xref: /linux/fs/nfs/dir.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	int size;
149 	int eof_index;
150 	u64 last_cookie;
151 	struct nfs_cache_array_entry array[0];
152 };
153 
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	unsigned long	page_index;
160 	u64		*dir_cookie;
161 	u64		last_cookie;
162 	loff_t		current_index;
163 	decode_dirent_t	decode;
164 
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned int	cache_entry_index;
168 	unsigned int	plus:1;
169 	unsigned int	eof:1;
170 } nfs_readdir_descriptor_t;
171 
172 /*
173  * The caller is responsible for calling nfs_readdir_release_array(page)
174  */
175 static
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177 {
178 	void *ptr;
179 	if (page == NULL)
180 		return ERR_PTR(-EIO);
181 	ptr = kmap(page);
182 	if (ptr == NULL)
183 		return ERR_PTR(-ENOMEM);
184 	return ptr;
185 }
186 
187 static
188 void nfs_readdir_release_array(struct page *page)
189 {
190 	kunmap(page);
191 }
192 
193 /*
194  * we are freeing strings created by nfs_add_to_readdir_array()
195  */
196 static
197 void nfs_readdir_clear_array(struct page *page)
198 {
199 	struct nfs_cache_array *array;
200 	int i;
201 
202 	array = kmap_atomic(page);
203 	for (i = 0; i < array->size; i++)
204 		kfree(array->array[i].string.name);
205 	kunmap_atomic(array);
206 }
207 
208 /*
209  * the caller is responsible for freeing qstr.name
210  * when called by nfs_readdir_add_to_array, the strings will be freed in
211  * nfs_clear_readdir_array()
212  */
213 static
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215 {
216 	string->len = len;
217 	string->name = kmemdup(name, len, GFP_KERNEL);
218 	if (string->name == NULL)
219 		return -ENOMEM;
220 	/*
221 	 * Avoid a kmemleak false positive. The pointer to the name is stored
222 	 * in a page cache page which kmemleak does not scan.
223 	 */
224 	kmemleak_not_leak(string->name);
225 	string->hash = full_name_hash(name, len);
226 	return 0;
227 }
228 
229 static
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231 {
232 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 	struct nfs_cache_array_entry *cache_entry;
234 	int ret;
235 
236 	if (IS_ERR(array))
237 		return PTR_ERR(array);
238 
239 	cache_entry = &array->array[array->size];
240 
241 	/* Check that this entry lies within the page bounds */
242 	ret = -ENOSPC;
243 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 		goto out;
245 
246 	cache_entry->cookie = entry->prev_cookie;
247 	cache_entry->ino = entry->ino;
248 	cache_entry->d_type = entry->d_type;
249 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 	if (ret)
251 		goto out;
252 	array->last_cookie = entry->cookie;
253 	array->size++;
254 	if (entry->eof != 0)
255 		array->eof_index = array->size;
256 out:
257 	nfs_readdir_release_array(page);
258 	return ret;
259 }
260 
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = 1;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->ctx->pos) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %.*s has duplicate cookie %llu\n",
317 								desc->file, array->array[i].string.len,
318 								array->array[i].string.name, *desc->dir_cookie);
319 					}
320 					status = -ELOOP;
321 					goto out;
322 				}
323 				ctx->dup_cookie = *desc->dir_cookie;
324 				ctx->duped = -1;
325 			}
326 			desc->ctx->pos = new_pos;
327 			desc->cache_entry_index = i;
328 			return 0;
329 		}
330 	}
331 	if (array->eof_index >= 0) {
332 		status = -EBADCOOKIE;
333 		if (*desc->dir_cookie == array->last_cookie)
334 			desc->eof = 1;
335 	}
336 out:
337 	return status;
338 }
339 
340 static
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342 {
343 	struct nfs_cache_array *array;
344 	int status;
345 
346 	array = nfs_readdir_get_array(desc->page);
347 	if (IS_ERR(array)) {
348 		status = PTR_ERR(array);
349 		goto out;
350 	}
351 
352 	if (*desc->dir_cookie == 0)
353 		status = nfs_readdir_search_for_pos(array, desc);
354 	else
355 		status = nfs_readdir_search_for_cookie(array, desc);
356 
357 	if (status == -EAGAIN) {
358 		desc->last_cookie = array->last_cookie;
359 		desc->current_index += array->size;
360 		desc->page_index++;
361 	}
362 	nfs_readdir_release_array(desc->page);
363 out:
364 	return status;
365 }
366 
367 /* Fill a page with xdr information before transferring to the cache page */
368 static
369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 			struct nfs_entry *entry, struct file *file, struct inode *inode)
371 {
372 	struct nfs_open_dir_context *ctx = file->private_data;
373 	struct rpc_cred	*cred = ctx->cred;
374 	unsigned long	timestamp, gencount;
375 	int		error;
376 
377  again:
378 	timestamp = jiffies;
379 	gencount = nfs_inc_attr_generation_counter();
380 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381 					  NFS_SERVER(inode)->dtsize, desc->plus);
382 	if (error < 0) {
383 		/* We requested READDIRPLUS, but the server doesn't grok it */
384 		if (error == -ENOTSUPP && desc->plus) {
385 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 			desc->plus = 0;
388 			goto again;
389 		}
390 		goto error;
391 	}
392 	desc->timestamp = timestamp;
393 	desc->gencount = gencount;
394 error:
395 	return error;
396 }
397 
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 		      struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 	int error;
402 
403 	error = desc->decode(xdr, entry, desc->plus);
404 	if (error)
405 		return error;
406 	entry->fattr->time_start = desc->timestamp;
407 	entry->fattr->gencount = desc->gencount;
408 	return 0;
409 }
410 
411 /* Match file and dirent using either filehandle or fileid
412  * Note: caller is responsible for checking the fsid
413  */
414 static
415 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
416 {
417 	struct nfs_inode *nfsi;
418 
419 	if (d_really_is_negative(dentry))
420 		return 0;
421 
422 	nfsi = NFS_I(d_inode(dentry));
423 	if (entry->fattr->fileid == nfsi->fileid)
424 		return 1;
425 	if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
426 		return 1;
427 	return 0;
428 }
429 
430 static
431 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
432 {
433 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
434 		return false;
435 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
436 		return true;
437 	if (ctx->pos == 0)
438 		return true;
439 	return false;
440 }
441 
442 /*
443  * This function is called by the lookup code to request the use of
444  * readdirplus to accelerate any future lookups in the same
445  * directory.
446  */
447 static
448 void nfs_advise_use_readdirplus(struct inode *dir)
449 {
450 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
451 }
452 
453 /*
454  * This function is mainly for use by nfs_getattr().
455  *
456  * If this is an 'ls -l', we want to force use of readdirplus.
457  * Do this by checking if there is an active file descriptor
458  * and calling nfs_advise_use_readdirplus, then forcing a
459  * cache flush.
460  */
461 void nfs_force_use_readdirplus(struct inode *dir)
462 {
463 	if (!list_empty(&NFS_I(dir)->open_files)) {
464 		nfs_advise_use_readdirplus(dir);
465 		nfs_zap_mapping(dir, dir->i_mapping);
466 	}
467 }
468 
469 static
470 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
471 {
472 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
473 	struct dentry *dentry;
474 	struct dentry *alias;
475 	struct inode *dir = d_inode(parent);
476 	struct inode *inode;
477 	int status;
478 
479 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
480 		return;
481 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
482 		return;
483 	if (filename.name[0] == '.') {
484 		if (filename.len == 1)
485 			return;
486 		if (filename.len == 2 && filename.name[1] == '.')
