1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 122 /* This is a mountpoint, so d_revalidate will never 123 * have been called, so we need to refresh the 124 * inode (for close-open consistency) ourselves. 125 */ 126 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 127 } 128 out: 129 put_rpccred(cred); 130 return res; 131 } 132 133 static int 134 nfs_closedir(struct inode *inode, struct file *filp) 135 { 136 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 137 return 0; 138 } 139 140 struct nfs_cache_array_entry { 141 u64 cookie; 142 u64 ino; 143 struct qstr string; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 int size; 149 int eof_index; 150 u64 last_cookie; 151 struct nfs_cache_array_entry array[0]; 152 }; 153 154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 155 typedef struct { 156 struct file *file; 157 struct page *page; 158 struct dir_context *ctx; 159 unsigned long page_index; 160 u64 *dir_cookie; 161 u64 last_cookie; 162 loff_t current_index; 163 decode_dirent_t decode; 164 165 unsigned long timestamp; 166 unsigned long gencount; 167 unsigned int cache_entry_index; 168 unsigned int plus:1; 169 unsigned int eof:1; 170 } nfs_readdir_descriptor_t; 171 172 /* 173 * The caller is responsible for calling nfs_readdir_release_array(page) 174 */ 175 static 176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 177 { 178 void *ptr; 179 if (page == NULL) 180 return ERR_PTR(-EIO); 181 ptr = kmap(page); 182 if (ptr == NULL) 183 return ERR_PTR(-ENOMEM); 184 return ptr; 185 } 186 187 static 188 void nfs_readdir_release_array(struct page *page) 189 { 190 kunmap(page); 191 } 192 193 /* 194 * we are freeing strings created by nfs_add_to_readdir_array() 195 */ 196 static 197 void nfs_readdir_clear_array(struct page *page) 198 { 199 struct nfs_cache_array *array; 200 int i; 201 202 array = kmap_atomic(page); 203 for (i = 0; i < array->size; i++) 204 kfree(array->array[i].string.name); 205 kunmap_atomic(array); 206 } 207 208 /* 209 * the caller is responsible for freeing qstr.name 210 * when called by nfs_readdir_add_to_array, the strings will be freed in 211 * nfs_clear_readdir_array() 212 */ 213 static 214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 215 { 216 string->len = len; 217 string->name = kmemdup(name, len, GFP_KERNEL); 218 if (string->name == NULL) 219 return -ENOMEM; 220 /* 221 * Avoid a kmemleak false positive. The pointer to the name is stored 222 * in a page cache page which kmemleak does not scan. 223 */ 224 kmemleak_not_leak(string->name); 225 string->hash = full_name_hash(name, len); 226 return 0; 227 } 228 229 static 230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 231 { 232 struct nfs_cache_array *array = nfs_readdir_get_array(page); 233 struct nfs_cache_array_entry *cache_entry; 234 int ret; 235 236 if (IS_ERR(array)) 237 return PTR_ERR(array); 238 239 cache_entry = &array->array[array->size]; 240 241 /* Check that this entry lies within the page bounds */ 242 ret = -ENOSPC; 243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 244 goto out; 245 246 cache_entry->cookie = entry->prev_cookie; 247 cache_entry->ino = entry->ino; 248 cache_entry->d_type = entry->d_type; 249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 250 if (ret) 251 goto out; 252 array->last_cookie = entry->cookie; 253 array->size++; 254 if (entry->eof != 0) 255 array->eof_index = array->size; 256 out: 257 nfs_readdir_release_array(page); 258 return ret; 259 } 260 261 static 262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263 { 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279 out_eof: 280 desc->eof = 1; 281 return -EBADCOOKIE; 282 } 283 284 static bool 285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286 { 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291 } 292 293 static 294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295 { 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->ctx->pos) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 desc->ctx->pos = new_pos; 327 desc->cache_entry_index = i; 328 return 0; 329 } 330 } 331 if (array->eof_index >= 0) { 332 status = -EBADCOOKIE; 333 if (*desc->dir_cookie == array->last_cookie) 334 desc->eof = 1; 335 } 336 out: 337 return status; 338 } 339 340 static 341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 342 { 343 struct nfs_cache_array *array; 344 int status; 345 346 array = nfs_readdir_get_array(desc->page); 347 if (IS_ERR(array)) { 348 status = PTR_ERR(array); 349 goto out; 350 } 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 nfs_readdir_release_array(desc->page); 363 out: 364 return status; 365 } 366 367 /* Fill a page with xdr information before transferring to the cache page */ 368 static 369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 370 struct nfs_entry *entry, struct file *file, struct inode *inode) 371 { 372 struct nfs_open_dir_context *ctx = file->private_data; 373 struct rpc_cred *cred = ctx->cred; 374 unsigned long timestamp, gencount; 375 int error; 376 377 again: 378 timestamp = jiffies; 379 gencount = nfs_inc_attr_generation_counter(); 380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = 0; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394 error: 395 return error; 396 } 397 398 static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400 { 401 int error; 402 403 error = desc->decode(xdr, entry, desc->plus); 404 if (error) 405 return error; 406 entry->fattr->time_start = desc->timestamp; 407 entry->fattr->gencount = desc->gencount; 408 return 0; 409 } 410 411 /* Match file and dirent using either filehandle or fileid 412 * Note: caller is responsible for checking the fsid 413 */ 414 static 415 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 416 { 417 struct nfs_inode *nfsi; 418 419 if (d_really_is_negative(dentry)) 420 return 0; 421 422 nfsi = NFS_I(d_inode(dentry)); 423 if (entry->fattr->fileid == nfsi->fileid) 424 return 1; 425 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0) 426 return 1; 427 return 0; 428 } 429 430 static 431 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 432 { 433 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 434 return false; 435 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 436 return true; 437 if (ctx->pos == 0) 438 return true; 439 return false; 440 } 441 442 /* 443 * This function is called by the lookup code to request the use of 444 * readdirplus to accelerate any future lookups in the same 445 * directory. 446 */ 447 static 448 void nfs_advise_use_readdirplus(struct inode *dir) 449 { 450 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 451 } 452 453 /* 454 * This function is mainly for use by nfs_getattr(). 455 * 456 * If this is an 'ls -l', we want to force use of readdirplus. 457 * Do this by checking if there is an active file descriptor 458 * and calling nfs_advise_use_readdirplus, then forcing a 459 * cache flush. 460 */ 461 void nfs_force_use_readdirplus(struct inode *dir) 462 { 463 if (!list_empty(&NFS_I(dir)->open_files)) { 464 nfs_advise_use_readdirplus(dir); 465 nfs_zap_mapping(dir, dir->i_mapping); 466 } 467 } 468 469 static 470 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 471 { 472 struct qstr filename = QSTR_INIT(entry->name, entry->len); 473 struct dentry *dentry; 474 struct dentry *alias; 475 struct inode *dir = d_inode(parent); 476 struct inode *inode; 477 int status; 478 479 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 480 return; 481 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 482 return; 483 if (filename.name[0] == '.') { 484 if (filename.len == 1) 485 return; 486 if (filename.len == 2 && filename.name[1] == '.') 