1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Network filesystem high-level (buffered) writeback. 3 * 4 * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 * 7 * 8 * To support network filesystems with local caching, we manage a situation 9 * that can be envisioned like the following: 10 * 11 * +---+---+-----+-----+---+----------+ 12 * Folios: | | | | | | | 13 * +---+---+-----+-----+---+----------+ 14 * 15 * +------+------+ +----+----+ 16 * Upload: | | |.....| | | 17 * (Stream 0) +------+------+ +----+----+ 18 * 19 * +------+------+------+------+------+ 20 * Cache: | | | | | | 21 * (Stream 1) +------+------+------+------+------+ 22 * 23 * Where we have a sequence of folios of varying sizes that we need to overlay 24 * with multiple parallel streams of I/O requests, where the I/O requests in a 25 * stream may also be of various sizes (in cifs, for example, the sizes are 26 * negotiated with the server; in something like ceph, they may represent the 27 * sizes of storage objects). 28 * 29 * The sequence in each stream may contain gaps and noncontiguous subrequests 30 * may be glued together into single vectored write RPCs. 31 */ 32 33 #include <linux/export.h> 34 #include <linux/fs.h> 35 #include <linux/mm.h> 36 #include <linux/pagemap.h> 37 #include "internal.h" 38 39 /* 40 * Kill all dirty folios in the event of an unrecoverable error, starting with 41 * a locked folio we've already obtained from writeback_iter(). 42 */ 43 static void netfs_kill_dirty_pages(struct address_space *mapping, 44 struct writeback_control *wbc, 45 struct folio *folio) 46 { 47 int error = 0; 48 49 do { 50 enum netfs_folio_trace why = netfs_folio_trace_kill; 51 struct netfs_group *group = NULL; 52 struct netfs_folio *finfo = NULL; 53 void *priv; 54 55 priv = folio_detach_private(folio); 56 if (priv) { 57 finfo = __netfs_folio_info(priv); 58 if (finfo) { 59 /* Kill folio from streaming write. */ 60 group = finfo->netfs_group; 61 why = netfs_folio_trace_kill_s; 62 } else { 63 group = priv; 64 if (group == NETFS_FOLIO_COPY_TO_CACHE) { 65 /* Kill copy-to-cache folio */ 66 why = netfs_folio_trace_kill_cc; 67 group = NULL; 68 } else { 69 /* Kill folio with group */ 70 why = netfs_folio_trace_kill_g; 71 } 72 } 73 } 74 75 trace_netfs_folio(folio, why); 76 77 folio_start_writeback(folio); 78 folio_unlock(folio); 79 folio_end_writeback(folio); 80 81 netfs_put_group(group); 82 kfree(finfo); 83 84 } while ((folio = writeback_iter(mapping, wbc, folio, &error))); 85 } 86 87 /* 88 * Create a write request and set it up appropriately for the origin type. 89 */ 90 struct netfs_io_request *netfs_create_write_req(struct address_space *mapping, 91 struct file *file, 92 loff_t start, 93 enum netfs_io_origin origin) 94 { 95 struct netfs_io_request *wreq; 96 struct netfs_inode *ictx; 97 bool is_buffered = (origin == NETFS_WRITEBACK || 98 origin == NETFS_WRITETHROUGH || 99 origin == NETFS_PGPRIV2_COPY_TO_CACHE); 100 101 wreq = netfs_alloc_request(mapping, file, start, 0, origin); 102 if (IS_ERR(wreq)) 103 return wreq; 104 105 _enter("R=%x", wreq->debug_id); 106 107 ictx = netfs_inode(wreq->inode); 108 if (is_buffered && netfs_is_cache_enabled(ictx)) 109 fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx)); 110 111 wreq->cleaned_to = wreq->start; 112 113 wreq->io_streams[0].stream_nr = 0; 114 wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER; 115 wreq->io_streams[0].prepare_write = ictx->ops->prepare_write; 116 wreq->io_streams[0].issue_write = ictx->ops->issue_write; 117 wreq->io_streams[0].collected_to = start; 118 wreq->io_streams[0].transferred = LONG_MAX; 119 120 wreq->io_streams[1].stream_nr = 1; 121 wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE; 122 wreq->io_streams[1].collected_to = start; 123 wreq->io_streams[1].transferred = LONG_MAX; 124 if (fscache_resources_valid(&wreq->cache_resources)) { 125 wreq->io_streams[1].avail = true; 126 wreq->io_streams[1].active = true; 127 wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq; 128 wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write; 129 } 130 131 return wreq; 132 } 133 134 /** 135 * netfs_prepare_write_failed - Note write preparation failed 136 * @subreq: The subrequest to mark 137 * 138 * Mark a subrequest to note that preparation for write failed. 139 */ 140 void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq) 141 { 142 __set_bit(NETFS_SREQ_FAILED, &subreq->flags); 143 trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed); 144 } 145 EXPORT_SYMBOL(netfs_prepare_write_failed); 146 147 /* 148 * Prepare a write subrequest. We need to allocate a new subrequest 149 * if we don't have one. 150 */ 151 static void netfs_prepare_write(struct netfs_io_request *wreq, 152 struct netfs_io_stream *stream, 153 loff_t start) 154 { 155 struct netfs_io_subrequest *subreq; 156 struct iov_iter *wreq_iter = &wreq->io_iter; 157 158 /* Make sure we don't point the iterator at a used-up folio_queue 159 * struct being used as a placeholder to prevent the queue from 160 * collapsing. In such a case, extend the queue. 161 */ 162 if (iov_iter_is_folioq(wreq_iter) && 163 wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) { 164 netfs_buffer_make_space(wreq); 165 } 166 167 subreq = netfs_alloc_subrequest(wreq); 168 subreq->source = stream->source; 169 subreq->start = start; 170 subreq->stream_nr = stream->stream_nr; 171 subreq->io_iter = *wreq_iter; 172 173 _enter("R=%x[%x]", wreq->debug_id, subreq->debug_index); 174 175 trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); 176 177 stream->sreq_max_len = UINT_MAX; 178 stream->sreq_max_segs = INT_MAX; 179 switch (stream->source) { 180 case NETFS_UPLOAD_TO_SERVER: 181 netfs_stat(&netfs_n_wh_upload); 182 stream->sreq_max_len = wreq->wsize; 183 break; 184 case NETFS_WRITE_TO_CACHE: 185 netfs_stat(&netfs_n_wh_write); 186 break; 187 default: 188 WARN_ON_ONCE(1); 189 break; 190 } 191 192 if (stream->prepare_write) 193 stream->prepare_write(subreq); 194 195 __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); 196 197 /* We add to the end of the list whilst the collector may be walking 198 * the list. The collector only goes nextwards and uses the lock to 199 * remove entries off of the front. 200 */ 201 spin_lock_bh(&wreq->lock); 202 list_add_tail(&subreq->rreq_link, &stream->subrequests); 203 if (list_is_first(&subreq->rreq_link, &stream->subrequests)) { 204 stream->front = subreq; 205 if (!stream->active) { 206 stream->collected_to = stream->front->start; 207 /* Write list pointers before active flag */ 208 smp_store_release(&stream->active, true); 209 } 210 } 211 212 spin_unlock_bh(&wreq->lock); 213 214 stream->construct = subreq; 215 } 216 217 /* 218 * Set the I/O iterator for the filesystem/cache to use and dispatch the I/O 219 * operation. The operation may be asynchronous and should call 220 * netfs_write_subrequest_terminated() when complete. 