 560 return 0; 561 562 out_freepages: 563 nfs_readdir_free_pagearray(pages, i); 564 return -ENOMEM; 565 } 566 567 static 568 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 569 { 570 struct page *pages[NFS_MAX_READDIR_PAGES]; 571 void *pages_ptr = NULL; 572 struct nfs_entry entry; 573 struct file *file = desc->file; 574 struct nfs_cache_array *array; 575 int status = -ENOMEM; 576 unsigned int array_size = ARRAY_SIZE(pages); 577 578 entry.prev_cookie = 0; 579 entry.cookie = desc->last_cookie; 580 entry.eof = 0; 581 entry.fh = nfs_alloc_fhandle(); 582 entry.fattr = nfs_alloc_fattr(); 583 entry.server = NFS_SERVER(inode); 584 if (entry.fh == NULL || entry.fattr == NULL) 585 goto out; 586 587 array = nfs_readdir_get_array(page); 588 if (IS_ERR(array)) { 589 status = PTR_ERR(array); 590 goto out; 591 } 592 memset(array, 0, sizeof(struct nfs_cache_array)); 593 array->eof_index = -1; 594 595 status = nfs_readdir_large_page(pages, array_size); 596 if (status < 0) 597 goto out_release_array; 598 do { 599 unsigned int pglen; 600 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 601 602 if (status < 0) 603 break; 604 pglen = status; 605 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 606 if (status < 0) { 607 if (status == -ENOSPC) 608 status = 0; 609 break; 610 } 611 } while (array->eof_index < 0); 612 613 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 614 out_release_array: 615 nfs_readdir_release_array(page); 616 out: 617 nfs_free_fattr(entry.fattr); 618 nfs_free_fhandle(entry.fh); 619 return status; 620 } 621 622 /* 623 * Now we cache directories properly, by converting xdr information 624 * to an array that can be used for lookups later. This results in 625 * fewer cache pages, since we can store more information on each page. 626 * We only need to convert from xdr once so future lookups are much simpler 627 */ 628 static 629 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 630 { 631 struct inode *inode = desc->file->f_path.dentry->d_inode; 632 int ret; 633 634 ret = nfs_readdir_xdr_to_array(desc, page, inode); 635 if (ret < 0) 636 goto error; 637 SetPageUptodate(page); 638 639 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 640 /* Should never happen */ 641 nfs_zap_mapping(inode, inode->i_mapping); 642 } 643 unlock_page(page); 644 return 0; 645 error: 646 unlock_page(page); 647 return ret; 648 } 649 650 static 651 void cache_page_release(nfs_readdir_descriptor_t *desc) 652 { 653 if (!desc->page->mapping) 654 nfs_readdir_clear_array(desc->page); 655 page_cache_release(desc->page); 656 desc->page = NULL; 657 } 658 659 static 660 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 661 { 662 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping, 663 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 664 } 665 666 /* 667 * Returns 0 if desc->dir_cookie was found on page desc->page_index 668 */ 669 static 670 int find_cache_page(nfs_readdir_descriptor_t *desc) 671 { 672 int res; 673 674 desc->page = get_cache_page(desc); 675 if (IS_ERR(desc->page)) 676 return PTR_ERR(desc->page); 677 678 res = nfs_readdir_search_array(desc); 679 if (res != 0) 680 cache_page_release(desc); 681 return res; 682 } 683 684 /* Search for desc->dir_cookie from the beginning of the page cache */ 685 static inline 686 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 687 { 688 int res; 689 690 if (desc->page_index == 0) { 691 desc->current_index = 0; 692 desc->last_cookie = 0; 693 } 694 do { 695 res = find_cache_page(desc); 696 } while (res == -EAGAIN); 697 return res; 698 } 699 700 /* 701 * Once we've found the start of the dirent within a page: fill 'er up... 702 */ 703 static 704 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 705 filldir_t filldir) 706 { 707 struct file *file = desc->file; 708 int i = 0; 709 int res = 0; 710 struct nfs_cache_array *array = NULL; 711 struct nfs_open_dir_context *ctx = file->private_data; 712 713 array = nfs_readdir_get_array(desc->page); 714 if (IS_ERR(array)) { 715 res = PTR_ERR(array); 716 goto out; 717 } 718 719 for (i = desc->cache_entry_index; i < array->size; i++) { 720 struct nfs_cache_array_entry *ent; 721 722 ent = &array->array[i]; 723 if (filldir(dirent, ent->string.name, ent->string.len, 724 file->f_pos, nfs_compat_user_ino64(ent->ino), 725 ent->d_type) < 0) { 726 desc->eof = 1; 727 break; 728 } 729 file->f_pos++; 730 if (i < (array->size-1)) 731 *desc->dir_cookie = array->array[i+1].cookie; 732 else 733 *desc->dir_cookie = array->last_cookie; 734 if (ctx->duped != 0) 735 ctx->duped = 1; 736 } 737 if (array->eof_index >= 0) 738 desc->eof = 1; 739 740 nfs_readdir_release_array(desc->page); 741 out: 742 cache_page_release(desc); 743 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 744 (unsigned long long)*desc->dir_cookie, res); 745 return res; 746 } 747 748 /* 749 * If we cannot find a cookie in our cache, we suspect that this is 750 * because it points to a deleted file, so we ask the server to return 751 * whatever it thinks is the next entry. We then feed this to filldir. 752 * If all goes well, we should then be able to find our way round the 753 * cache on the next call to readdir_search_pagecache(); 754 * 755 * NOTE: we cannot add the anonymous page to the pagecache because 756 * the data it contains might not be page aligned. Besides, 757 * we should already have a complete representation of the 758 * directory in the page cache by the time we get here. 759 */ 760 static inline 761 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 762 filldir_t filldir) 763 { 764 struct page *page = NULL; 765 int status; 766 struct inode *inode = desc->file->f_path.dentry->d_inode; 767 struct nfs_open_dir_context *ctx = desc->file->private_data; 768 769 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 770 (unsigned long long)*desc->dir_cookie); 771 772 page = alloc_page(GFP_HIGHUSER); 773 if (!page) { 774 status = -ENOMEM; 775 goto out; 776 } 777 778 desc->page_index = 0; 779 desc->last_cookie = *desc->dir_cookie; 780 desc->page = page; 781 ctx->duped = 0; 782 783 status = nfs_readdir_xdr_to_array(desc, page, inode); 784 if (status < 0) 785 goto out_release; 786 787 status = nfs_do_filldir(desc, dirent, filldir); 788 789 out: 790 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 791 __func__, status); 792 return status; 793 out_release: 794 cache_page_release(desc); 795 goto out; 796 } 797 798 /* The file offset position represents the dirent entry number. A 799 last cookie cache takes care of the common case of reading the 800 whole directory. 