487 			return;
488 	}
489 	filename.hash = full_name_hash(filename.name, filename.len);
490 
491 	dentry = d_lookup(parent, &filename);
492 	if (dentry != NULL) {
493 		/* Is there a mountpoint here? If so, just exit */
494 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
495 					&entry->fattr->fsid))
496 			goto out;
497 		if (nfs_same_file(dentry, entry)) {
498 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
499 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
500 			if (!status)
501 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
502 			goto out;
503 		} else {
504 			d_invalidate(dentry);
505 			dput(dentry);
506 		}
507 	}
508 
509 	dentry = d_alloc(parent, &filename);
510 	if (dentry == NULL)
511 		return;
512 
513 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
514 	if (IS_ERR(inode))
515 		goto out;
516 
517 	alias = d_splice_alias(inode, dentry);
518 	if (IS_ERR(alias))
519 		goto out;
520 	else if (alias) {
521 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
522 		dput(alias);
523 	} else
524 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
525 
526 out:
527 	dput(dentry);
528 }
529 
530 /* Perform conversion from xdr to cache array */
531 static
532 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
533 				struct page **xdr_pages, struct page *page, unsigned int buflen)
534 {
535 	struct xdr_stream stream;
536 	struct xdr_buf buf;
537 	struct page *scratch;
538 	struct nfs_cache_array *array;
539 	unsigned int count = 0;
540 	int status;
541 
542 	scratch = alloc_page(GFP_KERNEL);
543 	if (scratch == NULL)
544 		return -ENOMEM;
545 
546 	if (buflen == 0)
547 		goto out_nopages;
548 
549 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
550 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
551 
552 	do {
553 		status = xdr_decode(desc, entry, &stream);
554 		if (status != 0) {
555 			if (status == -EAGAIN)
556 				status = 0;
557 			break;
558 		}
559 
560 		count++;
561 
562 		if (desc->plus != 0)
563 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
564 
565 		status = nfs_readdir_add_to_array(entry, page);
566 		if (status != 0)
567 			break;
568 	} while (!entry->eof);
569 
570 out_nopages:
571 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
572 		array = nfs_readdir_get_array(page);
573 		if (!IS_ERR(array)) {
574 			array->eof_index = array->size;
575 			status = 0;
576 			nfs_readdir_release_array(page);
577 		} else
578 			status = PTR_ERR(array);
579 	}
580 
581 	put_page(scratch);
582 	return status;
583 }
584 
585 static
586 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
587 {
588 	unsigned int i;
589 	for (i = 0; i < npages; i++)
590 		put_page(pages[i]);
591 }
592 
593 static
594 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
595 		unsigned int npages)
596 {
597 	nfs_readdir_free_pagearray(pages, npages);
598 }
599 
600 /*
601  * nfs_readdir_large_page will allocate pages that must be freed with a call
602  * to nfs_readdir_free_large_page
603  */
604 static
605 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
606 {
607 	unsigned int i;
608 
609 	for (i = 0; i < npages; i++) {
610 		struct page *page = alloc_page(GFP_KERNEL);
611 		if (page == NULL)
612 			goto out_freepages;
613 		pages[i] = page;
614 	}
615 	return 0;
616 
617 out_freepages:
618 	nfs_readdir_free_pagearray(pages, i);
619 	return -ENOMEM;
620 }
621 
622 static
623 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
624 {
625 	struct page *pages[NFS_MAX_READDIR_PAGES];
626 	void *pages_ptr = NULL;
627 	struct nfs_entry entry;
628 	struct file	*file = desc->file;
629 	struct nfs_cache_array *array;
630 	int status = -ENOMEM;
631 	unsigned int array_size = ARRAY_SIZE(pages);
632 
633 	entry.prev_cookie = 0;
634 	entry.cookie = desc->last_cookie;
635 	entry.eof = 0;
636 	entry.fh = nfs_alloc_fhandle();
637 	entry.fattr = nfs_alloc_fattr();
638 	entry.server = NFS_SERVER(inode);
639 	if (entry.fh == NULL || entry.fattr == NULL)
640 		goto out;
641 
642 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
643 	if (IS_ERR(entry.label)) {
644 		status = PTR_ERR(entry.label);
645 		goto out;
646 	}
647 
648 	array = nfs_readdir_get_array(page);
649 	if (IS_ERR(array)) {
650 		status = PTR_ERR(array);
651 		goto out_label_free;
652 	}
653 	memset(array, 0, sizeof(struct nfs_cache_array));
654 	array->eof_index = -1;
655 
656 	status = nfs_readdir_large_page(pages, array_size);
657 	if (status < 0)
658 		goto out_release_array;
659 	do {
660 		unsigned int pglen;
661 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
662 
663 		if (status < 0)
664 			break;
665 		pglen = status;
666 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
667 		if (status < 0) {
668 			if (status == -ENOSPC)
669 				status = 0;
670 			break;
671 		}
672 	} while (array->eof_index < 0);
673 
674 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
675 out_release_array:
676 	nfs_readdir_release_array(page);
677 out_label_free:
678 	nfs4_label_free(entry.label);
679 out:
680 	nfs_free_fattr(entry.fattr);
681 	nfs_free_fhandle(entry.fh);
682 	return status;
683 }
684 
685 /*
686  * Now we cache directories properly, by converting xdr information
687  * to an array that can be used for lookups later.  This results in
688  * fewer cache pages, since we can store more information on each page.
689  * We only need to convert from xdr once so future lookups are much simpler
690  */
691 static
692 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
693 {
694 	struct inode	*inode = file_inode(desc->file);
695 	int ret;
696 
697 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
698 	if (ret < 0)
699 		goto error;
700 	SetPageUptodate(page);
701 
702 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
703 		/* Should never happen */
704 		nfs_zap_mapping(inode, inode->i_mapping);
705 	}
706 	unlock_page(page);
707 	return 0;
708  error:
709 	unlock_page(page);
710 	return ret;
711 }
712 
713 static
714 void cache_page_release(nfs_readdir_descriptor_t *desc)
715 {
716 	if (!desc->page->mapping)
717 		nfs_readdir_clear_array(desc->page);
718 	page_cache_release(desc->page);
719 	desc->page = NULL;
720 }
721 
722 static
723 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
724 {
725 	return read_cache_page(file_inode(desc->file)->i_mapping,
726 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
727 }
728 
729 /*
730  * Returns 0 if desc->dir_cookie was found on page desc->page_index
731  */
732 static
733 int find_cache_page(nfs_readdir_descriptor_t *desc)
734 {
735 	int res;
736 
737 	desc->page = get_cache_page(desc);
738 	if (IS_ERR(desc->page))
739 		return PTR_ERR(desc->page);
740 
741 	res = nfs_readdir_search_array(desc);
742 	if (res != 0)
743 		cache_page_release(desc);
744 	return res;
745 }
746 
747 /* Search for desc->dir_cookie from the beginning of the page cache */
748 static inline
749 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
750 {
751 	int res;
752 
753 	if (desc->page_index == 0) {
754 		desc->current_index = 0;
755 		desc->last_cookie = 0;
756 	}
757 	do {
758 		res = find_cache_page(desc);
759 	} while (res == -EAGAIN);
760 	return res;
761 }
762 
763 /*
764  * Once we've found the start of the dirent within a page: fill 'er up...
765  */
766 static
767 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
768 {
769 	struct file	*file = desc->file;
770 	int i = 0;
771 	int res = 0;
772 	struct nfs_cache_array *array = NULL;
773 	struct nfs_open_dir_context *ctx = file->private_data;
774 
775 	array = nfs_readdir_get_array(desc->page);
776 	if (IS_ERR(array)) {
777 		res = PTR_ERR(array);
778 		goto out;
779 	}
780 
781 	for (i = desc->cache_entry_index; i < array->size; i++) {
782 		struct nfs_cache_array_entry *ent;
783 
784 		ent = &array->array[i];
785 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
786 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
787 			desc->eof = 1;
788 			break;
789 		}
790 		desc->ctx->pos++;
791 		if (i < (array->size-1))
792 			*desc->dir_cookie = array->array[i+1].cookie;
793 		else
794 			*desc->dir_cookie = array->last_cookie;
795 		if (ctx->duped != 0)
796 			ctx->duped = 1;
797 	}
798 	if (array->eof_index >= 0)
799 		desc->eof = 1;
800 
801 	nfs_readdir_release_array(desc->page);
802 out:
803 	cache_page_release(desc);
804 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
805 			(unsigned long long)*desc->dir_cookie, res);
806 	return res;
807 }
808 
809 /*
810  * If we cannot find a cookie in our cache, we suspect that this is
811  * because it points to a deleted file, so we ask the server to return
812  * whatever it thinks is the next entry. We then feed this to filldir.
813  * If all goes well, we should then be able to find our way round the
814  * cache on the next call to readdir_search_pagecache();
815  *
816  * NOTE: we cannot add the anonymous page to the pagecache because
817  *	 the data it contains might not be page aligned. Besides,
818  *	 we should already have a complete representation of the
819  *	 directory in the page cache by the time we get here.