221 */ 222 static void netfs_do_issue_write(struct netfs_io_stream *stream, 223 struct netfs_io_subrequest *subreq) 224 { 225 struct netfs_io_request *wreq = subreq->rreq; 226 227 _enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len); 228 229 if (test_bit(NETFS_SREQ_FAILED, &subreq->flags)) 230 return netfs_write_subrequest_terminated(subreq, subreq->error, false); 231 232 trace_netfs_sreq(subreq, netfs_sreq_trace_submit); 233 stream->issue_write(subreq); 234 } 235 236 void netfs_reissue_write(struct netfs_io_stream *stream, 237 struct netfs_io_subrequest *subreq, 238 struct iov_iter *source) 239 { 240 size_t size = subreq->len - subreq->transferred; 241 242 // TODO: Use encrypted buffer 243 subreq->io_iter = *source; 244 iov_iter_advance(source, size); 245 iov_iter_truncate(&subreq->io_iter, size); 246 247 subreq->retry_count++; 248 __clear_bit(NETFS_SREQ_MADE_PROGRESS, &subreq->flags); 249 __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); 250 netfs_do_issue_write(stream, subreq); 251 } 252 253 void netfs_issue_write(struct netfs_io_request *wreq, 254 struct netfs_io_stream *stream) 255 { 256 struct netfs_io_subrequest *subreq = stream->construct; 257 258 if (!subreq) 259 return; 260 stream->construct = NULL; 261 subreq->io_iter.count = subreq->len; 262 netfs_do_issue_write(stream, subreq); 263 } 264 265 /* 266 * Add data to the write subrequest, dispatching each as we fill it up or if it 267 * is discontiguous with the previous. We only fill one part at a time so that 268 * we can avoid overrunning the credits obtained (cifs) and try to parallelise 269 * content-crypto preparation with network writes. 270 */ 271 int netfs_advance_write(struct netfs_io_request *wreq, 272 struct netfs_io_stream *stream, 273 loff_t start, size_t len, bool to_eof) 274 { 275 struct netfs_io_subrequest *subreq = stream->construct; 276 size_t part; 277 278 if (!stream->avail) { 279 _leave("no write"); 280 return len; 281 } 282 283 _enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0); 284 285 if (subreq && start != subreq->start + subreq->len) { 286 netfs_issue_write(wreq, stream); 287 subreq = NULL; 288 } 289 290 if (!stream->construct) 291 netfs_prepare_write(wreq, stream, start); 292 subreq = stream->construct; 293 294 part = umin(stream->sreq_max_len - subreq->len, len); 295 _debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len); 296 subreq->len += part; 297 subreq->nr_segs++; 298 stream->submit_extendable_to -= part; 299 300 if (subreq->len >= stream->sreq_max_len || 301 subreq->nr_segs >= stream->sreq_max_segs || 302 to_eof) { 303 netfs_issue_write(wreq, stream); 304 subreq = NULL; 305 } 306 307 return part; 308 } 309 310 /* 311 * Write some of a pending folio data back to the server. 312 */ 313 static int netfs_write_folio(struct netfs_io_request *wreq, 314 struct writeback_control *wbc, 315 struct folio *folio) 316 { 317 struct netfs_io_stream *upload = &wreq->io_streams[0]; 318 struct netfs_io_stream *cache = &wreq->io_streams[1]; 319 struct netfs_io_stream *stream; 320 struct netfs_group *fgroup; /* TODO: Use this with ceph */ 321 struct netfs_folio *finfo; 322 size_t iter_off = 0; 323 size_t fsize = folio_size(folio), flen = fsize, foff = 0; 324 loff_t fpos = folio_pos(folio), i_size; 325 bool to_eof = false, streamw = false; 326 bool debug = false; 327 328 _enter(""); 329 330 /* netfs_perform_write() may shift i_size around the page or from out 331 * of the page to beyond it, but cannot move i_size into or through the 332 * page since we have it locked. 333 */ 334 i_size = i_size_read(wreq->inode); 335 336 if (fpos >= i_size) { 337 /* mmap beyond eof. */ 338 _debug("beyond eof"); 339 folio_start_writeback(folio); 340 folio_unlock(folio); 341 wreq->nr_group_rel += netfs_folio_written_back(folio); 342 netfs_put_group_many(wreq->group, wreq->nr_group_rel); 343 wreq->nr_group_rel = 0; 344 return 0; 345 } 346 347 if (fpos + fsize > wreq->i_size) 348 wreq->i_size = i_size; 349 350 fgroup = netfs_folio_group(folio); 351 finfo = netfs_folio_info(folio); 352 if (finfo) { 353 foff = finfo->dirty_offset; 354 flen = foff + finfo->dirty_len; 355 streamw = true; 