xref: /linux/fs/netfs/write_issue.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem high-level (buffered) writeback.
3  *
4  * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  *
7  *
8  * To support network filesystems with local caching, we manage a situation
9  * that can be envisioned like the following:
10  *
11  *               +---+---+-----+-----+---+----------+
12  *    Folios:    |   |   |     |     |   |          |
13  *               +---+---+-----+-----+---+----------+
14  *
15  *                 +------+------+     +----+----+
16  *    Upload:      |      |      |.....|    |    |
17  *  (Stream 0)     +------+------+     +----+----+
18  *
19  *               +------+------+------+------+------+
20  *    Cache:     |      |      |      |      |      |
21  *  (Stream 1)   +------+------+------+------+------+
22  *
23  * Where we have a sequence of folios of varying sizes that we need to overlay
24  * with multiple parallel streams of I/O requests, where the I/O requests in a
25  * stream may also be of various sizes (in cifs, for example, the sizes are
26  * negotiated with the server; in something like ceph, they may represent the
27  * sizes of storage objects).
28  *
29  * The sequence in each stream may contain gaps and noncontiguous subrequests
30  * may be glued together into single vectored write RPCs.
31  */
32 
33 #include <linux/export.h>
34 #include <linux/fs.h>
35 #include <linux/mm.h>
36 #include <linux/pagemap.h>
37 #include "internal.h"
38 
39 /*
40  * Kill all dirty folios in the event of an unrecoverable error, starting with
41  * a locked folio we've already obtained from writeback_iter().
42  */
43 static void netfs_kill_dirty_pages(struct address_space *mapping,
44 				   struct writeback_control *wbc,
45 				   struct folio *folio)
46 {
47 	int error = 0;
48 
49 	do {
50 		enum netfs_folio_trace why = netfs_folio_trace_kill;
51 		struct netfs_group *group = NULL;
52 		struct netfs_folio *finfo = NULL;
53 		void *priv;
54 
55 		priv = folio_detach_private(folio);
56 		if (priv) {
57 			finfo = __netfs_folio_info(priv);
58 			if (finfo) {
59 				/* Kill folio from streaming write. */
60 				group = finfo->netfs_group;
61 				why = netfs_folio_trace_kill_s;
62 			} else {
63 				group = priv;
64 				if (group == NETFS_FOLIO_COPY_TO_CACHE) {
65 					/* Kill copy-to-cache folio */
66 					why = netfs_folio_trace_kill_cc;
67 					group = NULL;
68 				} else {
69 					/* Kill folio with group */
70 					why = netfs_folio_trace_kill_g;
71 				}
72 			}
73 		}
74 
75 		trace_netfs_folio(folio, why);
76 
77 		folio_start_writeback(folio);
78 		folio_unlock(folio);
79 		folio_end_writeback(folio);
80 
81 		netfs_put_group(group);
82 		kfree(finfo);
83 
84 	} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
85 }
86 
87 /*
88  * Create a write request and set it up appropriately for the origin type.
89  */
90 struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
91 						struct file *file,
92 						loff_t start,
93 						enum netfs_io_origin origin)
94 {
95 	struct netfs_io_request *wreq;
96 	struct netfs_inode *ictx;
97 	bool is_buffered = (origin == NETFS_WRITEBACK ||
98 			    origin == NETFS_WRITETHROUGH ||
99 			    origin == NETFS_PGPRIV2_COPY_TO_CACHE);
100 
101 	wreq = netfs_alloc_request(mapping, file, start, 0, origin);
102 	if (IS_ERR(wreq))
103 		return wreq;
104 
105 	_enter("R=%x", wreq->debug_id);
106 
107 	ictx = netfs_inode(wreq->inode);
108 	if (is_buffered && netfs_is_cache_enabled(ictx))
109 		fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx));
110 
111 	wreq->cleaned_to = wreq->start;
112 
113 	wreq->io_streams[0].stream_nr		= 0;
114 	wreq->io_streams[0].source		= NETFS_UPLOAD_TO_SERVER;
115 	wreq->io_streams[0].prepare_write	= ictx->ops->prepare_write;
116 	wreq->io_streams[0].issue_write		= ictx->ops->issue_write;
117 	wreq->io_streams[0].collected_to	= start;
118 	wreq->io_streams[0].transferred		= LONG_MAX;
119 
120 	wreq->io_streams[1].stream_nr		= 1;
121 	wreq->io_streams[1].source		= NETFS_WRITE_TO_CACHE;
122 	wreq->io_streams[1].collected_to	= start;
123 	wreq->io_streams[1].transferred		= LONG_MAX;
124 	if (fscache_resources_valid(&wreq->cache_resources)) {
125 		wreq->io_streams[1].avail	= true;
126 		wreq->io_streams[1].active	= true;
127 		wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq;
128 		wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write;
129 	}
130 
131 	return wreq;
132 }
133 
134 /**
135  * netfs_prepare_write_failed - Note write preparation failed
136  * @subreq: The subrequest to mark
137  *
138  * Mark a subrequest to note that preparation for write failed.