487 return; 488 } 489 filename.hash = full_name_hash(filename.name, filename.len); 490 491 dentry = d_lookup(parent, &filename); 492 if (dentry != NULL) { 493 /* Is there a mountpoint here? If so, just exit */ 494 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 495 &entry->fattr->fsid)) 496 goto out; 497 if (nfs_same_file(dentry, entry)) { 498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 499 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 500 if (!status) 501 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 502 goto out; 503 } else { 504 d_invalidate(dentry); 505 dput(dentry); 506 } 507 } 508 509 dentry = d_alloc(parent, &filename); 510 if (dentry == NULL) 511 return; 512 513 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 514 if (IS_ERR(inode)) 515 goto out; 516 517 alias = d_splice_alias(inode, dentry); 518 if (IS_ERR(alias)) 519 goto out; 520 else if (alias) { 521 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 522 dput(alias); 523 } else 524 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 525 526 out: 527 dput(dentry); 528 } 529 530 /* Perform conversion from xdr to cache array */ 531 static 532 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 533 struct page **xdr_pages, struct page *page, unsigned int buflen) 534 { 535 struct xdr_stream stream; 536 struct xdr_buf buf; 537 struct page *scratch; 538 struct nfs_cache_array *array; 539 unsigned int count = 0; 540 int status; 541 542 scratch = alloc_page(GFP_KERNEL); 543 if (scratch == NULL) 544 return -ENOMEM; 545 546 if (buflen == 0) 547 goto out_nopages; 548 549 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 550 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 551 552 do { 553 status = xdr_decode(desc, entry, &stream); 554 if (status != 0) { 555 if (status == -EAGAIN) 556 status = 0; 557 break; 558 } 559 560 count++; 561 562 if (desc->plus != 0) 563 nfs_prime_dcache(desc->file->f_path.dentry, entry); 564 565 status = nfs_readdir_add_to_array(entry, page); 566 if (status != 0) 567 break; 568 } while (!entry->eof); 569 570 out_nopages: 571 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 572 array = nfs_readdir_get_array(page); 573 if (!IS_ERR(array)) { 574 array->eof_index = array->size; 575 status = 0; 576 nfs_readdir_release_array(page); 577 } else 578 status = PTR_ERR(array); 579 } 580 581 put_page(scratch); 582 return status; 583 } 584 585 static 586 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 587 { 588 unsigned int i; 589 for (i = 0; i < npages; i++) 590 put_page(pages[i]); 591 } 592 593 static 594 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 595 unsigned int npages) 596 { 597 nfs_readdir_free_pagearray(pages, npages); 598 } 599 600 /* 601 * nfs_readdir_large_page will allocate pages that must be freed with a call 602 * to nfs_readdir_free_large_page 603 */ 604 static 605 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 606 { 607 unsigned int i; 608 609 for (i = 0; i < npages; i++) { 610 struct page *page = alloc_page(GFP_KERNEL); 611 if (page == NULL) 612 goto out_freepages; 613 pages[i] = page; 614 } 615 return 0; 616 617 out_freepages: 618 nfs_readdir_free_pagearray(pages, i); 619 return -ENOMEM; 620 } 621 622 static 623 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 624 { 625 struct page *pages[NFS_MAX_READDIR_PAGES]; 626 void *pages_ptr = NULL; 627 struct nfs_entry entry; 628 struct file *file = desc->file; 629 struct nfs_cache_array *array; 630 int status = -ENOMEM; 631 unsigned int array_size = ARRAY_SIZE(pages); 632 633 entry.prev_cookie = 0; 634 entry.cookie = desc->last_cookie; 635 entry.eof = 0; 636 entry.fh = nfs_alloc_fhandle(); 637 entry.fattr = nfs_alloc_fattr(); 638 entry.server = NFS_SERVER(inode); 639 if (entry.fh == NULL || entry.fattr == NULL) 640 goto out; 641 642 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 643 if (IS_ERR(entry.label)) { 644 status = PTR_ERR(entry.label); 645 goto out; 646 } 647 648 array = nfs_readdir_get_array(page); 649 if (IS_ERR(array)) { 650 status = PTR_ERR(array); 651 goto out_label_free; 652 } 653 memset(array, 0, sizeof(struct nfs_cache_array)); 654 array->eof_index = -1; 655 656 status = nfs_readdir_large_page(pages, array_size); 657 if (status < 0) 658 goto out_release_array; 659 do { 660 unsigned int pglen; 661 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 662 663 if (status < 0) 664 break; 665 pglen = status; 666 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 667 if (status < 0) { 668 if (status == -ENOSPC) 669 status = 0; 670 break; 671 } 672 } while (array->eof_index < 0); 673 674 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 675 out_release_array: 676 nfs_readdir_release_array(page); 677 out_label_free: 678 nfs4_label_free(entry.label); 679 out: 680 nfs_free_fattr(entry.fattr); 681 nfs_free_fhandle(entry.fh); 682 return status; 683 } 684 685 /* 686 * Now we cache directories properly, by converting xdr information 687 * to an array that can be used for lookups later. This results in 688 * fewer cache pages, since we can store more information on each page. 689 * We only need to convert from xdr once so future lookups are much simpler 690 */ 691 static 692 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 693 { 694 struct inode *inode = file_inode(desc->file); 695 int ret; 696 697 ret = nfs_readdir_xdr_to_array(desc, page, inode); 698 if (ret < 0) 699 goto error; 700 SetPageUptodate(page); 701 702 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 703 /* Should never happen */ 704 nfs_zap_mapping(inode, inode->i_mapping); 705 } 706 unlock_page(page); 707 return 0; 708 error: 709 unlock_page(page); 710 return ret; 711 } 712 713 static 714 void cache_page_release(nfs_readdir_descriptor_t *desc) 715 { 716 if (!desc->page->mapping) 717 nfs_readdir_clear_array(desc->page); 718 page_cache_release(desc->page); 719 desc->page = NULL; 720 } 721 722 static 723 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 724 { 725 return read_cache_page(file_inode(desc->file)->i_mapping, 726 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 727 } 728 729 /* 730 * Returns 0 if desc->dir_cookie was found on page desc->page_index 731 */ 732 static 733 int find_cache_page(nfs_readdir_descriptor_t *desc) 734 { 735 int res; 736 737 desc->page = get_cache_page(desc); 738 if (IS_ERR(desc->page)) 739 return PTR_ERR(desc->page); 740 741 res = nfs_readdir_search_array(desc); 742 if (res != 0) 743 cache_page_release(desc); 744 return res; 745 } 746 747 /* Search for desc->dir_cookie from the beginning of the page cache */ 748 static inline 749 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 750 { 751 int res; 752 753 if (desc->page_index == 0) { 754 desc->current_index = 0; 755 desc->last_cookie = 0; 756 } 757 do { 758 res = find_cache_page(desc); 759 } while (res == -EAGAIN); 760 return res; 761 } 762 763 /* 764 * Once we've found the start of the dirent within a page: fill 'er up... 765 */ 766 static 767 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 768 { 769 struct file *file = desc->file; 770 int i = 0; 771 int res = 0; 772 struct nfs_cache_array *array = NULL; 773 struct nfs_open_dir_context *ctx = file->private_data; 774 775 array = nfs_readdir_get_array(desc->page); 776 if (IS_ERR(array)) { 777 res = PTR_ERR(array); 778 goto out; 779 } 780 781 for (i = desc->cache_entry_index; i < array->size; i++) { 782 struct nfs_cache_array_entry *ent; 783 784 ent = &array->array[i]; 785 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 786 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 787 desc->eof = 1; 788 break; 789 } 790 desc->ctx->pos++; 791 if (i < (array->size-1)) 792 *desc->dir_cookie = array->array[i+1].cookie; 793 else 794 *desc->dir_cookie = array->last_cookie; 795 if (ctx->duped != 0) 796 ctx->duped = 1; 797 } 798 if (array->eof_index >= 0) 799 desc->eof = 1; 800 801 nfs_readdir_release_array(desc->page); 802 out: 803 cache_page_release(desc); 804 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 805 (unsigned long long)*desc->dir_cookie, res); 806 return res; 807 } 808 809 /* 810 * If we cannot find a cookie in our cache, we suspect that this is 811 * because it points to a deleted file, so we ask the server to return 812 * whatever it thinks is the next entry. We then feed this to filldir. 