1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Network filesystem high-level (buffered) writeback. 3 * 4 * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 * 7 * 8 * To support network filesystems with local caching, we manage a situation 9 * that can be envisioned like the following: 10 * 11 * +---+---+-----+-----+---+----------+ 12 * Folios: | | | | | | | 13 * +---+---+-----+-----+---+----------+ 14 * 15 * +------+------+ +----+----+ 16 * Upload: | | |.....| | | 17 * (Stream 0) +------+------+ +----+----+ 18 * 19 * +------+------+------+------+------+ 20 * Cache: | | | | | | 21 * (Stream 1) +------+------+------+------+------+ 22 * 23 * Where we have a sequence of folios of varying sizes that we need to overlay 24 * with multiple parallel streams of I/O requests, where the I/O requests in a 25 * stream may also be of various sizes (in cifs, for example, the sizes are 26 * negotiated with the server; in something like ceph, they may represent the 27 * sizes of storage objects). 28 * 29 * The sequence in each stream may contain gaps and noncontiguous subrequests 30 * may be glued together into single vectored write RPCs. 31 */ 32 33 #include <linux/export.h> 34 #include <linux/fs.h> 35 #include <linux/mm.h> 36 #include <linux/pagemap.h> 37 #include "internal.h" 38 39 /* 40 * Kill all dirty folios in the event of an unrecoverable error, starting with 41 * a locked folio we've already obtained from writeback_iter(). 42 */ 43 static void netfs_kill_dirty_pages(struct address_space *mapping, 44 struct writeback_control *wbc, 45 struct folio *folio) 46 { 47 int error = 0; 48 49 do { 50 enum netfs_folio_trace why = netfs_folio_trace_kill; 51 struct netfs_group *group = NULL; 52 struct netfs_folio *finfo = NULL; 53 void *priv; 54 55 priv = folio_detach_private(folio); 56 if (priv) { 57 finfo = __netfs_folio_info(priv); 58 if (finfo) { 59 /* Kill folio from streaming write. */ 60 group = finfo->netfs_group; 61 why = netfs_folio_trace_kill_s; 62 } else { 63 group = priv; 64 if (group == NETFS_FOLIO_COPY_TO_CACHE) { 65 /* Kill copy-to-cache folio */ 66 why = netfs_folio_trace_kill_cc; 67 group = NULL; 68 } else { 69 /* Kill folio with group */ 70 why = netfs_folio_trace_kill_g; 71 } 72 } 73 } 74 75 trace_netfs_folio(folio, why); 76 77 folio_start_writeback(folio); 78 folio_unlock(folio); 79 folio_end_writeback(folio); 80 81 netfs_put_group(group); 82 kfree(finfo); 83 84 } while ((folio = writeback_iter(mapping, wbc, folio, &error))); 85 } 86 87 /* 88 * Create a write request and set it up appropriately for the origin type. 89 */ 90 struct netfs_io_request *netfs_create_write_req(struct address_space *mapping, 91 struct file *file, 92 loff_t start, 93 enum netfs_io_origin origin) 94 { 95 struct netfs_io_request *wreq; 96 struct netfs_inode *ictx; 97 bool is_buffered = (origin == NETFS_WRITEBACK || 98 origin == NETFS_WRITETHROUGH || 99 origin == NETFS_PGPRIV2_COPY_TO_CACHE); 100 101 wreq = netfs_alloc_request(mapping, file, start, 0, origin); 102 if (IS_ERR(wreq)) 103 return wreq; 104 105 _enter("R=%x", wreq->debug_id); 106 107 ictx = netfs_inode(wreq->inode); 108 if (is_buffered && netfs_is_cache_enabled(ictx)) 109 fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx)); 110 111 wreq->cleaned_to = wreq->start; 112 113 wreq->io_streams[0].stream_nr = 0; 114 wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER; 115 wreq->io_streams[0].prepare_write = ictx->ops->prepare_write; 116 wreq->io_streams[0].issue_write = ictx->ops->issue_write; 117 wreq->io_streams[0].collected_to = start; 118 wreq->io_streams[0].transferred = LONG_MAX; 119 120 