139  */
140 void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq)
141 {
142 	__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
143 	trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed);
144 }
145 EXPORT_SYMBOL(netfs_prepare_write_failed);
146 
147 /*
148  * Prepare a write subrequest.  We need to allocate a new subrequest
149  * if we don't have one.
150  */
151 static void netfs_prepare_write(struct netfs_io_request *wreq,
152 				struct netfs_io_stream *stream,
153 				loff_t start)
154 {
155 	struct netfs_io_subrequest *subreq;
156 	struct iov_iter *wreq_iter = &wreq->io_iter;
157 
158 	/* Make sure we don't point the iterator at a used-up folio_queue
159 	 * struct being used as a placeholder to prevent the queue from
160 	 * collapsing.  In such a case, extend the queue.
161 	 */
162 	if (iov_iter_is_folioq(wreq_iter) &&
163 	    wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) {
164 		netfs_buffer_make_space(wreq);
165 	}
166 
167 	subreq = netfs_alloc_subrequest(wreq);
168 	subreq->source		= stream->source;
169 	subreq->start		= start;
170 	subreq->stream_nr	= stream->stream_nr;
171 	subreq->io_iter		= *wreq_iter;
172 
173 	_enter("R=%x[%x]", wreq->debug_id, subreq->debug_index);
174 
175 	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
176 
177 	stream->sreq_max_len	= UINT_MAX;
178 	stream->sreq_max_segs	= INT_MAX;
179 	switch (stream->source) {
180 	case NETFS_UPLOAD_TO_SERVER:
181 		netfs_stat(&netfs_n_wh_upload);
182 		stream->sreq_max_len = wreq->wsize;
183 		break;
184 	case NETFS_WRITE_TO_CACHE:
185 		netfs_stat(&netfs_n_wh_write);
186 		break;
187 	default:
188 		WARN_ON_ONCE(1);
189 		break;
190 	}
191 
192 	if (stream->prepare_write)
193 		stream->prepare_write(subreq);
194 
195 	__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
196 
197 	/* We add to the end of the list whilst the collector may be walking
198 	 * the list.  The collector only goes nextwards and uses the lock to
199 	 * remove entries off of the front.
200 	 */
201 	spin_lock_bh(&wreq->lock);
202 	list_add_tail(&subreq->rreq_link, &stream->subrequests);
203 	if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
204 		stream->front = subreq;
205 		if (!stream->active) {
206 			stream->collected_to = stream->front->start;
207 			/* Write list pointers before active flag */
208 			smp_store_release(&stream->active, true);
209 		}
210 	}
211 
212 	spin_unlock_bh(&wreq->lock);
213 
214 	stream->construct = subreq;
215 }
216 
217 /*
218  * Set the I/O iterator for the filesystem/cache to use and dispatch the I/O
219  * operation.  The operation may be asynchronous and should call
220  * netfs_write_subrequest_terminated() when complete.