356 } 357 358 if (wreq->origin == NETFS_WRITETHROUGH) { 359 to_eof = false; 360 if (flen > i_size - fpos) 361 flen = i_size - fpos; 362 } else if (flen > i_size - fpos) { 363 flen = i_size - fpos; 364 if (!streamw) 365 folio_zero_segment(folio, flen, fsize); 366 to_eof = true; 367 } else if (flen == i_size - fpos) { 368 to_eof = true; 369 } 370 flen -= foff; 371 372 _debug("folio %zx %zx %zx", foff, flen, fsize); 373 374 /* Deal with discontinuities in the stream of dirty pages. These can 375 * arise from a number of sources: 376 * 377 * (1) Intervening non-dirty pages from random-access writes, multiple 378 * flushers writing back different parts simultaneously and manual 379 * syncing. 380 * 381 * (2) Partially-written pages from write-streaming. 382 * 383 * (3) Pages that belong to a different write-back group (eg. Ceph 384 * snapshots). 385 * 386 * (4) Actually-clean pages that were marked for write to the cache 387 * when they were read. Note that these appear as a special 388 * write-back group. 389 */ 390 if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) { 391 netfs_issue_write(wreq, upload); 392 } else if (fgroup != wreq->group) { 393 /* We can't write this page to the server yet. */ 394 kdebug("wrong group"); 395 folio_redirty_for_writepage(wbc, folio); 396 folio_unlock(folio); 397 netfs_issue_write(wreq, upload); 398 netfs_issue_write(wreq, cache); 399 return 0; 400 } 401 402 if (foff > 0) 403 netfs_issue_write(wreq, upload); 404 if (streamw) 405 netfs_issue_write(wreq, cache); 406 407 /* Flip the page to the writeback state and unlock. If we're called 408 * from write-through, then the page has already been put into the wb 409 * state. 410 */ 411 if (wreq->origin == NETFS_WRITEBACK) 412 folio_start_writeback(folio); 413 folio_unlock(folio); 414 415 if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) { 416 if (!cache->avail) { 417 trace_netfs_folio(folio, netfs_folio_trace_cancel_copy); 418 netfs_issue_write(wreq, upload); 419 netfs_folio_written_back(folio); 420 return 0; 421 } 422 trace_netfs_folio(folio, netfs_folio_trace_store_copy); 423 } else if (!upload->avail && !cache->avail) { 424 trace_netfs_folio(folio, netfs_folio_trace_cancel_store); 425 netfs_folio_written_back(folio); 426 return 0; 427 } else if (!upload->construct) { 428 trace_netfs_folio(folio, netfs_folio_trace_store); 429 } else { 430 trace_netfs_folio(folio, netfs_folio_trace_store_plus); 431 } 432 433 /* Attach the folio to the rolling buffer. */ 434 netfs_buffer_append_folio(wreq, folio, false); 435 436 /* Move the submission point forward to allow for write-streaming data 437 * not starting at the front of the page. We don't do write-streaming 438 * with the cache as the cache requires DIO alignment. 439 * 440 * Also skip uploading for data that's been read and just needs copying 441 * to the cache. 442 */ 443 for (int s = 0; s < NR_IO_STREAMS; s++) { 444 stream = &wreq->io_streams[s]; 445 stream->submit_off = foff; 446 stream->submit_len = flen; 447 if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) || 448 (stream->source == NETFS_UPLOAD_TO_SERVER && 449 fgroup == NETFS_FOLIO_COPY_TO_CACHE)) { 450 stream->submit_off = UINT_MAX; 451 stream->submit_len = 0; 452 } 453 } 454 455 /* Attach the folio to one or more subrequests. For a big folio, we 456 * could end up with thousands of subrequests if the wsize is small - 457 * but we might need to wait during the creation of subrequests for 458 * network resources (eg. SMB credits). 