813 * If all goes well, we should then be able to find our way round the 814 * cache on the next call to readdir_search_pagecache(); 815 * 816 * NOTE: we cannot add the anonymous page to the pagecache because 817 * the data it contains might not be page aligned. Besides, 818 * we should already have a complete representation of the 819 * directory in the page cache by the time we get here. 820 */ 821 static inline 822 int uncached_readdir(nfs_readdir_descriptor_t *desc) 823 { 824 struct page *page = NULL; 825 int status; 826 struct inode *inode = file_inode(desc->file); 827 struct nfs_open_dir_context *ctx = desc->file->private_data; 828 829 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 830 (unsigned long long)*desc->dir_cookie); 831 832 page = alloc_page(GFP_HIGHUSER); 833 if (!page) { 834 status = -ENOMEM; 835 goto out; 836 } 837 838 desc->page_index = 0; 839 desc->last_cookie = *desc->dir_cookie; 840 desc->page = page; 841 ctx->duped = 0; 842 843 status = nfs_readdir_xdr_to_array(desc, page, inode); 844 if (status < 0) 845 goto out_release; 846 847 status = nfs_do_filldir(desc); 848 849 out: 850 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 851 __func__, status); 852 return status; 853 out_release: 854 cache_page_release(desc); 855 goto out; 856 } 857 858 static bool nfs_dir_mapping_need_revalidate(struct inode *dir) 859 { 860 struct nfs_inode *nfsi = NFS_I(dir); 861 862 if (nfs_attribute_cache_expired(dir)) 863 return true; 864 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 865 return true; 866 return false; 867 } 868 869 /* The file offset position represents the dirent entry number. A 870 last cookie cache takes care of the common case of reading the 871 whole directory. 872 */ 873 static int nfs_readdir(struct file *file, struct dir_context *ctx) 874 { 875 struct dentry *dentry = file->f_path.dentry; 876 struct inode *inode = d_inode(dentry); 877 nfs_readdir_descriptor_t my_desc, 878 *desc = &my_desc; 879 struct nfs_open_dir_context *dir_ctx = file->private_data; 880 int res = 0; 881 882 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 883 file, (long long)ctx->pos); 884 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 885 886 /* 887 * ctx->pos points to the dirent entry number. 888 * *desc->dir_cookie has the cookie for the next entry. We have 889 * to either find the entry with the appropriate number or 890 * revalidate the cookie. 891 */ 892 memset(desc, 0, sizeof(*desc)); 893 894 desc->file = file; 895 desc->ctx = ctx; 896 desc->dir_cookie = &dir_ctx->dir_cookie; 897 desc->decode = NFS_PROTO(inode)->decode_dirent; 898 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 899 900 nfs_block_sillyrename(dentry); 901 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode)) 902 res = nfs_revalidate_mapping(inode, file->f_mapping); 903 if (res < 0) 904 goto out; 905 906 do { 907 res = readdir_search_pagecache(desc); 908 909 if (res == -EBADCOOKIE) { 910 res = 0; 911 /* This means either end of directory */ 912 if (*desc->dir_cookie && desc->eof == 0) { 913 /* Or that the server has 'lost' a cookie */ 914 res = uncached_readdir(desc); 915 if (res == 0) 916 continue; 917 } 918 break; 919 } 920 if (res == -ETOOSMALL && desc->plus) { 921 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 922 nfs_zap_caches(inode); 923 desc->page_index = 0; 924 desc->plus = 0; 925 desc->eof = 0; 926 continue; 927 } 928 if (res < 0) 929 break; 930 931 res = nfs_do_filldir(desc); 932 if (res < 0) 933 break; 934 } while (!desc->eof); 935 out: 936 nfs_unblock_sillyrename(dentry); 937 if (res > 0) 938 res = 0; 939 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 940 return res; 941 } 942 943 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 944 { 945 struct inode *inode = file_inode(filp); 946 struct nfs_open_dir_context *dir_ctx = filp->private_data; 947 948 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 949 filp, offset, whence); 950 951 mutex_lock(&inode->i_mutex); 952 switch (whence) { 953 case 1: 954 offset += filp->f_pos; 955 case 0: 956 if (offset >= 0) 957 break; 958 default: 959 offset = -EINVAL; 960 goto out; 961 } 962 if (offset != filp->f_pos) { 963 filp->f_pos = offset; 964 dir_ctx->dir_cookie = 0; 965 dir_ctx->duped = 0; 966 } 967 out: 968 mutex_unlock(&inode->i_mutex); 969 return offset; 970 } 971 972 /* 973 * All directory operations under NFS are synchronous, so fsync() 974 * is a dummy operation. 975 */ 976 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 977 int datasync) 978 { 979 struct inode *inode = file_inode(filp); 980 981 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 982 983 mutex_lock(&inode->i_mutex); 984 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 985 mutex_unlock(&inode->i_mutex); 986 return 0; 987 } 988 989 /** 990 * nfs_force_lookup_revalidate - Mark the directory as having changed 991 * @dir - pointer to directory inode 992 * 993 * This forces the revalidation code in nfs_lookup_revalidate() to do a 994 * full lookup on all child dentries of 'dir' whenever a change occurs 995 * on the server that might have invalidated our dcache. 996 * 997 * The caller should be holding dir->i_lock 998 */ 999 void nfs_force_lookup_revalidate(struct inode *dir) 1000 { 1001 NFS_I(dir)->cache_change_attribute++; 1002 } 1003 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1004 1005 /* 1006 * A check for whether or not the parent directory has changed. 1007 * In the case it has, we assume that the dentries are untrustworthy 1008 * and may need to be looked up again. 1009 * If rcu_walk prevents us from performing a full check, return 0. 1010 */ 1011 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1012 int rcu_walk) 1013 { 1014 int ret; 1015 1016 if (IS_ROOT(dentry)) 1017 return 1; 1018 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1019 return 0; 1020 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1021 return 0; 1022 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1023 if (rcu_walk) 1024 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir); 1025 else 1026 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1027 if (ret < 0) 1028 return 0; 1029 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1030 return 0; 1031 return 1; 1032 } 1033 1034 /* 1035 * Use intent information to check whether or not we're going to do 1036 * an O_EXCL create using this path component. 1037 */ 1038 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1039 { 1040 if (NFS_PROTO(dir)->version == 2) 1041 return 0; 1042 return flags & LOOKUP_EXCL; 1043 } 1044 1045 /* 1046 * Inode and filehandle revalidation for lookups. 1047 * 1048 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1049 * or if the intent information indicates that we're about to open this 1050 * particular file and the "nocto" mount flag is not set. 1051 * 1052 */ 1053 static 1054 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1055 { 1056 struct nfs_server *server = NFS_SERVER(inode); 1057 int ret; 1058 1059 if (IS_AUTOMOUNT(inode)) 1060 return 0; 1061 /* VFS wants an on-the-wire revalidation */ 1062 if (flags & LOOKUP_REVAL) 1063 goto out_force; 1064 /* This is an open(2) */ 1065 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1066 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1067 goto out_force; 1068 out: 1069 return (inode->i_nlink == 0) ? -ENOENT : 0; 1070 out_force: 1071 if (flags & LOOKUP_RCU) 1072 return -ECHILD; 1073 ret = __nfs_revalidate_inode(server, inode); 1074 if (ret != 0) 1075 return ret; 1076 goto out; 1077 } 1078 1079 /* 1080 * We judge how long we want to trust negative 1081 * dentries by looking at the parent inode mtime. 1082 * 1083 * If parent mtime has changed, we revalidate, else we wait for a 1084 * period corresponding to the parent's attribute cache timeout value. 1085 * 1086 * If LOOKUP_RCU prevents us from performing a full check, return 1 1087 * suggesting a reval is needed. 1088 */ 1089 static inline 1090 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1091 unsigned int flags) 1092 { 1093 /* Don't revalidate a negative dentry if we're creating a new file */ 1094 if (flags & LOOKUP_CREATE) 1095 return 0; 1096 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1097 return 1; 1098 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1099 } 1100 1101 /* 1102 * This is called every time the dcache has a lookup hit, 1103 * and we should check whether we can really trust that 1104 * lookup. 1105 * 1106 * NOTE! The hit can be a negative hit too, don't assume 1107 * we have an inode! 