221  */
222 static void netfs_do_issue_write(struct netfs_io_stream *stream,
223 				 struct netfs_io_subrequest *subreq)
224 {
225 	struct netfs_io_request *wreq = subreq->rreq;
226 
227 	_enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len);
228 
229 	if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
230 		return netfs_write_subrequest_terminated(subreq, subreq->error, false);
231 
232 	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
233 	stream->issue_write(subreq);
234 }
235 
236 void netfs_reissue_write(struct netfs_io_stream *stream,
237 			 struct netfs_io_subrequest *subreq,
238 			 struct iov_iter *source)
239 {
240 	size_t size = subreq->len - subreq->transferred;
241 
242 	// TODO: Use encrypted buffer
243 	subreq->io_iter = *source;
244 	iov_iter_advance(source, size);
245 	iov_iter_truncate(&subreq->io_iter, size);
246 
247 	__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
248 	netfs_do_issue_write(stream, subreq);
249 }
250 
251 void netfs_issue_write(struct netfs_io_request *wreq,
252 		       struct netfs_io_stream *stream)
253 {
254 	struct netfs_io_subrequest *subreq = stream->construct;
255 
256 	if (!subreq)
257 		return;
258 	stream->construct = NULL;
259 	subreq->io_iter.count = subreq->len;
260 	netfs_do_issue_write(stream, subreq);
261 }
262 
263 /*
264  * Add data to the write subrequest, dispatching each as we fill it up or if it
265  * is discontiguous with the previous.  We only fill one part at a time so that
266  * we can avoid overrunning the credits obtained (cifs) and try to parallelise
267  * content-crypto preparation with network writes.
268  */
269 int netfs_advance_write(struct netfs_io_request *wreq,
270 			struct netfs_io_stream *stream,
271 			loff_t start, size_t len, bool to_eof)
272 {
273 	struct netfs_io_subrequest *subreq = stream->construct;
274 	size_t part;
275 
276 	if (!stream->avail) {
277 		_leave("no write");
278 		return len;
279 	}
280 
281 	_enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0);
282 
283 	if (subreq && start != subreq->start + subreq->len) {
284 		netfs_issue_write(wreq, stream);
285 		subreq = NULL;
286 	}
287 
288 	if (!stream->construct)
289 		netfs_prepare_write(wreq, stream, start);
290 	subreq = stream->construct;
291 
292 	part = umin(stream->sreq_max_len - subreq->len, len);
293 	_debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len);
294 	subreq->len += part;
295 	subreq->nr_segs++;
296 	stream->submit_extendable_to -= part;
297 
298 	if (subreq->len >= stream->sreq_max_len ||
299 	    subreq->nr_segs >= stream->sreq_max_segs ||
300 	    to_eof) {
301 		netfs_issue_write(wreq, stream);
302 		subreq = NULL;
303 	}
304 
305 	return part;
306 }
307 
308 /*
309  * Write some of a pending folio data back to the server.
310  */
311 static int netfs_write_folio(struct netfs_io_request *wreq,
312 			     struct writeback_control *wbc,
313 			     struct folio *folio)
314 {
315 	struct netfs_io_stream *upload = &wreq->io_streams[0];
316 	struct netfs_io_stream *cache  = &wreq->io_streams[1];
317 	struct netfs_io_stream *stream;
318 	struct netfs_group *fgroup; /* TODO: Use this with ceph */
319 	struct netfs_folio *finfo;
320 	size_t iter_off = 0;
321 	size_t fsize = folio_size(folio), flen = fsize, foff = 0;
322 	loff_t fpos = folio_pos(folio), i_size;
323 	bool to_eof = false, streamw = false;
324 	bool debug = false;
325 
326 	_enter("");
327 
328 	/* netfs_perform_write() may shift i_size around the page or from out
329 	 * of the page to beyond it, but cannot move i_size into or through the
330 	 * page since we have it locked.
331 	 */
332 	i_size = i_size_read(wreq->inode);
333 
334 	if (fpos >= i_size) {
335 		/* mmap beyond eof. */
336 		_debug("beyond eof");
337 		folio_start_writeback(folio);
338 		folio_unlock(folio);
339 		wreq->nr_group_rel += netfs_folio_written_back(folio);
340 		netfs_put_group_many(wreq->group, wreq->nr_group_rel);
341 		wreq->nr_group_rel = 0;
342 		return 0;
343 	}
344 
345 	if (fpos + fsize > wreq->i_size)
346 		wreq->i_size = i_size;
347 
348 	fgroup = netfs_folio_group(folio);
349 	finfo = netfs_folio_info(folio);
350 	if (finfo) {
351 		foff = finfo->dirty_offset;
352 		flen = foff + finfo->dirty_len;
353 		streamw = true;
354 	}
355 
356 	if (wreq->origin == NETFS_WRITETHROUGH) {
357 		to_eof = false;
358 		if (flen > i_size - fpos)
359 			flen = i_size - fpos;
360 	} else if (flen > i_size - fpos) {
361 		flen = i_size - fpos;
362 		if (!streamw)
363 			folio_zero_segment(folio, flen, fsize);
364 		to_eof = true;
365 	} else if (flen == i_size - fpos) {
366 		to_eof = true;
367 	}
368 	flen -= foff;
369 
370 	_debug("folio %zx %zx %zx", foff, flen, fsize);
371 
372 	/* Deal with discontinuities in the stream of dirty pages.  These can
373 	 * arise from a number of sources:
374 	 *
375 	 * (1) Intervening non-dirty pages from random-access writes, multiple
376 	 *     flushers writing back different parts simultaneously and manual
377 	 *     syncing.