459 */ 460 for (;;) { 461 ssize_t part; 462 size_t lowest_off = ULONG_MAX; 463 int choose_s = -1; 464 465 /* Always add to the lowest-submitted stream first. */ 466 for (int s = 0; s < NR_IO_STREAMS; s++) { 467 stream = &wreq->io_streams[s]; 468 if (stream->submit_len > 0 && 469 stream->submit_off < lowest_off) { 470 lowest_off = stream->submit_off; 471 choose_s = s; 472 } 473 } 474 475 if (choose_s < 0) 476 break; 477 stream = &wreq->io_streams[choose_s]; 478 479 /* Advance the iterator(s). */ 480 if (stream->submit_off > iter_off) { 481 iov_iter_advance(&wreq->io_iter, stream->submit_off - iter_off); 482 iter_off = stream->submit_off; 483 } 484 485 atomic64_set(&wreq->issued_to, fpos + stream->submit_off); 486 stream->submit_extendable_to = fsize - stream->submit_off; 487 part = netfs_advance_write(wreq, stream, fpos + stream->submit_off, 488 stream->submit_len, to_eof); 489 stream->submit_off += part; 490 if (part > stream->submit_len) 491 stream->submit_len = 0; 492 else 493 stream->submit_len -= part; 494 if (part > 0) 495 debug = true; 496 } 497 498 if (fsize > iter_off) 499 iov_iter_advance(&wreq->io_iter, fsize - iter_off); 500 atomic64_set(&wreq->issued_to, fpos + fsize); 501 502 if (!debug) 503 kdebug("R=%x: No submit", wreq->debug_id); 504 505 if (foff + flen < fsize) 506 for (int s = 0; s < NR_IO_STREAMS; s++) 507 netfs_issue_write(wreq, &wreq->io_streams[s]); 508 509 _leave(" = 0"); 510 return 0; 511 } 512 513 /* 514 * End the issuing of writes, letting the collector know we're done. 515 */ 516 static void netfs_end_issue_write(struct netfs_io_request *wreq) 517 { 518 bool needs_poke = true; 519 520 smp_wmb(); /* Write subreq lists before ALL_QUEUED. */ 521 set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags); 522 523 for (int s = 0; s < NR_IO_STREAMS; s++) { 524 struct netfs_io_stream *stream = &wreq->io_streams[s]; 525 526 if (!stream->active) 527 continue; 528 if (!list_empty(&stream->subrequests)) 529 needs_poke = false; 530 netfs_issue_write(wreq, stream); 531 } 532 533 if (needs_poke) 534 netfs_wake_write_collector(wreq, false); 535 } 536 537 /* 538 * Write some of the pending data back to the server 539 */ 540 int netfs_writepages(struct address_space *mapping, 541 struct writeback_control *wbc) 542 { 543 struct netfs_inode *ictx = netfs_inode(mapping->host); 544 struct netfs_io_request *wreq = NULL; 545 struct folio *folio; 546 int error = 0; 547 548 if (!mutex_trylock(&ictx->wb_lock)) { 549 if (wbc->sync_mode == WB_SYNC_NONE) { 550 netfs_stat(&netfs_n_wb_lock_skip); 551 return 0; 552 } 553 netfs_stat(&netfs_n_wb_lock_wait); 554 mutex_lock(&ictx->wb_lock); 555 } 556 557 /* Need the first folio to be able to set up the op. */ 558 folio = writeback_iter(mapping, wbc, NULL, &error); 559 if (!folio) 560 goto out; 561 562 wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK); 563 if (IS_ERR(wreq)) { 564 error = PTR_ERR(wreq); 565 goto couldnt_start; 566 } 567 568 trace_netfs_write(wreq, netfs_write_trace_writeback); 569 netfs_stat(&netfs_n_wh_writepages); 570 571 do { 572 _debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to)); 573 574 /* It appears we don't have to handle cyclic writeback wrapping. */ 575 WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to)); 576 577 if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE && 578 unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) { 579 set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags); 580 wreq->netfs_ops->begin_writeback(wreq); 581 } 582 583 error = netfs_write_folio(wreq, wbc, folio); 584 if (error < 0) 585 break; 586 } while ((folio = writeback_iter(mapping, wbc, folio, &error))); 587 588 netfs_end_issue_write(wreq); 589 590 mutex_unlock(&ictx->wb_lock); 591 592 netfs_put_request(wreq, false, netfs_rreq_trace_put_return); 593 _leave(" = %d", error); 594 return error; 595 596 couldnt_start: 597 netfs_kill_dirty_pages(mapping, wbc, folio); 598 out: 599 mutex_unlock(&ictx->wb_lock); 600 _leave(" = %d", error); 601 return error; 602 } 603 EXPORT_SYMBOL(netfs_writepages); 604 605 /* 606 * Begin a write operation for writing through the pagecache. 