wreq->io_streams[1].stream_nr = 1; 121 wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE; 122 wreq->io_streams[1].collected_to = start; 123 wreq->io_streams[1].transferred = LONG_MAX; 124 if (fscache_resources_valid(&wreq->cache_resources)) { 125 wreq->io_streams[1].avail = true; 126 wreq->io_streams[1].active = true; 127 wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq; 128 wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write; 129 } 130 131 return wreq; 132 } 133 134 /** 135 * netfs_prepare_write_failed - Note write preparation failed 136 * @subreq: The subrequest to mark 137 * 138 * Mark a subrequest to note that preparation for write failed. 139 */ 140 void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq) 141 { 142 __set_bit(NETFS_SREQ_FAILED, &subreq->flags); 143 trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed); 144 } 145 EXPORT_SYMBOL(netfs_prepare_write_failed); 146 147 /* 148 * Prepare a write subrequest. We need to allocate a new subrequest 149 * if we don't have one. 150 */ 151 static void netfs_prepare_write(struct netfs_io_request *wreq, 152 struct netfs_io_stream *stream, 153 loff_t start) 154 { 155 struct netfs_io_subrequest *subreq; 156 struct iov_iter *wreq_iter = &wreq->io_iter; 157 158 /* Make sure we don't point the iterator at a used-up folio_queue 159 * struct being used as a placeholder to prevent the queue from 160 * collapsing. In such a case, extend the queue. 161 */ 162 if (iov_iter_is_folioq(wreq_iter) && 163 wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) { 164 netfs_buffer_make_space(wreq); 165 } 166 167 subreq = netfs_alloc_subrequest(wreq); 168 subreq->source = stream->source; 169 subreq->start = start; 170 subreq->stream_nr = stream->stream_nr; 171 subreq->io_iter = *wreq_iter; 172 173 _enter("R=%x[%x]", wreq->debug_id, subreq->debug_index); 174 175 trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); 176 177 stream->sreq_max_len = UINT_MAX; 178 stream->sreq_max_segs = INT_MAX; 179 switch (stream->source) { 180 case NETFS_UPLOAD_TO_SERVER: 181 netfs_stat(&netfs_n_wh_upload); 182 stream->sreq_max_len = wreq->wsize; 183 break; 184 case NETFS_WRITE_TO_CACHE: 185 netfs_stat(&netfs_n_wh_write); 186 break; 187 default: 188 WARN_ON_ONCE(1); 189 break; 190 } 191 192 if (stream->prepare_write) 193 stream->prepare_write(subreq); 194 195 __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); 196 197 /* We add to the end of the list whilst the collector may be walking 198 * the list. The collector only goes nextwards and uses the lock to 199 * remove entries off of the front. 200 */ 201 spin_lock_bh(&wreq->lock); 202 list_add_tail(&subreq->rreq_link, &stream->subrequests); 203 if (list_is_first(&subreq->rreq_link, &stream->subrequests)) { 204 stream->front = subreq; 205 if (!stream->active) { 206 stream->collected_to = stream->front->start; 207 /* Write list pointers before active flag */ 208 smp_store_release(&stream->active, true); 209 } 210 } 211 212 spin_unlock_bh(&wreq->lock); 213 214 stream->construct = subreq; 215 } 216 217 /* 218 * Set the I/O iterator for the filesystem/cache to use and dispatch the I/O 219 * operation. The operation may be asynchronous and should call 220 * netfs_write_subrequest_terminated() when complete. 