820  */
821 static inline
822 int uncached_readdir(nfs_readdir_descriptor_t *desc)
823 {
824 	struct page	*page = NULL;
825 	int		status;
826 	struct inode *inode = file_inode(desc->file);
827 	struct nfs_open_dir_context *ctx = desc->file->private_data;
828 
829 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
830 			(unsigned long long)*desc->dir_cookie);
831 
832 	page = alloc_page(GFP_HIGHUSER);
833 	if (!page) {
834 		status = -ENOMEM;
835 		goto out;
836 	}
837 
838 	desc->page_index = 0;
839 	desc->last_cookie = *desc->dir_cookie;
840 	desc->page = page;
841 	ctx->duped = 0;
842 
843 	status = nfs_readdir_xdr_to_array(desc, page, inode);
844 	if (status < 0)
845 		goto out_release;
846 
847 	status = nfs_do_filldir(desc);
848 
849  out:
850 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
851 			__func__, status);
852 	return status;
853  out_release:
854 	cache_page_release(desc);
855 	goto out;
856 }
857 
858 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
859 {
860 	struct nfs_inode *nfsi = NFS_I(dir);
861 
862 	if (nfs_attribute_cache_expired(dir))
863 		return true;
864 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
865 		return true;
866 	return false;
867 }
868 
869 /* The file offset position represents the dirent entry number.  A
870    last cookie cache takes care of the common case of reading the
871    whole directory.
872  */
873 static int nfs_readdir(struct file *file, struct dir_context *ctx)
874 {
875 	struct dentry	*dentry = file->f_path.dentry;
876 	struct inode	*inode = d_inode(dentry);
877 	nfs_readdir_descriptor_t my_desc,
878 			*desc = &my_desc;
879 	struct nfs_open_dir_context *dir_ctx = file->private_data;
880 	int res = 0;
881 
882 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
883 			file, (long long)ctx->pos);
884 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
885 
886 	/*
887 	 * ctx->pos points to the dirent entry number.
888 	 * *desc->dir_cookie has the cookie for the next entry. We have
889 	 * to either find the entry with the appropriate number or
890 	 * revalidate the cookie.
891 	 */
892 	memset(desc, 0, sizeof(*desc));
893 
894 	desc->file = file;
895 	desc->ctx = ctx;
896 	desc->dir_cookie = &dir_ctx->dir_cookie;
897 	desc->decode = NFS_PROTO(inode)->decode_dirent;
898 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
899 
900 	nfs_block_sillyrename(dentry);
901 	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
902 		res = nfs_revalidate_mapping(inode, file->f_mapping);
903 	if (res < 0)
904 		goto out;
905 
906 	do {
907 		res = readdir_search_pagecache(desc);
908 
909 		if (res == -EBADCOOKIE) {
910 			res = 0;
911 			/* This means either end of directory */
912 			if (*desc->dir_cookie && desc->eof == 0) {
913 				/* Or that the server has 'lost' a cookie */
914 				res = uncached_readdir(desc);
915 				if (res == 0)
916 					continue;
917 			}
918 			break;
919 		}
920 		if (res == -ETOOSMALL && desc->plus) {
921 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
922 			nfs_zap_caches(inode);
923 			desc->page_index = 0;
924 			desc->plus = 0;
925 			desc->eof = 0;
926 			continue;
927 		}
928 		if (res < 0)
929 			break;
930 
931 		res = nfs_do_filldir(desc);
932 		if (res < 0)
933 			break;
934 	} while (!desc->eof);
935 out:
936 	nfs_unblock_sillyrename(dentry);
937 	if (res > 0)
938 		res = 0;
939 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
940 	return res;
941 }
942 
943 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
944 {
945 	struct inode *inode = file_inode(filp);
946 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
947 
948 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
949 			filp, offset, whence);
950 
951 	mutex_lock(&inode->i_mutex);
952 	switch (whence) {
953 		case 1:
954 			offset += filp->f_pos;
955 		case 0:
956 			if (offset >= 0)
957 				break;
958 		default:
959 			offset = -EINVAL;
960 			goto out;
961 	}
962 	if (offset != filp->f_pos) {
963 		filp->f_pos = offset;
964 		dir_ctx->dir_cookie = 0;
965 		dir_ctx->duped = 0;
966 	}
967 out:
968 	mutex_unlock(&inode->i_mutex);
969 	return offset;
970 }
971 
972 /*
973  * All directory operations under NFS are synchronous, so fsync()
974  * is a dummy operation.
975  */
976 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
977 			 int datasync)
978 {
979 	struct inode *inode = file_inode(filp);
980 
981 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
982 
983 	mutex_lock(&inode->i_mutex);
984 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
985 	mutex_unlock(&inode->i_mutex);
986 	return 0;
987 }
988 
989 /**
990  * nfs_force_lookup_revalidate - Mark the directory as having changed
991  * @dir - pointer to directory inode
992  *
993  * This forces the revalidation code in nfs_lookup_revalidate() to do a
994  * full lookup on all child dentries of 'dir' whenever a change occurs
995  * on the server that might have invalidated our dcache.
996  *
997  * The caller should be holding dir->i_lock
998  */
999 void nfs_force_lookup_revalidate(struct inode *dir)
1000 {
1001 	NFS_I(dir)->cache_change_attribute++;
1002 }
1003 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1004 
1005 /*
1006  * A check for whether or not the parent directory has changed.
1007  * In the case it has, we assume that the dentries are untrustworthy
1008  * and may need to be looked up again.
1009  * If rcu_walk prevents us from performing a full check, return 0.
1010  */
1011 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1012 			      int rcu_walk)
1013 {
1014 	int ret;
1015 
1016 	if (IS_ROOT(dentry))
1017 		return 1;
1018 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1019 		return 0;
1020 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1021 		return 0;
1022 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1023 	if (rcu_walk)
1024 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1025 	else
1026 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1027 	if (ret < 0)
1028 		return 0;
1029 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1030 		return 0;
1031 	return 1;
1032 }
1033 
1034 /*
1035  * Use intent information to check whether or not we're going to do
1036  * an O_EXCL create using this path component.
1037  */
1038 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1039 {
1040 	if (NFS_PROTO(dir)->version == 2)
1041 		return 0;
1042 	return flags & LOOKUP_EXCL;
1043 }
1044 
1045 /*
1046  * Inode and filehandle revalidation for lookups.
1047  *
1048  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1049  * or if the intent information indicates that we're about to open this
1050  * particular file and the "nocto" mount flag is not set.
1051  *
1052  */
1053 static
1054 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1055 {
1056 	struct nfs_server *server = NFS_SERVER(inode);
1057 	int ret;
1058 
1059 	if (IS_AUTOMOUNT(inode))
1060 		return 0;
1061 	/* VFS wants an on-the-wire revalidation */
1062 	if (flags & LOOKUP_REVAL)
1063 		goto out_force;
1064 	/* This is an open(2) */
1065 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1066 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1067 		goto out_force;
1068 out:
1069 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1070 out_force:
1071 	if (flags & LOOKUP_RCU)
1072 		return -ECHILD;
1073 	ret = __nfs_revalidate_inode(server, inode);
1074 	if (ret != 0)
1075 		return ret;
1076 	goto out;
1077 }
1078 
1079 /*
1080  * We judge how long we want to trust negative
1081  * dentries by looking at the parent inode mtime.
1082  *
1083  * If parent mtime has changed, we revalidate, else we wait for a
1084  * period corresponding to the parent's attribute cache timeout value.
1085  *
1086  * If LOOKUP_RCU prevents us from performing a full check, return 1
1087  * suggesting a reval is needed.
1088  */
1089 static inline
1090 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1091 		       unsigned int flags)
1092 {
1093 	/* Don't revalidate a negative dentry if we're creating a new file */
1094 	if (flags & LOOKUP_CREATE)
1095 		return 0;
1096 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1097 		return 1;
1098 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1099 }
1100 
1101 /*
1102  * This is called every time the dcache has a lookup hit,
1103  * and we should check whether we can really trust that
1104  * lookup.
1105  *
1106  * NOTE! The hit can be a negative hit too, don't assume
1107  * we have an inode!
1108  *
1109  * If the parent directory is seen to have changed, we throw out the
1110  * cached dentry and do a new lookup.