801 */ 802 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 803 { 804 struct dentry *dentry = filp->f_path.dentry; 805 struct inode *inode = dentry->d_inode; 806 nfs_readdir_descriptor_t my_desc, 807 *desc = &my_desc; 808 struct nfs_open_dir_context *dir_ctx = filp->private_data; 809 int res; 810 811 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 812 dentry->d_parent->d_name.name, dentry->d_name.name, 813 (long long)filp->f_pos); 814 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 815 816 /* 817 * filp->f_pos points to the dirent entry number. 818 * *desc->dir_cookie has the cookie for the next entry. We have 819 * to either find the entry with the appropriate number or 820 * revalidate the cookie. 821 */ 822 memset(desc, 0, sizeof(*desc)); 823 824 desc->file = filp; 825 desc->dir_cookie = &dir_ctx->dir_cookie; 826 desc->decode = NFS_PROTO(inode)->decode_dirent; 827 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0; 828 829 nfs_block_sillyrename(dentry); 830 res = nfs_revalidate_mapping(inode, filp->f_mapping); 831 if (res < 0) 832 goto out; 833 834 do { 835 res = readdir_search_pagecache(desc); 836 837 if (res == -EBADCOOKIE) { 838 res = 0; 839 /* This means either end of directory */ 840 if (*desc->dir_cookie && desc->eof == 0) { 841 /* Or that the server has 'lost' a cookie */ 842 res = uncached_readdir(desc, dirent, filldir); 843 if (res == 0) 844 continue; 845 } 846 break; 847 } 848 if (res == -ETOOSMALL && desc->plus) { 849 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 850 nfs_zap_caches(inode); 851 desc->page_index = 0; 852 desc->plus = 0; 853 desc->eof = 0; 854 continue; 855 } 856 if (res < 0) 857 break; 858 859 res = nfs_do_filldir(desc, dirent, filldir); 860 if (res < 0) 861 break; 862 } while (!desc->eof); 863 out: 864 nfs_unblock_sillyrename(dentry); 865 if (res > 0) 866 res = 0; 867 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 868 dentry->d_parent->d_name.name, dentry->d_name.name, 869 res); 870 return res; 871 } 872 873 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 874 { 875 struct dentry *dentry = filp->f_path.dentry; 876 struct inode *inode = dentry->d_inode; 877 struct nfs_open_dir_context *dir_ctx = filp->private_data; 878 879 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 880 dentry->d_parent->d_name.name, 881 dentry->d_name.name, 882 offset, origin); 883 884 mutex_lock(&inode->i_mutex); 885 switch (origin) { 886 case 1: 887 offset += filp->f_pos; 888 case 0: 889 if (offset >= 0) 890 break; 891 default: 892 offset = -EINVAL; 893 goto out; 894 } 895 if (offset != filp->f_pos) { 896 filp->f_pos = offset; 897 dir_ctx->dir_cookie = 0; 898 dir_ctx->duped = 0; 899 } 900 out: 901 mutex_unlock(&inode->i_mutex); 902 return offset; 903 } 904 905 /* 906 * All directory operations under NFS are synchronous, so fsync() 907 * is a dummy operation. 908 */ 909 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 910 int datasync) 911 { 912 struct dentry *dentry = filp->f_path.dentry; 913 struct inode *inode = dentry->d_inode; 914 915 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 916 dentry->d_parent->d_name.name, dentry->d_name.name, 917 datasync); 918 919 mutex_lock(&inode->i_mutex); 920 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 921 mutex_unlock(&inode->i_mutex); 922 return 0; 923 } 924 925 /** 926 * nfs_force_lookup_revalidate - Mark the directory as having changed 927 * @dir - pointer to directory inode 928 * 929 * This forces the revalidation code in nfs_lookup_revalidate() to do a 930 * full lookup on all child dentries of 'dir' whenever a change occurs 931 * on the server that might have invalidated our dcache. 932 * 933 * The caller should be holding dir->i_lock 934 */ 935 void nfs_force_lookup_revalidate(struct inode *dir) 936 { 937 NFS_I(dir)->cache_change_attribute++; 938 } 939 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 940 941 /* 942 * A check for whether or not the parent directory has changed. 943 * In the case it has, we assume that the dentries are untrustworthy 944 * and may need to be looked up again. 945 */ 946 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 947 { 948 if (IS_ROOT(dentry)) 949 return 1; 950 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 951 return 0; 952 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 953 return 0; 954 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 955 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 956 return 0; 957 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 958 return 0; 959 return 1; 960 } 961 962 /* 963 * Use intent information to check whether or not we're going to do 964 * an O_EXCL create using this path component. 965 */ 966 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 967 { 968 if (NFS_PROTO(dir)->version == 2) 969 return 0; 970 return flags & LOOKUP_EXCL; 971 } 972 973 /* 974 * Inode and filehandle revalidation for lookups. 975 * 976 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 977 * or if the intent information indicates that we're about to open this 978 * particular file and the "nocto" mount flag is not set. 979 * 980 */ 981 static inline 982 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 983 { 984 struct nfs_server *server = NFS_SERVER(inode); 985 986 if (IS_AUTOMOUNT(inode)) 987 return 0; 988 /* VFS wants an on-the-wire revalidation */ 989 if (flags & LOOKUP_REVAL) 990 goto out_force; 991 /* This is an open(2) */ 992 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 993 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 994 goto out_force; 995 return 0; 996 out_force: 997 return __nfs_revalidate_inode(server, inode); 998 } 999 1000 /* 1001 * We judge how long we want to trust negative 1002 * dentries by looking at the parent inode mtime. 