221 */ 222 static void netfs_do_issue_write(struct netfs_io_stream *stream, 223 struct netfs_io_subrequest *subreq) 224 { 225 struct netfs_io_request *wreq = subreq->rreq; 226 227 _enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len); 228 229 if (test_bit(NETFS_SREQ_FAILED, &subreq->flags)) 230 return netfs_write_subrequest_terminated(subreq, subreq->error, false); 231 232 trace_netfs_sreq(subreq, netfs_sreq_trace_submit); 233 stream->issue_write(subreq); 234 } 235 236 void netfs_reissue_write(struct netfs_io_stream *stream, 237 struct netfs_io_subrequest *subreq, 238 struct iov_iter *source) 239 { 240 size_t size = subreq->len - subreq->transferred; 241 242 // TODO: Use encrypted buffer 243 subreq->io_iter = *source; 244 iov_iter_advance(source, size); 245 iov_iter_truncate(&subreq->io_iter, size); 246 247 __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); 248 netfs_do_issue_write(stream, subreq); 249 } 250 251 void netfs_issue_write(struct netfs_io_request *wreq, 252 struct netfs_io_stream *stream) 253 { 254 struct netfs_io_subrequest *subreq = stream->construct; 255 256 if (!subreq) 257 return; 258 stream->construct = NULL; 259 subreq->io_iter.count = subreq->len; 260 netfs_do_issue_write(stream, subreq); 261 } 262 263 /* 264 * Add data to the write subrequest, dispatching each as we fill it up or if it 265 * is discontiguous with the previous. We only fill one part at a time so that 266 * we can avoid overrunning the credits obtained (cifs) and try to parallelise 267 * content-crypto preparation with network writes. 268 */ 269 int netfs_advance_write(struct netfs_io_request *wreq, 270 struct netfs_io_stream *stream, 271 loff_t start, size_t len, bool to_eof) 272 { 273 struct netfs_io_subrequest *subreq = stream->construct; 274 size_t part; 275 276 if (!stream->avail) { 277 _leave("no write"); 278 return len; 279 } 280 281 _enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0); 282 283 if (subreq && start != subreq->start + subreq->len) { 284 netfs_issue_write(wreq, stream); 285 subreq = NULL; 286 } 287 288 if (!stream->construct) 289 netfs_prepare_write(wreq, stream, start); 290 subreq = stream->construct; 291 292 part = umin(stream->sreq_max_len - subreq->len, len); 293 _debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len); 294 subreq->len += part; 295 subreq->nr_segs++; 296 stream->submit_extendable_to -= part; 297 298 if (subreq->len >= stream->sreq_max_len || 299 subreq->nr_segs >= stream->sreq_max_segs || 300 to_eof) { 301 netfs_issue_write(wreq, stream); 302 subreq = NULL; 303 } 304 305 return part; 306 } 307 308 /* 309 * Write some of a pending folio data back to the server. 310 */ 311 static int netfs_write_folio(struct netfs_io_request *wreq, 312 struct writeback_control *wbc, 313 struct folio *folio) 314 { 315 struct netfs_io_stream *upload = &wreq->io_streams[0]; 316 struct netfs_io_stream *cache = &wreq->io_streams[1]; 317 struct netfs_io_stream *stream; 318 struct netfs_group *fgroup; /* TODO: Use this with ceph */ 319 struct netfs_folio *finfo; 320 size_t fsize = folio_size(folio), flen = fsize, foff = 0; 321 loff_t fpos = folio_pos(folio), i_size; 322 bool to_eof = false, streamw = false; 323 bool debug = false; 324 325 _enter(""); 326 327 /* netfs_perform_write() may shift i_size around the page or from out 328 * of the page to beyond it, but cannot move i_size into or through the 329 * page since we have it locked. 330 */ 331 i_size = i_size_read(wreq->inode); 332 333 if (fpos >= i_size) { 334 /* mmap beyond eof. */ 335 _debug("beyond eof"); 336 folio_start_writeback(folio); 337 folio_unlock(folio); 338 wreq->nr_group_rel += netfs_folio_written_back(folio); 339 netfs_put_group_many(wreq->group, wreq->nr_group_rel); 340 wreq->nr_group_rel = 0; 341 return 0; 342 } 343 344 if (fpos + fsize > wreq->i_size) 345 wreq->i_size = i_size; 346 347 fgroup = netfs_folio_group(folio); 348 finfo = netfs_folio_info(folio); 349 if (finfo) { 350 foff = finfo->dirty_offset; 351 