1108 * 1109 * If the parent directory is seen to have changed, we throw out the 1110 * cached dentry and do a new lookup. 1111 */ 1112 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1113 { 1114 struct inode *dir; 1115 struct inode *inode; 1116 struct dentry *parent; 1117 struct nfs_fh *fhandle = NULL; 1118 struct nfs_fattr *fattr = NULL; 1119 struct nfs4_label *label = NULL; 1120 int error; 1121 1122 if (flags & LOOKUP_RCU) { 1123 parent = ACCESS_ONCE(dentry->d_parent); 1124 dir = d_inode_rcu(parent); 1125 if (!dir) 1126 return -ECHILD; 1127 } else { 1128 parent = dget_parent(dentry); 1129 dir = d_inode(parent); 1130 } 1131 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1132 inode = d_inode(dentry); 1133 1134 if (!inode) { 1135 if (nfs_neg_need_reval(dir, dentry, flags)) { 1136 if (flags & LOOKUP_RCU) 1137 return -ECHILD; 1138 goto out_bad; 1139 } 1140 goto out_valid_noent; 1141 } 1142 1143 if (is_bad_inode(inode)) { 1144 if (flags & LOOKUP_RCU) 1145 return -ECHILD; 1146 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1147 __func__, dentry); 1148 goto out_bad; 1149 } 1150 1151 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1152 goto out_set_verifier; 1153 1154 /* Force a full look up iff the parent directory has changed */ 1155 if (!nfs_is_exclusive_create(dir, flags) && 1156 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1157 1158 if (nfs_lookup_verify_inode(inode, flags)) { 1159 if (flags & LOOKUP_RCU) 1160 return -ECHILD; 1161 goto out_zap_parent; 1162 } 1163 goto out_valid; 1164 } 1165 1166 if (flags & LOOKUP_RCU) 1167 return -ECHILD; 1168 1169 if (NFS_STALE(inode)) 1170 goto out_bad; 1171 1172 error = -ENOMEM; 1173 fhandle = nfs_alloc_fhandle(); 1174 fattr = nfs_alloc_fattr(); 1175 if (fhandle == NULL || fattr == NULL) 1176 goto out_error; 1177 1178 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1179 if (IS_ERR(label)) 1180 goto out_error; 1181 1182 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1183 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1184 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1185 if (error) 1186 goto out_bad; 1187 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1188 goto out_bad; 1189 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1190 goto out_bad; 1191 1192 nfs_setsecurity(inode, fattr, label); 1193 1194 nfs_free_fattr(fattr); 1195 nfs_free_fhandle(fhandle); 1196 nfs4_label_free(label); 1197 1198 out_set_verifier: 1199 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1200 out_valid: 1201 /* Success: notify readdir to use READDIRPLUS */ 1202 nfs_advise_use_readdirplus(dir); 1203 out_valid_noent: 1204 if (flags & LOOKUP_RCU) { 1205 if (parent != ACCESS_ONCE(dentry->d_parent)) 1206 return -ECHILD; 1207 } else 1208 dput(parent); 1209 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1210 __func__, dentry); 1211 return 1; 1212 out_zap_parent: 1213 nfs_zap_caches(dir); 1214 out_bad: 1215 WARN_ON(flags & LOOKUP_RCU); 1216 nfs_free_fattr(fattr); 1217 nfs_free_fhandle(fhandle); 1218 nfs4_label_free(label); 1219 nfs_mark_for_revalidate(dir); 1220 if (inode && S_ISDIR(inode->i_mode)) { 1221 /* Purge readdir caches. */ 1222 nfs_zap_caches(inode); 1223 /* 1224 * We can't d_drop the root of a disconnected tree: 1225 * its d_hash is on the s_anon list and d_drop() would hide 1226 * it from shrink_dcache_for_unmount(), leading to busy 1227 * inodes on unmount and further oopses. 1228 */ 1229 if (IS_ROOT(dentry)) 1230 goto out_valid; 1231 } 1232 dput(parent); 1233 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1234 __func__, dentry); 1235 return 0; 1236 out_error: 1237 WARN_ON(flags & LOOKUP_RCU); 1238 nfs_free_fattr(fattr); 1239 nfs_free_fhandle(fhandle); 1240 nfs4_label_free(label); 1241 dput(parent); 1242 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1243 __func__, dentry, error); 1244 return error; 1245 } 1246 1247 /* 1248 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1249 * when we don't really care about the dentry name. This is called when a 1250 * pathwalk ends on a dentry that was not found via a normal lookup in the 1251 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1252 * 1253 * In this situation, we just want to verify that the inode itself is OK 1254 * since the dentry might have changed on the server. 1255 */ 1256 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1257 { 1258 int error; 1259 struct inode *inode = d_inode(dentry); 1260 1261 /* 1262 * I believe we can only get a negative dentry here in the case of a 1263 * procfs-style symlink. Just assume it's correct for now, but we may 1264 * eventually need to do something more here. 1265 */ 1266 if (!inode) { 1267 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1268 __func__, dentry); 1269 return 1; 1270 } 1271 1272 if (is_bad_inode(inode)) { 1273 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1274 __func__, dentry); 1275 return 0; 1276 } 1277 1278 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1279 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1280 __func__, inode->i_ino, error ? "invalid" : "valid"); 1281 return !error; 1282 } 1283 1284 /* 1285 * This is called from dput() when d_count is going to 0. 1286 */ 1287 static int nfs_dentry_delete(const struct dentry *dentry) 1288 { 1289 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1290 dentry, dentry->d_flags); 1291 1292 /* Unhash any dentry with a stale inode */ 1293 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1294 return 1; 1295 1296 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1297 /* Unhash it, so that ->d_iput() would be called */ 1298 return 1; 1299 } 1300 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1301 /* Unhash it, so that ancestors of killed async unlink 1302 * files will be cleaned up during umount */ 1303 return 1; 1304 } 1305 return 0; 1306 1307 } 1308 1309 /* Ensure that we revalidate inode->i_nlink */ 1310 static void nfs_drop_nlink(struct inode *inode) 1311 { 1312 spin_lock(&inode->i_lock); 1313 /* drop the inode if we're reasonably sure this is the last link */ 1314 if (inode->i_nlink == 1) 1315 clear_nlink(inode); 1316 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1317 spin_unlock(&inode->i_lock); 1318 } 1319 1320 /* 1321 * Called when the dentry loses inode. 1322 * We use it to clean up silly-renamed files. 1323 */ 1324 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1325 { 1326 if (S_ISDIR(inode->i_mode)) 1327 /* drop any readdir cache as it could easily be old */ 1328 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1329 1330 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1331 nfs_complete_unlink(dentry, inode); 1332 nfs_drop_nlink(inode); 1333 } 1334 iput(inode); 1335 } 1336 1337 static void nfs_d_release(struct dentry *dentry) 1338 { 1339 /* free cached devname value, if it survived that far */ 1340 if (unlikely(dentry->d_fsdata)) { 1341 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1342 WARN_ON(1); 1343 else 1344 kfree(dentry->d_fsdata); 1345 } 1346 } 1347 1348 const struct dentry_operations nfs_dentry_operations = { 1349 .d_revalidate = nfs_lookup_revalidate, 1350 .d_weak_revalidate = nfs_weak_revalidate, 1351 .d_delete = nfs_dentry_delete, 1352 .d_iput = nfs_dentry_iput, 1353 .d_automount = nfs_d_automount, 1354 .d_release = nfs_d_release, 1355 }; 1356 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1357 1358 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1359 { 1360 struct dentry *res; 1361 struct dentry *parent; 1362 struct inode *inode = NULL; 1363 struct nfs_fh *fhandle = NULL; 1364 struct nfs_fattr *fattr = NULL; 1365 struct nfs4_label *label = NULL; 1366 int error; 1367 1368 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1369 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1370 1371 res = ERR_PTR(-ENAMETOOLONG); 1372 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1373 goto out; 1374 1375 /* 1376 * If we're doing an exclusive create, optimize away the lookup 1377 * but don't hash the dentry. 