1003 * 1004 * If parent mtime has changed, we revalidate, else we wait for a 1005 * period corresponding to the parent's attribute cache timeout value. 1006 */ 1007 static inline 1008 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1009 unsigned int flags) 1010 { 1011 /* Don't revalidate a negative dentry if we're creating a new file */ 1012 if (flags & LOOKUP_CREATE) 1013 return 0; 1014 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1015 return 1; 1016 return !nfs_check_verifier(dir, dentry); 1017 } 1018 1019 /* 1020 * This is called every time the dcache has a lookup hit, 1021 * and we should check whether we can really trust that 1022 * lookup. 1023 * 1024 * NOTE! The hit can be a negative hit too, don't assume 1025 * we have an inode! 1026 * 1027 * If the parent directory is seen to have changed, we throw out the 1028 * cached dentry and do a new lookup. 1029 */ 1030 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1031 { 1032 struct inode *dir; 1033 struct inode *inode; 1034 struct dentry *parent; 1035 struct nfs_fh *fhandle = NULL; 1036 struct nfs_fattr *fattr = NULL; 1037 int error; 1038 1039 if (flags & LOOKUP_RCU) 1040 return -ECHILD; 1041 1042 parent = dget_parent(dentry); 1043 dir = parent->d_inode; 1044 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1045 inode = dentry->d_inode; 1046 1047 if (!inode) { 1048 if (nfs_neg_need_reval(dir, dentry, flags)) 1049 goto out_bad; 1050 goto out_valid_noent; 1051 } 1052 1053 if (is_bad_inode(inode)) { 1054 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1055 __func__, dentry->d_parent->d_name.name, 1056 dentry->d_name.name); 1057 goto out_bad; 1058 } 1059 1060 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1061 goto out_set_verifier; 1062 1063 /* Force a full look up iff the parent directory has changed */ 1064 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1065 if (nfs_lookup_verify_inode(inode, flags)) 1066 goto out_zap_parent; 1067 goto out_valid; 1068 } 1069 1070 if (NFS_STALE(inode)) 1071 goto out_bad; 1072 1073 error = -ENOMEM; 1074 fhandle = nfs_alloc_fhandle(); 1075 fattr = nfs_alloc_fattr(); 1076 if (fhandle == NULL || fattr == NULL) 1077 goto out_error; 1078 1079 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1080 if (error) 1081 goto out_bad; 1082 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1083 goto out_bad; 1084 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1085 goto out_bad; 1086 1087 nfs_free_fattr(fattr); 1088 nfs_free_fhandle(fhandle); 1089 out_set_verifier: 1090 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1091 out_valid: 1092 /* Success: notify readdir to use READDIRPLUS */ 1093 nfs_advise_use_readdirplus(dir); 1094 out_valid_noent: 1095 dput(parent); 1096 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1097 __func__, dentry->d_parent->d_name.name, 1098 dentry->d_name.name); 1099 return 1; 1100 out_zap_parent: 1101 nfs_zap_caches(dir); 1102 out_bad: 1103 nfs_mark_for_revalidate(dir); 1104 if (inode && S_ISDIR(inode->i_mode)) { 1105 /* Purge readdir caches. */ 1106 nfs_zap_caches(inode); 1107 /* If we have submounts, don't unhash ! */ 1108 if (have_submounts(dentry)) 1109 goto out_valid; 1110 if (dentry->d_flags & DCACHE_DISCONNECTED) 1111 goto out_valid; 1112 shrink_dcache_parent(dentry); 1113 } 1114 d_drop(dentry); 1115 nfs_free_fattr(fattr); 1116 nfs_free_fhandle(fhandle); 1117 dput(parent); 1118 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1119 __func__, dentry->d_parent->d_name.name, 1120 dentry->d_name.name); 1121 return 0; 1122 out_error: 1123 nfs_free_fattr(fattr); 1124 nfs_free_fhandle(fhandle); 1125 dput(parent); 1126 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1127 __func__, dentry->d_parent->d_name.name, 1128 dentry->d_name.name, error); 1129 return error; 1130 } 1131 1132 /* 1133 * This is called from dput() when d_count is going to 0. 1134 */ 1135 static int nfs_dentry_delete(const struct dentry *dentry) 1136 { 1137 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1138 dentry->d_parent->d_name.name, dentry->d_name.name, 1139 dentry->d_flags); 1140 1141 /* Unhash any dentry with a stale inode */ 1142 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1143 return 1; 1144 1145 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1146 /* Unhash it, so that ->d_iput() would be called */ 1147 return 1; 1148 } 1149 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1150 /* Unhash it, so that ancestors of killed async unlink 1151 * files will be cleaned up during umount */ 1152 return 1; 1153 } 1154 return 0; 1155 1156 } 1157 1158 static void nfs_drop_nlink(struct inode *inode) 1159 { 1160 spin_lock(&inode->i_lock); 1161 if (inode->i_nlink > 0) 1162 drop_nlink(inode); 1163 spin_unlock(&inode->i_lock); 1164 } 1165 1166 /* 1167 * Called when the dentry loses inode. 1168 * We use it to clean up silly-renamed files. 