flen = foff + finfo->dirty_len; 352 streamw = true; 353 } 354 355 if (wreq->origin == NETFS_WRITETHROUGH) { 356 to_eof = false; 357 if (flen > i_size - fpos) 358 flen = i_size - fpos; 359 } else if (flen > i_size - fpos) { 360 flen = i_size - fpos; 361 if (!streamw) 362 folio_zero_segment(folio, flen, fsize); 363 to_eof = true; 364 } else if (flen == i_size - fpos) { 365 to_eof = true; 366 } 367 flen -= foff; 368 369 _debug("folio %zx %zx %zx", foff, flen, fsize); 370 371 /* Deal with discontinuities in the stream of dirty pages. These can 372 * arise from a number of sources: 373 * 374 * (1) Intervening non-dirty pages from random-access writes, multiple 375 * flushers writing back different parts simultaneously and manual 376 * syncing. 377 * 378 * (2) Partially-written pages from write-streaming. 379 * 380 * (3) Pages that belong to a different write-back group (eg. Ceph 381 * snapshots). 382 * 383 * (4) Actually-clean pages that were marked for write to the cache 384 * when they were read. Note that these appear as a special 385 * write-back group. 386 */ 387 if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) { 388 netfs_issue_write(wreq, upload); 389 } else if (fgroup != wreq->group) { 390 /* We can't write this page to the server yet. */ 391 kdebug("wrong group"); 392 folio_redirty_for_writepage(wbc, folio); 393 folio_unlock(folio); 394 netfs_issue_write(wreq, upload); 395 netfs_issue_write(wreq, cache); 396 return 0; 397 } 398 399 if (foff > 0) 400 netfs_issue_write(wreq, upload); 401 if (streamw) 402 netfs_issue_write(wreq, cache); 403 404 /* Flip the page to the writeback state and unlock. If we're called 405 * from write-through, then the page has already been put into the wb 406 * state. 407 */ 408 if (wreq->origin == NETFS_WRITEBACK) 409 folio_start_writeback(folio); 410 folio_unlock(folio); 411 412 if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) { 413 if (!cache->avail) { 414 trace_netfs_folio(folio, netfs_folio_trace_cancel_copy); 415 netfs_issue_write(wreq, upload); 416 netfs_folio_written_back(folio); 417 return 0; 418 } 419 trace_netfs_folio(folio, netfs_folio_trace_store_copy); 420 } else if (!upload->avail && !cache->avail) { 421 trace_netfs_folio(folio, netfs_folio_trace_cancel_store); 422 netfs_folio_written_back(folio); 423 return 0; 424 } else if (!upload->construct) { 425 trace_netfs_folio(folio, netfs_folio_trace_store); 426 } else { 427 trace_netfs_folio(folio, netfs_folio_trace_store_plus); 428 } 429 430 /* Attach the folio to the rolling buffer. */ 431 netfs_buffer_append_folio(wreq, folio, false); 432 433 /* Move the submission point forward to allow for write-streaming data 434 * not starting at the front of the page. We don't do write-streaming 435 * with the cache as the cache requires DIO alignment. 436 * 437 * Also skip uploading for data that's been read and just needs copying 438 * to the cache. 439 */ 440 for (int s = 0; s < NR_IO_STREAMS; s++) { 441 stream = &wreq->io_streams[s]; 442 stream->submit_off = foff; 443 stream->submit_len = flen; 444 if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) || 445 (stream->source == NETFS_UPLOAD_TO_SERVER && 446 fgroup == NETFS_FOLIO_COPY_TO_CACHE)) { 447 stream->submit_off = UINT_MAX; 448 stream->submit_len = 0; 449 } 450 } 451 452 /* Attach the folio to one or more subrequests. For a big folio, we 453 * could end up with thousands of subrequests if the wsize is small - 454 * but we might need to wait during the creation of subrequests for 455 * network resources (eg. SMB credits). 