378 	 *
379 	 * (2) Partially-written pages from write-streaming.
380 	 *
381 	 * (3) Pages that belong to a different write-back group (eg.  Ceph
382 	 *     snapshots).
383 	 *
384 	 * (4) Actually-clean pages that were marked for write to the cache
385 	 *     when they were read.  Note that these appear as a special
386 	 *     write-back group.
387 	 */
388 	if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
389 		netfs_issue_write(wreq, upload);
390 	} else if (fgroup != wreq->group) {
391 		/* We can't write this page to the server yet. */
392 		kdebug("wrong group");
393 		folio_redirty_for_writepage(wbc, folio);
394 		folio_unlock(folio);
395 		netfs_issue_write(wreq, upload);
396 		netfs_issue_write(wreq, cache);
397 		return 0;
398 	}
399 
400 	if (foff > 0)
401 		netfs_issue_write(wreq, upload);
402 	if (streamw)
403 		netfs_issue_write(wreq, cache);
404 
405 	/* Flip the page to the writeback state and unlock.  If we're called
406 	 * from write-through, then the page has already been put into the wb
407 	 * state.
408 	 */
409 	if (wreq->origin == NETFS_WRITEBACK)
410 		folio_start_writeback(folio);
411 	folio_unlock(folio);
412 
413 	if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
414 		if (!cache->avail) {
415 			trace_netfs_folio(folio, netfs_folio_trace_cancel_copy);
416 			netfs_issue_write(wreq, upload);
417 			netfs_folio_written_back(folio);
418 			return 0;
419 		}
420 		trace_netfs_folio(folio, netfs_folio_trace_store_copy);
421 	} else if (!upload->avail && !cache->avail) {
422 		trace_netfs_folio(folio, netfs_folio_trace_cancel_store);
423 		netfs_folio_written_back(folio);
424 		return 0;
425 	} else if (!upload->construct) {
426 		trace_netfs_folio(folio, netfs_folio_trace_store);
427 	} else {
428 		trace_netfs_folio(folio, netfs_folio_trace_store_plus);
429 	}
430 
431 	/* Attach the folio to the rolling buffer. */
432 	netfs_buffer_append_folio(wreq, folio, false);
433 
434 	/* Move the submission point forward to allow for write-streaming data
435 	 * not starting at the front of the page.  We don't do write-streaming
436 	 * with the cache as the cache requires DIO alignment.
437 	 *
438 	 * Also skip uploading for data that's been read and just needs copying
439 	 * to the cache.
440 	 */
441 	for (int s = 0; s < NR_IO_STREAMS; s++) {
442 		stream = &wreq->io_streams[s];
443 		stream->submit_off = foff;
444 		stream->submit_len = flen;
445 		if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) ||
446 		    (stream->source == NETFS_UPLOAD_TO_SERVER &&
447 		     fgroup == NETFS_FOLIO_COPY_TO_CACHE)) {
448 			stream->submit_off = UINT_MAX;
449 			stream->submit_len = 0;
450 		}
451 	}
452 
453 	/* Attach the folio to one or more subrequests.  For a big folio, we
454 	 * could end up with thousands of subrequests if the wsize is small -
455 	 * but we might need to wait during the creation of subrequests for
456 	 * network resources (eg. SMB credits).