1169 */ 1170 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1171 { 1172 if (S_ISDIR(inode->i_mode)) 1173 /* drop any readdir cache as it could easily be old */ 1174 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1175 1176 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1177 drop_nlink(inode); 1178 nfs_complete_unlink(dentry, inode); 1179 } 1180 iput(inode); 1181 } 1182 1183 static void nfs_d_release(struct dentry *dentry) 1184 { 1185 /* free cached devname value, if it survived that far */ 1186 if (unlikely(dentry->d_fsdata)) { 1187 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1188 WARN_ON(1); 1189 else 1190 kfree(dentry->d_fsdata); 1191 } 1192 } 1193 1194 const struct dentry_operations nfs_dentry_operations = { 1195 .d_revalidate = nfs_lookup_revalidate, 1196 .d_delete = nfs_dentry_delete, 1197 .d_iput = nfs_dentry_iput, 1198 .d_automount = nfs_d_automount, 1199 .d_release = nfs_d_release, 1200 }; 1201 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1202 1203 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1204 { 1205 struct dentry *res; 1206 struct dentry *parent; 1207 struct inode *inode = NULL; 1208 struct nfs_fh *fhandle = NULL; 1209 struct nfs_fattr *fattr = NULL; 1210 int error; 1211 1212 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1213 dentry->d_parent->d_name.name, dentry->d_name.name); 1214 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1215 1216 res = ERR_PTR(-ENAMETOOLONG); 1217 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1218 goto out; 1219 1220 /* 1221 * If we're doing an exclusive create, optimize away the lookup 1222 * but don't hash the dentry. 1223 */ 1224 if (nfs_is_exclusive_create(dir, flags)) { 1225 d_instantiate(dentry, NULL); 1226 res = NULL; 1227 goto out; 1228 } 1229 1230 res = ERR_PTR(-ENOMEM); 1231 fhandle = nfs_alloc_fhandle(); 1232 fattr = nfs_alloc_fattr(); 1233 if (fhandle == NULL || fattr == NULL) 1234 goto out; 1235 1236 parent = dentry->d_parent; 1237 /* Protect against concurrent sillydeletes */ 1238 nfs_block_sillyrename(parent); 1239 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1240 if (error == -ENOENT) 1241 goto no_entry; 1242 if (error < 0) { 1243 res = ERR_PTR(error); 1244 goto out_unblock_sillyrename; 1245 } 1246 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1247 res = ERR_CAST(inode); 1248 if (IS_ERR(res)) 1249 goto out_unblock_sillyrename; 1250 1251 /* Success: notify readdir to use READDIRPLUS */ 1252 nfs_advise_use_readdirplus(dir); 1253 1254 no_entry: 1255 res = d_materialise_unique(dentry, inode); 1256 if (res != NULL) { 1257 if (IS_ERR(res)) 1258 goto out_unblock_sillyrename; 1259 dentry = res; 1260 } 1261 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1262 out_unblock_sillyrename: 1263 nfs_unblock_sillyrename(parent); 1264 out: 1265 nfs_free_fattr(fattr); 1266 nfs_free_fhandle(fhandle); 1267 return res; 1268 } 1269 EXPORT_SYMBOL_GPL(nfs_lookup); 1270 1271 #if IS_ENABLED(CONFIG_NFS_V4) 1272 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1273 1274 const struct dentry_operations nfs4_dentry_operations = { 1275 .d_revalidate = nfs4_lookup_revalidate, 1276 .d_delete = nfs_dentry_delete, 1277 .d_iput = nfs_dentry_iput, 1278 .d_automount = nfs_d_automount, 1279 .d_release = nfs_d_release, 1280 }; 1281 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1282 1283 static fmode_t flags_to_mode(int flags) 1284 { 1285 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1286 if ((flags & O_ACCMODE) != O_WRONLY) 1287 res |= FMODE_READ; 1288 if ((flags & O_ACCMODE) != O_RDONLY) 1289 res |= FMODE_WRITE; 1290 return res; 1291 } 1292 1293 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1294 { 1295 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1296 } 1297 1298 static int do_open(struct inode *inode, struct file *filp) 1299 { 1300 nfs_fscache_set_inode_cookie(inode, filp); 1301 return 0; 1302 } 1303 1304 static int nfs_finish_open(struct nfs_open_context *ctx, 1305 struct dentry *dentry, 1306 struct file *file, unsigned open_flags, 1307 int *opened) 1308 { 1309 int err; 1310 1311 if (ctx->dentry != dentry) { 1312 dput(ctx->dentry); 1313 ctx->dentry = dget(dentry); 1314 } 1315 1316 /* If the open_intent is for execute, we have an extra check to make */ 1317 if (ctx->mode & FMODE_EXEC) { 1318 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags); 1319 if (err < 0) 1320 goto out; 1321 } 1322 1323 err = finish_open(file, dentry, do_open, opened); 1324 if (err) 1325 goto out; 1326 nfs_file_set_open_context(file, ctx); 1327 1328 out: 1329 put_nfs_open_context(ctx); 1330 return err; 1331 } 1332 1333 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1334 struct file *file, unsigned open_flags, 1335 umode_t mode, int *opened) 1336 { 1337 struct nfs_open_context *ctx; 1338 struct dentry *res; 1339 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1340 struct inode *inode; 1341 int err; 1342 1343 /* Expect a negative dentry */ 1344 BUG_ON(dentry->d_inode); 1345 1346 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n", 1347 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1348 1349 /* NFS only supports OPEN on regular files */ 1350 if ((open_flags & O_DIRECTORY)) { 1351 if (!d_unhashed(dentry)) { 1352 /* 1353 * Hashed negative dentry with O_DIRECTORY: dentry was 1354 * revalidated and is fine, no need to perform lookup 1355 * again 1356 */ 1357 return -ENOENT; 1358 } 1359 goto no_open; 1360 } 1361 1362 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1363 return -ENAMETOOLONG; 1364 1365 if (open_flags & O_CREAT) { 1366 attr.ia_valid |= ATTR_MODE; 1367 attr.ia_mode = mode & ~current_umask(); 1368 } 1369 if (open_flags & O_TRUNC) { 1370 attr.ia_valid |= ATTR_SIZE; 1371 attr.ia_size = 0; 1372 } 1373 1374 ctx = create_nfs_open_context(dentry, open_flags); 1375 err = PTR_ERR(ctx); 1376 if (IS_ERR(ctx)) 1377 goto out; 1378 1379 nfs_block_sillyrename(dentry->d_parent); 1380 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1381 d_drop(dentry); 1382 if (IS_ERR(inode)) { 1383 nfs_unblock_sillyrename(dentry->d_parent); 1384 put_nfs_open_context(ctx); 1385 err = PTR_ERR(inode); 1386 switch (err) { 1387 case -ENOENT: 1388 d_add(dentry, NULL); 1389 break; 1390 case -EISDIR: 1391 case -ENOTDIR: 1392 goto no_open; 1393 case -ELOOP: 1394 if (!