456 */ 457 for (;;) { 458 ssize_t part; 459 size_t lowest_off = ULONG_MAX; 460 int choose_s = -1; 461 462 /* Always add to the lowest-submitted stream first. */ 463 for (int s = 0; s < NR_IO_STREAMS; s++) { 464 stream = &wreq->io_streams[s]; 465 if (stream->submit_len > 0 && 466 stream->submit_off < lowest_off) { 467 lowest_off = stream->submit_off; 468 choose_s = s; 469 } 470 } 471 472 if (choose_s < 0) 473 break; 474 stream = &wreq->io_streams[choose_s]; 475 wreq->io_iter.iov_offset = stream->submit_off; 476 477 atomic64_set(&wreq->issued_to, fpos + stream->submit_off); 478 stream->submit_extendable_to = fsize - stream->submit_off; 479 part = netfs_advance_write(wreq, stream, fpos + stream->submit_off, 480 stream->submit_len, to_eof); 481 stream->submit_off += part; 482 if (part > stream->submit_len) 483 stream->submit_len = 0; 484 else 485 stream->submit_len -= part; 486 if (part > 0) 487 debug = true; 488 } 489 490 wreq->io_iter.iov_offset = 0; 491 iov_iter_advance(&wreq->io_iter, fsize); 492 atomic64_set(&wreq->issued_to, fpos + fsize); 493 494 if (!debug) 495 kdebug("R=%x: No submit", wreq->debug_id); 496 497 if (foff + flen < fsize) 498 for (int s = 0; s < NR_IO_STREAMS; s++) 499 netfs_issue_write(wreq, &wreq->io_streams[s]); 500 501 _leave(" = 0"); 502 return 0; 503 } 504 505 /* 506 * Write some of the pending data back to the server 507 */ 508 int netfs_writepages(struct address_space *mapping, 509 struct writeback_control *wbc) 510 { 511 struct netfs_inode *ictx = netfs_inode(mapping->host); 512 struct netfs_io_request *wreq = NULL; 513 struct folio *folio; 514 int error = 0; 515 516 if (!mutex_trylock(&ictx->wb_lock)) { 517 if (wbc->sync_mode == WB_SYNC_NONE) { 518 netfs_stat(&netfs_n_wb_lock_skip); 519 return 0; 520 } 521 netfs_stat(&netfs_n_wb_lock_wait); 522 mutex_lock(&ictx->wb_lock); 523 } 524 525 /* Need the first folio to be able to set up the op. */ 526 folio = writeback_iter(mapping, wbc, NULL, &error); 527 if (!folio) 528 goto out; 529 530 wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK); 531 if (IS_ERR(wreq)) { 532 error = PTR_ERR(wreq); 533 goto couldnt_start; 534 } 535 536 trace_netfs_write(wreq, netfs_write_trace_writeback); 537 netfs_stat(&netfs_n_wh_writepages); 538 539 do { 540 _debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to)); 541 542 /* It appears we don't have to handle cyclic writeback wrapping. */ 543 WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to)); 544 545 if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE && 546 unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) { 547 set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags); 548 wreq->netfs_ops->begin_writeback(wreq); 549 } 550 551 error = netfs_write_folio(wreq, wbc, folio); 552 if (error < 0) 553 break; 554 } while ((folio = writeback_iter(mapping, wbc, folio, &error))); 555 556 for (int s = 0; s < NR_IO_STREAMS; s++) 557 netfs_issue_write(wreq, &wreq->io_streams[s]); 558 smp_wmb(); /* Write lists before ALL_QUEUED. */ 559 set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags); 560 561 mutex_unlock(&ictx->wb_lock); 562 563 netfs_put_request(wreq, false, netfs_rreq_trace_put_return); 564 _leave(" = %d", error); 565 return error; 566 567 couldnt_start: 568 netfs_kill_dirty_pages(mapping, wbc, folio); 569 out: 570 mutex_unlock(&ictx->wb_lock); 571 _leave(" = %d", error); 572 return error; 573 } 574 EXPORT_SYMBOL(netfs_writepages); 575 576 /* 577 * Begin a write operation for writing through the pagecache. 