457 	 */
458 	for (;;) {
459 		ssize_t part;
460 		size_t lowest_off = ULONG_MAX;
461 		int choose_s = -1;
462 
463 		/* Always add to the lowest-submitted stream first. */
464 		for (int s = 0; s < NR_IO_STREAMS; s++) {
465 			stream = &wreq->io_streams[s];
466 			if (stream->submit_len > 0 &&
467 			    stream->submit_off < lowest_off) {
468 				lowest_off = stream->submit_off;
469 				choose_s = s;
470 			}
471 		}
472 
473 		if (choose_s < 0)
474 			break;
475 		stream = &wreq->io_streams[choose_s];
476 
477 		/* Advance the iterator(s). */
478 		if (stream->submit_off > iter_off) {
479 			iov_iter_advance(&wreq->io_iter, stream->submit_off - iter_off);
480 			iter_off = stream->submit_off;
481 		}
482 
483 		atomic64_set(&wreq->issued_to, fpos + stream->submit_off);
484 		stream->submit_extendable_to = fsize - stream->submit_off;
485 		part = netfs_advance_write(wreq, stream, fpos + stream->submit_off,
486 					   stream->submit_len, to_eof);
487 		stream->submit_off += part;
488 		if (part > stream->submit_len)
489 			stream->submit_len = 0;
490 		else
491 			stream->submit_len -= part;
492 		if (part > 0)
493 			debug = true;
494 	}
495 
496 	if (fsize > iter_off)
497 		iov_iter_advance(&wreq->io_iter, fsize - iter_off);
498 	atomic64_set(&wreq->issued_to, fpos + fsize);
499 
500 	if (!debug)
501 		kdebug("R=%x: No submit", wreq->debug_id);
502 
503 	if (foff + flen < fsize)
504 		for (int s = 0; s < NR_IO_STREAMS; s++)
505 			netfs_issue_write(wreq, &wreq->io_streams[s]);
506 
507 	_leave(" = 0");
508 	return 0;
509 }
510 
511 /*
512  * End the issuing of writes, letting the collector know we're done.
513  */
514 static void netfs_end_issue_write(struct netfs_io_request *wreq)
515 {
516 	bool needs_poke = true;
517 
518 	smp_wmb(); /* Write subreq lists before ALL_QUEUED. */
519 	set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
520 
521 	for (int s = 0; s < NR_IO_STREAMS; s++) {
522 		struct netfs_io_stream *stream = &wreq->io_streams[s];
523 
524 		if (!stream->active)
525 			continue;
526 		if (!list_empty(&stream->subrequests))
527 			needs_poke = false;
528 		netfs_issue_write(wreq, stream);
529 	}
530 
531 	if (needs_poke)
532 		netfs_wake_write_collector(wreq, false);
533 }
534 
535 /*
536  * Write some of the pending data back to the server
537  */
538 int netfs_writepages(struct address_space *mapping,
539 		     struct writeback_control *wbc)
540 {
541 	struct netfs_inode *ictx = netfs_inode(mapping->host);
542 	struct netfs_io_request *wreq = NULL;
543 	struct folio *folio;
544 	int error = 0;
545 
546 	if (!mutex_trylock(&ictx->wb_lock)) {
547 		if (wbc->sync_mode == WB_SYNC_NONE) {
548 			netfs_stat(&netfs_n_wb_lock_skip);
549 			return 0;
550 		}
551 		netfs_stat(&netfs_n_wb_lock_wait);
552 		mutex_lock(&ictx->wb_lock);
553 	}
554 
555 	/* Need the first folio to be able to set up the op. */
556 	folio = writeback_iter(mapping, wbc, NULL, &error);
557 	if (!folio)
558 		goto out;
559 
560 	wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK);
561 	if (IS_ERR(wreq)) {
562 		error = PTR_ERR(wreq);
563 		goto couldnt_start;
564 	}
565 
566 	trace_netfs_write(wreq, netfs_write_trace_writeback);
567 	netfs_stat(&netfs_n_wh_writepages);
568 
569 	do {
570 		_debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to));
571 
572 		/* It appears we don't have to handle cyclic writeback wrapping. */
573 		WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to));
574 
575 		if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE &&
576 		    unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) {
577 			set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
578 			wreq->netfs_ops->begin_writeback(wreq);
579 		}
580 
581 		error = netfs_write_folio(wreq, wbc, folio);
582 		if (error < 0)
583 			break;
584 	} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
585 
586 	netfs_end_issue_write(wreq);
587 
588 	mutex_unlock(&ictx->wb_lock);
589 
590 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
591 	_leave(" = %d", error);
592 	return error;
593 
594 couldnt_start:
595 	netfs_kill_dirty_pages(mapping, wbc, folio);
596 out:
597 	mutex_unlock(&ictx->wb_lock);
598 	_leave(" = %d", error);
599 	return error;
600 }
601 EXPORT_SYMBOL(netfs_writepages);
602 
603 /*
604  * Begin a write operation for writing through the pagecache.