1378 */ 1379 if (nfs_is_exclusive_create(dir, flags)) { 1380 d_instantiate(dentry, NULL); 1381 res = NULL; 1382 goto out; 1383 } 1384 1385 res = ERR_PTR(-ENOMEM); 1386 fhandle = nfs_alloc_fhandle(); 1387 fattr = nfs_alloc_fattr(); 1388 if (fhandle == NULL || fattr == NULL) 1389 goto out; 1390 1391 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1392 if (IS_ERR(label)) 1393 goto out; 1394 1395 parent = dentry->d_parent; 1396 /* Protect against concurrent sillydeletes */ 1397 trace_nfs_lookup_enter(dir, dentry, flags); 1398 nfs_block_sillyrename(parent); 1399 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1400 if (error == -ENOENT) 1401 goto no_entry; 1402 if (error < 0) { 1403 res = ERR_PTR(error); 1404 goto out_unblock_sillyrename; 1405 } 1406 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1407 res = ERR_CAST(inode); 1408 if (IS_ERR(res)) 1409 goto out_unblock_sillyrename; 1410 1411 /* Success: notify readdir to use READDIRPLUS */ 1412 nfs_advise_use_readdirplus(dir); 1413 1414 no_entry: 1415 res = d_splice_alias(inode, dentry); 1416 if (res != NULL) { 1417 if (IS_ERR(res)) 1418 goto out_unblock_sillyrename; 1419 dentry = res; 1420 } 1421 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1422 out_unblock_sillyrename: 1423 nfs_unblock_sillyrename(parent); 1424 trace_nfs_lookup_exit(dir, dentry, flags, error); 1425 nfs4_label_free(label); 1426 out: 1427 nfs_free_fattr(fattr); 1428 nfs_free_fhandle(fhandle); 1429 return res; 1430 } 1431 EXPORT_SYMBOL_GPL(nfs_lookup); 1432 1433 #if IS_ENABLED(CONFIG_NFS_V4) 1434 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1435 1436 const struct dentry_operations nfs4_dentry_operations = { 1437 .d_revalidate = nfs4_lookup_revalidate, 1438 .d_delete = nfs_dentry_delete, 1439 .d_iput = nfs_dentry_iput, 1440 .d_automount = nfs_d_automount, 1441 .d_release = nfs_d_release, 1442 }; 1443 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1444 1445 static fmode_t flags_to_mode(int flags) 1446 { 1447 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1448 if ((flags & O_ACCMODE) != O_WRONLY) 1449 res |= FMODE_READ; 1450 if ((flags & O_ACCMODE) != O_RDONLY) 1451 res |= FMODE_WRITE; 1452 return res; 1453 } 1454 1455 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1456 { 1457 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1458 } 1459 1460 static int do_open(struct inode *inode, struct file *filp) 1461 { 1462 nfs_fscache_open_file(inode, filp); 1463 return 0; 1464 } 1465 1466 static int nfs_finish_open(struct nfs_open_context *ctx, 1467 struct dentry *dentry, 1468 struct file *file, unsigned open_flags, 1469 int *opened) 1470 { 1471 int err; 1472 1473 err = finish_open(file, dentry, do_open, opened); 1474 if (err) 1475 goto out; 1476 nfs_file_set_open_context(file, ctx); 1477 1478 out: 1479 return err; 1480 } 1481 1482 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1483 struct file *file, unsigned open_flags, 1484 umode_t mode, int *opened) 1485 { 1486 struct nfs_open_context *ctx; 1487 struct dentry *res; 1488 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1489 struct inode *inode; 1490 unsigned int lookup_flags = 0; 1491 int err; 1492 1493 /* Expect a negative dentry */ 1494 BUG_ON(d_inode(dentry)); 1495 1496 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1497 dir->i_sb->s_id, dir->i_ino, dentry); 1498 1499 err = nfs_check_flags(open_flags); 1500 if (err) 1501 return err; 1502 1503 /* NFS only supports OPEN on regular files */ 1504 if ((open_flags & O_DIRECTORY)) { 1505 if (!d_unhashed(dentry)) { 1506 /* 1507 * Hashed negative dentry with O_DIRECTORY: dentry was 1508 * revalidated and is fine, no need to perform lookup 1509 * again 1510 */ 1511 return -ENOENT; 1512 } 1513 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1514 goto no_open; 1515 } 1516 1517 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1518 return -ENAMETOOLONG; 1519 1520 if (open_flags & O_CREAT) { 1521 attr.ia_valid |= ATTR_MODE; 1522 attr.ia_mode = mode & ~current_umask(); 1523 } 1524 if (open_flags & O_TRUNC) { 1525 attr.ia_valid |= ATTR_SIZE; 1526 attr.ia_size = 0; 1527 } 1528 1529 ctx = create_nfs_open_context(dentry, open_flags); 1530 err = PTR_ERR(ctx); 1531 if (IS_ERR(ctx)) 1532 goto out; 1533 1534 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1535 nfs_block_sillyrename(dentry->d_parent); 1536 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1537 nfs_unblock_sillyrename(dentry->d_parent); 1538 if (IS_ERR(inode)) { 1539 err = PTR_ERR(inode); 1540 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1541 put_nfs_open_context(ctx); 1542 switch (err) { 1543 case -ENOENT: 1544 d_drop(dentry); 1545 d_add(dentry, NULL); 1546 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1547 break; 1548 case -EISDIR: 1549 case -ENOTDIR: 1550 goto no_open; 1551 case -ELOOP: 1552 if (!(open_flags & O_NOFOLLOW)) 1553 goto no_open; 1554 break; 1555 /* case -EINVAL: */ 1556 default: 1557 break; 1558 } 1559 goto out; 1560 } 1561 1562 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1563 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1564 put_nfs_open_context(ctx); 1565 out: 1566 return err; 1567 1568 no_open: 1569 res = nfs_lookup(dir, dentry, lookup_flags); 1570 err = PTR_ERR(res); 1571 if (IS_ERR(res)) 1572 goto out; 1573 1574 return finish_no_open(file, res); 1575 } 1576 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1577 1578 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1579 { 1580 struct inode *inode; 1581 int ret = 0; 1582 1583 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1584 goto no_open; 1585 if (d_mountpoint(dentry)) 1586 goto no_open; 1587 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1588 goto no_open; 1589 1590 inode = d_inode(dentry); 1591 1592 /* We can't create new files in nfs_open_revalidate(), so we 1593 * optimize away revalidation of negative dentries. 1594 */ 1595 if (inode == NULL) { 1596 struct dentry *parent; 1597 struct inode *dir; 1598 1599 if (flags & LOOKUP_RCU) { 1600 parent = ACCESS_ONCE(dentry->d_parent); 1601 dir = d_inode_rcu(parent); 1602 if (!dir) 1603 return -ECHILD; 1604 } else { 1605 parent = dget_parent(dentry); 1606 dir = d_inode(parent); 1607 } 1608 if (!nfs_neg_need_reval(dir, dentry, flags)) 1609 ret = 1; 1610 else if (flags & LOOKUP_RCU) 1611 ret = -ECHILD; 1612 if (!(flags & LOOKUP_RCU)) 1613 dput(parent); 1614 else if (parent != ACCESS_ONCE(dentry->d_parent)) 1615 return -ECHILD; 1616 goto out; 1617 } 1618 1619 /* NFS only supports OPEN on regular files */ 1620 if (!S_ISREG(inode->i_mode)) 1621 goto no_open; 1622 /* We cannot do exclusive creation on a positive dentry */ 1623 if (flags & LOOKUP_EXCL) 1624 goto no_open; 1625 1626 /* Let f_op->open() actually open (and revalidate) the file */ 1627 ret = 1; 1628 1629 out: 1630 return ret; 1631 1632 no_open: 1633 return nfs_lookup_revalidate(dentry, flags); 1634 } 1635 1636 #endif /* CONFIG_NFSV4 */ 1637 1638 /* 1639 * Code common to create, mkdir, and mknod. 1640 */ 1641 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1642 struct nfs_fattr *fattr, 1643 struct nfs4_label *label) 1644 { 1645 struct dentry *parent = dget_parent(dentry); 1646 struct inode *dir = d_inode(parent); 1647 struct inode *inode; 1648 int error = -EACCES; 1649 1650 d_drop(dentry); 1651 1652 /* We may have been initialized further down */ 1653 if (d_really_is_positive(dentry)) 1654 goto out; 1655 if (fhandle->size == 0) { 1656 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1657 if (error) 1658 goto out_error; 1659 } 1660 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1661 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1662 struct nfs_server *server = NFS_SB(dentry->d_sb); 1663 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1664 if (error < 0) 1665 goto out_error; 1666 } 1667 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1668 error = PTR_ERR(inode); 1669 if (IS_ERR(inode)) 1670 goto out_error; 1671 d_add(dentry, inode); 1672 out: 1673 dput(parent); 1674 return 0; 1675 out_error: 1676 nfs_mark_for_revalidate(dir); 1677 dput(parent); 1678 return error; 1679 } 1680 EXPORT_SYMBOL_GPL(nfs_instantiate); 1681 1682 /* 1683 * Following a failed create operation, we drop the dentry rather 1684 * than retain a negative dentry. This avoids a problem in the event 1685 * that the operation succeeded on the server, but an error in the 1686 * reply path made it appear to have failed. 