578 */ 579 struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len) 580 { 581 struct netfs_io_request *wreq = NULL; 582 struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp)); 583 584 mutex_lock(&ictx->wb_lock); 585 586 wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp, 587 iocb->ki_pos, NETFS_WRITETHROUGH); 588 if (IS_ERR(wreq)) { 589 mutex_unlock(&ictx->wb_lock); 590 return wreq; 591 } 592 593 wreq->io_streams[0].avail = true; 594 trace_netfs_write(wreq, netfs_write_trace_writethrough); 595 return wreq; 596 } 597 598 /* 599 * Advance the state of the write operation used when writing through the 600 * pagecache. Data has been copied into the pagecache that we need to append 601 * to the request. If we've added more than wsize then we need to create a new 602 * subrequest. 603 */ 604 int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc, 605 struct folio *folio, size_t copied, bool to_page_end, 606 struct folio **writethrough_cache) 607 { 608 _enter("R=%x ic=%zu ws=%u cp=%zu tp=%u", 609 wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end); 610 611 if (!*writethrough_cache) { 612 if (folio_test_dirty(folio)) 613 /* Sigh. mmap. */ 614 folio_clear_dirty_for_io(folio); 615 616 /* We can make multiple writes to the folio... */ 617 folio_start_writeback(folio); 618 if (wreq->len == 0) 619 trace_netfs_folio(folio, netfs_folio_trace_wthru); 620 else 621 trace_netfs_folio(folio, netfs_folio_trace_wthru_plus); 622 *writethrough_cache = folio; 623 } 624 625 wreq->len += copied; 626 if (!to_page_end) 627 return 0; 628 629 *writethrough_cache = NULL; 630 return netfs_write_folio(wreq, wbc, folio); 631 } 632 633 /* 634 * End a write operation used when writing through the pagecache. 635 */ 636 int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc, 637 struct folio *writethrough_cache) 638 { 639 struct netfs_inode *ictx = netfs_inode(wreq->inode); 640 int ret; 641 642 _enter("R=%x", wreq->debug_id); 643 644 if (writethrough_cache) 645 netfs_write_folio(wreq, wbc, writethrough_cache); 646 647 netfs_issue_write(wreq, &wreq->io_streams[0]); 648 netfs_issue_write(wreq, &wreq->io_streams[1]); 649 smp_wmb(); /* Write lists before ALL_QUEUED. */ 650 set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags); 651 652 mutex_unlock(&ictx->wb_lock); 653 654 if (wreq->iocb) { 655 ret = -EIOCBQUEUED; 656 } else { 657 wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE); 658 ret = wreq->error; 659 } 660 netfs_put_request(wreq, false, netfs_rreq_trace_put_return); 661 return ret; 662 } 663 664 /* 665 * Write data to the server without going through the pagecache and without 666 * writing it to the local cache. 667 */ 668 int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len) 669 { 670 struct netfs_io_stream *upload = &wreq->io_streams[0]; 671 ssize_t part; 672 loff_t start = wreq->start; 673 int error = 0; 674 675 _enter("%zx", len); 676 677 if (wreq->origin == NETFS_DIO_WRITE) 678 inode_dio_begin(wreq->inode); 679 680 while (len) { 681 // TODO: Prepare content encryption 682 683 _debug("unbuffered %zx", len); 684 part = netfs_advance_write(wreq, upload, start, len, false); 685 start += part; 686 len -= part; 687 iov_iter_advance(&wreq->io_iter, part); 688 if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) { 689 trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause); 690 wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE); 691 } 692 if (test_bit(NETFS_RREQ_FAILED, &wreq->flags)) 693 break; 694 } 695 696 netfs_issue_write(wreq, upload); 697 698 smp_wmb(); /* Write lists before ALL_QUEUED. */ 699 set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags); 700 if (list_empty(&upload->subrequests)) 701 netfs_wake_write_collector(wreq, false); 702 703 _leave(" = %d", error); 704 return error; 705 } 706