(open_flags & O_NOFOLLOW)) 1395 goto no_open; 1396 break; 1397 /* case -EINVAL: */ 1398 default: 1399 break; 1400 } 1401 goto out; 1402 } 1403 res = d_add_unique(dentry, inode); 1404 if (res != NULL) 1405 dentry = res; 1406 1407 nfs_unblock_sillyrename(dentry->d_parent); 1408 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1409 1410 err = nfs_finish_open(ctx, dentry, file, open_flags, opened); 1411 1412 dput(res); 1413 out: 1414 return err; 1415 1416 no_open: 1417 res = nfs_lookup(dir, dentry, 0); 1418 err = PTR_ERR(res); 1419 if (IS_ERR(res)) 1420 goto out; 1421 1422 return finish_no_open(file, res); 1423 } 1424 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1425 1426 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1427 { 1428 struct dentry *parent = NULL; 1429 struct inode *inode; 1430 struct inode *dir; 1431 int ret = 0; 1432 1433 if (flags & LOOKUP_RCU) 1434 return -ECHILD; 1435 1436 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1437 goto no_open; 1438 if (d_mountpoint(dentry)) 1439 goto no_open; 1440 1441 inode = dentry->d_inode; 1442 parent = dget_parent(dentry); 1443 dir = parent->d_inode; 1444 1445 /* We can't create new files in nfs_open_revalidate(), so we 1446 * optimize away revalidation of negative dentries. 1447 */ 1448 if (inode == NULL) { 1449 if (!nfs_neg_need_reval(dir, dentry, flags)) 1450 ret = 1; 1451 goto out; 1452 } 1453 1454 /* NFS only supports OPEN on regular files */ 1455 if (!S_ISREG(inode->i_mode)) 1456 goto no_open_dput; 1457 /* We cannot do exclusive creation on a positive dentry */ 1458 if (flags & LOOKUP_EXCL) 1459 goto no_open_dput; 1460 1461 /* Let f_op->open() actually open (and revalidate) the file */ 1462 ret = 1; 1463 1464 out: 1465 dput(parent); 1466 return ret; 1467 1468 no_open_dput: 1469 dput(parent); 1470 no_open: 1471 return nfs_lookup_revalidate(dentry, flags); 1472 } 1473 1474 #endif /* CONFIG_NFSV4 */ 1475 1476 /* 1477 * Code common to create, mkdir, and mknod. 1478 */ 1479 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1480 struct nfs_fattr *fattr) 1481 { 1482 struct dentry *parent = dget_parent(dentry); 1483 struct inode *dir = parent->d_inode; 1484 struct inode *inode; 1485 int error = -EACCES; 1486 1487 d_drop(dentry); 1488 1489 /* We may have been initialized further down */ 1490 if (dentry->d_inode) 1491 goto out; 1492 if (fhandle->size == 0) { 1493 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1494 if (error) 1495 goto out_error; 1496 } 1497 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1498 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1499 struct nfs_server *server = NFS_SB(dentry->d_sb); 1500 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1501 if (error < 0) 1502 goto out_error; 1503 } 1504 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1505 error = PTR_ERR(inode); 1506 if (IS_ERR(inode)) 1507 goto out_error; 1508 d_add(dentry, inode); 1509 out: 1510 dput(parent); 1511 return 0; 1512 out_error: 1513 nfs_mark_for_revalidate(dir); 1514 dput(parent); 1515 return error; 1516 } 1517 EXPORT_SYMBOL_GPL(nfs_instantiate); 1518 1519 /* 1520 * Following a failed create operation, we drop the dentry rather 1521 * than retain a negative dentry. This avoids a problem in the event 1522 * that the operation succeeded on the server, but an error in the 1523 * reply path made it appear to have failed. 1524 */ 1525 int nfs_create(struct inode *dir, struct dentry *dentry, 1526 umode_t mode, bool excl) 1527 { 1528 struct iattr attr; 1529 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1530 int error; 1531 1532 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1533 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1534 1535 attr.ia_mode = mode; 1536 attr.ia_valid = ATTR_MODE; 1537 1538 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1539 if (error != 0) 1540 goto out_err; 1541 return 0; 1542 out_err: 1543 d_drop(dentry); 1544 return error; 1545 } 1546 EXPORT_SYMBOL_GPL(nfs_create); 1547 1548 /* 1549 * See comments for nfs_proc_create regarding failed operations. 1550 */ 1551 int 1552 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1553 { 1554 struct iattr attr; 1555 int status; 1556 1557 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1558 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1559 1560 if (!new_valid_dev(rdev)) 1561 return -EINVAL; 1562 1563 attr.ia_mode = mode; 1564 attr.ia_valid = ATTR_MODE; 1565 1566 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1567 if (status != 0) 1568 goto out_err; 1569 return 0; 1570 out_err: 1571 d_drop(dentry); 1572 return status; 1573 } 1574 EXPORT_SYMBOL_GPL(nfs_mknod); 1575 1576 /* 1577 * See comments for nfs_proc_create regarding failed operations. 1578 */ 1579 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1580 { 1581 struct iattr attr; 1582 int error; 1583 1584 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1585 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1586 1587 attr.ia_valid = ATTR_MODE; 1588 attr.ia_mode = mode | S_IFDIR; 1589 1590 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1591 if (error != 0) 1592 goto out_err; 1593 return 0; 1594 out_err: 1595 d_drop(dentry); 1596 return error; 1597 } 1598 EXPORT_SYMBOL_GPL(nfs_mkdir); 1599 1600 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1601 { 1602 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1603 d_delete(dentry); 1604 } 1605 1606 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1607 { 1608 int error; 1609 1610 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1611 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1612 1613 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1614 /* Ensure the VFS deletes this inode */ 1615 if (error == 0 && dentry->d_inode != NULL) 1616 clear_nlink(dentry->d_inode); 1617 else if (error == -ENOENT) 1618 nfs_dentry_handle_enoent(dentry); 1619 1620 return error; 1621 } 1622 EXPORT_SYMBOL_GPL(nfs_rmdir); 1623 1624 /* 1625 * Remove a file after making sure there are no pending writes, 1626 * and after checking that the file has only one user. 1627 * 1628 * We invalidate the attribute cache and free the inode prior to the operation 1629 * to avoid possible races if the server reuses the inode. 