1687 */ 1688 int nfs_create(struct inode *dir, struct dentry *dentry, 1689 umode_t mode, bool excl) 1690 { 1691 struct iattr attr; 1692 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1693 int error; 1694 1695 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1696 dir->i_sb->s_id, dir->i_ino, dentry); 1697 1698 attr.ia_mode = mode; 1699 attr.ia_valid = ATTR_MODE; 1700 1701 trace_nfs_create_enter(dir, dentry, open_flags); 1702 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1703 trace_nfs_create_exit(dir, dentry, open_flags, error); 1704 if (error != 0) 1705 goto out_err; 1706 return 0; 1707 out_err: 1708 d_drop(dentry); 1709 return error; 1710 } 1711 EXPORT_SYMBOL_GPL(nfs_create); 1712 1713 /* 1714 * See comments for nfs_proc_create regarding failed operations. 1715 */ 1716 int 1717 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1718 { 1719 struct iattr attr; 1720 int status; 1721 1722 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1723 dir->i_sb->s_id, dir->i_ino, dentry); 1724 1725 if (!new_valid_dev(rdev)) 1726 return -EINVAL; 1727 1728 attr.ia_mode = mode; 1729 attr.ia_valid = ATTR_MODE; 1730 1731 trace_nfs_mknod_enter(dir, dentry); 1732 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1733 trace_nfs_mknod_exit(dir, dentry, status); 1734 if (status != 0) 1735 goto out_err; 1736 return 0; 1737 out_err: 1738 d_drop(dentry); 1739 return status; 1740 } 1741 EXPORT_SYMBOL_GPL(nfs_mknod); 1742 1743 /* 1744 * See comments for nfs_proc_create regarding failed operations. 1745 */ 1746 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1747 { 1748 struct iattr attr; 1749 int error; 1750 1751 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1752 dir->i_sb->s_id, dir->i_ino, dentry); 1753 1754 attr.ia_valid = ATTR_MODE; 1755 attr.ia_mode = mode | S_IFDIR; 1756 1757 trace_nfs_mkdir_enter(dir, dentry); 1758 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1759 trace_nfs_mkdir_exit(dir, dentry, error); 1760 if (error != 0) 1761 goto out_err; 1762 return 0; 1763 out_err: 1764 d_drop(dentry); 1765 return error; 1766 } 1767 EXPORT_SYMBOL_GPL(nfs_mkdir); 1768 1769 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1770 { 1771 if (simple_positive(dentry)) 1772 d_delete(dentry); 1773 } 1774 1775 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1776 { 1777 int error; 1778 1779 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1780 dir->i_sb->s_id, dir->i_ino, dentry); 1781 1782 trace_nfs_rmdir_enter(dir, dentry); 1783 if (d_really_is_positive(dentry)) { 1784 nfs_wait_on_sillyrename(dentry); 1785 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1786 /* Ensure the VFS deletes this inode */ 1787 switch (error) { 1788 case 0: 1789 clear_nlink(d_inode(dentry)); 1790 break; 1791 case -ENOENT: 1792 nfs_dentry_handle_enoent(dentry); 1793 } 1794 } else 1795 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1796 trace_nfs_rmdir_exit(dir, dentry, error); 1797 1798 return error; 1799 } 1800 EXPORT_SYMBOL_GPL(nfs_rmdir); 1801 1802 /* 1803 * Remove a file after making sure there are no pending writes, 1804 * and after checking that the file has only one user. 1805 * 1806 * We invalidate the attribute cache and free the inode prior to the operation 1807 * to avoid possible races if the server reuses the inode. 1808 */ 1809 static int nfs_safe_remove(struct dentry *dentry) 1810 { 1811 struct inode *dir = d_inode(dentry->d_parent); 1812 struct inode *inode = d_inode(dentry); 1813 int error = -EBUSY; 1814 1815 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1816 1817 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1818 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1819 error = 0; 1820 goto out; 1821 } 1822 1823 trace_nfs_remove_enter(dir, dentry); 1824 if (inode != NULL) { 1825 NFS_PROTO(inode)->return_delegation(inode); 1826 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1827 if (error == 0) 1828 nfs_drop_nlink(inode); 1829 } else 1830 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1831 if (error == -ENOENT) 1832 nfs_dentry_handle_enoent(dentry); 1833 trace_nfs_remove_exit(dir, dentry, error); 1834 out: 1835 return error; 1836 } 1837 1838 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1839 * belongs to an active ".nfs..." file and we return -EBUSY. 1840 * 1841 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1842 */ 1843 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1844 { 1845 int error; 1846 int need_rehash = 0; 1847 1848 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1849 dir->i_ino, dentry); 1850 1851 trace_nfs_unlink_enter(dir, dentry); 1852 spin_lock(&dentry->d_lock); 1853 if (d_count(dentry) > 1) { 1854 spin_unlock(&dentry->d_lock); 1855 /* Start asynchronous writeout of the inode */ 1856 write_inode_now(d_inode(dentry), 0); 1857 error = nfs_sillyrename(dir, dentry); 1858 goto out; 1859 } 1860 if (!d_unhashed(dentry)) { 1861 __d_drop(dentry); 1862 need_rehash = 1; 1863 } 1864 spin_unlock(&dentry->d_lock); 1865 error = nfs_safe_remove(dentry); 1866 if (!error || error == -ENOENT) { 1867 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1868 } else if (need_rehash) 1869 d_rehash(dentry); 1870 out: 1871 trace_nfs_unlink_exit(dir, dentry, error); 1872 return error; 1873 } 1874 EXPORT_SYMBOL_GPL(nfs_unlink); 1875 1876 /* 1877 * To create a symbolic link, most file systems instantiate a new inode, 1878 * add a page to it containing the path, then write it out to the disk 1879 * using prepare_write/commit_write. 1880 * 1881 * Unfortunately the NFS client can't create the in-core inode first 1882 * because it needs a file handle to create an in-core inode (see 1883 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1884 * symlink request has completed on the server. 1885 * 1886 * So instead we allocate a raw page, copy the symname into it, then do 1887 * the SYMLINK request with the page as the buffer. If it succeeds, we 1888 * now have a new file handle and can instantiate an in-core NFS inode 1889 * and move the raw page into its mapping. 1890 */ 1891 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1892 { 1893 struct page *page; 1894 char *kaddr; 1895 struct iattr attr; 1896 unsigned int pathlen = strlen(symname); 1897 int error; 1898 1899 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1900 dir->i_ino, dentry, symname); 1901 1902 if (pathlen > PAGE_SIZE) 1903 return -ENAMETOOLONG; 1904 1905 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1906 attr.ia_valid = ATTR_MODE; 1907 1908 page = alloc_page(GFP_HIGHUSER); 1909 if (!page) 1910 return -ENOMEM; 1911 1912 kaddr = kmap_atomic(page); 1913 memcpy(kaddr, symname, pathlen); 1914 if (pathlen < PAGE_SIZE) 1915 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1916 kunmap_atomic(kaddr); 1917 1918 trace_nfs_symlink_enter(dir, dentry); 1919 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1920 trace_nfs_symlink_exit(dir, dentry, error); 1921 if (error != 0) { 1922 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1923 dir->i_sb->s_id, dir->i_ino, 1924 dentry, symname, error); 1925 d_drop(dentry); 1926 __free_page(page); 1927 return error; 1928 } 1929 1930 /* 1931 * No big deal if we can't add this page to the page cache here. 1932 * READLINK will get the missing page from the server if needed. 1933 */ 1934 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1935 GFP_KERNEL)) { 1936 SetPageUptodate(page); 1937 unlock_page(page); 1938 /* 1939 * add_to_page_cache_lru() grabs an extra page refcount. 1940 * Drop it here to avoid leaking this page later. 1941 */ 1942 page_cache_release(page); 1943 } else 1944 __free_page(page); 1945 1946 return 0; 1947 } 1948 EXPORT_SYMBOL_GPL(nfs_symlink); 1949 1950 int 1951 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1952 { 1953 struct inode *inode = d_inode(old_dentry); 1954 int error; 1955 1956 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1957 old_dentry, dentry); 1958 1959 trace_nfs_link_enter(inode, dir, dentry); 1960 NFS_PROTO(inode)->return_delegation(inode); 1961 1962 d_drop(dentry); 1963 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1964 if (error == 0) { 1965 ihold(inode); 1966 d_add(dentry, inode); 1967 } 1968 trace_nfs_link_exit(inode, dir, dentry, error); 1969 return error; 1970 } 1971 EXPORT_SYMBOL_GPL(nfs_link); 1972 1973 /* 1974 * RENAME 1975 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1976 * different file handle for the same inode after a rename (e.g. when 1977 * moving to a different directory). A fail-safe method to do so would 1978 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1979 * rename the old file using the sillyrename stuff. This way, the original 1980 * file in old_dir will go away when the last process iput()s the inode. 