1111  */
1112 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1113 {
1114 	struct inode *dir;
1115 	struct inode *inode;
1116 	struct dentry *parent;
1117 	struct nfs_fh *fhandle = NULL;
1118 	struct nfs_fattr *fattr = NULL;
1119 	struct nfs4_label *label = NULL;
1120 	int error;
1121 
1122 	if (flags & LOOKUP_RCU) {
1123 		parent = ACCESS_ONCE(dentry->d_parent);
1124 		dir = d_inode_rcu(parent);
1125 		if (!dir)
1126 			return -ECHILD;
1127 	} else {
1128 		parent = dget_parent(dentry);
1129 		dir = d_inode(parent);
1130 	}
1131 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1132 	inode = d_inode(dentry);
1133 
1134 	if (!inode) {
1135 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1136 			if (flags & LOOKUP_RCU)
1137 				return -ECHILD;
1138 			goto out_bad;
1139 		}
1140 		goto out_valid_noent;
1141 	}
1142 
1143 	if (is_bad_inode(inode)) {
1144 		if (flags & LOOKUP_RCU)
1145 			return -ECHILD;
1146 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1147 				__func__, dentry);
1148 		goto out_bad;
1149 	}
1150 
1151 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1152 		goto out_set_verifier;
1153 
1154 	/* Force a full look up iff the parent directory has changed */
1155 	if (!nfs_is_exclusive_create(dir, flags) &&
1156 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1157 
1158 		if (nfs_lookup_verify_inode(inode, flags)) {
1159 			if (flags & LOOKUP_RCU)
1160 				return -ECHILD;
1161 			goto out_zap_parent;
1162 		}
1163 		goto out_valid;
1164 	}
1165 
1166 	if (flags & LOOKUP_RCU)
1167 		return -ECHILD;
1168 
1169 	if (NFS_STALE(inode))
1170 		goto out_bad;
1171 
1172 	error = -ENOMEM;
1173 	fhandle = nfs_alloc_fhandle();
1174 	fattr = nfs_alloc_fattr();
1175 	if (fhandle == NULL || fattr == NULL)
1176 		goto out_error;
1177 
1178 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1179 	if (IS_ERR(label))
1180 		goto out_error;
1181 
1182 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1183 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1184 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1185 	if (error)
1186 		goto out_bad;
1187 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1188 		goto out_bad;
1189 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1190 		goto out_bad;
1191 
1192 	nfs_setsecurity(inode, fattr, label);
1193 
1194 	nfs_free_fattr(fattr);
1195 	nfs_free_fhandle(fhandle);
1196 	nfs4_label_free(label);
1197 
1198 out_set_verifier:
1199 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1200  out_valid:
1201 	/* Success: notify readdir to use READDIRPLUS */
1202 	nfs_advise_use_readdirplus(dir);
1203  out_valid_noent:
1204 	if (flags & LOOKUP_RCU) {
1205 		if (parent != ACCESS_ONCE(dentry->d_parent))
1206 			return -ECHILD;
1207 	} else
1208 		dput(parent);
1209 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1210 			__func__, dentry);
1211 	return 1;
1212 out_zap_parent:
1213 	nfs_zap_caches(dir);
1214  out_bad:
1215 	WARN_ON(flags & LOOKUP_RCU);
1216 	nfs_free_fattr(fattr);
1217 	nfs_free_fhandle(fhandle);
1218 	nfs4_label_free(label);
1219 	nfs_mark_for_revalidate(dir);
1220 	if (inode && S_ISDIR(inode->i_mode)) {
1221 		/* Purge readdir caches. */
1222 		nfs_zap_caches(inode);
1223 		/*
1224 		 * We can't d_drop the root of a disconnected tree:
1225 		 * its d_hash is on the s_anon list and d_drop() would hide
1226 		 * it from shrink_dcache_for_unmount(), leading to busy
1227 		 * inodes on unmount and further oopses.
1228 		 */
1229 		if (IS_ROOT(dentry))
1230 			goto out_valid;
1231 	}
1232 	dput(parent);
1233 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1234 			__func__, dentry);
1235 	return 0;
1236 out_error:
1237 	WARN_ON(flags & LOOKUP_RCU);
1238 	nfs_free_fattr(fattr);
1239 	nfs_free_fhandle(fhandle);
1240 	nfs4_label_free(label);
1241 	dput(parent);
1242 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1243 			__func__, dentry, error);
1244 	return error;
1245 }
1246 
1247 /*
1248  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1249  * when we don't really care about the dentry name. This is called when a
1250  * pathwalk ends on a dentry that was not found via a normal lookup in the
1251  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1252  *
1253  * In this situation, we just want to verify that the inode itself is OK
1254  * since the dentry might have changed on the server.
1255  */
1256 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1257 {
1258 	int error;
1259 	struct inode *inode = d_inode(dentry);
1260 
1261 	/*
1262 	 * I believe we can only get a negative dentry here in the case of a
1263 	 * procfs-style symlink. Just assume it's correct for now, but we may
1264 	 * eventually need to do something more here.
1265 	 */
1266 	if (!inode) {
1267 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1268 				__func__, dentry);
1269 		return 1;
1270 	}
1271 
1272 	if (is_bad_inode(inode)) {
1273 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1274 				__func__, dentry);
1275 		return 0;
1276 	}
1277 
1278 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1279 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1280 			__func__, inode->i_ino, error ? "invalid" : "valid");
1281 	return !error;
1282 }
1283 
1284 /*
1285  * This is called from dput() when d_count is going to 0.
1286  */
1287 static int nfs_dentry_delete(const struct dentry *dentry)
1288 {
1289 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1290 		dentry, dentry->d_flags);
1291 
1292 	/* Unhash any dentry with a stale inode */
1293 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1294 		return 1;
1295 
1296 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1297 		/* Unhash it, so that ->d_iput() would be called */
1298 		return 1;
1299 	}
1300 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1301 		/* Unhash it, so that ancestors of killed async unlink
1302 		 * files will be cleaned up during umount */
1303 		return 1;
1304 	}
1305 	return 0;
1306 
1307 }
1308 
1309 /* Ensure that we revalidate inode->i_nlink */
1310 static void nfs_drop_nlink(struct inode *inode)
1311 {
1312 	spin_lock(&inode->i_lock);
1313 	/* drop the inode if we're reasonably sure this is the last link */
1314 	if (inode->i_nlink == 1)
1315 		clear_nlink(inode);
1316 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1317 	spin_unlock(&inode->i_lock);
1318 }
1319 
1320 /*
1321  * Called when the dentry loses inode.
1322  * We use it to clean up silly-renamed files.
1323  */
1324 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1325 {
1326 	if (S_ISDIR(inode->i_mode))
1327 		/* drop any readdir cache as it could easily be old */
1328 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1329 
1330 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1331 		nfs_complete_unlink(dentry, inode);
1332 		nfs_drop_nlink(inode);
1333 	}
1334 	iput(inode);
1335 }
1336 
1337 static void nfs_d_release(struct dentry *dentry)
1338 {
1339 	/* free cached devname value, if it survived that far */
1340 	if (unlikely(dentry->d_fsdata)) {
1341 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1342 			WARN_ON(1);
1343 		else
1344 			kfree(dentry->d_fsdata);
1345 	}
1346 }
1347 
1348 const struct dentry_operations nfs_dentry_operations = {
1349 	.d_revalidate	= nfs_lookup_revalidate,
1350 	.d_weak_revalidate	= nfs_weak_revalidate,
1351 	.d_delete	= nfs_dentry_delete,
1352 	.d_iput		= nfs_dentry_iput,
1353 	.d_automount	= nfs_d_automount,
1354 	.d_release	= nfs_d_release,
1355 };
1356 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1357 
1358 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1359 {
1360 	struct dentry *res;
1361 	struct dentry *parent;
1362 	struct inode *inode = NULL;
1363 	struct nfs_fh *fhandle = NULL;
1364 	struct nfs_fattr *fattr = NULL;
1365 	struct nfs4_label *label = NULL;
1366 	int error;
1367 
1368 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1369 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1370 
1371 	res = ERR_PTR(-ENAMETOOLONG);
1372 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1373 		goto out;
1374 
1375 	/*
1376 	 * If we're doing an exclusive create, optimize away the lookup
1377 	 * but don't hash the dentry.