605  */
606 struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len)
607 {
608 	struct netfs_io_request *wreq = NULL;
609 	struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp));
610 
611 	mutex_lock(&ictx->wb_lock);
612 
613 	wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp,
614 				      iocb->ki_pos, NETFS_WRITETHROUGH);
615 	if (IS_ERR(wreq)) {
616 		mutex_unlock(&ictx->wb_lock);
617 		return wreq;
618 	}
619 
620 	wreq->io_streams[0].avail = true;
621 	trace_netfs_write(wreq, netfs_write_trace_writethrough);
622 	return wreq;
623 }
624 
625 /*
626  * Advance the state of the write operation used when writing through the
627  * pagecache.  Data has been copied into the pagecache that we need to append
628  * to the request.  If we've added more than wsize then we need to create a new
629  * subrequest.
630  */
631 int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
632 			       struct folio *folio, size_t copied, bool to_page_end,
633 			       struct folio **writethrough_cache)
634 {
635 	_enter("R=%x ic=%zu ws=%u cp=%zu tp=%u",
636 	       wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end);
637 
638 	if (!*writethrough_cache) {
639 		if (folio_test_dirty(folio))
640 			/* Sigh.  mmap. */
641 			folio_clear_dirty_for_io(folio);
642 
643 		/* We can make multiple writes to the folio... */
644 		folio_start_writeback(folio);
645 		if (wreq->len == 0)
646 			trace_netfs_folio(folio, netfs_folio_trace_wthru);
647 		else
648 			trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
649 		*writethrough_cache = folio;
650 	}
651 
652 	wreq->len += copied;
653 	if (!to_page_end)
654 		return 0;
655 
656 	*writethrough_cache = NULL;
657 	return netfs_write_folio(wreq, wbc, folio);
658 }
659 
660 /*
661  * End a write operation used when writing through the pagecache.
662  */
663 int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
664 			   struct folio *writethrough_cache)
665 {
666 	struct netfs_inode *ictx = netfs_inode(wreq->inode);
667 	int ret;
668 
669 	_enter("R=%x", wreq->debug_id);
670 
671 	if (writethrough_cache)
672 		netfs_write_folio(wreq, wbc, writethrough_cache);
673 
674 	netfs_end_issue_write(wreq);
675 
676 	mutex_unlock(&ictx->wb_lock);
677 
678 	if (wreq->iocb) {
679 		ret = -EIOCBQUEUED;
680 	} else {
681 		wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
682 		ret = wreq->error;
683 	}
684 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
685 	return ret;
686 }
687 
688 /*
689  * Write data to the server without going through the pagecache and without
690  * writing it to the local cache.
691  */
692 int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len)
693 {
694 	struct netfs_io_stream *upload = &wreq->io_streams[0];
695 	ssize_t part;
696 	loff_t start = wreq->start;
697 	int error = 0;
698 
699 	_enter("%zx", len);
700 
701 	if (wreq->origin == NETFS_DIO_WRITE)
702 		inode_dio_begin(wreq->inode);
703 
704 	while (len) {
705 		// TODO: Prepare content encryption
706 
707 		_debug("unbuffered %zx", len);
708 		part = netfs_advance_write(wreq, upload, start, len, false);
709 		start += part;
710 		len -= part;
711 		iov_iter_advance(&wreq->io_iter, part);
712 		if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
713 			trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause);
714 			wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
715 		}
716 		if (test_bit(NETFS_RREQ_FAILED, &wreq->flags))
717 			break;
718 	}
719 
720 	netfs_end_issue_write(wreq);
721 	_leave(" = %d", error);
722 	return error;
723 }
724