607 */ 608 struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len) 609 { 610 struct netfs_io_request *wreq = NULL; 611 struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp)); 612 613 mutex_lock(&ictx->wb_lock); 614 615 wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp, 616 iocb->ki_pos, NETFS_WRITETHROUGH); 617 if (IS_ERR(wreq)) { 618 mutex_unlock(&ictx->wb_lock); 619 return wreq; 620 } 621 622 wreq->io_streams[0].avail = true; 623 trace_netfs_write(wreq, netfs_write_trace_writethrough); 624 return wreq; 625 } 626 627 /* 628 * Advance the state of the write operation used when writing through the 629 * pagecache. Data has been copied into the pagecache that we need to append 630 * to the request. If we've added more than wsize then we need to create a new 631 * subrequest. 632 */ 633 int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc, 634 struct folio *folio, size_t copied, bool to_page_end, 635 struct folio **writethrough_cache) 636 { 637 _enter("R=%x ic=%zu ws=%u cp=%zu tp=%u", 638 wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end); 639 640 if (!*writethrough_cache) { 641 if (folio_test_dirty(folio)) 642 /* Sigh. mmap. */ 643 folio_clear_dirty_for_io(folio); 644 645 /* We can make multiple writes to the folio... */ 646 folio_start_writeback(folio); 647 if (wreq->len == 0) 648 trace_netfs_folio(folio, netfs_folio_trace_wthru); 649 else 650 trace_netfs_folio(folio, netfs_folio_trace_wthru_plus); 651 *writethrough_cache = folio; 652 } 653 654 wreq->len += copied; 655 if (!to_page_end) 656 return 0; 657 658 *writethrough_cache = NULL; 659 return netfs_write_folio(wreq, wbc, folio); 660 } 661 662 /* 663 * End a write operation used when writing through the pagecache. 664 */ 665 int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc, 666 struct folio *writethrough_cache) 667 { 668 struct netfs_inode *ictx = netfs_inode(wreq->inode); 669 int ret; 670 671 _enter("R=%x", wreq->debug_id); 672 673 if (writethrough_cache) 674 netfs_write_folio(wreq, wbc, writethrough_cache); 675 676 netfs_end_issue_write(wreq); 677 678 mutex_unlock(&ictx->wb_lock); 679 680 if (wreq->iocb) { 681 ret = -EIOCBQUEUED; 682 } else { 683 wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE); 684 ret = wreq->error; 685 } 686 netfs_put_request(wreq, false, netfs_rreq_trace_put_return); 687 return ret; 688 } 689 690 /* 691 * Write data to the server without going through the pagecache and without 692 * writing it to the local cache. 693 */ 694 int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len) 695 { 696 struct netfs_io_stream *upload = &wreq->io_streams[0]; 697 ssize_t part; 698 loff_t start = wreq->start; 699 int error = 0; 700 701 _enter("%zx", len); 702 703 if (wreq->origin == NETFS_DIO_WRITE) 704 inode_dio_begin(wreq->inode); 705 706 while (len) { 707 // TODO: Prepare content encryption 708 709 _debug("unbuffered %zx", len); 710 part = netfs_advance_write(wreq, upload, start, len, false); 711 start += part; 712 len -= part; 713 iov_iter_advance(&wreq->io_iter, part); 714 if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) { 715 trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause); 716 wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE); 717 } 718 if (test_bit(NETFS_RREQ_FAILED, &wreq->flags)) 719 break; 720 } 721 722 netfs_end_issue_write(wreq); 723 _leave(" = %d", error); 724 return error; 725 } 726