1981 * 1982 * FIXED. 1983 * 1984 * It actually works quite well. One needs to have the possibility for 1985 * at least one ".nfs..." file in each directory the file ever gets 1986 * moved or linked to which happens automagically with the new 1987 * implementation that only depends on the dcache stuff instead of 1988 * using the inode layer 1989 * 1990 * Unfortunately, things are a little more complicated than indicated 1991 * above. For a cross-directory move, we want to make sure we can get 1992 * rid of the old inode after the operation. This means there must be 1993 * no pending writes (if it's a file), and the use count must be 1. 1994 * If these conditions are met, we can drop the dentries before doing 1995 * the rename. 1996 */ 1997 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1998 struct inode *new_dir, struct dentry *new_dentry) 1999 { 2000 struct inode *old_inode = d_inode(old_dentry); 2001 struct inode *new_inode = d_inode(new_dentry); 2002 struct dentry *dentry = NULL, *rehash = NULL; 2003 struct rpc_task *task; 2004 int error = -EBUSY; 2005 2006 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2007 old_dentry, new_dentry, 2008 d_count(new_dentry)); 2009 2010 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2011 /* 2012 * For non-directories, check whether the target is busy and if so, 2013 * make a copy of the dentry and then do a silly-rename. If the 2014 * silly-rename succeeds, the copied dentry is hashed and becomes 2015 * the new target. 2016 */ 2017 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2018 /* 2019 * To prevent any new references to the target during the 2020 * rename, we unhash the dentry in advance. 2021 */ 2022 if (!d_unhashed(new_dentry)) { 2023 d_drop(new_dentry); 2024 rehash = new_dentry; 2025 } 2026 2027 if (d_count(new_dentry) > 2) { 2028 int err; 2029 2030 /* copy the target dentry's name */ 2031 dentry = d_alloc(new_dentry->d_parent, 2032 &new_dentry->d_name); 2033 if (!dentry) 2034 goto out; 2035 2036 /* silly-rename the existing target ... */ 2037 err = nfs_sillyrename(new_dir, new_dentry); 2038 if (err) 2039 goto out; 2040 2041 new_dentry = dentry; 2042 rehash = NULL; 2043 new_inode = NULL; 2044 } 2045 } 2046 2047 NFS_PROTO(old_inode)->return_delegation(old_inode); 2048 if (new_inode != NULL) 2049 NFS_PROTO(new_inode)->return_delegation(new_inode); 2050 2051 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2052 if (IS_ERR(task)) { 2053 error = PTR_ERR(task); 2054 goto out; 2055 } 2056 2057 error = rpc_wait_for_completion_task(task); 2058 if (error == 0) 2059 error = task->tk_status; 2060 rpc_put_task(task); 2061 nfs_mark_for_revalidate(old_inode); 2062 out: 2063 if (rehash) 2064 d_rehash(rehash); 2065 trace_nfs_rename_exit(old_dir, old_dentry, 2066 new_dir, new_dentry, error); 2067 if (!error) { 2068 if (new_inode != NULL) 2069 nfs_drop_nlink(new_inode); 2070 d_move(old_dentry, new_dentry); 2071 nfs_set_verifier(new_dentry, 2072 nfs_save_change_attribute(new_dir)); 2073 } else if (error == -ENOENT) 2074 nfs_dentry_handle_enoent(old_dentry); 2075 2076 /* new dentry created? */ 2077 if (dentry) 2078 dput(dentry); 2079 return error; 2080 } 2081 EXPORT_SYMBOL_GPL(nfs_rename); 2082 2083 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2084 static LIST_HEAD(nfs_access_lru_list); 2085 static atomic_long_t nfs_access_nr_entries; 2086 2087 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2088 module_param(nfs_access_max_cachesize, ulong, 0644); 2089 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2090 2091 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2092 { 2093 put_rpccred(entry->cred); 2094 kfree_rcu(entry, rcu_head); 2095 smp_mb__before_atomic(); 2096 atomic_long_dec(&nfs_access_nr_entries); 2097 smp_mb__after_atomic(); 2098 } 2099 2100 static void nfs_access_free_list(struct list_head *head) 2101 { 2102 struct nfs_access_entry *cache; 2103 2104 while (!list_empty(head)) { 2105 cache = list_entry(head->next, struct nfs_access_entry, lru); 2106 list_del(&cache->lru); 2107 nfs_access_free_entry(cache); 2108 } 2109 } 2110 2111 static unsigned long 2112 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2113 { 2114 LIST_HEAD(head); 2115 struct nfs_inode *nfsi, *next; 2116 struct nfs_access_entry *cache; 2117 long freed = 0; 2118 2119 spin_lock(&nfs_access_lru_lock); 2120 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2121 struct inode *inode; 2122 2123 if (nr_to_scan-- == 0) 2124 break; 2125 inode = &nfsi->vfs_inode; 2126 spin_lock(&inode->i_lock); 2127 if (list_empty(&nfsi->access_cache_entry_lru)) 2128 goto remove_lru_entry; 2129 cache = list_entry(nfsi->access_cache_entry_lru.next, 2130 struct nfs_access_entry, lru); 2131 list_move(&cache->lru, &head); 2132 rb_erase(&cache->rb_node, &nfsi->access_cache); 2133 freed++; 2134 if (!list_empty(&nfsi->access_cache_entry_lru)) 2135 list_move_tail(&nfsi->access_cache_inode_lru, 2136 &nfs_access_lru_list); 2137 else { 2138 remove_lru_entry: 2139 list_del_init(&nfsi->access_cache_inode_lru); 2140 smp_mb__before_atomic(); 2141 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2142 smp_mb__after_atomic(); 2143 } 2144 spin_unlock(&inode->i_lock); 2145 } 2146 spin_unlock(&nfs_access_lru_lock); 2147 nfs_access_free_list(&head); 2148 return freed; 2149 } 2150 2151 unsigned long 2152 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2153 { 2154 int nr_to_scan = sc->nr_to_scan; 2155 gfp_t gfp_mask = sc->gfp_mask; 2156 2157 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2158 return SHRINK_STOP; 2159 return nfs_do_access_cache_scan(nr_to_scan); 2160 } 2161 2162 2163 unsigned long 2164 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2165 { 2166 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2167 } 2168 2169 static void 2170 nfs_access_cache_enforce_limit(void) 2171 { 2172 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2173 unsigned long diff; 2174 unsigned int nr_to_scan; 2175 2176 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2177 return; 2178 nr_to_scan = 100; 2179 diff = nr_entries - nfs_access_max_cachesize; 2180 if (diff < nr_to_scan) 2181 nr_to_scan = diff; 2182 nfs_do_access_cache_scan(nr_to_scan); 2183 } 2184 2185 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2186 { 2187 struct rb_root *root_node = &nfsi->access_cache; 2188 struct rb_node *n; 2189 struct nfs_access_entry *entry; 2190 2191 /* Unhook entries from the cache */ 2192 while ((n = rb_first(root_node)) != NULL) { 2193 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2194 rb_erase(n, root_node); 2195 list_move(&entry->lru, head); 2196 } 2197 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2198 } 2199 2200 void nfs_access_zap_cache(struct inode *inode) 2201 { 2202 LIST_HEAD(head); 2203 2204 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2205 return; 2206 /* Remove from global LRU init */ 2207 spin_lock(&nfs_access_lru_lock); 2208 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2209 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2210 2211 spin_lock(&inode->i_lock); 2212 __nfs_access_zap_cache(NFS_I(inode), &head); 2213 spin_unlock(&inode->i_lock); 2214 spin_unlock(&nfs_access_lru_lock); 2215 nfs_access_free_list(&head); 2216 } 2217 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2218 2219 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2220 { 2221 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2222 struct nfs_access_entry *entry; 2223 2224 while (n != NULL) { 2225 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2226 2227 if (cred < entry->cred) 2228 n = n->rb_left; 2229 else if (cred > entry->cred) 2230 n = n->rb_right; 2231 else 2232 return entry; 2233 } 2234 return NULL; 2235 } 2236 2237 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2238 { 2239 struct nfs_inode *nfsi = NFS_I(inode); 2240 struct nfs_access_entry *cache; 2241 int err = -ENOENT; 2242 2243 spin_lock(&inode->i_lock); 2244 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2245 goto out_zap; 2246 cache = nfs_access_search_rbtree(inode, cred); 2247 if (cache == NULL) 2248 goto out; 2249 if (!nfs_have_delegated_attributes(inode) && 2250 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2251 goto out_stale; 2252 res->jiffies = cache->jiffies; 2253 res->cred = cache->cred; 2254 res->mask = cache->mask; 2255 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2256 err = 0; 2257 out: 2258 spin_unlock(&inode->i_lock); 2259 return err; 2260 out_stale: 2261 rb_erase(&cache->rb_node, &nfsi->access_cache); 2262 list_del(&cache->lru); 2263 spin_unlock(&inode->i_lock); 2264 nfs_access_free_entry(cache); 2265 return -ENOENT; 2266 out_zap: 2267 spin_unlock(&inode->i_lock); 2268 nfs_access_zap_cache(inode); 2269 return -ENOENT; 2270 } 2271 2272 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2273 { 2274 /* Only check the most recently returned cache entry, 2275 * but do it without locking. 2276 */ 2277 struct nfs_inode *nfsi = NFS_I(inode); 2278 struct nfs_access_entry *cache; 2279 int err = -ECHILD; 2280 struct list_head *lh; 2281 2282 rcu_read_lock(); 2283 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2284 goto out; 2285 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2286 cache = list_entry(lh, struct nfs_access_entry, lru); 2287 if (lh == &nfsi->access_cache_entry_lru || 2288 cred != cache->cred) 2289 cache = NULL; 2290 if (cache == NULL) 2291 goto out; 2292 if (!nfs_have_delegated_attributes(inode) && 2293 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2294 goto out; 2295 res->jiffies = cache->jiffies; 2296 res->cred = cache->cred; 2297 res->mask = cache->mask; 2298 err = 0; 2299 out: 2300 rcu_read_unlock(); 2301 return err; 2302 } 2303 2304 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2305 { 2306 struct nfs_inode *nfsi = NFS_I(inode); 2307 struct rb_root *root_node = &nfsi->access_cache; 2308 struct rb_node **p = &root_node->rb_node; 2309 struct rb_node *parent = NULL; 2310 struct nfs_access_entry *entry; 2311 2312 spin_lock(&inode->i_lock); 2313 while (*p != NULL) { 2314 parent = *p; 2315 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2316 2317 if (set->cred < entry->cred) 2318 p = &parent->rb_left; 2319 else if (set->cred > entry->cred) 2320 p = &parent->rb_right; 2321 else 2322 goto found; 2323 } 2324 rb_link_node(&set->rb_node, parent, p); 2325 rb_insert_color(&set->rb_node, root_node); 2326 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2327 spin_unlock(&inode->i_lock); 2328 return; 2329 found: 2330 rb_replace_node(parent, &set->rb_node, root_node); 2331 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2332 list_del(&entry->lru); 2333 spin_unlock(&inode->i_lock); 2334 nfs_access_free_entry(entry); 2335 } 2336 2337 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2338 { 2339 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2340 if (cache == NULL) 2341 return; 2342 RB_CLEAR_NODE(&cache->rb_node); 2343 cache->jiffies = set->jiffies; 2344 cache->cred = get_rpccred(set->cred); 2345 cache->mask = set->mask; 2346 2347 /* The above field assignments must be visible 2348 * before this item appears on the lru. We cannot easily 2349 * use rcu_assign_pointer, so just force the memory barrier. 2350 */ 2351 smp_wmb(); 2352 nfs_access_add_rbtree(inode, cache); 2353 2354 /* Update accounting */ 2355 smp_mb__before_atomic(); 2356 atomic_long_inc(&nfs_access_nr_entries); 2357 smp_mb__after_atomic(); 2358 2359 /* Add inode to global LRU list */ 2360 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2361 spin_lock(&nfs_access_lru_lock); 2362 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2363 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2364 &nfs_access_lru_list); 2365 spin_unlock(&nfs_access_lru_lock); 2366 } 2367 nfs_access_cache_enforce_limit(); 2368 } 2369 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2370 2371 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2372 { 2373 entry->mask = 0; 2374 if (access_result & NFS4_ACCESS_READ) 2375 entry->mask |= MAY_READ; 2376 if (access_result & 2377 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2378 entry->mask |= MAY_WRITE; 2379 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2380 entry->mask |= MAY_EXEC; 2381 } 2382 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2383 2384 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2385 { 2386 struct nfs_access_entry cache; 2387 int status; 2388 2389 trace_nfs_access_enter(inode); 2390 2391 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2392 if (status != 0) 2393 status = nfs_access_get_cached(inode, cred, &cache); 2394 if (status == 0) 2395 goto out_cached; 2396 2397 status = -ECHILD; 2398 if (mask & MAY_NOT_BLOCK) 2399 goto out; 2400 2401 /* Be clever: ask server to check for all possible rights */ 2402 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2403 cache.cred = cred; 2404 cache.jiffies = jiffies; 2405 status = NFS_PROTO(inode)->access(inode, &cache); 2406 if (status != 0) { 2407 if (status == -ESTALE) { 2408 nfs_zap_caches(inode); 2409 if (!S_ISDIR(inode->i_mode)) 2410 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2411 } 2412 goto out; 2413 } 2414 nfs_access_add_cache(inode, &cache); 2415 out_cached: 2416 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2417 status = -EACCES; 2418 out: 2419 trace_nfs_access_exit(inode, status); 2420 return status; 2421 } 2422 2423 static int nfs_open_permission_mask(int openflags) 2424 { 2425 int mask = 0; 2426 2427 if (openflags & __FMODE_EXEC) { 2428 /* ONLY check exec rights */ 2429 mask = MAY_EXEC; 2430 } else { 2431 if ((openflags & O_ACCMODE) != O_WRONLY) 2432 mask |= MAY_READ; 2433 if ((openflags & O_ACCMODE) != O_RDONLY) 2434 mask |= MAY_WRITE; 2435 } 2436 2437 return mask; 2438 } 2439 2440 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2441 { 2442 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2443 } 2444 EXPORT_SYMBOL_GPL(nfs_may_open); 2445 2446 int nfs_permission(struct inode *inode, int mask) 2447 { 2448 struct rpc_cred *cred; 2449 int res = 0; 2450 2451 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2452 2453 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2454 goto out; 2455 /* Is this sys_access() ? */ 2456 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2457 goto force_lookup; 2458 2459 switch (inode->i_mode & S_IFMT) { 2460 case S_IFLNK: 2461 goto out; 2462 case S_IFREG: 2463 break; 2464 case S_IFDIR: 2465 /* 2466 * Optimize away all write operations, since the server 2467 * will check permissions when we perform the op. 2468 */ 2469 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2470 goto out; 2471 } 2472 2473 force_lookup: 2474 if (!NFS_PROTO(inode)->access) 2475 goto out_notsup; 2476 2477 /* Always try fast lookups first */ 2478 rcu_read_lock(); 2479 cred = rpc_lookup_cred_nonblock(); 2480 if (!IS_ERR(cred)) 2481 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2482 else 2483 res = PTR_ERR(cred); 2484 rcu_read_unlock(); 2485 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2486 /* Fast lookup failed, try the slow way */ 2487 cred = rpc_lookup_cred(); 2488 if (!IS_ERR(cred)) { 2489 res = nfs_do_access(inode, cred, mask); 2490 put_rpccred(cred); 2491 } else 2492 res = PTR_ERR(cred); 2493 } 2494 out: 2495 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2496 res = -EACCES; 2497 2498 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2499 inode->i_sb->s_id, inode->i_ino, mask, res); 2500 return res; 2501 out_notsup: 2502 if (mask & MAY_NOT_BLOCK) 2503 return -ECHILD; 2504 2505 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2506 if (res == 0) 2507 res = generic_permission(inode, mask); 2508 goto out; 2509 } 2510 EXPORT_SYMBOL_GPL(nfs_permission); 2511 2512 /* 2513 * Local variables: 2514 * version-control: t 2515 * kept-new-versions: 5 2516 * End: 2517 */ 2518