1378 	 */
1379 	if (nfs_is_exclusive_create(dir, flags)) {
1380 		d_instantiate(dentry, NULL);
1381 		res = NULL;
1382 		goto out;
1383 	}
1384 
1385 	res = ERR_PTR(-ENOMEM);
1386 	fhandle = nfs_alloc_fhandle();
1387 	fattr = nfs_alloc_fattr();
1388 	if (fhandle == NULL || fattr == NULL)
1389 		goto out;
1390 
1391 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1392 	if (IS_ERR(label))
1393 		goto out;
1394 
1395 	parent = dentry->d_parent;
1396 	/* Protect against concurrent sillydeletes */
1397 	trace_nfs_lookup_enter(dir, dentry, flags);
1398 	nfs_block_sillyrename(parent);
1399 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1400 	if (error == -ENOENT)
1401 		goto no_entry;
1402 	if (error < 0) {
1403 		res = ERR_PTR(error);
1404 		goto out_unblock_sillyrename;
1405 	}
1406 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1407 	res = ERR_CAST(inode);
1408 	if (IS_ERR(res))
1409 		goto out_unblock_sillyrename;
1410 
1411 	/* Success: notify readdir to use READDIRPLUS */
1412 	nfs_advise_use_readdirplus(dir);
1413 
1414 no_entry:
1415 	res = d_splice_alias(inode, dentry);
1416 	if (res != NULL) {
1417 		if (IS_ERR(res))
1418 			goto out_unblock_sillyrename;
1419 		dentry = res;
1420 	}
1421 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1422 out_unblock_sillyrename:
1423 	nfs_unblock_sillyrename(parent);
1424 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1425 	nfs4_label_free(label);
1426 out:
1427 	nfs_free_fattr(fattr);
1428 	nfs_free_fhandle(fhandle);
1429 	return res;
1430 }
1431 EXPORT_SYMBOL_GPL(nfs_lookup);
1432 
1433 #if IS_ENABLED(CONFIG_NFS_V4)
1434 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1435 
1436 const struct dentry_operations nfs4_dentry_operations = {
1437 	.d_revalidate	= nfs4_lookup_revalidate,
1438 	.d_delete	= nfs_dentry_delete,
1439 	.d_iput		= nfs_dentry_iput,
1440 	.d_automount	= nfs_d_automount,
1441 	.d_release	= nfs_d_release,
1442 };
1443 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1444 
1445 static fmode_t flags_to_mode(int flags)
1446 {
1447 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1448 	if ((flags & O_ACCMODE) != O_WRONLY)
1449 		res |= FMODE_READ;
1450 	if ((flags & O_ACCMODE) != O_RDONLY)
1451 		res |= FMODE_WRITE;
1452 	return res;
1453 }
1454 
1455 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1456 {
1457 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1458 }
1459 
1460 static int do_open(struct inode *inode, struct file *filp)
1461 {
1462 	nfs_fscache_open_file(inode, filp);
1463 	return 0;
1464 }
1465 
1466 static int nfs_finish_open(struct nfs_open_context *ctx,
1467 			   struct dentry *dentry,
1468 			   struct file *file, unsigned open_flags,
1469 			   int *opened)
1470 {
1471 	int err;
1472 
1473 	err = finish_open(file, dentry, do_open, opened);
1474 	if (err)
1475 		goto out;
1476 	nfs_file_set_open_context(file, ctx);
1477 
1478 out:
1479 	return err;
1480 }
1481 
1482 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1483 		    struct file *file, unsigned open_flags,
1484 		    umode_t mode, int *opened)
1485 {
1486 	struct nfs_open_context *ctx;
1487 	struct dentry *res;
1488 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1489 	struct inode *inode;
1490 	unsigned int lookup_flags = 0;
1491 	int err;
1492 
1493 	/* Expect a negative dentry */
1494 	BUG_ON(d_inode(dentry));
1495 
1496 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1497 			dir->i_sb->s_id, dir->i_ino, dentry);
1498 
1499 	err = nfs_check_flags(open_flags);
1500 	if (err)
1501 		return err;
1502 
1503 	/* NFS only supports OPEN on regular files */
1504 	if ((open_flags & O_DIRECTORY)) {
1505 		if (!d_unhashed(dentry)) {
1506 			/*
1507 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1508 			 * revalidated and is fine, no need to perform lookup
1509 			 * again
1510 			 */
1511 			return -ENOENT;
1512 		}
1513 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1514 		goto no_open;
1515 	}
1516 
1517 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1518 		return -ENAMETOOLONG;
1519 
1520 	if (open_flags & O_CREAT) {
1521 		attr.ia_valid |= ATTR_MODE;
1522 		attr.ia_mode = mode & ~current_umask();
1523 	}
1524 	if (open_flags & O_TRUNC) {
1525 		attr.ia_valid |= ATTR_SIZE;
1526 		attr.ia_size = 0;
1527 	}
1528 
1529 	ctx = create_nfs_open_context(dentry, open_flags);
1530 	err = PTR_ERR(ctx);
1531 	if (IS_ERR(ctx))
1532 		goto out;
1533 
1534 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1535 	nfs_block_sillyrename(dentry->d_parent);
1536 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1537 	nfs_unblock_sillyrename(dentry->d_parent);
1538 	if (IS_ERR(inode)) {
1539 		err = PTR_ERR(inode);
1540 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1541 		put_nfs_open_context(ctx);
1542 		switch (err) {
1543 		case -ENOENT:
1544 			d_drop(dentry);
1545 			d_add(dentry, NULL);
1546 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1547 			break;
1548 		case -EISDIR:
1549 		case -ENOTDIR:
1550 			goto no_open;
1551 		case -ELOOP:
1552 			if (!(open_flags & O_NOFOLLOW))
1553 				goto no_open;
1554 			break;
1555 			/* case -EINVAL: */
1556 		default:
1557 			break;
1558 		}
1559 		goto out;
1560 	}
1561 
1562 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1563 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1564 	put_nfs_open_context(ctx);
1565 out:
1566 	return err;
1567 
1568 no_open:
1569 	res = nfs_lookup(dir, dentry, lookup_flags);
1570 	err = PTR_ERR(res);
1571 	if (IS_ERR(res))
1572 		goto out;
1573 
1574 	return finish_no_open(file, res);
1575 }
1576 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1577 
1578 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1579 {
1580 	struct inode *inode;
1581 	int ret = 0;
1582 
1583 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1584 		goto no_open;
1585 	if (d_mountpoint(dentry))
1586 		goto no_open;
1587 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1588 		goto no_open;
1589 
1590 	inode = d_inode(dentry);
1591 
1592 	/* We can't create new files in nfs_open_revalidate(), so we
1593 	 * optimize away revalidation of negative dentries.
1594 	 */
1595 	if (inode == NULL) {
1596 		struct dentry *parent;
1597 		struct inode *dir;
1598 
1599 		if (flags & LOOKUP_RCU) {
1600 			parent = ACCESS_ONCE(dentry->d_parent);
1601 			dir = d_inode_rcu(parent);
1602 			if (!dir)
1603 				return -ECHILD;
1604 		} else {
1605 			parent = dget_parent(dentry);
1606 			dir = d_inode(parent);
1607 		}
1608 		if (!nfs_neg_need_reval(dir, dentry, flags))
1609 			ret = 1;
1610 		else if (flags & LOOKUP_RCU)
1611 			ret = -ECHILD;
1612 		if (!(flags & LOOKUP_RCU))
1613 			dput(parent);
1614 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1615 			return -ECHILD;
1616 		goto out;
1617 	}
1618 
1619 	/* NFS only supports OPEN on regular files */
1620 	if (!S_ISREG(inode->i_mode))
1621 		goto no_open;
1622 	/* We cannot do exclusive creation on a positive dentry */
1623 	if (flags & LOOKUP_EXCL)
1624 		goto no_open;
1625 
1626 	/* Let f_op->open() actually open (and revalidate) the file */
1627 	ret = 1;
1628 
1629 out:
1630 	return ret;
1631 
1632 no_open:
1633 	return nfs_lookup_revalidate(dentry, flags);
1634 }
1635 
1636 #endif /* CONFIG_NFSV4 */
1637 
1638 /*
1639  * Code common to create, mkdir, and mknod.
1640  */
1641 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1642 				struct nfs_fattr *fattr,
1643 				struct nfs4_label *label)
1644 {
1645 	struct dentry *parent = dget_parent(dentry);
1646 	struct inode *dir = d_inode(parent);
1647 	struct inode *inode;
1648 	int error = -EACCES;
1649 
1650 	d_drop(dentry);
1651 
1652 	/* We may have been initialized further down */
1653 	if (d_really_is_positive(dentry))
1654 		goto out;
1655 	if (fhandle->size == 0) {
1656 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1657 		if (error)
1658 			goto out_error;
1659 	}
1660 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1661 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1662 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1663 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1664 		if (error < 0)
1665 			goto out_error;
1666 	}
1667 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1668 	error = PTR_ERR(inode);
1669 	if (IS_ERR(inode))
1670 		goto out_error;
1671 	d_add(dentry, inode);
1672 out:
1673 	dput(parent);
1674 	return 0;
1675 out_error:
1676 	nfs_mark_for_revalidate(dir);
1677 	dput(parent);
1678 	return error;
1679 }
1680 EXPORT_SYMBOL_GPL(nfs_instantiate);
1681 
1682 /*
1683  * Following a failed create operation, we drop the dentry rather
1684  * than retain a negative dentry. This avoids a problem in the event
1685  * that the operation succeeded on the server, but an error in the
1686  * reply path made it appear to have failed.