1630 */ 1631 static int nfs_safe_remove(struct dentry *dentry) 1632 { 1633 struct inode *dir = dentry->d_parent->d_inode; 1634 struct inode *inode = dentry->d_inode; 1635 int error = -EBUSY; 1636 1637 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1638 dentry->d_parent->d_name.name, dentry->d_name.name); 1639 1640 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1641 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1642 error = 0; 1643 goto out; 1644 } 1645 1646 if (inode != NULL) { 1647 NFS_PROTO(inode)->return_delegation(inode); 1648 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1649 /* The VFS may want to delete this inode */ 1650 if (error == 0) 1651 nfs_drop_nlink(inode); 1652 nfs_mark_for_revalidate(inode); 1653 } else 1654 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1655 if (error == -ENOENT) 1656 nfs_dentry_handle_enoent(dentry); 1657 out: 1658 return error; 1659 } 1660 1661 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1662 * belongs to an active ".nfs..." file and we return -EBUSY. 1663 * 1664 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1665 */ 1666 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1667 { 1668 int error; 1669 int need_rehash = 0; 1670 1671 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1672 dir->i_ino, dentry->d_name.name); 1673 1674 spin_lock(&dentry->d_lock); 1675 if (dentry->d_count > 1) { 1676 spin_unlock(&dentry->d_lock); 1677 /* Start asynchronous writeout of the inode */ 1678 write_inode_now(dentry->d_inode, 0); 1679 error = nfs_sillyrename(dir, dentry); 1680 return error; 1681 } 1682 if (!d_unhashed(dentry)) { 1683 __d_drop(dentry); 1684 need_rehash = 1; 1685 } 1686 spin_unlock(&dentry->d_lock); 1687 error = nfs_safe_remove(dentry); 1688 if (!error || error == -ENOENT) { 1689 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1690 } else if (need_rehash) 1691 d_rehash(dentry); 1692 return error; 1693 } 1694 EXPORT_SYMBOL_GPL(nfs_unlink); 1695 1696 /* 1697 * To create a symbolic link, most file systems instantiate a new inode, 1698 * add a page to it containing the path, then write it out to the disk 1699 * using prepare_write/commit_write. 1700 * 1701 * Unfortunately the NFS client can't create the in-core inode first 1702 * because it needs a file handle to create an in-core inode (see 1703 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1704 * symlink request has completed on the server. 1705 * 1706 * So instead we allocate a raw page, copy the symname into it, then do 1707 * the SYMLINK request with the page as the buffer. If it succeeds, we 1708 * now have a new file handle and can instantiate an in-core NFS inode 1709 * and move the raw page into its mapping. 1710 */ 1711 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1712 { 1713 struct pagevec lru_pvec; 1714 struct page *page; 1715 char *kaddr; 1716 struct iattr attr; 1717 unsigned int pathlen = strlen(symname); 1718 int error; 1719 1720 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1721 dir->i_ino, dentry->d_name.name, symname); 1722 1723 if (pathlen > PAGE_SIZE) 1724 return -ENAMETOOLONG; 1725 1726 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1727 attr.ia_valid = ATTR_MODE; 1728 1729 page = alloc_page(GFP_HIGHUSER); 1730 if (!page) 1731 return -ENOMEM; 1732 1733 kaddr = kmap_atomic(page); 1734 memcpy(kaddr, symname, pathlen); 1735 if (pathlen < PAGE_SIZE) 1736 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1737 kunmap_atomic(kaddr); 1738 1739 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1740 if (error != 0) { 1741 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1742 dir->i_sb->s_id, dir->i_ino, 1743 dentry->d_name.name, symname, error); 1744 d_drop(dentry); 1745 __free_page(page); 1746 return error; 1747 } 1748 1749 /* 1750 * No big deal if we can't add this page to the page cache here. 1751 * READLINK will get the missing page from the server if needed. 1752 */ 1753 pagevec_init(&lru_pvec, 0); 1754 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1755 GFP_KERNEL)) { 1756 pagevec_add(&lru_pvec, page); 1757 pagevec_lru_add_file(&lru_pvec); 1758 SetPageUptodate(page); 1759 unlock_page(page); 1760 } else 1761 __free_page(page); 1762 1763 return 0; 1764 } 1765 EXPORT_SYMBOL_GPL(nfs_symlink); 1766 1767 int 1768 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1769 { 1770 struct inode *inode = old_dentry->d_inode; 1771 int error; 1772 1773 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1774 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1775 dentry->d_parent->d_name.name, dentry->d_name.name); 1776 1777 NFS_PROTO(inode)->return_delegation(inode); 1778 1779 d_drop(dentry); 1780 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1781 if (error == 0) { 1782 ihold(inode); 1783 d_add(dentry, inode); 1784 } 1785 return error; 1786 } 1787 EXPORT_SYMBOL_GPL(nfs_link); 1788 1789 /* 1790 * RENAME 1791 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1792 * different file handle for the same inode after a rename (e.g. when 1793 * moving to a different directory). A fail-safe method to do so would 1794 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1795 * rename the old file using the sillyrename stuff. This way, the original 1796 * file in old_dir will go away when the last process iput()s the inode. 1797 * 1798 * FIXED. 1799 * 1800 * It actually works quite well. One needs to have the possibility for 1801 * at least one ".nfs..." file in each directory the file ever gets 1802 * moved or linked to which happens automagically with the new 1803 * implementation that only depends on the dcache stuff instead of 1804 * using the inode layer 1805 * 1806 * Unfortunately, things are a little more complicated than indicated 1807 * above. For a cross-directory move, we want to make sure we can get 1808 * rid of the old inode after the operation. This means there must be 1809 * no pending writes (if it's a file), and the use count must be 1. 1810 * If these conditions are met, we can drop the dentries before doing 1811 * the rename. 