1687  */
1688 int nfs_create(struct inode *dir, struct dentry *dentry,
1689 		umode_t mode, bool excl)
1690 {
1691 	struct iattr attr;
1692 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1693 	int error;
1694 
1695 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1696 			dir->i_sb->s_id, dir->i_ino, dentry);
1697 
1698 	attr.ia_mode = mode;
1699 	attr.ia_valid = ATTR_MODE;
1700 
1701 	trace_nfs_create_enter(dir, dentry, open_flags);
1702 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1703 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1704 	if (error != 0)
1705 		goto out_err;
1706 	return 0;
1707 out_err:
1708 	d_drop(dentry);
1709 	return error;
1710 }
1711 EXPORT_SYMBOL_GPL(nfs_create);
1712 
1713 /*
1714  * See comments for nfs_proc_create regarding failed operations.
1715  */
1716 int
1717 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1718 {
1719 	struct iattr attr;
1720 	int status;
1721 
1722 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1723 			dir->i_sb->s_id, dir->i_ino, dentry);
1724 
1725 	if (!new_valid_dev(rdev))
1726 		return -EINVAL;
1727 
1728 	attr.ia_mode = mode;
1729 	attr.ia_valid = ATTR_MODE;
1730 
1731 	trace_nfs_mknod_enter(dir, dentry);
1732 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1733 	trace_nfs_mknod_exit(dir, dentry, status);
1734 	if (status != 0)
1735 		goto out_err;
1736 	return 0;
1737 out_err:
1738 	d_drop(dentry);
1739 	return status;
1740 }
1741 EXPORT_SYMBOL_GPL(nfs_mknod);
1742 
1743 /*
1744  * See comments for nfs_proc_create regarding failed operations.
1745  */
1746 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1747 {
1748 	struct iattr attr;
1749 	int error;
1750 
1751 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1752 			dir->i_sb->s_id, dir->i_ino, dentry);
1753 
1754 	attr.ia_valid = ATTR_MODE;
1755 	attr.ia_mode = mode | S_IFDIR;
1756 
1757 	trace_nfs_mkdir_enter(dir, dentry);
1758 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1759 	trace_nfs_mkdir_exit(dir, dentry, error);
1760 	if (error != 0)
1761 		goto out_err;
1762 	return 0;
1763 out_err:
1764 	d_drop(dentry);
1765 	return error;
1766 }
1767 EXPORT_SYMBOL_GPL(nfs_mkdir);
1768 
1769 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1770 {
1771 	if (simple_positive(dentry))
1772 		d_delete(dentry);
1773 }
1774 
1775 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1776 {
1777 	int error;
1778 
1779 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1780 			dir->i_sb->s_id, dir->i_ino, dentry);
1781 
1782 	trace_nfs_rmdir_enter(dir, dentry);
1783 	if (d_really_is_positive(dentry)) {
1784 		nfs_wait_on_sillyrename(dentry);
1785 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1786 		/* Ensure the VFS deletes this inode */
1787 		switch (error) {
1788 		case 0:
1789 			clear_nlink(d_inode(dentry));
1790 			break;
1791 		case -ENOENT:
1792 			nfs_dentry_handle_enoent(dentry);
1793 		}
1794 	} else
1795 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1796 	trace_nfs_rmdir_exit(dir, dentry, error);
1797 
1798 	return error;
1799 }
1800 EXPORT_SYMBOL_GPL(nfs_rmdir);
1801 
1802 /*
1803  * Remove a file after making sure there are no pending writes,
1804  * and after checking that the file has only one user.
1805  *
1806  * We invalidate the attribute cache and free the inode prior to the operation
1807  * to avoid possible races if the server reuses the inode.
1808  */
1809 static int nfs_safe_remove(struct dentry *dentry)
1810 {
1811 	struct inode *dir = d_inode(dentry->d_parent);
1812 	struct inode *inode = d_inode(dentry);
1813 	int error = -EBUSY;
1814 
1815 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1816 
1817 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1818 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1819 		error = 0;
1820 		goto out;
1821 	}
1822 
1823 	trace_nfs_remove_enter(dir, dentry);
1824 	if (inode != NULL) {
1825 		NFS_PROTO(inode)->return_delegation(inode);
1826 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1827 		if (error == 0)
1828 			nfs_drop_nlink(inode);
1829 	} else
1830 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1831 	if (error == -ENOENT)
1832 		nfs_dentry_handle_enoent(dentry);
1833 	trace_nfs_remove_exit(dir, dentry, error);
1834 out:
1835 	return error;
1836 }
1837 
1838 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1839  *  belongs to an active ".nfs..." file and we return -EBUSY.
1840  *
1841  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1842  */
1843 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1844 {
1845 	int error;
1846 	int need_rehash = 0;
1847 
1848 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1849 		dir->i_ino, dentry);
1850 
1851 	trace_nfs_unlink_enter(dir, dentry);
1852 	spin_lock(&dentry->d_lock);
1853 	if (d_count(dentry) > 1) {
1854 		spin_unlock(&dentry->d_lock);
1855 		/* Start asynchronous writeout of the inode */
1856 		write_inode_now(d_inode(dentry), 0);
1857 		error = nfs_sillyrename(dir, dentry);
1858 		goto out;
1859 	}
1860 	if (!d_unhashed(dentry)) {
1861 		__d_drop(dentry);
1862 		need_rehash = 1;
1863 	}
1864 	spin_unlock(&dentry->d_lock);
1865 	error = nfs_safe_remove(dentry);
1866 	if (!error || error == -ENOENT) {
1867 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1868 	} else if (need_rehash)
1869 		d_rehash(dentry);
1870 out:
1871 	trace_nfs_unlink_exit(dir, dentry, error);
1872 	return error;
1873 }
1874 EXPORT_SYMBOL_GPL(nfs_unlink);
1875 
1876 /*
1877  * To create a symbolic link, most file systems instantiate a new inode,
1878  * add a page to it containing the path, then write it out to the disk
1879  * using prepare_write/commit_write.
1880  *
1881  * Unfortunately the NFS client can't create the in-core inode first
1882  * because it needs a file handle to create an in-core inode (see
1883  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1884  * symlink request has completed on the server.
1885  *
1886  * So instead we allocate a raw page, copy the symname into it, then do
1887  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1888  * now have a new file handle and can instantiate an in-core NFS inode
1889  * and move the raw page into its mapping.
1890  */
1891 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1892 {
1893 	struct page *page;
1894 	char *kaddr;
1895 	struct iattr attr;
1896 	unsigned int pathlen = strlen(symname);
1897 	int error;
1898 
1899 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1900 		dir->i_ino, dentry, symname);
1901 
1902 	if (pathlen > PAGE_SIZE)
1903 		return -ENAMETOOLONG;
1904 
1905 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1906 	attr.ia_valid = ATTR_MODE;
1907 
1908 	page = alloc_page(GFP_HIGHUSER);
1909 	if (!page)
1910 		return -ENOMEM;
1911 
1912 	kaddr = kmap_atomic(page);
1913 	memcpy(kaddr, symname, pathlen);
1914 	if (pathlen < PAGE_SIZE)
1915 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1916 	kunmap_atomic(kaddr);
1917 
1918 	trace_nfs_symlink_enter(dir, dentry);
1919 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1920 	trace_nfs_symlink_exit(dir, dentry, error);
1921 	if (error != 0) {
1922 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1923 			dir->i_sb->s_id, dir->i_ino,
1924 			dentry, symname, error);
1925 		d_drop(dentry);
1926 		__free_page(page);
1927 		return error;
1928 	}
1929 
1930 	/*
1931 	 * No big deal if we can't add this page to the page cache here.
1932 	 * READLINK will get the missing page from the server if needed.
1933 	 */
1934 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1935 							GFP_KERNEL)) {
1936 		SetPageUptodate(page);
1937 		unlock_page(page);
1938 		/*
1939 		 * add_to_page_cache_lru() grabs an extra page refcount.
1940 		 * Drop it here to avoid leaking this page later.
1941 		 */
1942 		page_cache_release(page);
1943 	} else
1944 		__free_page(page);
1945 
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(nfs_symlink);
1949 
1950 int
1951 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1952 {
1953 	struct inode *inode = d_inode(old_dentry);
1954 	int error;
1955 
1956 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1957 		old_dentry, dentry);
1958 
1959 	trace_nfs_link_enter(inode, dir, dentry);
1960 	NFS_PROTO(inode)->return_delegation(inode);
1961 
1962 	d_drop(dentry);
1963 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1964 	if (error == 0) {
1965 		ihold(inode);
1966 		d_add(dentry, inode);
1967 	}
1968 	trace_nfs_link_exit(inode, dir, dentry, error);
1969 	return error;
1970 }
1971 EXPORT_SYMBOL_GPL(nfs_link);
1972 
1973 /*
1974  * RENAME
1975  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1976  * different file handle for the same inode after a rename (e.g. when
1977  * moving to a different directory). A fail-safe method to do so would
1978  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1979  * rename the old file using the sillyrename stuff. This way, the original
1980  * file in old_dir will go away when the last process iput()s the inode.
1981  *
1982  * FIXED.
1983  *
1984  * It actually works quite well. One needs to have the possibility for
1985  * at least one ".nfs..." file in each directory the file ever gets
1986  * moved or linked to which happens automagically with the new
1987  * implementation that only depends on the dcache stuff instead of
1988  * using the inode layer
1989  *
1990  * Unfortunately, things are a little more complicated than indicated
1991  * above. For a cross-directory move, we want to make sure we can get
1992  * rid of the old inode after the operation.  This means there must be
1993  * no pending writes (if it's a file), and the use count must be 1.
1994  * If these conditions are met, we can drop the dentries before doing
1995  * the rename.
1996  */
1997 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1998 		      struct inode *new_dir, struct dentry *new_dentry)
1999 {
2000 	struct inode *old_inode = d_inode(old_dentry);
2001 	struct inode *new_inode = d_inode(new_dentry);
2002 	struct dentry *dentry = NULL, *rehash = NULL;
2003 	struct rpc_task *task;
2004 	int error = -EBUSY;
2005 
2006 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2007 		 old_dentry, new_dentry,
2008 		 d_count(new_dentry));
2009 
2010 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2011 	/*
2012 	 * For non-directories, check whether the target is busy and if so,
2013 	 * make a copy of the dentry and then do a silly-rename. If the
2014 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2015 	 * the new target.
2016 	 */
2017 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2018 		/*
2019 		 * To prevent any new references to the target during the
2020 		 * rename, we unhash the dentry in advance.
2021 		 */
2022 		if (!d_unhashed(new_dentry)) {
2023 			d_drop(new_dentry);
2024 			rehash = new_dentry;
2025 		}
2026 
2027 		if (d_count(new_dentry) > 2) {
2028 			int err;
2029 
2030 			/* copy the target dentry's name */
2031 			dentry = d_alloc(new_dentry->d_parent,
2032 					 &new_dentry->d_name);
2033 			if (!dentry)
2034 				goto out;
2035 
2036 			/* silly-rename the existing target ... */
2037 			err = nfs_sillyrename(new_dir, new_dentry);
2038 			if (err)
2039 				goto out;
2040 
2041 			new_dentry = dentry;
2042 			rehash = NULL;
2043 			new_inode = NULL;
2044 		}
2045 	}
2046 
2047 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2048 	if (new_inode != NULL)
2049 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2050 
2051 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2052 	if (IS_ERR(task)) {
2053 		error = PTR_ERR(task);
2054 		goto out;
2055 	}
2056 
2057 	error = rpc_wait_for_completion_task(task);
2058 	if (error == 0)
2059 		error = task->tk_status;
2060 	rpc_put_task(task);
2061 	nfs_mark_for_revalidate(old_inode);
2062 out:
2063 	if (rehash)
2064 		d_rehash(rehash);
2065 	trace_nfs_rename_exit(old_dir, old_dentry,
2066 			new_dir, new_dentry, error);
2067 	if (!error) {
2068 		if (new_inode != NULL)
2069 			nfs_drop_nlink(new_inode);
2070 		d_move(old_dentry, new_dentry);
2071 		nfs_set_verifier(new_dentry,
2072 					nfs_save_change_attribute(new_dir));
2073 	} else if (error == -ENOENT)
2074 		nfs_dentry_handle_enoent(old_dentry);
2075 
2076 	/* new dentry created? */
2077 	if (dentry)
2078 		dput(dentry);
2079 	return error;
2080 }
2081 EXPORT_SYMBOL_GPL(nfs_rename);
2082 
2083 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2084 static LIST_HEAD(nfs_access_lru_list);
2085 static atomic_long_t nfs_access_nr_entries;
2086 
2087 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2088 module_param(nfs_access_max_cachesize, ulong, 0644);
2089 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2090 
2091 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2092 {
2093 	put_rpccred(entry->cred);
2094 	kfree_rcu(entry, rcu_head);
2095 	smp_mb__before_atomic();
2096 	atomic_long_dec(&nfs_access_nr_entries);
2097 	smp_mb__after_atomic();
2098 }
2099 
2100 static void nfs_access_free_list(struct list_head *head)
2101 {
2102 	struct nfs_access_entry *cache;
2103 
2104 	while (!list_empty(head)) {
2105 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2106 		list_del(&cache->lru);
2107 		nfs_access_free_entry(cache);
2108 	}
2109 }
2110 
2111 static unsigned long
2112 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2113 {
2114 	LIST_HEAD(head);
2115 	struct nfs_inode *nfsi, *next;
2116 	struct nfs_access_entry *cache;
2117 	long freed = 0;
2118 
2119 	spin_lock(&nfs_access_lru_lock);
2120 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2121 		struct inode *inode;
2122 
2123 		if (nr_to_scan-- == 0)
2124 			break;
2125 		inode = &nfsi->vfs_inode;
2126 		spin_lock(&inode->i_lock);
2127 		if (list_empty(&nfsi->access_cache_entry_lru))
2128 			goto remove_lru_entry;
2129 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2130 				struct nfs_access_entry, lru);
2131 		list_move(&cache->lru, &head);
2132 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2133 		freed++;
2134 		if (!list_empty(&nfsi->access_cache_entry_lru))
2135 			list_move_tail(&nfsi->access_cache_inode_lru,
2136 					&nfs_access_lru_list);
2137 		else {
2138 remove_lru_entry:
2139 			list_del_init(&nfsi->access_cache_inode_lru);
2140 			smp_mb__before_atomic();
2141 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2142 			smp_mb__after_atomic();
2143 		}
2144 		spin_unlock(&inode->i_lock);
2145 	}
2146 	spin_unlock(&nfs_access_lru_lock);
2147 	nfs_access_free_list(&head);
2148 	return freed;
2149 }
2150 
2151 unsigned long
2152 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2153 {
2154 	int nr_to_scan = sc->nr_to_scan;
2155 	gfp_t gfp_mask = sc->gfp_mask;
2156 
2157 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2158 		return SHRINK_STOP;
2159 	return nfs_do_access_cache_scan(nr_to_scan);
2160 }
2161 
2162 
2163 unsigned long
2164 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2165 {
2166 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2167 }
2168 
2169 static void
2170 nfs_access_cache_enforce_limit(void)
2171 {
2172 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2173 	unsigned long diff;
2174 	unsigned int nr_to_scan;
2175 
2176 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2177 		return;
2178 	nr_to_scan = 100;
2179 	diff = nr_entries - nfs_access_max_cachesize;
2180 	if (diff < nr_to_scan)
2181 		nr_to_scan = diff;
2182 	nfs_do_access_cache_scan(nr_to_scan);
2183 }
2184 
2185 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2186 {
2187 	struct rb_root *root_node = &nfsi->access_cache;
2188 	struct rb_node *n;
2189 	struct nfs_access_entry *entry;
2190 
2191 	/* Unhook entries from the cache */
2192 	while ((n = rb_first(root_node)) != NULL) {
2193 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2194 		rb_erase(n, root_node);
2195 		list_move(&entry->lru, head);
2196 	}
2197 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2198 }
2199 
2200 void nfs_access_zap_cache(struct inode *inode)
2201 {
2202 	LIST_HEAD(head);
2203 
2204 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2205 		return;
2206 	/* Remove from global LRU init */
2207 	spin_lock(&nfs_access_lru_lock);
2208 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2209 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2210 
2211 	spin_lock(&inode->i_lock);
2212 	__nfs_access_zap_cache(NFS_I(inode), &head);
2213 	spin_unlock(&inode->i_lock);
2214 	spin_unlock(&nfs_access_lru_lock);
2215 	nfs_access_free_list(&head);
2216 }
2217 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2218 
2219 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2220 {
2221 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2222 	struct nfs_access_entry *entry;
2223 
2224 	while (n != NULL) {
2225 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2226 
2227 		if (cred < entry->cred)
2228 			n = n->rb_left;
2229 		else if (cred > entry->cred)
2230 			n = n->rb_right;
2231 		else
2232 			return entry;
2233 	}
2234 	return NULL;
2235 }
2236 
2237 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2238 {
2239 	struct nfs_inode *nfsi = NFS_I(inode);
2240 	struct nfs_access_entry *cache;
2241 	int err = -ENOENT;
2242 
2243 	spin_lock(&inode->i_lock);
2244 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2245 		goto out_zap;
2246 	cache = nfs_access_search_rbtree(inode, cred);
2247 	if (cache == NULL)
2248 		goto out;
2249 	if (!nfs_have_delegated_attributes(inode) &&
2250 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2251 		goto out_stale;
2252 	res->jiffies = cache->jiffies;
2253 	res->cred = cache->cred;
2254 	res->mask = cache->mask;
2255 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2256 	err = 0;
2257 out:
2258 	spin_unlock(&inode->i_lock);
2259 	return err;
2260 out_stale:
2261 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2262 	list_del(&cache->lru);
2263 	spin_unlock(&inode->i_lock);
2264 	nfs_access_free_entry(cache);
2265 	return -ENOENT;
2266 out_zap:
2267 	spin_unlock(&inode->i_lock);
2268 	nfs_access_zap_cache(inode);
2269 	return -ENOENT;
2270 }
2271 
2272 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2273 {
2274 	/* Only check the most recently returned cache entry,
2275 	 * but do it without locking.