1812 */ 1813 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1814 struct inode *new_dir, struct dentry *new_dentry) 1815 { 1816 struct inode *old_inode = old_dentry->d_inode; 1817 struct inode *new_inode = new_dentry->d_inode; 1818 struct dentry *dentry = NULL, *rehash = NULL; 1819 int error = -EBUSY; 1820 1821 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1822 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1823 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1824 new_dentry->d_count); 1825 1826 /* 1827 * For non-directories, check whether the target is busy and if so, 1828 * make a copy of the dentry and then do a silly-rename. If the 1829 * silly-rename succeeds, the copied dentry is hashed and becomes 1830 * the new target. 1831 */ 1832 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1833 /* 1834 * To prevent any new references to the target during the 1835 * rename, we unhash the dentry in advance. 1836 */ 1837 if (!d_unhashed(new_dentry)) { 1838 d_drop(new_dentry); 1839 rehash = new_dentry; 1840 } 1841 1842 if (new_dentry->d_count > 2) { 1843 int err; 1844 1845 /* copy the target dentry's name */ 1846 dentry = d_alloc(new_dentry->d_parent, 1847 &new_dentry->d_name); 1848 if (!dentry) 1849 goto out; 1850 1851 /* silly-rename the existing target ... */ 1852 err = nfs_sillyrename(new_dir, new_dentry); 1853 if (err) 1854 goto out; 1855 1856 new_dentry = dentry; 1857 rehash = NULL; 1858 new_inode = NULL; 1859 } 1860 } 1861 1862 NFS_PROTO(old_inode)->return_delegation(old_inode); 1863 if (new_inode != NULL) 1864 NFS_PROTO(new_inode)->return_delegation(new_inode); 1865 1866 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1867 new_dir, &new_dentry->d_name); 1868 nfs_mark_for_revalidate(old_inode); 1869 out: 1870 if (rehash) 1871 d_rehash(rehash); 1872 if (!error) { 1873 if (new_inode != NULL) 1874 nfs_drop_nlink(new_inode); 1875 d_move(old_dentry, new_dentry); 1876 nfs_set_verifier(new_dentry, 1877 nfs_save_change_attribute(new_dir)); 1878 } else if (error == -ENOENT) 1879 nfs_dentry_handle_enoent(old_dentry); 1880 1881 /* new dentry created? */ 1882 if (dentry) 1883 dput(dentry); 1884 return error; 1885 } 1886 EXPORT_SYMBOL_GPL(nfs_rename); 1887 1888 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1889 static LIST_HEAD(nfs_access_lru_list); 1890 static atomic_long_t nfs_access_nr_entries; 1891 1892 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1893 { 1894 put_rpccred(entry->cred); 1895 kfree(entry); 1896 smp_mb__before_atomic_dec(); 1897 atomic_long_dec(&nfs_access_nr_entries); 1898 smp_mb__after_atomic_dec(); 1899 } 1900 1901 static void nfs_access_free_list(struct list_head *head) 1902 { 1903 struct nfs_access_entry *cache; 1904 1905 while (!list_empty(head)) { 1906 cache = list_entry(head->next, struct nfs_access_entry, lru); 1907 list_del(&cache->lru); 1908 nfs_access_free_entry(cache); 1909 } 1910 } 1911 1912 int nfs_access_cache_shrinker(struct shrinker *shrink, 1913 struct shrink_control *sc) 1914 { 1915 LIST_HEAD(head); 1916 struct nfs_inode *nfsi, *next; 1917 struct nfs_access_entry *cache; 1918 int nr_to_scan = sc->nr_to_scan; 1919 gfp_t gfp_mask = sc->gfp_mask; 1920 1921 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 1922 return (nr_to_scan == 0) ? 0 : -1; 1923 1924 spin_lock(&nfs_access_lru_lock); 1925 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 1926 struct inode *inode; 1927 1928 if (nr_to_scan-- == 0) 1929 break; 1930 inode = &nfsi->vfs_inode; 1931 spin_lock(&inode->i_lock); 1932 if (list_empty(&nfsi->access_cache_entry_lru)) 1933 goto remove_lru_entry; 1934 cache = list_entry(nfsi->access_cache_entry_lru.next, 1935 struct nfs_access_entry, lru); 1936 list_move(&cache->lru, &head); 1937 rb_erase(&cache->rb_node, &nfsi->access_cache); 1938 if (!list_empty(&nfsi->access_cache_entry_lru)) 1939 list_move_tail(&nfsi->access_cache_inode_lru, 1940 &nfs_access_lru_list); 1941 else { 1942 remove_lru_entry: 1943 list_del_init(&nfsi->access_cache_inode_lru); 1944 smp_mb__before_clear_bit(); 1945 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1946 smp_mb__after_clear_bit(); 1947 } 1948 spin_unlock(&inode->i_lock); 1949 } 1950 spin_unlock(&nfs_access_lru_lock); 1951 nfs_access_free_list(&head); 1952 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1953 } 1954 1955 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 1956 { 1957 struct rb_root *root_node = &nfsi->access_cache; 1958 struct rb_node *n; 1959 struct nfs_access_entry *entry; 1960 1961 /* Unhook entries from the cache */ 1962 while ((n = rb_first(root_node)) != NULL) { 1963 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1964 rb_erase(n, root_node); 1965 list_move(&entry->lru, head); 1966 } 1967 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1968 } 1969 1970 void nfs_access_zap_cache(struct inode *inode) 1971 { 1972 LIST_HEAD(head); 1973 1974 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 1975 return; 1976 /* Remove from global LRU init */ 1977 spin_lock(&nfs_access_lru_lock); 1978 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 1979 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1980 1981 spin_lock(&inode->i_lock); 1982 __nfs_access_zap_cache(NFS_I(inode), &head); 1983 spin_unlock(&inode->i_lock); 1984 spin_unlock(&nfs_access_lru_lock); 1985 nfs_access_free_list(&head); 1986 } 1987 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 1988 1989 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1990 { 1991 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1992 struct nfs_access_entry *entry; 1993 1994 while (n != NULL) { 1995 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1996 1997 if (cred < entry->cred) 1998 n = n->rb_left; 1999 else if (cred > entry->cred) 2000 n = n->rb_right; 2001 else 2002 return entry; 2003 } 2004 return NULL; 2005 } 2006 2007 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2008 { 2009 struct nfs_inode *nfsi = NFS_I(inode); 2010 struct nfs_access_entry *cache; 2011 int err = -ENOENT; 2012 2013 spin_lock(&inode->i_lock); 2014 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2015 goto out_zap; 2016 cache = nfs_access_search_rbtree(inode, cred); 2017 if (cache == NULL) 2018 goto out; 2019 if (!nfs_have_delegated_attributes(inode) && 