2276 	 */
2277 	struct nfs_inode *nfsi = NFS_I(inode);
2278 	struct nfs_access_entry *cache;
2279 	int err = -ECHILD;
2280 	struct list_head *lh;
2281 
2282 	rcu_read_lock();
2283 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2284 		goto out;
2285 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2286 	cache = list_entry(lh, struct nfs_access_entry, lru);
2287 	if (lh == &nfsi->access_cache_entry_lru ||
2288 	    cred != cache->cred)
2289 		cache = NULL;
2290 	if (cache == NULL)
2291 		goto out;
2292 	if (!nfs_have_delegated_attributes(inode) &&
2293 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2294 		goto out;
2295 	res->jiffies = cache->jiffies;
2296 	res->cred = cache->cred;
2297 	res->mask = cache->mask;
2298 	err = 0;
2299 out:
2300 	rcu_read_unlock();
2301 	return err;
2302 }
2303 
2304 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2305 {
2306 	struct nfs_inode *nfsi = NFS_I(inode);
2307 	struct rb_root *root_node = &nfsi->access_cache;
2308 	struct rb_node **p = &root_node->rb_node;
2309 	struct rb_node *parent = NULL;
2310 	struct nfs_access_entry *entry;
2311 
2312 	spin_lock(&inode->i_lock);
2313 	while (*p != NULL) {
2314 		parent = *p;
2315 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2316 
2317 		if (set->cred < entry->cred)
2318 			p = &parent->rb_left;
2319 		else if (set->cred > entry->cred)
2320 			p = &parent->rb_right;
2321 		else
2322 			goto found;
2323 	}
2324 	rb_link_node(&set->rb_node, parent, p);
2325 	rb_insert_color(&set->rb_node, root_node);
2326 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2327 	spin_unlock(&inode->i_lock);
2328 	return;
2329 found:
2330 	rb_replace_node(parent, &set->rb_node, root_node);
2331 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2332 	list_del(&entry->lru);
2333 	spin_unlock(&inode->i_lock);
2334 	nfs_access_free_entry(entry);
2335 }
2336 
2337 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2338 {
2339 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2340 	if (cache == NULL)
2341 		return;
2342 	RB_CLEAR_NODE(&cache->rb_node);
2343 	cache->jiffies = set->jiffies;
2344 	cache->cred = get_rpccred(set->cred);
2345 	cache->mask = set->mask;
2346 
2347 	/* The above field assignments must be visible
2348 	 * before this item appears on the lru.  We cannot easily
2349 	 * use rcu_assign_pointer, so just force the memory barrier.
2350 	 */
2351 	smp_wmb();
2352 	nfs_access_add_rbtree(inode, cache);
2353 
2354 	/* Update accounting */
2355 	smp_mb__before_atomic();
2356 	atomic_long_inc(&nfs_access_nr_entries);
2357 	smp_mb__after_atomic();
2358 
2359 	/* Add inode to global LRU list */
2360 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2361 		spin_lock(&nfs_access_lru_lock);
2362 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2363 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2364 					&nfs_access_lru_list);
2365 		spin_unlock(&nfs_access_lru_lock);
2366 	}
2367 	nfs_access_cache_enforce_limit();
2368 }
2369 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2370 
2371 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2372 {
2373 	entry->mask = 0;
2374 	if (access_result & NFS4_ACCESS_READ)
2375 		entry->mask |= MAY_READ;
2376 	if (access_result &
2377 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2378 		entry->mask |= MAY_WRITE;
2379 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2380 		entry->mask |= MAY_EXEC;
2381 }
2382 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2383 
2384 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2385 {
2386 	struct nfs_access_entry cache;
2387 	int status;
2388 
2389 	trace_nfs_access_enter(inode);
2390 
2391 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2392 	if (status != 0)
2393 		status = nfs_access_get_cached(inode, cred, &cache);
2394 	if (status == 0)
2395 		goto out_cached;
2396 
2397 	status = -ECHILD;
2398 	if (mask & MAY_NOT_BLOCK)
2399 		goto out;
2400 
2401 	/* Be clever: ask server to check for all possible rights */
2402 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2403 	cache.cred = cred;
2404 	cache.jiffies = jiffies;
2405 	status = NFS_PROTO(inode)->access(inode, &cache);
2406 	if (status != 0) {
2407 		if (status == -ESTALE) {
2408 			nfs_zap_caches(inode);
2409 			if (!S_ISDIR(inode->i_mode))
2410 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2411 		}
2412 		goto out;
2413 	}
2414 	nfs_access_add_cache(inode, &cache);
2415 out_cached:
2416 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2417 		status = -EACCES;
2418 out:
2419 	trace_nfs_access_exit(inode, status);
2420 	return status;
2421 }
2422 
2423 static int nfs_open_permission_mask(int openflags)
2424 {
2425 	int mask = 0;
2426 
2427 	if (openflags & __FMODE_EXEC) {
2428 		/* ONLY check exec rights */
2429 		mask = MAY_EXEC;
2430 	} else {
2431 		if ((openflags & O_ACCMODE) != O_WRONLY)
2432 			mask |= MAY_READ;
2433 		if ((openflags & O_ACCMODE) != O_RDONLY)
2434 			mask |= MAY_WRITE;
2435 	}
2436 
2437 	return mask;
2438 }
2439 
2440 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2441 {
2442 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2443 }
2444 EXPORT_SYMBOL_GPL(nfs_may_open);
2445 
2446 int nfs_permission(struct inode *inode, int mask)
2447 {
2448 	struct rpc_cred *cred;
2449 	int res = 0;
2450 
2451 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2452 
2453 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2454 		goto out;
2455 	/* Is this sys_access() ? */
2456 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2457 		goto force_lookup;
2458 
2459 	switch (inode->i_mode & S_IFMT) {
2460 		case S_IFLNK:
2461 			goto out;
2462 		case S_IFREG:
2463 			break;
2464 		case S_IFDIR:
2465 			/*
2466 			 * Optimize away all write operations, since the server
2467 			 * will check permissions when we perform the op.
2468 			 */
2469 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2470 				goto out;
2471 	}
2472 
2473 force_lookup:
2474 	if (!NFS_PROTO(inode)->access)
2475 		goto out_notsup;
2476 
2477 	/* Always try fast lookups first */
2478 	rcu_read_lock();
2479 	cred = rpc_lookup_cred_nonblock();
2480 	if (!IS_ERR(cred))
2481 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2482 	else
2483 		res = PTR_ERR(cred);
2484 	rcu_read_unlock();
2485 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2486 		/* Fast lookup failed, try the slow way */
2487 		cred = rpc_lookup_cred();
2488 		if (!IS_ERR(cred)) {
2489 			res = nfs_do_access(inode, cred, mask);
2490 			put_rpccred(cred);
2491 		} else
2492 			res = PTR_ERR(cred);
2493 	}
2494 out:
2495 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2496 		res = -EACCES;
2497 
2498 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2499 		inode->i_sb->s_id, inode->i_ino, mask, res);
2500 	return res;
2501 out_notsup:
2502 	if (mask & MAY_NOT_BLOCK)
2503 		return -ECHILD;
2504 
2505 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2506 	if (res == 0)
2507 		res = generic_permission(inode, mask);
2508 	goto out;
2509 }
2510 EXPORT_SYMBOL_GPL(nfs_permission);
2511 
2512 /*
2513  * Local variables:
2514  *  version-control: t
2515  *  kept-new-versions: 5
2516  * End:
2517  */
2518