2020 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2021 goto out_stale; 2022 res->jiffies = cache->jiffies; 2023 res->cred = cache->cred; 2024 res->mask = cache->mask; 2025 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2026 err = 0; 2027 out: 2028 spin_unlock(&inode->i_lock); 2029 return err; 2030 out_stale: 2031 rb_erase(&cache->rb_node, &nfsi->access_cache); 2032 list_del(&cache->lru); 2033 spin_unlock(&inode->i_lock); 2034 nfs_access_free_entry(cache); 2035 return -ENOENT; 2036 out_zap: 2037 spin_unlock(&inode->i_lock); 2038 nfs_access_zap_cache(inode); 2039 return -ENOENT; 2040 } 2041 2042 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2043 { 2044 struct nfs_inode *nfsi = NFS_I(inode); 2045 struct rb_root *root_node = &nfsi->access_cache; 2046 struct rb_node **p = &root_node->rb_node; 2047 struct rb_node *parent = NULL; 2048 struct nfs_access_entry *entry; 2049 2050 spin_lock(&inode->i_lock); 2051 while (*p != NULL) { 2052 parent = *p; 2053 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2054 2055 if (set->cred < entry->cred) 2056 p = &parent->rb_left; 2057 else if (set->cred > entry->cred) 2058 p = &parent->rb_right; 2059 else 2060 goto found; 2061 } 2062 rb_link_node(&set->rb_node, parent, p); 2063 rb_insert_color(&set->rb_node, root_node); 2064 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2065 spin_unlock(&inode->i_lock); 2066 return; 2067 found: 2068 rb_replace_node(parent, &set->rb_node, root_node); 2069 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2070 list_del(&entry->lru); 2071 spin_unlock(&inode->i_lock); 2072 nfs_access_free_entry(entry); 2073 } 2074 2075 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2076 { 2077 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2078 if (cache == NULL) 2079 return; 2080 RB_CLEAR_NODE(&cache->rb_node); 2081 cache->jiffies = set->jiffies; 2082 cache->cred = get_rpccred(set->cred); 2083 cache->mask = set->mask; 2084 2085 nfs_access_add_rbtree(inode, cache); 2086 2087 /* Update accounting */ 2088 smp_mb__before_atomic_inc(); 2089 atomic_long_inc(&nfs_access_nr_entries); 2090 smp_mb__after_atomic_inc(); 2091 2092 /* Add inode to global LRU list */ 2093 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2094 spin_lock(&nfs_access_lru_lock); 2095 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2096 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2097 &nfs_access_lru_list); 2098 spin_unlock(&nfs_access_lru_lock); 2099 } 2100 } 2101 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2102 2103 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2104 { 2105 entry->mask = 0; 2106 if (access_result & NFS4_ACCESS_READ) 2107 entry->mask |= MAY_READ; 2108 if (access_result & 2109 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2110 entry->mask |= MAY_WRITE; 2111 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2112 entry->mask |= MAY_EXEC; 2113 } 2114 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2115 2116 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2117 { 2118 struct nfs_access_entry cache; 2119 int status; 2120 2121 status = nfs_access_get_cached(inode, cred, &cache); 2122 if (status == 0) 2123 goto out; 2124 2125 /* Be clever: ask server to check for all possible rights */ 2126 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2127 cache.cred = cred; 2128 cache.jiffies = jiffies; 2129 status = NFS_PROTO(inode)->access(inode, &cache); 2130 if (status != 0) { 2131 if (status == -ESTALE) { 2132 nfs_zap_caches(inode); 2133 if (!S_ISDIR(inode->i_mode)) 2134 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2135 } 2136 return status; 2137 } 2138 nfs_access_add_cache(inode, &cache); 2139 out: 2140 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2141 return 0; 2142 return -EACCES; 2143 } 2144 2145 static int nfs_open_permission_mask(int openflags) 2146 { 2147 int mask = 0; 2148 2149 if ((openflags & O_ACCMODE) != O_WRONLY) 2150 mask |= MAY_READ; 2151 if ((openflags & O_ACCMODE) != O_RDONLY) 2152 mask |= MAY_WRITE; 2153 if (openflags & __FMODE_EXEC) 2154 mask |= MAY_EXEC; 2155 return mask; 2156 } 2157 2158 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2159 { 2160 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2161 } 2162 EXPORT_SYMBOL_GPL(nfs_may_open); 2163 2164 int nfs_permission(struct inode *inode, int mask) 2165 { 2166 struct rpc_cred *cred; 2167 int res = 0; 2168 2169 if (mask & MAY_NOT_BLOCK) 2170 return -ECHILD; 2171 2172 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2173 2174 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2175 goto out; 2176 /* Is this sys_access() ? */ 2177 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2178 goto force_lookup; 2179 2180 switch (inode->i_mode & S_IFMT) { 2181 case S_IFLNK: 2182 goto out; 2183 case S_IFREG: 2184 /* NFSv4 has atomic_open... */ 2185 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2186 && (mask & MAY_OPEN) 2187 && !(mask & MAY_EXEC)) 2188 goto out; 2189 break; 2190 case S_IFDIR: 2191 /* 2192 * Optimize away all write operations, since the server 2193 * will check permissions when we perform the op. 2194 */ 2195 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2196 goto out; 2197 } 2198 2199 force_lookup: 2200 if (!NFS_PROTO(inode)->access) 2201 goto out_notsup; 2202 2203 cred = rpc_lookup_cred(); 2204 if (!IS_ERR(cred)) { 2205 res = nfs_do_access(inode, cred, mask); 2206 put_rpccred(cred); 2207 } else 2208 res = PTR_ERR(cred); 2209 out: 2210 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2211 res = -EACCES; 2212 2213 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2214 inode->i_sb->s_id, inode->i_ino, mask, res); 2215 return res; 2216 out_notsup: 2217 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2218 if (res == 0) 2219 res = generic_permission(inode, mask); 2220 goto out; 2221 } 2222 EXPORT_SYMBOL_GPL(nfs_permission); 2223 2224 /* 2225 * Local variables: 2226 * version-control: t 2227 * kept-new-versions: 5 2228 * End: 2229 */ 2230